
Crafting Machine Learning Defenses against Adversaries

by

Won Park

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2023

Doctoral Committee:

Professor Z. Morley Mao, Chair
Assistant Professor David Fouhey
Professor Atul Prakash
Professor Clayton Scott

Won Park

wonpark@umich.edu

ORCID iD: 0000-0002-30322-0748

© Won Park 2023

DEDICATION

To all those who made this journey possible

ii

ACKNOWLEDGMENTS

”It takes a village to raise a child”.

I would bet this is one of the most common quotes put in the front of a dissertation, but I
believe it really is true. One of the most challenging, frustrating, emotional, and rewarding
experiences in my life is coming to an end. And the journey would not have been possible
for the village around me. In another universe, if it weren’t for the people listed here, this
dissertation might look very different (or might not even exist entirely). So, near the end of
my journey, I think it is fitting that I name the people who have helped me along the way.

First, I would like to give my utmost thanks to Professor Z. Morley Mao, who took me
in, provided mentorship and guidance, and provided support through a PhD journey that
was most certainly non-linear.

I would also like to express my sincere gratitude and respect to members of my com-
mittee: Assistant Professor David Fouhey, Professor Atul Prakash, and Professor Clayton
Scott. They are very accomplished and busy individuals - yet they have always found the
time to provide feedback and assistance.

Many of these projects literally would not have happened without the collaborators I
worked with along the way. So thank you to Assistant Professor Qi Alfred Chen, Nan
Liu, Assistant Professor Ruoxi Jia, Si Chen, and Yi Zeng. It has been the utmost privilege
working alongside all of you and I eagerly look forward to all your future works.

Many thanks to my manager at Ericsson, Dr. Wenting Sun, and the team. I had a great
time there and I was so blessed to have worked with such a wonderful manager and amazing
team who welcomed me from day 1 and helped me become the best I can be.

I would like to thank members of my lab, past and present (Can Carlack, Yulong Cao,
Minkyoung Cho, David Hong, Shengtuo Hu, Shouwei Jin, Yikai Lin, Wenyuan Ma, Yuru
Shao, Jiachen Sun, Shichang Xu, Shawn Zhao, Xumiao Zhang, Qingzhao Zhang, Ruiyang
Zhu, Xiao Zhu). Working alongside you all has been quite an experience and I am sad
that COVID put an end to our fun meetings. I would like to give a special warm thanks to
Yulong Cao, Shenguo Hu, and Yikai Lin, who were like older brothers to me when I was

iii

new to the program; and a shoutout to others in my cohort: Can Carlack, Jiachen Sun, and
Xumiao Zhang. You are all close and I look forward to your dissertations as well!

I would also like to thank other graduate students who provided guidance and were
always down to have fun conversations along the way: Noah Curran, Meixing Dong, Ayush
Goel, and Ramakrishnan Sundara Raman.

Jumping back in time, I would like to thank Professor David Wagner who started me
on this journey, not just in terms of research in computer science but security of machine
learning. Without him, I would most likely have never considered this path. Alongside
him, I would also like to thank my first ever collaborators: Michael McCoyd, Steven Chen,
and Joanna Yang.

The next part of my acknowledgements goes to the fabulous people who have supported
me along the way. The journey was not easy (as many of them may know), and without
these people on the sideline, I probably would not have made it this far.

A warm thanks to my wonderful family who have shown nothing but love and support
throughout this entire journey. They have always stood by me and cared for me. I love
them deeply. I would also like to thank my grandparents and relatives in Korea who I was
not able to see throughout the program. I knew they were always there and supporting me,
even if it could only be through a phone call or Kakao video chat. I miss them all and hope
I can visit soon.

To Iris Li, the love of my life who has stood by me through the ups and downs. There
is no one else I would have rather taken this journey with. Thank you for accepting me,
supporting me, and be willing to share both my pains and my joys. Your emotional support
was absolutely essential to me and I hope we can continue to chase our dreams together.

I would like to thank the Thursday Dinners and Tomfoolery Squad (Caleb Belth,
Eli Goldweber, Sarah Jabbour, Fahad Kamran, Meera Krishnamoorthy, Kevin Loughlin,
Trevor Odelberg). Not only can a PhD journey be challenging, but it is uniquely so in a
way that few may be able to understand. I am grateful for my friends who were able to
support me through the challenges of a PhD. I look forward to seeing what exciting places
they end up.

A big thank you to the Potluck squad (Stanley Ho, Kanak Kapoor, Jong Ha Lee, Megan
Lew, Cindy Liu, In-Young Jo, Sam Pajuleras, Michelle Sou, Faith Szeto, Vaibhav Ra-
mamoorthy, Justin Wang, Julie Xin) who remind me that despite long periods of time and
even longer distances, friends can always meet up over food and good times and act like
not a moment was lost.

iv

Thanks to the high king crew (Jared Fernandez, Nikhil Ghosh, Vikram Idury, Siddharth
Mehendale, Kentaro Mori, Rohan Subramaniam, Hardi Vajir, Erik Yang) who have taught
me that top-tier deep, intellectual conversations and top-tier degeneracy sometimes do go
hand-in-hand.

I would like to thank the Heok group (Shivaani Gandhi, Brian Giang, Darren Lim, Divya
Natesan, (Dr.) Sajan Patel) for reminding me despite the fact that I left the field of chemistry
long ago, the bonds of friendship never break.

Thank you to the Nerd Herd Squad (Rohit Braganza, Jay Desai, Andrew Kim, Ayush
Mehra, Vaibhav Ramamoorthy) who have been my support and source of laughter since
middle school.

I would also like to give my sincerest thanks to my other high school and college friends
who provided help, advice, laughter, unconditional support, and kindness throughout: Ji
Hyun An, Katherine Jung, Rajeev Parvathala, Aleksandra Popovic, Diana Zhou.

The journey was arduous and besides my friends and family, another thing that kept
me going were my hobbies that I came to enjoy. So thank you so much to the Michigan
volleyball community as well as the awesome photography community who welcomed me
in with warm arms and really helped me enjoy the hobby when the times got tough.

v

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF FIGURES . ix

LIST OF TABLES . xii

ABSTRACT . xiii

CHAPTER

1 Introduction . 1

1.1 Motivation . 2
1.2 Research Questions . 4
1.3 Thesis Organization . 7

2 Background and Related Work . 8

2.1 High Overview of Machine Learning Systems 8
2.1.1 Formal Representation of Neural Networks 10
2.1.2 Relevant Machine Learning Tasks 10
2.1.3 Representation . 11

2.2 Security of Machine Learning Systems 12
2.2.1 Adversarial Examples and Attacks on Models during Inference

Time . 12
2.2.2 Attacks during Training Phase 16

2.3 Related Work . 17
2.3.1 Adversarial Attacks on Sensor Fusion Models 17
2.3.2 Relevant Backdoor Attacks and Defenses 18
2.3.3 Anomaly Detection Methods . 20
2.3.4 Adversarial Fine Tuning . 21

3 Adversarial Examples on Sensor Fusion Models 24

3.1 Introduction . 24

vi

3.2 Threat Model . 27
3.3 Disappearance Attack . 27

3.3.1 Evaluation and Results . 30
3.4 Towards Generalizability . 31

3.4.1 Results . 33
3.5 Spoofing Attack . 34

3.5.1 Evaluation and Results . 36
3.6 Analysis of Sensor Input . 38
3.7 Exploring Defenses . 39

3.7.1 Training on More Distortion . 39
3.7.2 Robust Training and New Fusion Layer 40
3.7.3 Adversarial Training . 40
3.7.4 Other Defense Recommendations 41

3.8 Conclusion . 41

4 Using Frequency for Poisoning Attacks . 43

4.1 Introduction . 43
4.2 Frequency Artifacts . 46

4.2.1 Preliminaries . 47
4.2.2 Examining Images with Triggers using DCT 47
4.2.3 Analyzing Causes of High-Frequency Artifacts 51

4.3 Frequency-Based Backdoor Data Detection 53
4.3.1 Detection Method and Application Scenarios 53
4.3.2 Results & Comparison . 56
4.3.3 DNN Model Architechures and Ablation Study 58
4.3.4 Transferability . 60

4.4 Creating Smooth Triggers . 63
4.4.1 Problem Definition . 63
4.4.2 Methodology . 64
4.4.3 Attack Results and Evaluations 66
4.4.4 Impacts over Defenses . 69

4.5 Conclusion . 71

5 Detection of Security Anomalies in Industry 73

5.1 Introduction . 73
5.2 Our Approach . 76

5.2.1 Considerations of Other Approaches 76
5.2.2 Model Architecture . 78
5.2.3 Model Details . 80
5.2.4 Proposed Pipeline . 81

5.3 Evaluation . 84
5.3.1 Datasets . 84
5.3.2 Configuration . 85

vii

5.3.3 Results . 85
5.4 Conclusion and Future Work . 86

6 Adversarial Fine Tuning . 87

6.1 Introduction . 87
6.2 Methodology . 90

6.2.1 Vanilla Adversarial Fine Tuning 90
6.2.2 Our Methodology . 91

6.3 Evaluation . 93
6.3.1 Evaluation Metrics . 93
6.3.2 Accuracy . 95
6.3.3 Timing . 96
6.3.4 Limitations . 98

6.4 Conclusion . 98

7 Conclusion . 99

7.1 Limitations and Future Work . 100
7.2 Concluding Remarks . 101

APPENDIX . 102

BIBLIOGRAPHY . 104

viii

LIST OF FIGURES

FIGURE

2.1 An example of an adversarial image from the works Goodfellow et al. [48].
Note that the adversarial image on the right causes the classifier to output
the wrong class (gibbon) and the resulting image’s perturbation is basically
impossible to notice to the human eye. 14

3.1 Results of some of our raw-pixel attacks. The left images are outputs for
benign images. The 1st value corresponds to the classification confidence and
the 2nd value corresponds to the IOU with the ground truth bounding box. The
right images show the corresponding adversarial images. Note that our attack
works in deleting any number of objects, whether they are in the foreground
or background (the attack shown in the bottom right image purposely targets
one vehicle and not the other). The red boxes are ground truth and the green
boxes are bounding boxes outputted by the model. 30

3.2 The left images are the result of the custom adversarial patch and the right
images contain a random noise patch applied in the same area. 33

3.3 Results of some of our spoofing attacks (SpoofV1). The bounding boxes with
an IOU of 0 (second value) are the spoofed objects and the red squares repre-
sent the ground truth. 34

3.4 The distortion required per pixel in the L2 norm space for the disappearance
attack (left) and the spoofing attack (right) adversarial examples. Note the
difference in scale. 35

3.5 The top right image show an attempt to spoof an object underneath the sign.
When we modify the LIDAR input (bottom left), we are able to create a suc-
cessful adversarial example (bottom right). 37

3.6 Output of experiment in which we switched LIDAR and image inputs. The
two images on the left show the normal output for benign inputs. The two
right images show the output when the LIDAR for one is switched for the
other (and vice versa). Note that the model output follows the LIDAR (red
box) more than the image. 38

ix

4.1 A side-by-side comparison in the frequency domain of clean samples vs. sam-
ples patched with triggers. The left-most heatmap in (a) depicts the mean
spectrum of small-input-space data using 10000 samples randomly selected
from the CIFAR-10 dataset. The left-most heatmap in (b) illustrates the mean
spectrum of large-input-space data using 1000 samples randomly chosen from
the PubFig dataset. The rest images show the mean frequency values of im-
ages patched with different backdoor attack triggers. All the frequency results
of (b) are depicted from 1.5 to 4.5 using value clipping and exponential calcu-
lation for better visualization. 46

4.2 A pair-to-pair comparison of clean data and samples patching with different
triggers on the GTSRB dataset. The frequency results are averaged over 10000
randomly selected samples from the test set. 50

4.3 A pair-to-pair comparison of clean data and samples patching with different
triggers on the TSRD database. The frequency results are averaged over all
4170 samples. 50

4.4 A pair-to-pair comparison of clean data and samples patching with different
triggers on the Cifar10 dataset. The frequency results are averaged over 10000
randomly selected samples from the test set. 50

4.5 A pair-to-pair comparison of clean data and samples poisoned with different
backdoor attacks on the PubFig dataset. The frequency results are averaged
over 1000 randomly selected samples from the test set and clipped with the
range of (1.5,4.5) for visualization. 51

4.6 Examples of different categories of triggers. 51
4.7 Visual examples of the random perturbations adopted in developing the detec-

tor. The upper left sample is a clean example, (a)-(e) are the perturbed results
using different approaches. 54

4.8 Detection Efficiency Using the Linear Model vs. Input Width 56
4.9 Visual effects over image and frequency domian of the smooth triggers. The

trigger is multiplied by 5 for visualization. The right bottom depicts the
heatmap averaged over 10000 samples patched with the smooth trigger. Both
the trigger itself and the final images exhibit frequency spectra similar to nat-
ural images. 66

4.10 Visual effects over image and frequency domian of the smooth triggers. The
trigger is multiplied by 5 for visualization. The right bottom depicts the
heatmap averaged over 10000 samples patched with the smooth trigger. Both
the trigger itself and the final images exhibit frequency spectra similar to nat-
ural images. 67

4.11 Fine-tuning over the smooth trigger patched samples 71

5.1 High level depiction of general autoencoder architecture 78

x

5.2 High level depiction of LSTM units. x represents the input, c represents the
cell state vector, which controls which values to ”forget”, while P represents
the hidden state or output vector of the LSTM 79

5.3 Detailed model architecture of encoder layers (top) and decoder layers (bottom) 80
5.4 High level overview of pipeline . 82
5.5 Our ablation study showing our model’s best F1 score against changes in num-

ber of dimensions in the latent space (left) and number of dense layers (right) . 86

6.1 A sample training regimen provided by Jeddi et al. [73]. 91
6.2 Graphs showing the results of various training experiments. Figure 6.2a shows

the benign accuracy and robustness accuracy during a sample training session
on GTSRB. The blue dashed line represents the change from Stage 1 and Stage
2. Notice the drop in benign accuracy. Graphs showing the results of various
training experiments. Figure 6.2b shows the effect of benign accuracy and
robustness when we vary the percentage of training epochs spent in Stage 1.
Figure 6.2c shows the effect of benign accuracy and robustness when we train
a model on GTSRB using just Stage 1. 94

xi

LIST OF TABLES

TABLE

3.1 Table showing success rate for various defenses against our proposed attacks. . 39

4.1 The detection efficiency and comparisons on CIFAR-10 (top), GTSRB (mid-
dle) and PubFig (bottom) (%). *represents the comparison group using the
image domain data. 57

4.2 Model ablation study using the CIFAR-10 dataset. kmax represents the maxi-
mum value of the CNN kernels. We start the analysis from the most straight-
forward fully-connected linear model. Hidden layers, convolutional layers,
or kernel sizes are gradually added or enlarged to test out the most simplis-
tic model that can satisfy an outstanding detection efficiency. We present the
training ACC, detection ACC, and BDR for each attack (%); the boled results
are larger than 90%, which we interpret as satisfying results. 58

4.3 The network architecture of our simple Linear detector for large input space.
We report the size of each layer. 59

4.4 The network architecture of our simple CNN detector for small-input-space.
We report the size of each layer. 60

4.5 The transferability using the detector trained on different datasets tested on
GTSRB (%). 61

4.6 The transferability on the TSRD dataset (%). 61
4.7 The transferability with extended training set, tested using the TSRD dataset

(%). 62
4.8 The target model for evaluating the smooth trigger on CIFAR-10 and GTSRB

dataset. We report the size of each layer. 68

5.1 Best F1 scores for various approaches on the datasets 84

6.1 Accuracies for our trained models on the PGD attack. In terms of both benign
accuracy and accuracy under attack, our models match or exceed that created
by vanilla adversarial fine-tuning . 95

6.2 The results of the Carlini-Wagner attack on our models versus compared to
vanilla fine-tuning. We are able to match or exceed performance on both GT-
SRB and CIFAR10 . 97

6.3 Average time to train each model averaged over 3 runs. Notice the sharp dis-
crepancy between fine-tuning (FT) and regular adversarial training (AT) 97

xii

ABSTRACT

Machine learning systems are becoming widely adopted and ubiquitous. Not only are

there a growth of products in which machine learning is at their core like autonomous

vehicles, but even traditional companies in fields such as finance, telecommunications, and

travel are integrating machine learning into their internal structure.

However, like any system, machine learning platforms are prone to security risks and

vulnerabilities. Coupled with an ever-accelerating deployment and usage of machine learn-

ing systems, the attackers’ chance of success and capability of damage increases just as

rapidly. What is especially concerning is the large surface area of the machine learning

pipeline that is available for attack - from training all the way to inference. With such a

wide variety of attack combinations possible, there remains a need to address and explore

the many types of attacks and defense that are possible in a machine learning environment.

To address this goal, in this dissertation, we explore some of the different types of se-

curity vulnerabilities and attacks that are possible with different types of machine learning

systems. At the inference level, my dissertation explores the possibility of crafting ad-

versarial examples on multimodal sensor fusion models - the kind that would be used by

autonomous vehicle manufacturers. We also explore a new technique that can be used for

defending against adversarial examples: adversarial fine-tuning. Our proposed methodol-

ogy exceeds the state of the art in terms of robust accuracy and benign accuracy, while still

taking much faster to train than traditional adversarial training.

We also explore a gap in the study of attacks during the training phase of the model (i.e.

xiii

poisoning or backdoor attacks), by exploring the frequency domain of images and how that

could affect attacks and detection defenses.

Finally, through a collaboration at Ericsson, Inc., we explore how a machine learning

framework can be deployed to detect anomalous data while still being cognizant of industry

restrictions and metrics.

xiv

CHAPTER 1

Introduction

The world is in a new era in which machine learning (ML) systems are becoming widely

pervasive. Andrew Ng famously talked about ”Why AI is The New Electricity” speaking

about its importance in the near future [125]. Though there are reasonable critiques to his

statement, it is an unequivocal fact that machine learning systems are on the rise. The global

machine learning market is expected to grow from $21.17 billion in 2022 to $209.91 billion

by 2029, at a CAGR of 38.8% [43] 35% of companies report using AI in their business,

and an additional 42% of respondents say they are exploring AI [69]. 46% of organizations

report to be planning to implement AI in the next three years [134]. This is a trend that is

not limited to just one area or field, as machine learning usage is predicted to rise across

different sectors such as banking, healthcare, marketing, and retail.

This trend is no surprise as machine learning systems provide the benefit of automation

of almost human-like tasks, smarter decision making algorithms, new opportunities for

innovation, and enhanced quality of life. Machine learning systems are able to beat humans

in a game of Go [154], Atari, [115], and Super Smash Bros Melee [42]. Several companies

are toying with the idea of autonomous vehicles, and recently ChatGPT made headlines

for providing almost human-like communication. Recently, an artificially generated photo

fooled judges and won a photography contest [52].

Behind all these amazing tasks lies one encompassing idea. At a high-level, the goal

1

of most machine learning tasks is to learn a rough function (albeit possibly a complicated

one) from input to output given samples of input-output pairs. Machine learning algorithms

are designed to learn this function using the sample of input-output pairs - called training

data and then apply it to new, unseen data. However, a key presumption is made here: the

aforementioned algorithms are developed based on a strong assumption that the distribution

of the training data is similar to the new data the model will see. This assumption, while

usually valid, raises some potential concerns:

The main one we are focused on this dissertation is scenarios where malicious actors

(adversaries) attack a machine learning model, either by altering the training data or altering

the unseen data. In either scenario, the machine learning model faces a situation where the

new examples it sees are different from the types of inputs trained on.

The focus of this dissertation is on the attacks that arise from purposeful data manip-

ulation of machine learning systems - which may even be malicious in nature - and

potential defenses against them.

1.1 Motivation

With such advanced systems, it is only logical that it will bring about its own risks from

failures and even worse, malicious agents - bringing about its own security challenges.

Furthermore, as the use of machine learning continues to rise, the security threat grows

with it. This is not only from the perspective of likelihood - as more machine learning

systems increases, the chance of a successful attack increases as well - but also from a

magnitude perspective - as more and more critical structures utilize machine learning, the

consequences of an attack magnifies.

We have already seen examples of such intentional manipulation, not just in theory but

in practice. One of the earliest applications of machine learning was to detect emails as

2

spam - and it was shortly after that attackers were able to launch attacks do disguise emails

to evade detection [38]. Other examples that show potential real-life dangers include a

report that showed a few stickers could trick a Tesla autopilot [86], a journal that showed a

few changes undetectable by humans can cause misdiagnoses in medical systems [41], or

a paper showing how to fool DeepFake detection systems [14]

Furthermore, despite the previously mentioned explosion in machine learning systems,

the 2019 interim report published by the National Security Commission on Artificial In-

telligence [146] shows that the funding for defending against attacks on machine learning

systems lags behind. Another publication by IARPA signaled the alarm for the increasing

threat of attacks during training time of machine learning models [68]. What complicates

the issue of security in machine learning is that there is no one silver bullet - no one-size-

fits-all solution. For instances, attacks can occur during different phases in the machine

learning model like training or evaluation. Even based on the type of machine learning

model, there may arise differences and similarities in security challenges - a machine learn-

ing task focused on object detection in an autonomous vehicle may face different challenges

than a machine learning model used to predict stock movements. On top of all of this, de-

fenses must be aware of different restrictions and threat models that remain acceptable

based on matters like use case, industry restrictions, and general risk tolerance.

When grappling with the problem of how to manage and search for vulnerabilities in

machine learning pipelines, there are many approaches one can take. In this research,

I start by examining the machine learning training pipeline and identifying the security

vulnerabilities that may arise in each stage:

• Inference Phase A critical phase of any machine learning system is the inference

phase, in which a trained model is deployed. This is also where the model is subject

to unconstrained inputs that are out of its control. Though there have been thou-

3

sands of works since the initial discovery of attacks during the inference phase [164],

several areas remain unexplored. We explore a few of these areas in this dissertation.

• Training Phase Machine learning models are also vulnerable during their training

phase through backdoor attacks. Backdoor attacks are attacks in which adversaries

deliberately manipulate some subset of the training data [53, 28], or the model’s

parameters [104], to make the model recognize a backdoor trigger as the desired

target label(s). When the backdoor trigger is introduced during test-time, the poi-

soned model exhibits a particular output behavior of the adversary’s choosing (e.g.,

a misclassification).

My work brings about novel contributions for security of machine learning models in

both these areas.

Furthermore, security in machine learning is not just limited to the different stages in

their pipeline, but also comes into play in different deployment environments. These secu-

rity measures also do not exist in a vacuum and must fit in with the surrounding deployment

architecture and strategy. They must be cognizant, for example, in the limitations of time,

resources, energy, and money. Toward this, I have performed part of my research at Erics-

son Inc. helping research and develop security for their machine learning models.

1.2 Research Questions

In this thesis, we address three main research questions centered on examining the security

of machine learning model from different attack surface perspectives.

RQ 1: What are some current threats to models during inference time and can we

build effective defenses? By the time this work was written, it has been well known

4

that machine learning models - particularly deep learning models are vulnerable to attacks

during the inference phase with what are called adversarial examples [164, 48].

Since its discovery, much of the work on adversarial examples has been focused on

single input machine learning models like basic image classification models or single-input

object detection models. While it is well known that single input machine learning models

are vulnerable to adversarial examples, it is not clear what occurs if an additional input is

fed into the model.

We explore this gap in Chapter 3 and show that multimodal input models are not inher-

ently more secure than single input models (in this case: 3D depth and image). We find

that despite the use of a 3D depth input, the model is vulnerable to our purposefully crafted

image-based adversarial attacks including disappearance, universal patch, and spoofing.

After helping to shed light on the underlying reason, we explore some potential defenses

and provide some recommendations for improved sensor fusion models.

In terms of defense, the ideal goal to protect against adversarial examples is to create

models that are certified to be resilient against distortions in inputs. This involves devel-

oping a training methodology (and possibly a corresponding model) that provides provable

guarantees that the model will not misclassify any inputs within a certain epsilon of dis-

tortion. However, progress in this line of work is slow and to date, the guarantees are still

quite small to be practical in real life. Because of this, the most popular defense used is

an empirical defense that utilizes training on both regular and adversarial examples. The

downside to this methodology is that it vastly increases the training time.

In Chapter 6, we provide a new training methodology that utilizes a pre-trained model

and fine-tunes the model with adversarial examples for a few epochs. Our evaluation shows

that it surpasses state of the art fine-tuning methods in terms of accuracy and protection

against adversarial examples, even matching the accuracies provided by regular adversarial

tuning techniques. At the same time, our technique takes much less time than regular

5

adversarial training.

RQ 2: How can we improve defenses against attacks during training phase? In con-

trast to adversarial examples, which attacks the model during the inference phase, poison-

ing or backdoor attacks attack a model during its training phase. There have been lots

of works designing more and more effective attacks and even more works trying to de-

sign defenses to mitigate said attacks. However, in our dissertation (Chapter 4), we show

that many current state-of-the-art backdoor attacks exhibit severe high-frequency artifacts,

which remain across different types of datasets and resolutions. We further demonstrate

these high-frequency artifacts can be taken advantage of and show we can detect these trig-

gers at a rate of 98.50% without prior knowledge of the attack details or the target model.

We then propose a practical way to create smooth backdoor triggers without high-frequency

artifacts and study their detectability. We show that existing defense works can benefit by

incorporating these smooth triggers into their design consideration. In short, we provide an

exploration into a new direction of data poisoning attacks.

RQ 3: How can we provide a defense against anomalous inputs in industry systems?

Security systems do not operate in a vacuum - any defense must be cognizant of the con-

straints of the environment it is placed in. After all, a secure defense is useless if it is so

cumbersome that it is not used.

As a case study, a modern network and telecommunication systems, hundreds of thou-

sands of nodes are interconnected by telecommunication links to exchange information be-

tween nodes. The complexity of the system and the stringent requirements on service level

agreement makes it necessary to monitor network performance intelligently and enable

preventative measures to ensure network performance. It is essential to identify anomalous

data coming in before they reach the core services. As such, anomaly detection - the task

6

of identifying events that deviate from the normal behavior - continues to be an important

task. However, techniques traditionally employed by industry on real-world data - Density-

based spatial clustering (DBSCAN) and median absolute deviation (MAD) - have severe

limitations, such as the need to manually tune and calibrate the algorithms frequently and

limited capacity to capture past history in the model. Lately, there has been much progres-

sion in applying machine learning techniques, specifically autoencoders to the problem of

anomaly detection. However, thus far, few of these techniques have been tested for use in

scenarios involving multivariate timeseries data that would be faced by telecommunication

companies. In Chapter 5, we propose a novel autoencoder based deep learning frame-

work called ERICA including a new pipeline to address these shortcomings and provide

a defense that is effective but also does not put a strain on resources. Our approach has

been demonstrated to achieve better performance in terms of detection accuracy as well as

memory and time cost.

1.3 Thesis Organization

This dissertation is structured as follows. Chapter 2 provides sufficient background on

different types of attacks and defenses under consideration. Related works are discussed in

Chapter 2 as well. In Chapter 3, we explore the effectiveness of single-image adversarial

examples on multimodal sensor fusion models. In Chapter 6, we develop a new fine-tuning

technique to provide a quick protection for models against adversarial examples. In Chapter

4, we investigate a previouly unexplored area in poisoning attacks - the frequency spectrum

and show how it can affect both attack and defense methodologies. In Chapter 5, we

illustrate how to develop a machine learning system in industry to detect anomalies and

provide a defense. Lastly. we discuss future works and conclude the dissertation in Chapter

7.

7

CHAPTER 2

Background and Related Work

This chapter provides the necessary background information and related work in order to

properly understand and frame the dissertation. Section 2.1 provides a high-level overview

of machine learning systems for those unfamiliar and also provides some key assumptions

in terms of terminology that is used in this work. Section 2.1 then goes into some back-

ground information on the attacks studied in this work. Section 2.3 then goes in depth into

the relevant related works.

2.1 High Overview of Machine Learning Systems

Though it is hard to pinpoint an exact definition of machine learning, one can say that it is

a branch of artificial intelligence (AI) dedicated to understanding computer methodologies

that leverage data to improve performance on some set of tasks [114]. These tasks span a

wide gamut and includes things like detecting spam in emails, classifying images, detecting

objects in images, or translating from one language to another.

This dissertation (and most related work in this field) focus on supervised machine

learning due to the simple fact that supervised machine learning algorithms greatly make

up the majority of use cases in the real world. Therefore, for the purpose of this disserta-

tion, when we talk about machine learning, we are referring to supervised machine learning

8

techniques unless otherwise noted. In contrast to pure unsupervised techniques, a super-

vised algorithm is one that operates on data with labeled examples. In the spam detection

example, a supervised algorithm will run on cases in which there is a corpus of data in

which emails are labeled with spam or not spam. A supervised learning algorithm would

analyze the corpus of data - called the training data - and produce a function that can be

used to analyze new, unseen data. This is in contrast to unsupervised learning algorithms

that operate on data without labeled examples.

The portion of the learning algorithm in which the model analyzes the corpus of data

is called the training phase. The stage in which the function is learned and the model is

deployed to analyze on new data is called the evaluation phase. In this dissertation, we talk

about works related to both phases of the supervised learning pipeline.

Another key assumption made in this dissertation is that the term machine learning

systems is used to refer mainly to deep learning systems and neural networks. This is a

common trend as deep learning techniques are able to accurately represent more difficult

tasks than other machine learning techniques. As an example, in 2012, Krizhevsky et al.

[82] submitted the only neural network architecture for the 2012 ImageNet Large Scale

Visual Recognition Challenge [141] and completely obliterated the competition. The next

year, as a testament to its power, every top performer utilized neural networks in their

design.

For this reason, deep learning continues to grow as a popular methodology, has seen

astonishing accomplishments [30, 57, 91], and in some ways even matches the level of

humans [163]. Consequently, the security of deep learning systems is a natural area to focus

on when studying machine learning systems, not for this work but other related works as

well. However, while all the works posed here operate on deep learning models, it is still

important to note that any security concerns and findings found in this dissertation are also

applicable to other machine learning techniques and models.

9

2.1.1 Formal Representation of Neural Networks

Neural networks are a function F (x) = y that operates on input x ∈ Rn and produces an

output y ∈ Rm. The exact nature of the input and output depends on the task. In the case

of image classification models studied in Chapters 4 and 6, for example, the input is raw

image pixels and the output is a classification of one of m classes. Formally, the function F

also implicitly depends on some parameters of the model θ, but for convenience we do not

show the dependence on θ unless otherwise noted since for most of our work, the studied

model is fixed.

2.1.2 Relevant Machine Learning Tasks

Throughout the background, we discussed various examples in which machine learning

systems and neural networks can be used. In this subsection, we go into a bit more depth

for the tasks that are studied in this dissertation.

Image Classification Image classification models are utilized in Chapters 4 and 6. The

task of image classification is to assign a label or class to an image. It is expected that every

class will correspond to exactly one label (not zero or more than one) and the entirety of the

image corresponds to that one label. Image classification models take an image as input and

return a prediction about which class the image belongs to. Common model architectures

used for this task include the VGG model [155], ResNet [57] and Inception [162].

Object Detection The task of object detection involves locating instances of predefined

objects in images or videos. Common instances of this include facial detection or image

annotation. We look at the effects of adversarial examples on a specific instance of object

detection: 3D object detection in Chapter 3.

10

Anomaly Detection The task of anomaly detection is the task of of identifying unex-

pected items or events in data sets, which differ from the norm, or the majority of the data

and do not conform to a ”well defined notion” of normal behavior. The tasks of anomaly

detection can be applied in flow studies, finance and banking, and medicine. They are also

useful as a front-line defense in detecting adverse and malicious incoming data. As such,

it is an important task in many companies. In Chapter 5, we explore the task of anomaly

detection as a defense in Ericsson, a multinational networking and telecommunications

company.

2.1.3 Representation

In this section, we give a quick background on the types of inputs we are manipulating and

concerned with.

Images A majority of the work done in this dissertation is on models that utilize images as

inputs. A colored RGB image (such as in CIFAR-10) is represented as a three-dimensional

vector x ∈ R3hw where h and w are the height and width of hte image. We do not convert

RGB images to HSV, HSL, or other cylindrical coordinate representations of color images

as all the models here act on raw pixel values.

3D Depth Data 3D object detection models often run on 3D depth data, for example,

collected from a Velodyne LIDAR sensor. The nature of the data varies from dataset to

dataset (e.g. polar coordinates versus Cartesian coordinates). For the KITTI dataset [47],

which we utilize in Chapter 3, each value in the dataset consists of a vector x ∈ R4 where

the first 3 values are the (x, y, z) coordinates in 3D space and r is the reflectance value.

11

Time Series Data Time series data is a sequence of data points indexed in time order,

and typically consist of successive measurements made from the same source over a fixed

time interval. For example, the price of a certain stock every minute would be considered

a time series data. Each point would be a number corresponding to the value. In the case

of the work showcased in Chapter 5, the data used is multivariate time series data. That

means that for every time stamp, the value is in x ∈ Rn corresponding to the value from n

different sources that are usually related.

2.2 Security of Machine Learning Systems

The field of security of machine learning systems took off in the mid 2010s, not coinciden-

tally with the rise of accuracy in deep learning models. Before this case, it was common to

see machine learning models have less than desired performance on various tasks, and so

the concern of security was not seriously considered. We can see this, for example, with the

fact that there were 0 papers on arXiv with the term ”adversarial” and ”machine learning”

before 2014.

2.2.1 Adversarial Examples and Attacks on Models during Inference

Time

However, as neural networks began to become more popular and achieve accuracies on

various tasks that were previously not possible, the area of security started to take off. The

field largely started with an almost accidental discovery by Szegedy et al. in their seminal

paper [164] in which the authors noted that they were able to misclassify an image on an

supervised image classification model by ”applying a certain imperceptible perturbation”.

They were the first to coin the resulting image as an ”adversarial image” or ”adversarial

12

example” and the name stuck. In short, an adversarial example is any purposefully crafted

input that is designed to cause an erroneous output in a machine learning model. Though

it was originally discovered in images, adversarial examples can exist in a variety of tasks

including speech and text.

More formally, the definition of adversarial examples is as follows. Suppose we have a

learned classifier (mapping) F : X → Y from an input domain X (like an image) to a set of

outputs Y (like a classification label). Given a benign example x ∈ X and corresponding

proper output y ∈ Y , an adversarial example is a deliberately modified input xadv ∈ X

such that the classifier outputs F (xadv) ̸= y (called an untargeted attack) or F (xadv) = y′

(called a targeted attack) where y′ is a class chosen by the adversary.

A key component of adversarial examples is that the perturbation or change to the input

be ”minor” - it would be unsurprising to see that any arbitrary large change could cause an

error in the output. The term ”minor” is largely subjective and differs from task to task - for

example, what is considered ”minor” in object detection might be different from what is

considered ”minor” in speech recognition. Even within the same task, the term may change

based on the application and domain in question, but for image classification, a commonly

accepted term is visually imperceptible to the human eye. So, in the above example, a

human should be able to identify xadv as the original output y. Figure 2.1 shows a famous

case of an adversarial example for an image.

Shortly after, in another seminal paper, Goodfellow et al. [48] explored the nature of

adversarial examples, noting that they are likely caused by the linear nature of deep learning

models. They also propose a quick way to generate adversarial examples, which became

known as the Fast Gradient Sign Method (FGSM).

Since then, works have launched in roughly four directions: creating stronger attacks,

creating stronger defenses, understanding the nature behind adversarial examples, and us-

ing adversarial examples in various applications. The notable attacks during this time pe-

13

Figure 2.1: An example of an adversarial image from the works Goodfellow et al. [48].
Note that the adversarial image on the right causes the classifier to output the wrong class
(gibbon) and the resulting image’s perturbation is basically impossible to notice to the
human eye.

riod were a variation of FGSM [85], Jacobian-based Saliency Map Attack (JSMA)[130],

DeepFool [118], the Carlini-Wagner attack [16] and the projected gradient descent (PGD)

attack [109]. The latter two are especially noteworthy because not only were they state

of the art attacks that broke existing defenses, but they provided a methodology utilizing

gradient descent to reliably create adversarial examples. Since then, the works involv-

ing adversarial examples have exploded with domains such as malware classification [51],

speech [198, 17] We list a concise version of the relevant works related to this dissertation

in the Related Work section (Section 2.3).

Defenses In security, there is rarely such a thing as a perfect defense - given enough

time and resources, an adversary would be able to thwart almost any defense. The key is

to ensure that the defense causes the attacker to expend so much time and resources that

either the attack becomes impractical, too difficult, and/or ends up becoming out of scope

for the treat model. For example, we consider modern-day encryption to be secure because

14

assuming a proper key generation, an adversary would need an impractical amount of time

to break it.

Security of machine learning systems against adversarial examples follows the same

idea. However, even to this day, defenses against adversarial examples is lagging. Early

signs of progress were quickly shown to be ineffective as soon as iteration based gradient

attacks like CW and PGD were discovered and adapted to try to overcome defenses. These

early defenses include obfuscating gradients [4] and regularizing logits [120]. Furthermore,

it has been shown that combining weak defenses doesn’t automatically make them strong

[58].

Most defenses today fall into two major categories. The first - and most ideal solution

- is to utilize defenses called certified robustness, which provide a provable guarantee that

the model will not misclassify an input given that the distortion is within some bounds.

These can be either deterministic [181, 113, 49, 32] or utilizing randomized smoothing

[31, 89, 92]. However, despite the immense amount of progress made, the bounds that

are guaranteed today are still relatively small, and not yet useful in a practical, real-world

setting. For example, Lecuyer et al. [89] can only certify a 61% accuracy on the CIFAR-10

dataset with an l2 perturbation radius of 0.25

Because of this, many models rely on the second type of defense called adversarial train-

ing which provide an empirical defense. The goal of adversarial training is to train a model

from scratch to not only perform well on the unaltered, benign data but also perform well

under adversarial attacks. The ending result is a model that usually performs slightly worse

on unaltered, benign inputs (benign accuracy) as compare to its vanilla model counterpart,

but makes up for it by performing substantially better on adversarial inputs. Note that, the

debate whether robustness and clean accuracy are inherently are at odds with each other is

an ongoing debate. Some argue that the two are an unavoidable tradeoff [171, 138] while

some argue the opposite [158, 137, 191].

15

At a high level, adversarial training alters the objective function such that instead of

simply trying to minimize the loss, the objective function is rewritten as a minimax problem

in which in each epoch of training, the ”adversary” tries to maximize the training error

with a malicious input and then the ”user” tries to minimize the training error on that

input. We consider adversarial training as a potential defense against adversarial examples

in sensor fusion models in Chapter 3. We examine adversarial training in detail, describe

its shortcomings, and post an alternative approach in Chapter 6.

2.2.2 Attacks during Training Phase

As opposed to adversarial examples which involve attacks during inference time, poisoning

or backdoor attacks aim to attack models during the training phase. The high level idea is

that an adversary would inject malicious inputs into the training set (or alter existing inputs)

in order to cause harm to the model. In the case of poisoning attacks, the malicious inputs

cause the model to perform weakly, usually by causing the decision boundary to shift.

Our project focuses on backdoor attacks first proposed by Chen et al. [28]. Backdoor

attacks are more nefarious attacks in which the malicious inputs are crafted with a trigger

(either visible or not) and usually a desired label. After a successful attack, the resulting

model maintains good accuracy on normal data and operates as intended. However, when

an input is given with the exact same trigger, the model will output the erroneous result.

More formally, suppose we have the a machine learning model trying to learn the func-

tion F : X → Y . An adversary would choose a target t ∈ Y , a trigger or key k and

some function K that maps the key onto the domain X to form xk. This mapping could be

as simple as putting a yellow square on a corner of the image or as complicated as using

GANs. The goal is to make the confidence of F (xk) = t high while making sure that any

pair not associated with the key maintains the same accuracy.

16

As opposed to poisoning attacks, [77, 124, 132, 7, 1, 9, 8, 98, 111, 184, 190, 157, 99],

backdoor attacks are more stealthy and harder to detect (hence the name) since they do not

alter the behavior of the models on inputs without the trigger. They also require a smaller

percentage of the training data to be modified in order to be successful - standard procedure

is less than 10% of the data while poisoning attacks modify anywhere from 20-50%.

Backdoor attacks have been realized in many types of models and applications [76, 180,

129, 127, 128], and just as before, we list relevant works in this field in Section 2.3

2.3 Related Work

We summarize the related works in several categories below

2.3.1 Adversarial Attacks on Sensor Fusion Models

Since the idea of adversarial attacks took off, researchers have been looking at different

ways it could be applied, among which were object detection models. Adversarial attacks

on object detection models (like YOLO) include attacks in the raw pixel space [185] to

launching these attacks in the physical world [40, 202, 64, 167]. We draw inspiration from

these techniques when attacking the 3D object detection model. However, some of this

work is not directly transferable and so we modify the attacks to fit AVOD.

Because we are interested in modifying a single input in a sensor fusion model, we

could have also modified the point cloud input instead of the image input. In fact, there

exists prior work attacking 3D object detection models have largely been aimed at attacking

models that solely use point cloud data [12, 179, 160, 173]. However, in the physical space

it is more difficult to launch an attack to fool the LIDAR sensor. For this reason, we are

motivated to look into attacks that solely modify the image, as as this type of attack is much

easier for an adversary to perform.

17

A related, but slightly orthogonal paper explores methodologies to make AVOD more

robust against single source distortion [78]. However, they explicitly do not consider adver-

sarial examples and we analyze their proposals as possible defenses in Chapter 3, Section

3.7. Another work explores adversarial attacks on semantic segmentation models that uti-

lize thermal data and RGB image [194]. However, their results are preliminary and they

utilize attacks like FGSM that are considered fairly weak in the community.

The most closely related paper is by Wang et al. that explores adversarial examples on

models utilizing LIDAR and images [177]. However, their work differs from ours in two

crucial ways. First, they do not evaluate attacks on a properly created sensor fusion model

whose architecture is conducive to 3D multimodal object detection. Instead, they simply

combine exiting architectures - a LIDAR featurizer with a YOLO model, for example. The

difference between the architectures is made apparent in the AP scores reported: AVOD

(which our paper uses) has an AP of 71.88 while the paper’s architecture has an AP score

of 60.3. Secondly, whereas the aforementioned work only explores one attack, we are

able to develop a wide variety of attacks and delve deeper into the nature of sensor fusion

models.

2.3.2 Relevant Backdoor Attacks and Defenses

Backdoor Trigger Generation. The first successful backdoor attacks on modern deep

neural networks were demonstrated through the BadNets attack [53], using nature images,

and the blending attack [28]. Since then, advanced attacks have been developed to improve

the trigger effectiveness and stealthiness [94] as well as with various attacker models, such

as inserting the backdoor directly by modifying the model’s parameters without accessing

the training set [104]. More recently, Sarka et al. [145] proposed to utilize GANs to

synthesize triggers to achieve a more robust stealthiness. In our dissertation (Chapter 4), we

18

analyze all these attacks in the frequency domain and find they all exhibit high-frequency

components that distinguish them from their corresponding benign untriggered images.

Backdoor Data Detection Prior work on backdoor data detection has either attempted to

identify outliers directly in the input space [46] or analyzed the network response given the

input. Peri et al. [133] utilize the deep features of inputs to help detect poisoning labels.

[20] discovered that normal and poisoned data yield different features in the last hidden

layer’s activations; [169] proposed a new representation to classify benign and malicious

samples; [81] computes influence functions to measure the effect of each input on the

output. Other approaches include using input-saliency maps such as Grad-CAM to detect

if a model only relies on a certain portion of input for its prediction [29]. Contrary to prior

work, which focuses on mage space or the model response given an image input with ad-

hoc designs, we examine backdoor data in the frequency domain, enabling a simple yet

effective method to backdoor data detection.

Poisoned Model Detection. Existing work has also explored an approach of discerning

if a given model is backdoored. The most recent technique uses a meta-classifier trained

on various benign and backdoored models, and it works well even under attack-agnostic

situations [189]. Other popular techniques include [175, 65, 21, 54, 103] and are based

on reconstructing the trigger from model parameters and performs detection based on the

reconstructed triggers. However, they are ineffective for smooth triggers as their recon-

struction algorithm often assumes the true trigger is patched locally to a clean image. Our

work contributes to this line by demonstrating that these techniques can be further improved

by incorporating models that attacked with smooth triggers.

Attack Invalidation. Another approach of mitigating backdoor attacks is to prevent

backdoor attacks from taking effect. One way to achieve this is by training an ensemble of

19

models and take a majority vote of their predictions [90, 74, 75]. Other techniques include

using differential private training algorithm [39], and various input preprocessing [105]

and data augmentation [10, 196] methods to invalidate backdoors in the model or triggers

in the samples. Still others even try to erase the backdoor weakness from the model entirely

[96, 97]

Our work does not intend to replace any of these defense strategies. Instead our work is

complementary to this line of work as a frequency analysis and contributes to the field of

defense techniques in two ways: 1) We highlight the possibility of the existence of smooth

triggers and aim to bring attention of the community to modify defense techniques to take

into account this possibility and 2) we posit a new detection strategy that utilize only the

frequency artifact features to identify if a given image is potentially a backdoor trigger.

2.3.3 Anomaly Detection Methods

When deciding a new anomaly detection implementation, there are many prior works we

could consider drawing ideas from.

Traditional Anomaly Detection Methods Many different techniques have been pro-

posed for the task of anomaly detection. These include the use of principal component

analysis [87, 95] and various clustering algorithms. Other works for anomaly detection

include isolation forests [101], and in the realm of machine learning: support vector ma-

chines (SVMs) [110] and random forests [100]. However all of these works run into the

problem that while they are relatively simple to use, they are not robust enough to handle

complicated large scale multivariate time series that are found in the real world.

Deep Learning Methods With the advent of powerful deep learning models, works ex-

ploring their use in AD also increased. Recent works have suggested applying Gaussian

20

Mixture Models [208], Generative Adversarial Networks (GANs) [93, 205] and adversarial

nets [204] to the task of anomaly detection. However, these techniques pose the opposite

problem that they are too complicated for real-world industry situations in which memory

and speed are important limitations.

Autoencoders for Anomaly Detection As shown in Chapter 5, we decided to use an au-

toencoder as the core structure for our detector. The idea of using autoencoders for anomaly

detection in real world systems is widely studied. For instance, [126] used autoencoders

for supply chain management while [166] used autencoders to detect anomalies in patient

electrocardiogram readings. Other areas that in which autoencoders are used are in gas

turbines [45] and even motor sports [174]

However, the use of autoencoders in AD for real-life telecommunications data is yet to

be studied. A similar work that looks at time series using autoencoders is [112] but unfor-

tunately requires access to labeled training data. In a similar vein, [206] used autoencoders

to improve anomaly detection in a weakly supervised settings. Unfortunately, none of these

works directly apply to our specific scenario, either due to a difference in data types or the

type of learning assumed (unsupervised versus supervised) ERICA’s pipeline and model

architecture are customized specifically to suit the nature of large-scale, unlabeled time

series data and the problems faced.

ERICA’s pipeline and model architecture are customized specifically to suit the na-

ture of large-scale, unlabeled time series data and the problems faced by the network and

telecommunications industry.

2.3.4 Adversarial Fine Tuning

Adversarial Training and its Variants Since the basic idea of using a minimax training

objective to harden a model (adversarial training), was proposed [109], there have been

21

many suggested ways to improve it. These include modifying the objective function [200,

71], utilizing unlabeled data as part of the training procedure[18], or using adversarial

weight perturbations[182]. However, all these methodologies all involve training a model

from scratch.

Other works try to improve a model against adversarial examples in other ways. Simi-

lar works include [23] which treats adversarial training as a semi-supervised problem and

[186] which uses an adversarial momentum contrastive learning method to save time. Other

approaches include identifying and hardening weak subnets [55]. However, none of these

works address the issue of fine-tuning and our work achieves a faster result because we are

not training a model from scratch.

Fine Tuning a Model In a slightly orthogonal approach, there have been fine-tuning

approaches to defend a model against a different type of attack: backdoor or poisoning

attacks [150, 102, 122]

The most similar work is by Jeddi et al [73], in which the authors propose taking a pre-

trained model and running adversarial training for a few epochs. The authors report similar

accuracies on adversarial inputs and benign inputs as would be achieved under regular

adversarial training. However, the time to train the final model is much less with their

approach. To do this, the work utilizes a ”slow start, fast decay” strategy to help the model

gain robustness while maintaining a good accuracy on the previous learned clean examples.

Since this work is the closest to our work and is considered state of the art, further details

are given in Section 6.2.

A similar line of work by Croce and Hein [34] are also interested in fine-tuning but

their approach involves taking an already robust model and making it robust to other norm

attacks.

In our work, we take this idea further and suggest a different training methodology that

22

slightly increases training time but results in higher accuracies. Our work also has better

accuracy than a methodoloy proposed by Hendryks et al. [61]. It is important to note that

our work still takes much less time than regular adversarial training.

Transfer Learning We can look a bit further and examine papers related to out-of-

distribution inputs and transfer learning. One can argue that the problem of adversarial

fine-tuning is a very specific case of transfer learning. However, many papers directly re-

lated to transfer learning of adversarial examples [19, 62] provide methodologies that are

too complex and needlessly adds complexity and an increase in computational resources.

A problem that is related is the question of the nature of adversarial examples, and how

they are related to the larger umbrella of out-of-domain inputs. For example, Kirichenko

et al [80] suggest that simply retraining the last layer is enough to force the model to

rely less on background, spurious correlations. Other works mention pre-training [170] to

increase accuracy, but do not mention adversarial examples However, we find that adver-

sarial examples do not behave in this way. One notable work is by Kumar et al [84], who

have proposed a methodology that works better than simple fine-tuning. Their goal is to

train models on inputs that are completely different from the ones trained on, for example

CIFAR-10 to STL or CIFAR-10 to CIFAR-10.1. Another work suggests the ideas in our

paper are possibly by examining which layers are most susceptible to adversarial examples

[153]. Though they do not provide a strict training regimen, their work for the most part,

agrees with our findings. We apply these ideas to adversarial training and run empirical

tests on the effectiveness.

.

23

CHAPTER 3

Adversarial Examples on Sensor Fusion Models

3.1 Introduction

The ubiquitous use of machine learning systems for different use cases brings about a

difference in the types of models use. For instance, while a camera based company might

use machine learning models based on image inputs, a translator company might utilize

models based on text or speech based inputs.

A different type of model that is gradually coming into use are multimodal models that

take in, not one, but multiple inputs. For instance, Meta launched an open source, deep

learning framework for vision and language multimodal research [135].

The type of model we are interested in for this project are sensor fusion models. These

types of models are multimodal 3D object detection models that take in two types of inputs:

a 2D image from a camera and 3D depth data usually from a LIDAR sensor. These kinds

of models might be utilized, for example, in autonomous vehicles (AVs) to help detect the

environment around them. With the growing proliferation of autonomous vehicles, their

security is becoming more paramount, especially against adversarial examples [202, 160].

It has long been known in the community that machine learning models are vulnerable

to adversarial examples, maliciously crafted inputs designed to intentionally fool the model

into outputting an erroneous result. These range from attacks in the raw pixel space [185]

24

to launching these attacks in the physical world [40, 202, 64, 167].

All the above attacks are on detector models that utilize single input. There is a be-

lief that the use of additional inputs can mitigate the effect of adversarial examples. While

recent work [78] has shown theoretically that models that take in multiple inputs are vulner-

able to potential perturbations in a single input, no one has actively explored the robustness

and crafted adversarial examples against sensor fusion models. Our work is the first to

demonstrate the insecurity of sensor fusion models to several realistic adversarial attacks

for 3D object detection.

Though there are many multimodal 3D detection architectures available, we focus

this study on models that take in the two types of inputs simultaneously. We purpose-

fully choose to ignore model architectures such as Frustum-Pointnet [136] that utilize a

”pipeline” structure in which image data is taken in first followed by LIDAR data because

these models are trivially vulnerable to image-based attacks — any existing attack algo-

rithm to fool 2D image object detectors will be able to fool the entire model.

Instead, for this work, we choose AVOD [83], an open-source 3D object detection

model, because of its near-top performances among open-source models in the KITTI

benchmark. AVOD takes in LIDAR point clouds - which are featurized into BEV point

clouds, and RGB images as input. It consists of a two-step detector architecture typical of

sensor fusion models. The first stage consists of the region proposal network (RPN). The

second stage takes in the proposed regions from the RPN and outputs a bounding box and

appropriate classification. Both sub-networks utilize post-processing non-maximum sup-

pression (NMS). Its two stage detector network architecture is one that is typical of sensor

fusion models, making it an ideal candidate for our study.

Because this is the first foray into this field, we assume that the adversary is a white-box

attacker, having full access to the model. Despite this, in order to guide future research

works, we aim to be as realistic as possible; this includes restrictions that the adversary

25

will not be able to modify the model arbitrarily, including any post-processing steps.

Our key contributions are as follows:

• We perform the first study of adversarial examples on proper sensor fusion mod-

els for 3D object detection. We modify existing techniques to show that sensor fu-

sion models are vulnerable to adversarial attacks that modify just the image input.

These attacks include the raw pixel disappearance attack (94.17% success rate) and

a spoofing attack (89.1%). We then analyze the model architecture to show that de-

spite the symmetric architecture, the model frequently leans heavily on the LIDAR

input to detect obstacles.

• Building upon the raw pixel disappearance attack, we develop a new methodology

of constructing generalized adversarial examples in which one single noise can fool

many samples.

• We develop a spoofing attack that can trick the model into detecting objects (vehicles,

pedestrians, and cyclists) that should not be detected. We develop two versions of

this attack: one to spoof a location already proposed by the RPN a second to spoof

an arbitrary location . The first version is able to achieve a success rate of 89.1%

while the second is only able to achieve 9.7%. To explain the reasoning, we show

that despite the symmetric architecture, the model frequently leans heavily on the

LIDAR input to detect obstacles.

• We explore some basic defenses, including robust training and a novel fusion layer

[78]. We comment on their effectiveness and put forth suggestions for future direc-

tions.

26

3.2 Threat Model

For this work, assume that the adversary is a white-box attacker, having full access to the

model. Despite this, we limit the adversary to modification of just the image. This is

because we believe an attack through modification of just the image is much easier to carry

out in the real world than an attack that requires modifications to the LIDAR sensor, which

is supported by several works [12, 160, 173].

Thus, by restricting attacks to just images, we are assuming a less powerful and more

realistic attacker. Finally, we add another restriction that the adversary will not be able to

modify the model in any way, including any post-processing steps, like NMS.

3.3 Disappearance Attack

In this section, we explore attacks that are able to fool the model into not detecting an object

it had previously detected (raw-pixel disappearance attacks) and those that fool the model

into detecting an object that is not actually present (spoofing attack).

We first try an attack methodology based on projected gradient descent [109]. This is a

similar attack as was analyzed in Wang et al. [177]. We test this technique on 220 different

samples and are able to achieve a success rate of 84.7%. However, the main concern was

that the attack was visually noticeable. Though there are application scenarios in which

this is acceptable, we then challenge ourselves to construct adversarial examples that could

accomplish the same goal but achieve better ”stealthiness”.

The raw-pixel disappearance attack is motivated by a desire to create a disappearance

attack that results in an adversarial example that is less noticeable to the human eye. As

stated in the threat model, we limit the adversary to modifying just the image. In order

to make our attack more realistic, we have also disallowed the adversary from looking at

27

any values before any post-processing steps. We explore a different kind of attack - patch

attacks - in Section 3.4.

To cause the desired object to disappear, we aim to remove potential bounding boxes

around said object. Removing a bounding box can be done by forcing the output softmax

probability of an object to fall below the detection threshold. We will call this set of all

potential boxes that we need to attack B. For ease of notation, suppose C(w, b) ∈ Rc

denotes the output classification softmax of bounding box b on image w and C(w) outputs

all the potential bounding boxes of image w in decreasing order according to softmax score-

in other words, the first element of C(w) is the bounding box with the highest confidence.

To find an adversarial noise δ, we will attempt to solve the following function:

argminδ

∑
b∈B

F (C(w + δ, b)) (3.1)

where F (.) represents use of the softmax. Since we wish to make the perturbation to the

image as small as possible, we add another element as suggested by the CW attack [16],

D(w + δ, w), which measures the L2 norm between the adversarial image and the regular

image.

Thus, the final loss function L(.) that we are trying to minimize becomes:

L(w + δ, B) =
∑
b∈B

[C(w + δ, b)] + ϵ ∗D(w + δ, w) (3.2)

ϵ is used to weigh one value versus the other. The optimal value of ϵ is found through

binary search.

Unlike previous work, we choose to attack the second-stage detector (instead of the first

stage RPN) as it results in an attack with less distortion.

There lies an additional challenge in the fact that due to NMS and the restrictions we set

28

on the adversary, not all of the elements of B will be visible. In other words, not only do

we not know the set B a priori, for some bounding boxes b ∈ B, C(w, b) is not existent and

the logits will not be visible. For some related previous work, this was not a huge limiting

factor [66] while others went around this by trying to attack the NMS algorithm itself or

to modify the NMS threshold to obtain all bounding boxes [185].

Since neither solution is allowed under our threat model, we instead modify the algo-

rithm to greedily attack the top confidence bounding box that is visible - as we keep trying

to lower the confidence of the bounding box with the highest score, one of two outcomes

will happen. In one, the object in question will no longer be detected, in which case our at-

tack goal is accomplished. In the other case, the bounding box in question will be removed

via NMS and the next top-score bounding box will appear and the process can be repeated.

This process will remove all objects present in an image, but an adversary can selectively

remove certain objects by applying a mask. In this case, the objective function needs to be

modified to attack the top k bounding boxes simultaneously. The full algorithm is shown

in Algorithm 1.

Algorithm 1: Raw-pixel attack
input : Raw image w, k
output: Adversarial noise δ
begin

δ ← 0
while Object is still detected do

B′ ← C(w + δ)[0...k];
δ ← argminδL(w + δ, B′)

end
return δ

end

29

Figure 3.1: Results of some of our raw-pixel attacks. The left images are outputs for
benign images. The 1st value corresponds to the classification confidence and the 2nd
value corresponds to the IOU with the ground truth bounding box. The right images show
the corresponding adversarial images. Note that our attack works in deleting any number of
objects, whether they are in the foreground or background (the attack shown in the bottom
right image purposely targets one vehicle and not the other). The red boxes are ground
truth and the green boxes are bounding boxes outputted by the model.

3.3.1 Evaluation and Results

When training the AVOD model for this and future evaluations, we follow the methodology

followed in the paper proposed by Chen et al [26] and split the trainval set into a training

set with 3712 samples and a validation set with 3769 samples for better performance. We

train all models to closely match the results stated in the original paper.

We start off with an instance of the AVOD model designed to detect vehicles. We

then choose 3000 random samples containing a total of 10,920 detected vehicles and try

constructing adversarial examples using the method stated above. We are able to achieve

a 94.17% success rate. Some of the attacks are shown in Figure 3.1. Note that the the

adversarial perturbations are difficult to notice.

Unsurprisingly, we find that vehicles in the foreground require more distortion than

vehicles in the background. To normalize this, we divide the L2 norm by the area of the

30

vehicle we are targeting. The amount of distortion needed is shown in Figure 3.4.

To further explore the effectiveness of the raw-pixel disappearance attack, we run the

attack on another instance of AVOD that identifies pedestrians and cyclists, using 7,585

pedestrians / cyclists. We are able to achieve a 97.11% success rate on the objects.

3.4 Towards Generalizability

In this section, we attempt to create a single adversarial patch that, despite being more

noticeable to the human eye, would be able to be universally applied to any vehicle and

cause them to escape detection from the model. This is a key step in determining the

feasibility of attacks in the physical world.

To start, we draw inspiration from the expectation over transformation (EOT) algorithm

[5]. In the case of the KITTI dataset however, it is difficult to apply any transformation to

an image and also properly modify the corresponding LIDAR data. Therefore, we decide

to use different object samples available in KITTI instead. For each image, we identify an

area to apply the patch (e.g. on the vehicle). Note that if an image has multiple objects,

we may have to apply the patch separately to different areas. For the sake of simplicity, we

consider these as separate images; if an image has two vehicles and we wish to apply the

patch separately on each of the vehicles, we represent this instead as two separate images,

each with just one vehicle.

Let P (w, δ) be the operation that applies adversarial patch δ to image w, appropriately

resizing the patch as necessary. If we have a set of images T (along with their corresponding

bounding box set), we would be able to create a universal patch by solving the following

objective function:

argminδ E
w∈T

[L(P (w, δ)) (3.3)

31

Normally, this would be done simultaneously via batching. However, the AVOD model

and many other sensor fusion models do not support batching and so we alter the algorithm:

instead of operating over all the images simultaneously, we perform the objective function

on one image at a time, keeping the noise in between images. We iterate over all the images

several times trying to ensure that convergence is reached.

The number of times to iterate is a hyperparameter that must be tuned but for our exper-

iments we iterated 25 times. This is a similar approach as suggested by [116], however, we

do not project all perturbations onto a p-norm since we find it slows our algorithm due to

the nature of our loss function trying to target every potential bounding box. The resizing

and the nature of multiple bounding boxes are also reasons why the GD-UAP[119] is less

than ideal for this work. The algorithm can be viewed below (Algorithm 2).

Algorithm 2: Modified EOT
input : Set of images T , k, n, ϵ
output: Adversarial noise δ
begin

δ ←− RandomInit;
for i = 0 to n do

w ← NextImage(T, i);
B′ ← C(P (w, δ))[0...k];
δ ← argminδL(P (w, δ), B′, ϵ) ϵ← UpdateEpsilon(i)

end
return δ

end

Note that the loss function is the same except that it now takes in an additional ϵ as

an argument. This is because ϵ might need to be modified after every iteration to ensure

convergence (performed by UpdateEpsilon). We find that gradually decreasing the value

until a certain floor value works well.

This algorithm allows creation of universal patches with models that do not easily sup-

port batching. However, one drawback to this approach is the introduction of additional hy-

32

Figure 3.2: The left images are the result of the custom adversarial patch and the right
images contain a random noise patch applied in the same area.

perparameters. For instance, the algorithm requires the defining of a NextImage function,

which outputs the next image to be attacked. Since the algorithm is performed sequentially,

the order in which the images are fed affect the strength of the result. Through experimen-

tation, we find that a random ordering of images is sufficient. We leave exploration of the

optimal ordering to future work.

3.4.1 Results

We run this algorithm on the validation set and are able to achieve a success rate of 64.03%.

To establish a baseline comparison, we apply a random noise patch to the same vehicles.

These random noise patches, when applied to the vehicle in the same location, achieve a

0% success rate. The results of this case study suggests a worrisome fact that sensor fusion

models are still vulnerable to universal physical adversarial examples, similar to what is

shown in Huang et al. [64].

33

Figure 3.3: Results of some of our spoofing attacks (SpoofV1). The bounding boxes with
an IOU of 0 (second value) are the spoofed objects and the red squares represent the ground
truth.

3.5 Spoofing Attack

In this section, we discuss a different type of attack we created. Instead of causing a vehicle

to disappear, the raw-pixel spoofing attack creates adversarial examples that fool the model

into detecting an object that is not actually present.

Intuitively, we can take the existing objective function for the raw-pixel disappearance

attack and change the sign of the loss function to cause objects to appear. However, the

danger to this approach is that it is possible the desired anchor box will be omitted from

the RPN output when trying to create the adversarial example. To solve for this, we add

another loss to our adversarial objective function that will help ensure the desire bounding

box is outputted by the RPN. This is identical to the loss function except that it targets the

first-stage RPN. The final loss function is a weighting of the two losses where the RPN loss

function is weighted much more heavily:

34

Figure 3.4: The distortion required per pixel in the L2 norm space for the disappearance
attack (left) and the spoofing attack (right) adversarial examples. Note the difference in
scale.

Lspoof = LRPN + α ∗ LStage2 (3.4)

We utilize the spoofing attack in two different ways: The first (SpoofV1) attempts to

spoof a proposed location that is already outputted by the RPN. The second (SpoofV2) tries

to spoof any arbitrary location by fooling the RPN as well so that the desired location is

outputted in the list of proposed regions. The only difference between the two attacks is

which anchor boxes we feed into Lspoof .

As a final point, a very simple defense against spoofing attacks is to remove any anchor

boxes that do not have any LIDAR data as a pre-processing step before inputting into

the model. Acknowledging this, we run all of our experiments under this assumption to

increase the likelihood that our results cannot be defeated by a simple defense.

35

3.5.1 Evaluation and Results

We run our attacks to create adversarial examples from 440 samples for vehicle detection

and 230 samples for pedestrians and cyclists.

3.5.1.1 Spoof Version 1 Attack

For all the samples, we try to spoof 5 random proposal regions under the detection thresh-

old. Our SpoofV1 attack is able to achieve a success rate of 89.1% upon evaluating on

these samples. Some of the successful attacks are shown in Figure 3.3. We find, however,

that compared to the raw-pixel disappearance attack, this attack requires more distortion.

To show this, we spoof the 5 region proposals for every image that have the highest score

under the detection threshold and take the adversarial example that requires the minimal

amount of distortion (with respect to L2- norm) and compare it against our raw-pixel dis-

appearance attacks. We compare these samples and find that the required perturbation

for creating a spoofed adversarial example has a wider range. The amount of distortion

required for the SpoofV1 attack versus the Raw-Pixel Disappearance attack is shown in

Figure 3.4. In general, while there are a few adversarial examples that can be created with

a small L2 norm per pixel, they generally require more distortion than adversarial examples

via the disappearance attack.

3.5.1.2 Spoof Version 2 Attack

For the SpoofV2 attack, we decide that a spoofing attack on an image is considered suc-

cessful if it produces an adversarial example that causes an object to be detected with the

following two criteria: 1) The detected bounding box has an IOU of 0 with any ground truth

bounding box and 2) The detected bounding box is not on any existing object (e.g. a wall

or a building). The second requirement is put in place because we imagine an adversary

36

Figure 3.5: The top right image show an attempt to spoof an object underneath the sign.
When we modify the LIDAR input (bottom left), we are able to create a successful adver-
sarial example (bottom right).

will accomplish very little by tricking the model that an already-present obstacle is a car (or

pedestrian / cyclist). We believe that tricking the model into detecting a vehicle where no

object is present may cause more damage. Out of the samples, we are only able to achieve

a success rate of 9.7%.

We suspect this is because of the lack of point cloud data in these locations. To test this,

we modify the point cloud data and investigate how that affects the ease with which we can

create spoofing adversarial examples in the image space. As shown in Figure 3.5, while

it is difficult to cause the attack, modification of the point cloud data makes it easier. We

modify the point cloud data in the foreground for 300 samples, including the successful

samples. With this modification, not only do we find a reduction of the distortion needed

by over 25%, but we are also able to create 236 new successful adversarial examples that

fit both of the aforementioned criteria. We explore the effects of sensor inputs further in

Section 3.6.

37

Figure 3.6: Output of experiment in which we switched LIDAR and image inputs. The two
images on the left show the normal output for benign inputs. The two right images show
the output when the LIDAR for one is switched for the other (and vice versa). Note that
the model output follows the LIDAR (red box) more than the image.

3.6 Analysis of Sensor Input

Motivated by the results of our experiments on various attacks, we suspect that the model

architecture, while symmetrical, heavily utilizes the LIDAR sensor input over the image.

To test this, we run an experiment in which we randomly use the LIDAR from one sample

and the image for another. This was done for 300 random samples, swapping the image of

one and the LIDAR of another, resulting in 90,000 combinations. This experiment helps

give an insight of how the model performs when the image and the LIDAR are at odds with

each other. Some of the results are shown in Figure 3.6.

For the sake of simplicity, we consider an object as ”correctly identified” if the bounding

box was correctly drawn according to the LIDAR sensor. Note that we could have easily

swapped and used the image input as ”ground truth” but that would not make any change

to the final result. Amongst all the potential bounding boxes, 91% of them were correctly

identified, despite having conflicting image data. Furthermore, only 19% of all bounding

boxes detected within the 900,000 combinations did not correspond to any ground truth

38

Type Disappearance Attack Success Rate Spoof Attack v1 Success Rate
Baseline 0.94 0.89

Distorted Inputs 0.92 0.85
Training MaxSSN without LEL [78] 0.87 0.81

Training MaxSSN with LEL [78] 0.80 0.39
Adversarial Training 0.63 0.51

Table 3.1: Table showing success rate for various defenses against our proposed attacks.

bounding box.

This experiment strongly suggests that the model favors LIDAR data when detecting

objects, which helps explain the difficult in the spoofing attakcks. This also suggests that

the use of image in this architecture proves to be an ”Achilles’ heel”: while most of the de-

tection of an object is done using the LIDAR input, a well-crafted image input can override

this, thus providing an avenue for adversaries to attack and fool the model.

3.7 Exploring Defenses

In this section we analyze some potential defenses for sensor fusion models that may be

able to mitigate adversarial examples. These include training on distorted inputs, a novel

fusion layer and training methodology proposed by Kim and Ghosh [78], and adversarial

training. For each methodology, we test our raw-pixel disappearance attack and our Version

1 Spoofing attack on the same vehicle samples as in the evaluation for our attacks. All

results can be seen in Table 3.1.

3.7.1 Training on More Distortion

We first run experiments to address a common belief amongst some manufacturers that

simply training on a wider range of inputs (like fog and snow) will help mitigate adversarial

examples. We show that this is not the case. To illustrate this, we train an instance of

39

the AVOD vehicle detection model on an augmented version of the dataset. To create

this modified version, we apply all the distortions to every training image as suggested by

Hendryks and Dietterich [60]. We find that this does little to affect the success rate of

the two attacks. Training on various input distortions like fog and frost is important, and

perhaps essential, for safe performance of AVs. However, our experiment shows that it

does not eliminate the threat against adversarial examples.

3.7.2 Robust Training and New Fusion Layer

We next analyze methodologies proposed by Kim and Ghosh [78] that provide robustness

against single-source distortion in sensor fusion models. We refer readers to the paper for

details, but in short, the authors propose several novel loss functions as well as a new fusion

layer called LEL to help protect against noisy distortion. However, it is worth nothing that

they have not evaluated on adversarial examples.

We decide to test the two designs proposed by the authors that achieved the best perfor-

mance under noise: applying the new loss function called MaxSSN with and without the

LEL. We train both models according to the specifications shown in the paper and achieve

a similarly stated accuracy. We then test our attacks on these models. We find that the

models do mitigate against our disappearance attacks, but not to a huge degree. The LEL

combined with MaxSSN, however, is quite effective in protecting against our spoofing at-

tack. Unfortunately, it is worth noting that there exists a trade-off as both models suffer in

a drop of AP score compared to the original model when run on benign inputs.

3.7.3 Adversarial Training

A popular methodology to make machine learning models more robust against adversarial

examples is to utilize adversarial training. While there exist many techniques for adver-

40

sarial training on image classification models, there is little work exploring the technique

for object detection models; the technique is not directly transferable as object detection

models have many more stages that need to be made more robust. Nevertheless, we utilize

a technique proposed by Zhang and Wang [199].

We find that, unfortunately, the AP score drops from 0.73 to 0.64 after adversarial train-

ing. However, the success rate of the adversarial attacks drop as well; the raw-pixel dis-

appearance attack drops to a 63% effectiveness while the spoofing attack drops to a 51%

success rate. While these results are not ideal, they do not necessarily eliminate adversarial

training as a viable option to provide robustness. On the contrary, these results demonstrate

that a better adversarial training algorithm may be able to provide robustness. We leave this

exploration to future work.

3.7.4 Other Defense Recommendations

Our results do not necessarily eliminate the possibility of a model-level defense, like ad-

versarial training. However, we believe another avenue to explore is incorporating defenses

outside the model. In a larger system, it could be feasible to utilize the different sensors, for

example, to validate one another before feeding into the final detection model. We leave

these possible defenses for future work to explore.

3.8 Conclusion

In this chapter we explore a sensor fusion model’s security against adversarial examples.

We pick a popular architecture and create new techniques to craft adversarial examples

on the image input that can cause objects to disappear or be incorrectly detected. We

then propose a new methodology to creating generalizable adversarial examples. We also

explore the reasoning behind our results and find that the architecture heavily favors the

41

LIDAR input more than the image input. Given our findings, we consider the image as

an ”Achilles’ heel” and is a potential avenue of vulnerability against adversarial examples.

Finally, we evaluate some proposed defenses and posit some future directions to explore

for making senor fusion models more robust.

In short, we highlight an important problem that sensor-fusion models are no less vul-

nerable to adversarial examples. Though we only evaluate on one model due to the lack of

availability of open-source models, our evaluation on alternative fusion layers and training

loss functions suggest that other models may also be vulnerable to sensor fusion models.

Nevertheless, we urge future work to explore robustness of other sensor fusion models

when available for a more comprehensive study to better come up with potential defenses.

42

CHAPTER 4

Using Frequency for Poisoning Attacks

4.1 Introduction

In contrast to adversarial attacks explored in the previous chapter, backdoor attacks are

attacks where adversaries deliberately manipulate a proportion of the training data [53, 28],

or the model’s parameters [104], to make the model recognize a backdoor trigger as the

desired target label(s). In other words, the attacker launches the attack during a model’s

training time.

When the backdoor trigger is introduced during test-time, the poisoned model exhibits

a particular output behavior of the adversary’s choosing (e.g., a misclassification).

Backdoor attacks have been realized in various domains including graph clasisfication

[140, 183], text classification [36, 25, 161], and malware detection [149]. Prior works have

also created successful triggers targeting tasks including Generative Adversarial Models

[148, 37, 144], reinforcement learning [79, 178, 192], and federated learning [6]. In the

image domain, backdoor triggers have been demonstrated to perform malicious tasks such

as converting the label of a stop sign or misidentify a face. Due to the danger of backdoor

attacks, great effort has been undertaken to defend against them.

State-of-the-art backdoor triggers are designed to be inconspicuous to human observers.

One idea of generating such triggers is to use patterns of commonplace objects [104, 180].

43

For instance, one could use glasses–commonplace objects appearing in a face image–as

a trigger to backdoor a face recognition model, thereby hiding the triggers “in the human

psyche.” Another approach to generate “hidden” or “invisible” triggers is to inject imper-

ceptible perturbations via solving a norm-constrained optimal attack problem [94, 142] or

leveraging GANs [145].

Previous research on backdoor data detection either identifies outliers directly in the

image space [131] or analyzes the network activations based on an image input [133, 108,

20, 81]. In contrast, we provide a comprehensive analysis of the frequency spectrum across

various existing triggers and multiple datasets. We find that all existing ideas of generating

samples contain triggers exhibit severe high-frequency artifacts. We provide a detailed

analysis of the causes of the high-frequency artifacts for different triggers and show that

these artifacts stem from either the trigger pattern per se or the methodology of inserting

the trigger.

Based on these insights, we demonstrate that the frequency domain can efficiently iden-

tify potential backdoor data in both the training and test phase. We build a detection

pipeline based on a simple supervised learning framework and proper data augmentation

as a demonstration. It can identify existing backdoor triggers at a detection rate of 98.5%

without prior knowledge of the types of backdoor attacks used. A high detection rate is

still maintained even when the data used for training and testing the detector have different

input distributions and are from different datasets.

Given that present triggers are easily detectable in the frequency domain, our natu-

ral question is whether or not effective backdoor triggers can be designed without high-

frequency artifacts (which we will refer to as smooth triggers hereinafter). A straightfor-

ward approach to generating smooth triggers is to apply a low-pass filter to existing triggers

directly. However, in our experiments, we find this simple approach cannot achieve a sat-

isfying attack success rate while still maintaining stealthiness. To design more effective

44

smooth triggers, we first formulate the trigger design problem as a bilevel optimization

problem and then propose a practical heuristic algorithm to create triggers. Our experi-

ments show that our proposed triggers can achieve a much higher attack success rate than

the simple low-pass filtered triggers. We further study the detectability of the triggers and

show that existing defense works can benefit from incorporating these smooth triggers into

their design consideration. Our experiments also demonstrate that detectors trained over

strong, smooth triggers can generalize well to unseen weak smooth triggers.

Overall, our work highlights the importance of the overlooked frequency analysis in

the design of both backdoor attacks and defenses. We open-source the experiment codes

and welcome the public to contribute to future developments. Our key contributions are

summarized as follows:

• We perform a comprehensive frequency-domain analysis of existing backdoors trig-

gers, revealing severe high-frequency artifacts commonly across different datasets

and resolutions.

• We present a detailed analysis of the causes of these artifacts.

• We show the effectiveness of employing frequency representations for detecting ex-

isting triggers.

• We propose a practical way of generating effective smooth triggers that do not exhibit

high-frequency artifacts and provide actionable insights into their detectability.

• We demonstrate that defenses that consider attacks with differenr frequency artifacts

can achieve a stronger defense effiency. We show this through a case study with some

existing defenses and through augmentation of our own detector.

45

Figure 4.1: A side-by-side comparison in the frequency domain of clean samples vs. sam-
ples patched with triggers. The left-most heatmap in (a) depicts the mean spectrum of
small-input-space data using 10000 samples randomly selected from the CIFAR-10 dataset.
The left-most heatmap in (b) illustrates the mean spectrum of large-input-space data using
1000 samples randomly chosen from the PubFig dataset. The rest images show the mean
frequency values of images patched with different backdoor attack triggers. All the fre-
quency results of (b) are depicted from 1.5 to 4.5 using value clipping and exponential
calculation for better visualization.

4.2 Frequency Artifacts

Early-stage backdoor triggers were designed to be visible or utilized commonplace objects

to hide the triggers [28, 53, 104] or contain visual characteristics that could be easily picked

up with visual inspections [28, 53, 104]. More recent attacks can produce triggers that are

invisibly designed to human observers [94]. or attack without modifying the original labels

[142].

In short, today’s backdoor attacks constantly develop the triggers to look as inconspic-

uous as possible in the image domain. We take inspiration from the success of frequency-

based GAN-generated fake image detection [44] and examine these existing triggers in the

frequency domain.

46

4.2.1 Preliminaries

We utilize the Discrete Cosine Transform (DCT) to convert images to the frequency do-

main. Closely related to the Discrete Fourier Transform, DCT represents an image as a

sum of cosine functions of varying magnitudes and frequencies. Our work uses the type-II

2D-DCT, a standard tool adopted in image compression algorithms such as JPEG.

The type-II 2D-DCT is given by a function D : RN1×N2 → RN1×N2 that maps an image

data {gx,y} to its frequency representation D =
{
Dkx,ky

}
with Dkx,ky =

w(kx)w(ky)

N1−1∑
x=0

N2−1∑
y=0

gx,ycos

[
π

N1
(x+

1

2
)kx

]
cos

[
π

N2
(y +

1

2
)ky

]

, for ∀kx = 0, 1, ..., N1 − 1 and ∀ky = 0, 1, ..., N2 − 1, where w(0) =
√

1
4N

and w(k) =√
1
2N

for k > 0.

Similar to previous work [44], we plot the DCT spectrum as a heatmap, where the

magnitude of each pixel indicates the coefficient of the corresponding spatial frequency.

The heatmap’s horizontal and vertical directions correspond to frequencies in the x and

y directions, respectively. The heatmap’s top-left region corresponding to low frequencies,

and the right bottom area corresponds to higher frequencies. Due to the energy compaction

ability of the DCT, the coefficients drop quickly in magnitude when frequencies increase.

It is a well-known fact that natural images typically have most of the energy concentrated

in the low-frequency section [11, 168].

4.2.2 Examining Images with Triggers using DCT

In this work, we examine the DCT spectrum of the following triggers (which represent the

most common and state of the art triggers at the time the work was performed): BadNets

white square trigger (BadNets) [53], Trojan watermark (Troj-WM) [104], Trojan square

(Troj-SQ) [104], hello kitty blending trigger (Blend) [28], nature image contains semantic

47

information as the trigger (Nature) [28], l2 norm constraint invisible trigger (l2 inv) [94],

l0 norm constraint hidden trigger (l0 inv) [94], and GAN generated fake facial character

as the trigger (GAN-Tri) [145]. This set of triggers encompasses the two general ideas of

designing triggers in existing works: patching visible patters of commonplace objects and

injecting invisible perturbations.

Figure 4.1 compares the frequency spectrum between clean images and the images

patched with different triggers. The two heatmaps are generated with data sampled from

CIFAR-10 (small-input-space) and PubFig (large-input-space). We follow the same set-

tings of [94] and omit l2 inv and l0 inv triggers for PubFig. This is because generating l2

and l0 invisible triggers requires a pre-trained DNN model to solve the optimization prob-

lem, and removed these attacks over large-input-spaces for simplification. Conversely, we

omit GAN-Tri for CIFAR because its small input space does not allow effective trigger

generation based on GANs.

The left-most heatmaps from Figure 4.1 represent the DCT spectrum over clean data.

Multiple classic studies [11, 168] have observed that the average spectra of natural images

tend to follow a 1
fα curve, where f is the frequency along a given axis and α ≈ 2. Similar

to previous findings, our results show that the low frequencies contribute the most to the

image, and the contribution gradually decreases towards higher frequencies.

In short, in an isochromatic area in the image, one can approximate these areas with

a sum of low-frequency functions. However, if a sudden change were to occur, like at

the edge of an object, for example, a higher frequency function would need to be used to

approxiate the area. Knowing this fact, it makes sense why low-frequency components

dominate the frequency spectrum of clean data, since colors mainly change gradually in

images and it is rare to see sudden changes in pixel values (e.g., edges in images).

However, in comparison to the spectrum of clean images, images patched with differ-

ent triggers all contain strong high-frequency components. This fact remains prominent,

48

even when we evaluate spectral heatmaps for other datasets, including German Traffic

Sign Recognition Dataset (GTSRB) [156], Chinese Traffic Sign Database1 (TSRD) and

the high-frequency artifacts of inserting triggers persist across these datasets as well.

We provide the pair-to-pair comparisons of samples patched with different triggers’

visual effects in the image and frequency domain. Figure 4.2, 4.3 illustrate the comparison

of the attack cases over the GTSRB and the TSRD dataset. We also provide the pair-to-

pair extended comparison of both the image and frequency domain visual effects on the

evaluated CIFAR-10 and PubFig dataset in Figure 4.4, 4.5.

1http://www.nlpr.ia.ac.cn/pal/trafficdata/recognition.html

49

Figure 4.2: A pair-to-pair comparison of clean data and samples patching with different
triggers on the GTSRB dataset. The frequency results are averaged over 10000 randomly
selected samples from the test set.

Figure 4.3: A pair-to-pair comparison of clean data and samples patching with different
triggers on the TSRD database. The frequency results are averaged over all 4170 samples.

Figure 4.4: A pair-to-pair comparison of clean data and samples patching with different
triggers on the Cifar10 dataset. The frequency results are averaged over 10000 randomly
selected samples from the test set.

50

Figure 4.5: A pair-to-pair comparison of clean data and samples poisoned with different
backdoor attacks on the PubFig dataset. The frequency results are averaged over 1000
randomly selected samples from the test set and clipped with the range of (1.5,4.5) for
visualization.

Figure 4.6: Examples of different categories of triggers.

4.2.3 Analyzing Causes of High-Frequency Artifacts

In this section, we investigate the origins of the aforementioned severe, persistent high-

frequency artifacts. We examine the causes from two angles, representing two ways of

generating backdoor data: additive patching and GAN-based generation. Existing triggers

based patching can be further divided into two classes: local patching (e.g., BadNets,

Nature, l0 inv, Troj-SQ) and large-size or global patching (e.g., l2 inv, Blend, Troj-WM).

Local Patching. Localized triggers can be formalized as p = T +mask × orig, where

p is the patched data, T the trigger, orig the original image, and mask is a mask that

suppresses the pixel values in the trigger area of the original image. Due to the time-

51

frequency duality, localized triggers can carry significant high-frequency components per

se. By the linearity of DCT, adding a trigger to an image is equivalent to adding the trigger’s

frequency spectrum to the image’s spectrum. Thus, the patched image exhibits a large

number of high-frequency components (Figure 4.6 (a)).

Large-Size or Global Patching. For images patched with large-size triggers, their high-

frequency artifacts result from either decreased correlation between neighboring pixels or

the intrinsic high-frequency artifacts carried by the trigger. For instance, Troj-WM (Fig-

ure 4.6 (b)) directly stamps the trigger onto the original data, or p = T + orig. Since the

trigger pattern has low correlations with the original image’s pixels in the trigger’s vicinity,

one can use high-frequency functions to approximate the patched data. The Blend attack

(Figure 4.6 (c)) patches with some small weight use an arbitrary clean image as the trigger.

The Blend attack’s high-frequency artifacts result from combining two unrelated images,

which could induce larger variations of neighboring pixels. l2 inv (Figure 4.6 (d)) trig-

gers intrinsically are high-frequency perturbations. Thus, patching them onto clean images

would directly leave marks in the high-frequency domain.

This fact remains even with clipping. For those values exceeding the normal range, i.e.,

out of the range of (0, 1) for float data, and (0, 255) for uint8 data, the resulting p would

normally go through a value cropping procedure to keep the values of the pixels within

the rational range. However, based on the definition of the DCT, this clipping does not

reduce the number of high-frequency components. The clipping causes the high-frequency

component’s value to drop down a small scale that still keeps the significant difference

between clean samples and poisoned samples.

GAN-Generated Backdoor Data GAN-Tri utilizes fake facial characteristics generated

with GANs (e.g., smiles) to poison the training data and conduct the backdoor attack. Since

52

a GAN generator maps a low-dimensional latent space to a higher-dimensional data space,

upsampling is widely used in GAN architectures. Prior work [44] has shown that the up-

sampling operations employed in GANs cause inevitable high-frequency artifacts.

4.3 Frequency-Based Backdoor Data Detection

This section describes our experiments to demonstrate the fact that analyzing the frequency

domain can effectively distinguish backdoored data from a poisoned dataset. We use the

Accuracy (ACC) and the Backdoored data Detection Rate (BDR) as the evaluation metrics

to demonstrate the separability between clean data and backdoor data. A higher BDR

means more effective rejection of backdoor samples.

Attacker Model We consider the most potent attacker model, where the attackers have

full knowledge of the training set, the inference set, and the potential target model. The

attacker can achieve the backdoor attack by either poisoning the training set with samples

containing the trigger or directly modifying the target model’s weights to insert the back-

door into the DNN. The triggers would then be patched onto the clean samples during the

inference time to cause the model to output the target label to complete the attack. This

attack scenario is regarded as the strongest attack case.

4.3.1 Detection Method and Application Scenarios

In light of the severe, persistent high-frequency artifacts of existing backdoor triggers ob-

served earlier, we adopt a supervised learning approach to differentiate between clean and

backdoor data. To simulate the poison data, we manipulate the clean samples to approxi-

mate the high-frequency artifacts that triggers might exhibit. We then create a training set

that contains DCT transformations of clean samples and samples with digital manipula-

53

tions. The digital manipulations used to alter the clean samples include: 1) random white

block: patching a white rectangle of random size onto a random location of the image; 2)

random colored block: adding a rectangle of random size and random value to a random

place; 3) adding random Gaussian noise; 4) random shadow: drawing random shadows

of random shape across the images; 5) random blend: randomly selecting another sam-

ple from the dataset, multiplying it with a small value, and patching with the current data.

These perturbations are chosen because they follow the same general methodology as the

backdoor attacks.

Figure 4.7: Visual examples of the random perturbations adopted in developing the de-
tector. The upper left sample is a clean example, (a)-(e) are the perturbed results using
different approaches.

Figure 4.7 presents the visual examples of the random perturbation results. Figure 4.7

(a) is the example of patching a white rectangle of random size onto a random location of

the image; Figure 4.7 (b) is the result of patching a rectangle of random size and random

54

value to a random place. Those two random perturbations simulate patching localized

triggers as mentioned and analyzed in Section 4.2.3. Figure 4.7 (c) is the visual result of

adding random Gaussian noise; the result of drawing a random shadow of random shape is

depicted in Figure 4.7 (d); finally, 4.7 (e) shows the visual result of random blend.

Note that the random perturbations as illustrated here are of different shape and values

from the tested triggers. We only use those random perturbations to simulate the resulting

high-frequency artifacts using the two major patching methods,

The detector based on frequency artifacts can be applied to both attack scenarios: poi-

soning the training set or directly tuning the weights. We focus on developing an accurate

trigger data detector that can effectively reject triggers during inference. For the scenario

where triggers are used to poison the model during training, the detector can also be de-

ployed during training to reject potential poisoned data. We aim to build an attack agnostic

detector with zero prior knowledge of the trigger pattern or the target model in both sce-

narios. This defense case is the most comprehensive scenario aiming to thwart existing

backdoor attacks in a trigger-agnostic manner.

When building our detector, we consider the difference in input space and study small

input spaces (e.g., CIFAR-10) and larger input spaces (e.g., PubFig) separately.

We test the F1-score and the linear models’ overall accuracy on detecting triggered

samples using different-input-spaced PubFig datasets. We test ten different values ranging

from 32 to 224. The relationship between the input width and the detection efficiency is

depicted in Figure 4.8. We can tell from the results that a larger-input-space samples can

more easily be used to conduct a linear separation of the benign samples and the triggered

samples. We find that attack triggers in larger input spaces (larger than 160 pixels

Meanwhile, the small-input-spaced samples are harder to be separated with linear mod-

els. Intuitively, we conduct the DCT of the whole image, thus acquiring a result of the

same size as the image domain. So the larger input-spaced samples have more pixels rep-

55

resenting the high-frequency coefficients, thus better reflecting the high-frequency artifacts

when triggers are introduced. Based on the results shown in Figure 4.8 and as claimed in

Section 4.3.1, an input space larger than 160 pixels can help linear models meet satisfying

detection results.

Figure 4.8: Detection Efficiency Using the Linear Model vs. Input Width

4.3.2 Results & Comparison

Experiment Setup. This section evaluates the detection framework assuming we have

full access to a clean dataset with a similar distribution as the inference data. In the follow-

ing subsection, we compare our detection framework’s results across different datasets. We

use the full original training set for each experiment to develop the DCT processed dataset

consisting of equal clean samples and randomly perturbed samples. The test set is con-

sists of half clean samples and half poisoned with the backdoor attack trigger to evaluate

the detector’s efficiency (e.g., BadNets, Nature). None of the triggers evaluated in the test

56

set are present in the training set. Table 4.1 shows the results for the CIFAR-10, GTSRB,

and PubFig datasets There are 100,000 samples (half clean, half randomly perturbed) in

the regenerated CIFAR-10 training set and 20,000 samples in the test set; the regenerated

GTSRB includes 70,576 training samples and 25,260 test samples; 22140 training samples

and 2,768 test samples for the regenerated PubFig. Results when distinguishing samples in

the image domain without DCT were also included as a comparison group. Further details

and models used can be found in the Appendix.

BadNets Troj-WM Troj-SQ Nature Blend l2 inv l0 inv
ACC 94.10 98.85 98.76 98.66 97.00 98.85 98.86
BDR 90.50 99.99 99.82 99.61 96.30 99.99 100
ACC* 49.76 85.17 55.37 54.19 64.52 77.31 49.08
BDR* 1.38 72.19 12.59 10.24 30.90 56.46 0.00

BadNets Troj-WM Troj-SQ Nature Blend l2 inv l0 inv
ACC 90.23 93.96 93.93 91.46 93.67 93.96 93.93
BDR 92.55 100 99.94 95.00 99.43 100 99.94
ACC* 48.92 57.43 48.61 49.35 80.63 89.53 48.40
BDR* 17.42 31.51 16.92 18.15 69.91 84.65 16.57

BadNets Troj-WM Troj-SQ Nature Blend GAN-tri
ACC 97.74 99.29 99.29 99.29 99.29 93.96
BDR 96.94 100 100 100 100 100
ACC* 53.05 52.55 57.35 60.29 62.27 50.27
BDR* 72.27 72.40 82.01 87.90 91.80 68.30

Table 4.1: The detection efficiency and comparisons on CIFAR-10 (top), GTSRB (middle)
and PubFig (bottom) (%). *represents the comparison group using the image domain data.

Results. A supervised detector built in the frequency domain leads to a high BDR (98.5

percent averaging), as shown in Table 4.1. However, the image domain detector (repre-

sented by * in Table 4.1) does not work well. We observe an increase in the BDR but a

drop in the average ACC using the image data from the PubFig dataset versus the other two,

indicating that the BDR improvement on the PubFig dataset causes a higher false-positive

rate.

Remark 1. HWe find severe high-frequency artifacts across existing backdoor triggers

which can be utilized to provide accurate detections. Compared with the image domain, the

57

Model #Parameters Train ACC
BadNets Troj-WM Troj-SQ Nature l2 inv l0 inv

ACC BDR ACC BDR ACC BDR ACC BDR ACC BDR ACC BDR

Linear 6,146 83.35 53.85 28.41 89.64 100 89.42 99.56 89.57 99.85 89.64 100 64.65 50.00
128-cell-hidden 393,602 88.23 54.80 21.89 93.85 99.99 93.44 99.16 93.71 99.71 93.84 99.96 55.61 23.50

3-layer CNN, kmax = 32 10,214 95.55 83.64 72.85 97.21 99.99 96.94 99.47 97.09 99.76 97.21 99.99 70.72 47.03
3-layer CNN, kmax = 64 31,862 97.15 84.26 71.72 98.40 99.99 98.21 99.60 98.26 99.72 98.38 99.95 55.71 14.61
3-layer CNN, kmax = 128 109,718 98.36 86.28 75.44 98.55 99.99 98.40 99.68 98.40 99.67 98.55 99.99 97.46 97.80
4-layer CNN, kmax = 128 245,014 98.44 87.63 78.18 98.52 99.97 98.36 99.65 98.39 99.70 98.53 99.99 95.25 93.43
5-layer CNN, kmax = 128 278,870 98.58 87.26 77.33 98.52 99.97 98.38 99.57 98.44 99.69 98.58 99.96 89.88 82.56
6-layer CNN, kmax = 128 292,002 98.64 94.10 90.50 98.85 99.99 98.76 99.82 98.66 99.61 98.85 99.99 98.86 100

Table 4.2: Model ablation study using the CIFAR-10 dataset. kmax represents the maxi-
mum value of the CNN kernels. We start the analysis from the most straightforward fully-
connected linear model. Hidden layers, convolutional layers, or kernel sizes are gradually
added or enlarged to test out the most simplistic model that can satisfy an outstanding de-
tection efficiency. We present the training ACC, detection ACC, and BDR for each attack
(%); the boled results are larger than 90%, which we interpret as satisfying results.

frequency domain can enable more accurate rejection of backdoored data without sacrific-

ing much of the clean samples.

4.3.3 DNN Model Architechures and Ablation Study

Given the different scales of difficulties to separate the DCT data in the frequency domain,

we introduce a model ablation study to acquire the most simplistic DNN architecture that

satisfies the detection performance to conduct the experiments in Section 4.3.1.

On large-input-spaced samples, namely the PubFig dataset, a linear model would al-

ready be able to achieve an outstanding detection efficiency which is introduced in Table

4.1, Section 4.3.2. Thus, no further ablation study is necessary for the large-input-space.

The details of the linear model we adopted to conduct the detection task over the PubFig

dataset are shown in Table 4.3. We use an Adam optimizer with a learning rate of 0.01 as

the optimizer for training this linear model. The binary cross-entropy is adopted as the loss

function for the task of linear separation. We train the linear model with 50 epochs on the

PubFig based dataset to attain the results shown in Table 4.1.

Given that the DCT results in our evaluation have the same size as the original data’s

58

input space, the DCT results over small-input-space have a weaker ability to depict high-

frequency artifacts compared to larger-input-space due to the limited number of high-

frequency coefficients. Thus, as shown in Table 4.2, a similar fully connected linear model

cannot meet a satisfying detection efficiency over the frequency domain using the same

framework we proposed in this work. We then conduct a thorough model ablation study

by adding hidden layers or convolutional layers with different kernel sizes to obtain a most

simplistic model that meets satisfying detection results over the evaluated attacks as shown

in Table 4.2. With more complex architecture and parameters, the DNN can better detect

the tested attacks. Based on the ablation study, we found that only until the model’s ar-

chitecture consists of 6 convolutional layers with kmax = 128 can it meet a satisfying and

robust detection efficiency against all evaluated attacks.

Input (224× 224× 3)
Flatten (150528)

Dense (2)

Table 4.3: The network architecture of our simple Linear detector for large input space. We
report the size of each layer.

The details of the simple 6-layer CNN detector for the small-input-space are explained

in Table 4.4. The above experiments over the small-input-space are evaluated using this

model to demonstrate the efficiency of conducting the detection of backdoor triggers in the

frequency domain as elaborated in Section 4.3.2. We use Adam with a learning rate of

0.05 as the optimizer to train this model. Other settings are the same as the experiment

conducted in large-input-space. The model took 150 epochs over the training set created

using CIFAR-10 to converge and attain the results shown in Table 4.1, Section 4.3.2.

59

Input (32× 32× 3)
Conv2d 3× 3 (32× 32× 32)
Conv2d 3× 3 (32× 32× 32)

Max-Pooling 2× 2 (16× 16× 32)
Conv2d 3× 3 (16× 16× 64)
Conv2d 3× 3 (16× 16× 64)

Max-Pooling 2× 2 (8× 8× 64)
Conv2d 3× 3 (8× 8× 128)
Conv2d 3× 3 (8× 8× 128)

Max-Pooling 2× 2 (4× 4× 128)
Flatten (2048)

Dense (2)

Table 4.4: The network architecture of our simple CNN detector for small-input-space. We
report the size of each layer.

4.3.4 Transferability

This section evaluates the transferability of the frequency-based detector towards new

datasets. The training set develops the same way as the above experiments. We then test

the detector’s transferability from a CIFAR-10 model to the GTSRB dataset (Table 4.5).

The transferability of a model trained on GTSRB and a model trained on CIFAR-10 to the

TSRD dataset (Table 4.6) is also tested.

Table 4.5’s column headers indicate the training set used to train the specific detector.

For the last column (CIFAR-10+Tune), we first train using the CIFAR-10 dataset, then

fine-tune with a 200-sized dataset (half clean, half randomly perturbed originating from the

100 clean samples from the GTSRB test set) of the same distribution as GTSRB. In real

life, as the defender is on the user’s side, they will have access to the inference data, and a

fine-tuning of the model using 100 clean samples is reasonable and practical. Note that the

60

GTSRB CIFAR-10 CIFAR-10+Tune
Attack ACC BDR ACC BDR ACC BDR

BadNets 90.23 92.55 68.23 99.61 89.44 95.95
Troj-WM 93.96 100 68.42 99.99 91.47 100
Troj-SQ 93.93 99.94 68.40 99.96 91.44 99.95
Nature 91.46 95.00 67.79 98.75 94.03 97.08
Blend 93.67 99.43 66.51 96.18 64.49 45.67
l2 inv 93.96 100 68.40 99.95 91.45 99.97
l0 inv 93.93 99.94 68.41 99.98 91.46 99.99

Table 4.5: The transferability using the detector trained on different datasets tested on
GTSRB (%).

samples we use to fine-tune the models are not utilized in the test set for all experiments.

GTSRB GTSRB+Tune CIFAR-10 CIFAR-10+Tune
Attack ACC BDR ACC BDR ACC BDR ACC BDR

BadNets 57.99 86.83 77.01 87.10 61.17 98.01 82.53 89.83
Troj-WM 64.57 100 83.46 100 62.16 100 87.10 98.97
Troj-SQ 64.57 100 83.46 100 62.16 99.95 87.58 99.93
Nature 60.09 91.03 83.11 99.29 59.30 94.28 79.61 83.98
Blend 59.04 88.94 82.92 98.92 55.37 86.41 83.62 92.01

Table 4.6: The transferability on the TSRD dataset (%).

When comparing the original GTSRB detector and the CIFAR-10 detector on GTSRB,

we see a significant drop in ACC resulting from the variance between the two datasets’

data distribution. However, by fine-tuning the detector using the 200-sized dataset, one can

achieve a higher ACC without sacrificing too much BDR. The detection efficiency is close

to or even surpasses the detector’s results with the original GTSRB training set on some

attacks. The Blend attack is a particular case here, as the fine-tuned results worsen. We

propose the main reason behind this is that the two datasets are of significant variance in

distributions. This side effect over the detection deficiency against Blend is recovered in

the following experiments using pairs of training and testing sets with closer distributions.

Table 4.6 presents the results on evaluating the detector’s transferability from the GT-

SRB and CIFAR-10 datasets onto the TSRD dataset. Due to the limited size of the TSRD

61

dataset, we cannot achieve satisfying accuracy using the target model presented above;

therefore, the TSRD dataset is only for testing. The raw detector results are similar to

the experiment evaluating the CIFAR-10 model over GTSRB test data. After fine-tuning

with 100 TSRD clean samples (dataset of size 200), both detectors can achieve satisfying

detection results with acceptable ACC on the TSRD dataset. Of note, after fine-tuning,

both detectors’ performances against the Blend attack over the TSRD dataset are better

than the results from the previous experiment’s over the GTSRB dataset. We believe this is

because of closer similarities in distribution between the datasets than between CIFAR-10

and GTSRB.

Combined Combined+Tune
Attack ACC BDR ACC BDR

BadNets 64.28 89.88 80.28 89.80
Troj-WM 69.34 100 85.28 99.80
Troj-SQ 69.34 100 85.36 99.95
Nature 64.67 90.66 83.29 95.82
Blend 64.18 89.68 84.61 98.45

Table 4.7: The transferability with extended training set, tested using the TSRD dataset
(%).

We also notice the CIFAR-10 detector achieves higher accuracy than the GTSRB detec-

tor on the TSRD dataset for most cases, even though CIFAR-10 and TSRD have disparent

sample categories. Given that the two detectors are all trained with the same number of

epochs and settings, we deduce that the transferability is related to the training set’s size.

This assumption is confirmed in the following experiment when evaluating the transferabil-

ity using a combined training set of CIFAR-10 and GTSRB. As shown in Table 4.7, when

using a combined dataset, we can see an improvement in the average detection efficiency

over the TSRD dataset.

62

Remark 2. Since the high-frequency artifacts of existing triggers are universal across

different datasets, transfer learning can be adopted in the task of detecting backdoored

samples in the frequency domain. Even if the defender does not have access to the original

training set, they can still effectively detect attacks and achieve satisfying results in the

frequency domain by adopting large public clean datasets to conduct transfer learning.

4.4 Creating Smooth Triggers

4.4.1 Problem Definition

Given existing attacks’ high-frequency artifacts, this section aims to create triggers that do

not leave high-frequency artifacts but stay efficient as backdoor triggers. We summarize

generating a smooth trigger as a bilevel optimization problem:

min
δ

ΣiL(xi + δ, ytar; θp) + λΩ(δ; g), (4.1)

s.t. xi + δ︸ ︷︷ ︸
i=1,...,N

∈ [0, 1]n, (4.2)

θp = argminθ (ΣiL(xi, yi; θ) + ΣjL(xj + δ, ytar; θ)) (4.3)

We adopt Ω(·; g) from SmoothFool [35] to measure the input sample’s roughness given a

preset low-pass filter in the image domain g. λ is the Lagrangian coefficient that controls

the trade-off between smoothness and perturbation scale. Equation (4.1) is the optimization

problem that tries to minimize both the loss of the poisoned data given a trained poisoned

model and the roughness of the trigger itself. Equation (4.2) ensures the poisoned samples

falls within the rational range from [0, 1]. Equation (4.3) is the optimization problem to

train a poisoned model where θp is the poisoned model, and θ is an initialized target model,

where j is the index of the samples selected as poison data.

63

4.4.2 Methodology

There are two ways to achieve the constraint of smoothness with the low-pass filter. One

way is to conduct the search iteratively and output the results when it meets the constraint.

However, we find this methodology is ineffective in our case as optimization along the

gradient of DNNs causes local ”bumps” in the triggers that easily exceed the constraint.

Therefore, we adopt a strategy by updating the smooth trigger with the perturbation that

remains after the low-pass filter for each iteration, thus meeting the constraint. The remain-

ing parts of the perturbation from the filter can be interpreted as r = δ ∗ g. Here, r is the

result of the perturbation after convolving with the low-pass filter, g, in the image domain.

Taking Equation (4.2) into account and the fact that the triggers are of small values after

passing through g, we adopt a min-max scaler, M , as a normalization process to remap

the poison data onto the rational range of an image, [0, 1]. Instead of using the rigid value

clipping done in other works, we argue that normalization can better keep the relative scale

between each pixel of the smooth trigger and better maintain functionality as a backdoor

trigger. Consequently, we can rewrite the optimization as:

min
r

ΣiL(x
poi
i , ytar; θpoi), (4.4)

s.t. r = δ ∗ g, (4.5)

xpoi
i = M(xi + λr)︸ ︷︷ ︸

i=1,...,N

, (4.6)

θpoi = argminθ

(
ΣiL(xi, yi; θ) + ΣjL(x

poi
j , ytar; θ)

)
(4.7)

This bilevel optimization function’s objective is to find a smooth pattern r within the range

of the low-pass filter g that can be successfully adopted as a backdoor trigger. As stated

in our work’s scope, the classifier θ is a DNN, thus making the optimization problem non-

convex [117]. Thus, we propose Algorithm 3 to approximate a solution to this problem:

64

we heuristically search for a smooth pattern that leads clean samples to the target label.

Algorithm 3: Generating a Smooth Trigger
Input: Data Points: X ∈ RN×H×W×C ;

Pre-trained Classifier: θ;
Desired Fooling Rate: γ;

Output: Smooth Trigger: r; Dominante Label: ytar;
Parameters: Low-pass Filter g; Trade-off Controller: λ; Number of Classes: K

/* Initialization */
r ← 0H×W×C ;
ytar ← randint(K);
γbest ← Err(X);
while γbest < γ do

for each data point xi ∈ X do
if θ(M(xi + λr))! = ytar then

/* Computing Purturbation */
δ = −▽L(xi, ytar; θ);
/* Low-Pass Filter */
r = r + δ ∗ g;
r = r ∗ g;

Xpoi = M(subset(X) + r);
ytar = Domi(Xpoi);
if Err(Xpoi) > γbest then

/* Updating the Best Result */

γbest ← Err(Xpoi);
rbest ← r;
ybesttar ← ytar;

return rbest, ybesttar

Algorithm 3 explains the procedure of generating a smooth trigger. Err(·) computes

the error rate, and Domi(·) outputs the mode of the labels that are different from their

original ones. The algorithm first initializes a random target label and a zero-image as the

trigger. While the error caused by the generated trigger is below the desired fool rate γ,

the algorithm will iteratively compute the perturbation according to the gradients of a pre-

trained model towards the target class for each sample that is not of the target label. The

attained perturbation then passes through a low-pass filter to remove high-frequency parts.

65

Figure 4.9: Visual effects over image and frequency domian of the smooth triggers. The
trigger is multiplied by 5 for visualization. The right bottom depicts the heatmap averaged
over 10000 samples patched with the smooth trigger. Both the trigger itself and the final
images exhibit frequency spectra similar to natural images.

The smoothed perturbation is added to the trigger to update the smooth trigger. Finally,

we select out a subset from all the data points to quickly estimate the new error rate. If

the estimated error rate is larger than the preset threshold, we will update the best smooth

trigger pairing with the dominant label.

Upon experiments of generating a unified perturbation aiming to cause universal mis-

classification [117], there exist several dominant labels that perturbations tend to lead to.

We compute the dominant label as the target label and pair it with the corresponding smooth

trigger to achieve a more potent backdoor attack.

4.4.3 Attack Results and Evaluations

Figure 4.9 depicts the computed smooth trigger’s visual effects using the proposed algo-

rithm in the image domain and frequency domain. A similar figure illustrating the smooth

trigger generated based on the GTSRB dataset is presented in Figure 4.10. As one can see

66

Figure 4.10: Visual effects over image and frequency domian of the smooth triggers. The
trigger is multiplied by 5 for visualization. The right bottom depicts the heatmap averaged
over 10000 samples patched with the smooth trigger. Both the trigger itself and the final
images exhibit frequency spectra similar to natural images.

from the frequency results, neither the trigger itself nor the final patched image contain any

high-frequency components. Meanwhile, the instances patched with the triggers still keep

the original information as the main body, as shown in the upper left of Figure 4.9 and

Figure 4.10. Based on the comparison from both the image and frequency domain, we can

say the smooth trigger has better latency than all evaluated triggers.

We now evaluate the smooth trigger’s functionality as a backdoor trigger by using it to

poison the training set and conduct the entire backdoor attack pipeline. We adopt a small

CNN trained on CIFAR-10 with an ACC of 85.50% as the baseline model. Table 4.8 shows

the details of the pretrained model. The model was trained using Adam optimizer with a

learning rate at 0.05 for 150 epochs to converge. The base-line ACC over clean samples

is 85.50% for the CIFAR-10 dataset. We also trained a base-line model on the GTSRB

dataset for generating the smooth trigger over the GTSRB dataset. The GTSRB base-line

model’s ACC is 97.45%.

The smooth attack can attain an Attack Success Rate (ASR) around 95% within one

epoch of training while the model’s training accuracy is still below 30%. This effect in-

dicates the smooth trigger contains features that are easier to pick up by the DNN. We

evaluate the final result when the model converges over the poison dataset with a poison

67

Input (32× 32× 3)
Conv2d 3× 3 (32× 32× 32)
Conv2d 3× 3 (32× 32× 32)

Max-Pooling 2× 2 (16× 16× 32)
Conv2d 3× 3 (16× 16× 64)
Conv2d 3× 3 (16× 16× 64)

Max-Pooling 2× 2 (8× 8× 64)
Conv2d 3× 3 (8× 8× 128)
Conv2d 3× 3 (8× 8× 128)

Max-Pooling 2× 2 (4× 4× 128)
Flatten (2048)

Dense (10)

Table 4.8: The target model for evaluating the smooth trigger on CIFAR-10 and GTSRB
dataset. We report the size of each layer.

ratio of 0.1, which is a standard poison rate used in other attack works [94, 104]. The poi-

soned model recognizes the trigger by 97.25% of chance and achieves an ACC on clean

samples at 84.54%, which is close to the baseline ACC.

As a comparison, we test the case of using random patches and nature images passed

through the low-pass filter as naive designs of the smooth triggers. The triggers can only

reach an average ASR of 75.54%. Meanwhile, we observe that the naive-designed smooth

triggers take more epochs for the model to converge. The averaging ACC over clean sam-

ples can only achieve 76.29%, with five naive-designed smooth triggers considered. This

drop in the performance over the clean samples can also impair the stealthiness of the at-

tack.

We show a similar pattern on the GTSRB dataset. The model trained over the poisoned

GTSRB dataset can maintain an ACC over clean samples at 97.42%, which is almost the

same as the base-line model. Meanwhile, the ASR is 97.86% without defense. We observed

the model could achieve an ASR greater than 90% even with one epoch of training.

68

Thus, we conclude that our smooth trigger maintains functionality as a backdoor trigger

while leaving no high-frequency artifacts.

Remark 3. Directly using random patches passed through the low-pass filter cannot gen-

erate smooth triggers of satisfying functionality. We show that by approximately solving a

bilevel problem, one can generate smooth triggers that function as backdoor triggers while

achieving a satisfying stealthiness in both image and frequency domains.

4.4.4 Impacts over Defenses

To show the importance of considering smooth triggers in defenses, we perform a small

case study on Meta Neural Analysis (MNA) [20], a state-of-art defense mechanism. When

faced with a classifier poisoned with a smooth trigger, the MNA can only achieve an AUC

score of 0.0776. However, after upgrading the MNA to consider the smooth trigger gener-

ation, the upgraded MNA can achieve an AUC score of 0.694 and a detection accuracy of

42.85%. This simple case study illustrates how existing defenses can be made more robust

by considering smooth triggers.

Similarly, we also aim to upgrade our proposed detector with smooth triggers. We first

try to finetune the detector with samples patched with patterns passed through the low-pass

filter. Although the detector successfully detects samples patched with the same trigger

with 95.67% accuracy, the detector fails to generalize and cannot detect other filtered trig-

gers nor the smooth trigger. We next experiment using the smooth trigger we acquired

using Algorithm 3 to finetune the model for one epoch with 20,000 samples (half clean,

half patched). This time, we find the model performs well on detecting the smooth trigger

(82.49% accuracy) and attains a higher detection rate of 89.37% averaged over all unseen

low-pass filtered triggers. With this detection rate, the detector can constrain the overall

ASR of the most potent smooth trigger found using Algorithm 3 to 19.72%. If we can use

69

the detector to eliminate poisoned samples in the training set, we further drop the overall

ASR to 18.03%.

Again, we see a similar story with the GTSRB dataset. The detection rate of the pro-

posed detector in Section 4.3.1 can only achieve a BDR at 55.31% and an F1 score at

0.664 before considering this smooth attack. This detection efficiency can only drop the at-

tack success rate of this GTSRB smooth trigger to 40.97% By incorporating this strongest

smooth trigger found using Algorithm 3 into the development of the detector, we can regain

a high efficient detection efficiency of a BDR at 85.53% and an F1 score of 0.8628 using

the fine-tuning pipeline proposed in Section 4.4.4. This fine-tuning does not affect much

over the other attack trigger’s detection efficiency due to the limited scale as discussed in

Section 4.4.4. Using this upgraded detector on the poisoned model, we can finally con-

strain the ASR from 97.86% to 13.27% by only adopting the detector to reject samples

with triggers during the inference. In the case where we apply the detector to the training

phase , we can further drop the ASR to 13.03%.

We design an experiment comparing the distance in the hyperplane between clean sam-

ples and samples patched with filtered triggers (including the smooth trigger and other

simple designs) to better explain this generalizability. We take the detector’s last layer’s

weight on the benign class and compu te the Euclidean distance between the weights and

the clean samples’ logits to select the “representative” of the clean cluster in the hyper-

plane. We then feed the poisoned samples patched with different kinds of low-pass filter

processed triggers to acquire the average distance between the clean representative and the

poisoned samples’ clusters. We find that the smooth trigger patch samples have the clos-

est distance of 4.3589 among all the filtered triggers. For reference, low-passed Blend is

4.6040; low-passed Nature is 4.5561; and random noise passing through the low-pass filter

has a distance of 4.6036. Figure 4.11 helps explain the generalizability acquired by fine-

tuning the detector using the smooth trigger. With a closer distance toward the clean sample

70

Figure 4.11: Fine-tuning over the smooth trigger patched samples

center, the smooth trigger-patched samples can work as support vectors in the hyperplane

to include other filtered triggers, thus achieving universal generalizability.

Remark 4. We show that defenses designed with the frequency domain considered can

better mitigating the smooth triggers. We bring attention to the development of frequency-

constraint triggers, as they can be adopted in an adversarial training manner to help de-

fenses acquire robust and generalized protection against smooth triggers.

4.5 Conclusion

In this work, we filled the gap in existing works on backdoor attacks and defenses by pre-

senting a comprehensive analysis of the overlooked frequency domain. Unlike natural im-

ages, we found many existing attack triggers exhibit severe artifacts in the high-frequency

spectrum. We took advantage of the artifacts and show that we can achieve an average

detection rate of 98.50% under attack-agnostic settings. Realizing this limitation in the

71

current trigger design, we proposed an effective way to generate triggers invisible in the

high-frequency domain. We demonstrated its potency in terms of stealthiness and attack

efficiency. Finally, we showed that existing backdoor defenses could benefit from con-

sidering frequency-invisible attacks. We hope the remarks and solutions proposed in this

chapter can inspire more advanced studies on backdoor attacks in the future.

72

CHAPTER 5

Detection of Security Anomalies in Industry

5.1 Introduction

A common defense against attacks is to detect anomalies to inputs before they occur, similar

to how a firewall will inspect and sanitize incoming web traffic before allowing passage into

an internal network.

The task of anomaly detection involves aiming to identify points, events, and/or obser-

vations that deviate from a dataset’s normal behavior. Anomalous data can indicate critical

incidents, such as a technical glitch, or potential opportunities, for instance a change in

consumer behavior. Anomaly detection is important in various applications including net-

working and telecommunication server monitoring

In fact, a common problem faced by companies is detection of anomalous events in

time series in which the data consists of a sequence of values over time. Such a task might

be seen, for example, in identifying health in telecommunication networks, tracking per-

formance of applications and infrastructure components, and monitoring key performance

indicators (KPIs). However, anomaly detection is often difficult as the anomalous behav-

iors are difficult to detect due to problems like large dimensions caused by multiple values

for the same time stamp (multivariate time series) or potentially benign noises in the data.

These situations are ever-present in large-scale data faced by companies that have added

73

time and memory constraints. This is especially true at an industry environment such as

Ericsson which sees gigabytes if not terabytes of data every day. To make matters more

complicated, any existing system needs to be cognizant of the practical constraints in terms

of time and cost requirements - a system cannot take too much time or memory or else it

will not be useful.

Currently there exist two common techniques widely employed by corporations for

anomaly detection large-scale data: Density-based spatial clustering of applications with

noise (DBSCAN) and median absolute deviation (MAD) [139]. 1

DBSCAN is a density-based clustering algorithm that greedily groups together points

that are within ϵ distance of one another. A minimum of n points have to be within ϵ

distance of one another before the points can be considered a cluster. Any point not in a

cluster or clusters that have relatively few points in them are considered outliers.

Median absolute deviation is a measure of dispersion designed to be more robust than

standard deviation. Given data points X1, X2, ..., Xn with median X̃ , the MAD is defined

as the median of the absolute deviations from the median:

MAD = median(|Xi − X̃|)

To apply the DBSCAN and MAD algorithms to time-series data, we start with the time

series points we want to test. We then obtain data in the past that should theoretically

be most similar to this data (e.g. data from the same time in the previous week or month).

DBSCAN and MAD is then run comparing the historical data and the test data to determine

if the latter is an anomaly using a predetermined threshold.

These two techniques have been the standard practice as they are appealing for a num-

ber of reasons. First, they do not take very much time to run, which is critical when the

1Even though we cite this blog, we are not singling out this company. In fact DBSCAN and MAD are
commonly employed strategies in many areas.

74

algorithm would possible be needed to be run on large amounts of data. Secondly, because

there are not many hyperparameters, the algorithms are also quick to tune. Finally, these

algorithms are also easy to interpret and comprehend - it is intuitive what the outputs of

these algorithms are and why the results come out as they do.

However, there are disadvantages to these standard approaches. One glaring one is that

MAD works well only on univariate time series data and can only one KPI metric at a time.

Not only could this be more time-consuming the more KPI values there are, but valuable

information that could be contained in the relationship between KPI values is lost. This

is the case even for DBSCAN, which can be modified to run on multivariate time series.

Another downside is that these methods inherently assume a proper seasonality in the data.

If none exist or if the seasonality is not strong enough, DBSCAN and MAD would fail to

provide accurate results.

DBSCAN and MAD also have a large memory requirement since they require the stor-

age of all the data in readily accessible memory. The more accurate the desired result,

the more historical data would need to be used and the more memory this would require.

In short, there is a direct growth of memory requirement needed to maintain a level of

accuracy, which poses challenges to their scalability.

To address these challenges, we propose a machine learning based approach called ER-

ICA for anomaly detection on time series data. The list of contributions for this work are

as follows:

• We propose an autoencoder based deep learning model and a corresponding custom

pipeline with pre-processing and post-processing steps called ERICA.

• We then evaluate on real world datasets to show that our technique is more resilient

to seasonality disruptions and results in a higher accuracy

In this work, we propose our autoencoder based deep learning approach in section 5.2.

75

The evaluation result is presented in Section 5.3. Finally we conclude and discuss future

work in Section 5.4.

5.2 Our Approach

5.2.1 Considerations of Other Approaches

As mentioned in Chapter 2.3, we wanted a solution that was powerful enough to handle the

raw amount of data and be robust to minor noises. At the same time, we had to be mindful

of resource constraints and avoid resource-heavy tools like generative adversarial networks

(GANs).

We decide to explore an approach in the middle ground for our machine learning archi-

tecture: a solution that is complicated enough to handle multivariate, potentially compli-

cated time series data. However, we also need to keep in mind that the technique should

be relatively simple to implement and understand as well as be mindful of time and storage

requirements. There are two areas that we derive our ideas from.

The first involve using RNNs [197] or LSTMs [67] to capture the features in the time

series data. . Because we are trying to identify patterns in time-series, we decided to utilize

Long Short Term Memory (LSTM) units to incorporate historical pattern and data in the

learning process. LSTMs are designed to capture / learn representations for sequences.

Simplified, LSTMs use cells to capture the encoding at every time step. Each cell uses

the encoding from the previous cell, which represents the previous time step. However, the

key difference in LSTMs is that each cell contains ”gates” which allow cells to ignore or

”forget” inputs from the previous cell. This allows the model to capture long-term depen-

dencies and in the case of our framework, long-term seasonal patterns. Time-series data

naturally contains a sequential dependency in which an event that occurs at a certain time

76

is likely to affect an event later. Utilizing an LSTM helps improve model performance and

capture anomalies and patterns that depend on previous events.

The second line of work that we took inspiration from involve the use of an autoencoder

based architecture, which are commonly used to learn efficient codings of unlabeled data

[3, 187, 159], taking advantage of the fact that the autoencoder architecture with its encod-

ing and decoding phases lends very well to the task anomaly detection. At a high-level, the

autoencoder architecture forces the model to learn a compressed knowledge representation

of the input. This is done by creating a ”bottleneck” in the network. Before the bottleneck,

the autoencoder layers (called the encoder) attempts to learn a simplified representation

with fewer dimensions (called the latent representation or encoding). We will call this

encoding e. The number of dimensions needs to be carefully chosen to balance oversim-

plifying the data and losing information versus not simplifying enough and reducing the

effectiveness of the autoencoder. The layers after the bottleneck, called the decoding layers

or the decoder, ”tests” the quality of the latent representation by attempting to reconstruct

the original input. The model then measures the difference between the original input and

the reconstructed input. Since we assume that almost all of the training data will be non-

anomalous data, the autoencoder is able to capture the ”normal” pattern while training.

During inference time, any anomalous pattern will be unable to be reconstructed correctly

and result in a higher error and could be identified.

An added benefit is that the act of dimensionaltiy reduction is inherently built in into the

architecture,which allows us to use the appropriate level of abstraction without losing the

granularity needed to represent the feature space.

77

Figure 5.1: High level depiction of general autoencoder architecture

5.2.2 Model Architecture

We propose an autoencoder based deep learning framework for anomaly detection, the

reasoning for which is explained in Chapter 2.3.

In short, the final architecture we decided on is an autoencoder-based architecture com-

bined with an LSTM. The input to the model is a multivariate time-series data that has

been pre-processed. The details of the pre-processing step are laid out in Section 5.2.4.

The model outputs a value for every time instance inputted into the model, which repre-

sents the reconstruction probability from e - in other words, it roughly measures how likely

the input is from the stored parameters. Very unlikely probabilities means the input is likely

anomalous.

We use a specific type of an autoencoder called a variational autoencoder (VAE), com-

monly used in representation learning. The main difference is that in a VAE we assume that

the input data can be characterized by an unknown probability distribution which we aim

78

to model. The encoder and decoder are trained jointly to minimize the divergence between

the true posterior and the parametric posterior. The latent representation is stored as the

mean and variance of a Gaussian distribution instead of a singular value. The layers after

the bottleneck - called the decoder - attempts to recreate the original input from the latent

space. The effectiveness of the model is measured by the difference between the original

input and the recreated output. We choose to use a VAE in short because Bayseian models

like VAEs give more control over how to model the latent distribution, something that is

no possible in the vanilla autoencoder framework. Such a control is important because dif-

ferent time-series data are likely to have difference in their underlying distribution patterns

from one another.

Figure 5.2: High level depiction of LSTM units. x represents the input, c represents the
cell state vector, which controls which values to ”forget”, while P represents the hidden
state or output vector of the LSTM

79

5.2.3 Model Details

Figure 5.3: Detailed model architecture of encoder layers (top) and decoder layers (bottom)

The following section delves into more details for the encoder and decoder networks.

For each section, assume that an input corresponding to KPI values at time t is inputted

(marked ct in the diagram).

Encoder Network: The first part of the model is the LSTM unit which takes in the input

data of dimensions (batch size x window size x number of KPIs). It then outputs a vector

80

of size (batch size x window size x number of hidden RNN cells). We will call this vector

Pt. The number of hidden RNN cells is a hyperparameter of the model that is set before

the model is run.

The vector Pt is combined with the latent vector from the previous time step (et−1)

and fed into linear layers. These layers perform non-linear transformations to obtain the

variance and mean. After sampling from a Gaussian distribution with the given variance

and mean, and undergoing planar transformations, the final output is the encoding for the

current time step (et).

Decoder Network: The input to the decoder network is the latent vector for a given time

step (et), which is fed into an LSTM as above. The output, which we call P ′ is also a vector

of size (batch size x window size x number of hidden RNN cells). P ′ is fed into linear layers

to obtain the bias and variance of a Gaussian distribution. The final reconstructed input x′

is sampled from this distribution and the output is the reconstruction loss (r):

r = logPθ(xt|et)

where xt represents the input at time t and et represents the latent variable at time t.

5.2.4 Proposed Pipeline

Our proposed pipeline for training and supporting ERICA consists of several steps: pre-

processing, model training, threshold selection, model evaluation, and post-processing. An

overview can be seen in Figure 5.4.

1) Pre-processing: The first step in our pipeline is data pre-processing. This step is done

on both training data – historical data that we use to create the model - and evaluation data –

81

Figure 5.4: High level overview of pipeline

the data that we wish to test. The input data are performance metrics (or KPI values) taken

at increments over a specific time. In this stage, we convert all metrics to the corresponding

KPI, if it is not already in that form. If any extraneous KPIs are present, they would be

removed in this step. Next, any data conversion will be applied to convert to stationary

seasonality. After all this, normalization occurs in which we convert the range of values to

between –1 and 1. Finally, the values are converted into “sliding windows” - a predeter-

mined number of consecutive values are grouped together. The ideal value for the number

of time steps in a window is decided ahead of time. Ideally it should be large enough to

capture enough ”patterns” in the data and would vary based on the particular data used.

2) Model training: With this pre-processed data, the model is trained offline. After train-

ing, the result is a file of model weights, which define all the parameters of the model. These

weights are saved in ready to access memory. Unlike in DBSCAN and MAD, there is no

82

need to store the training data except for archival purposes.

3) Threshold selection: In addition to the model, a threshold also needs to be set. The

purpose of the threshold values is to distinguish the value below which the outputs would

be considered an anomaly. The threshold selection is done once after training but can also

be done throughout the life-cycle of the model to update the value. In either scenario, the

process is similar. First, the model is evaluated with some pre-processed data. This can

be done with the data used to train the model or a mixture of training data and new data.

The threshold value can be set via a simple percentile (e.g. 98.9) of the resulting output or

utilizing peaks-over-threshold models[88].

4) Model evaluation: This step involves taking the trained model weights and running it

on the unseen data to test for anomalies. After pre-processing, the desired unseen test data

is fed into the model resulting in anomaly likelihood scores. Once evaluation is complete,

the test data no longer needs to be kept in memory.

5) Post-processing: After the likelihood scores are obtained, some post-processing steps

are taken. Firstly, for any anomalous time index (i.e. output value below threshold value),

we check to see if the time instances before and after the time index were also flagged.

The reasoning for this is twofold: 1) anomalous events usually have effects lasting multiple

time stamps and 2) because of the sliding window approach, the same anomalous times-

tamp would occur in multiple sliding windows. This process helps filter out potential false

positives. Then, any output values above the predetermined threshold are discarded. Fi-

nally, amongst the remaining values, consecutive anomalies are discarded. For example,

if an anomaly occurs at time t, any anomaly happening with the next x minutes (where x

is a predetermined value) are also discarded. This helps prevent an overload of alerts that

83

DBSCAN MAD ERICA
Precision Recall F1 Precision Recall F1 Precision Recall F1

SwAT 0.63 0.55 0.59 0.76 0.67 0.71 0.89 0.74 0.81
WADI 0.52 0.49 0.51 0.55 0.54 0.54 0.59 0.61 0.60

CICIDS 2017 0.93 0.88 0.91 0.92 0.89 0.90 0.94 0.92 0.93
UNSW-NB15 0.76 0.74 0.75 0.78 0.76 0.77 0.86 0.84 0.85

Table 5.1: Best F1 scores for various approaches on the datasets

correspond to the same fault. The post-processing step also allows for human feedback to

adjust thresholds and blacklist alerts as needed.

5.3 Evaluation

In this section, we compare our machine learning model against the popular established

techniques of DBSCAN and MAD since we aim to draw attention to the effectivness of

ERICA over the aformentioned traditional methods. Due to the sensitivity of potential

confidential network data, we evaluate on real world datasets: SwAT, WADI, CICIDS 2017

[151], and UNSW-NB15 [121].

5.3.1 Datasets

SwAT and WADI are both public datasets related to monitor water related systems [70],

with 51 and 123 columns respectively and containing about 4.65% and 5.76% anomalous

events respectively, each lasting for at least a minute. The SwAT training data contains data

collected over a week (496800 time stamps) and the evaluation data contains data collected

over a period of 5 days (449919). The training data for WADI contains data collected over

15 days (129605 points) and the test data contains data collected over 2 days (172800 time

stamps).

CICDS 2017 consists of normal and attack traffic data collected over a five-day period.

84

For training, the normal (non-attack) time series samples were used. UNSW-NB15 is a

network intrusion dataset, which contains nine different attacks. As similar to CICDS2017,

training was done on the non-attack samples.

5.3.2 Configuration

For DBSCAN and MAD, we assume the best case scenario and we set all tunable values

(e.g. ϵ for DBSCAN and the threshold for MAD) such that there are no false positives when

run on the full training data. This was done via grid-search for every feature. We then run

the algorithm on the evaluation data and record the best scores in the table.

For ERICA, we train on 10 epochs on the full training data. We set the dimension of the

latent space to 25 and the number of dense layers to 500. A simple ablation study of these

figures can be seen in Figure 5.5.

Training was performed on GPUs and took on the order of tens of GPU hours. While

this is to be expected for a relatively complicated model with a large amount of data, it is

imperative in real world applications that training be performed offline. However, evalua-

tion on a single window can be performed quickly, at most requiring a few seconds. In fact,

once a time series data has been collected, it can immediately be fed into the pipeline for

anomaly detection for quick turnaround, This is in contrast to DBSCAN and MAD which

takes over a minute to run on all the features for all the training data.

5.3.3 Results

When evaluating on the test data, we run the post-processing step and deem a window as a

detected anomaly if any post-process data signals an alert in that window. Using this, we

report the best F1 score for the different methods. We find that DBSCAN and MAD are

strongly affected by noise and are unable to reach high levels of accuracy. The full results

85

can be seen in Table 5.1. Due to the stochastic nature of the VAE, we run the model for 5

times and report the average of the instances

The experiment also makes apparent the potential memory savings - while our saved

model takes roughly 25 MB in memory, the saved historical data occupies at least 120

MBs. Keeping in mind this is a relatively small dataset, the disparity is only likely to

increase when faced with real world data.

(a) Ablation study of latent space (b) Ablation study of dense layers

Figure 5.5: Our ablation study showing our model’s best F1 score against changes in num-
ber of dimensions in the latent space (left) and number of dense layers (right)

5.4 Conclusion and Future Work

In our work, we highlight potential shortcomings of current anomaly detection methods

deployed in industry. We propose a machine learning framework based on an autoencoder

based architecture and show that on complicated datasets, our proposed framework can

surpass existing techniques. We encourage future work to explore this area further and to

build more robust and reliable systems to deal with the problems encountered in real world

industry applications.

86

CHAPTER 6

Adversarial Fine Tuning

6.1 Introduction

Ever since the discovery of adversarial examples [164, 48], there have been lots of study on

defenses to help mitigate it. As mentioned in Chapter 2, much of the defenses have shown

to be ad-hoc and fail in the presence of adaptive attacks - attacks that know the defense

exists.

That has left two main lines of defenses that have stood the test of time. The ideal so-

lution is to utilize defenses called certified robustness, which provide a provable guarantee

that the model will not misclassify an input given that the distortion is within some bounds.

Some of these works include [181, 113, 49, 32, 31, 89, 92]. However, while stunning

progress has been made on this front, the bounds that are guaranteed are relatively small,

and not yet useful in a practical, real-world setting.

So far, the most practical defense we have is an empirical based defense, a popular one

being adversarial training [48, 109]. The goal of adversarial training is to train a model

from scratch to not only perform well on the unaltered, benign data but also perform well

under adversarial attacks. The ending result is a model that usually performs slightly worse

on unaltered, benign inputs (benign accuracy) as compare to its vanilla model counterpart,

but makes up for it by performing substantially better on adversarial inputs.

87

More formally, in the case of a normal classifier, the user tries to minimize some ob-

jective function L which takes in some model F with parameters θ, input x, and output

y:

min
θ

L(Fθ(x), y)

Using the above formulation, we can state that an adversary, with the goal of creating

an adversarial example tries to solve the following optimization problem:

max
δ∈∆(x)

L(Fθ(x+ δ), y)

In this case, δ is the perturbation added to an input x and we bound the δ by some bound

∆(x) that may be dependent on the input (e.g. a L2 norm-ball). The adversary is trying to

maximize the error loss between the original input x and the original output y. Note that

this is for an untargeted adversarial attack though the loss function can be modified slightly

for a targeted adversarial attack and the same principles hold.

If we combine the two equations, in order to build a robust model against advserarial

examples, we can see that we are trying to minimize the expected or empirical loss caused

by an adversarial attack for a any model.

min
θ

1

|S|
∑

(x,y)∈S

max
δ∈∆(x)

L(Fθ(x+ δ), y)

In the above equation S is the training set.

As an oversimplification, adversarial training solves an adversarial minimax problem in

which in each epoch of training, the ”adversary” tries to maximize the training error with

a malicious input (adversarial example) and then the ”user” tries to minimize the expected

training error with the model.

88

Another way to explain it is that one can think of adversarial training as crafting the best

adversarial example on a model at each epoch and then including those examples in the

training set for that epoch. The technical reasoning for the oversimplifications is explained

in Appendix A.

The adversarial example constructed should intuitively be the best that it can be. There-

fore, the adversarial example used in adversarial training is a PGD attack [109], as previous

works have empirically shown that preventing against PGD attacks also leads to mitigation

against other types of attacks. An exception to this is Auto-Attack [33], a fairly recent work

that is designed to mitigate adversarial training. A more rigorous explanation to why the

adversarial example should be the best it can be is also explained in Appendix A.

The added step of solving the inner function (crafting the adversarial example), unfor-

tunately drastically increases the amount of time and resources to train the model. In fact,

not only does each epoch take longer to train (due to the creation of the adversarial exam-

ple), but empirically, training the model itself takes more epochs than if a regular training

algorithm was used.

Indeed, this enormous jump in resources remains a major downside of adversarial train-

ing. This is also not only just an empirical observation but grounded in theory as well [147].

To combat this, we look toward fine-tuning. Fine-tuning is a widely adopted technique in

the machine learning training toolbox [207, 24, 50, 56, 27]. In this methodology, instead

of training a model from scratch, one starts with a model that is already trained on benign

inputs. The model is then made robust using a similar methodology as regular adversarial

training.

In this work, we follow through with this line of approach and propose a new training

methodology that can also be used for fine-tuning. Our methodology utilizes a balance of

two different types to achieve better results, at a cost of slightly increased training time. Our

experiments on the GTSRB and CIFAR-10 dataset show that our methodology is able to

89

achieve better robustness all without compromising accuracy on unaltered inputs. On top of

this, our proposed training procedure takes up comparable time as the previous fine-tuning

approachs and significantly less than regular adversarial training.

Our contributions are as follows:

• We propose a training algorithm for adversarial finetuning. We show that our

methodology improves benign accuracy and robustness without incurring much over-

head in terms of training

• We perform an in-depth analysis of the different methods of training so future works

can be better informed of their options

• We show through experimentation that our method provides better robustness than

the previous method against the PGD attack and the CW attack while maintaining a

high-level of benign accuracy. At the same time, our method still take a comparable

amount of time to run.

6.2 Methodology

6.2.1 Vanilla Adversarial Fine Tuning

Because the work by Jeddi et al. [73] is the closest to our work and the state of the art,

we describe their proposed technique in more detail. Similar to our work, the authors aim

to utilize fine-tuning to make a model robust against adversarial examples. This involves

taking a pre-trained model and then running adversarial training for a few epochs, with the

resulting model ideally having similar accuracy as that resulting from regular adversarial

training. The challenge with fine-tuning a model on examples different from the training

example (e.g. adversarial examples) is that the model can forget the previous inputs and

90

Figure 6.1: A sample training regimen provided by Jeddi et al. [73].

lead to catastrophic failure of the model. The authors propose to solve this through using

a ”slow start, fast decay” method to help the model ”learn” adversarial examples without

forgetting the benign inputs. This involves gradually increasing the learning rate for several

epochs and then rapidly decaying the learning rate. An example they propose is to increase

the learning rate by one step for 5 stages (e.g. 0.001, 0.002, 0.003, 0.004, 0.005) and then

exponentially decaying it for 5 stages (Figure 6.1). Note that the training algorithm does

not allow for much flexibility as the learning rate schedule is quite strict to carefully balance

robust learning but also prevent catastrophic forgetting.

6.2.2 Our Methodology

In this section, we describe our proposed training methodology. As with vanilla adversarial

fine-tuning, the process begins with training a clean model or obtaining a model that has

already been trained. As one might expect, a model with a better starting accuracy is

necessary for creating an end model with better performance.

91

In the first stage of training (Stage 1), we go through normal epochs of adversarial

training, except that we first freeze all layers except for the head. We find that it is not

necessary to randomly initialize the head and find that it leads to minor changes in final

accuracy. After a certain point, we then unfreeze all layers and continue adversarial training

on the full unfrozen model (Stage 2).

The amount of epochs to spend in each stage is a hyperparameter that is dependent on

the model and the training dataset. We find that freezing all the layers except the head

(Stage 1) helps maintain clean accuracy but the model gains robustness more slowly. Our

experimentation also suggests that there is likely an upper bound, which makes sense since

we have effectively limited the expressive power of the model. Stage 2 helps the model

gain robustness much more rapidly but at a cost to benign accuracy. We find that the first

epoch from moving to Stage 1 to Stage 2 causes the biggest drop in clean accuracy, but also

the greatest gain in robustness. A graph showing the accuracies during a sample training

run illustrates this point (Figure 6.2a)

We also find through experimentation that spending more time in Stage 1 before mov-

ing onto Stage 2 helps mitigate the drop in benign performance. As an example, we run

our methodology on the GTSRB dataset for a total of 10 epochs. However, we vary the

proportion of time spent in Stage 1, from 0% (0 epochs) to 100% (10 epochs). The re-

sulting benign accuracies and robust accuracies of our models are shown in Figure 6.2b.

The benign accuracy continues to increase, but it is important to note that the robust accu-

racy doesn’t necessarily follow a similar pattern. We believe that two factors are working

in the extremes. When we run Stage 2 only, the model experiences catastrophic failure,

especially with such few epochs, and is unable to learn robustness well and also forget pre-

viously learned patterns. When we run Stage 1 only, the relevant factor is that the amount of

epochs we run for are too small for the model to properly be trained against adversarial ex-

amples. To help illustrate this point, we run another set of training sessions in which we do

92

not spend any time on Stage 2 and only alter the amount spent on Stage 1. As shown, given

enough epochs, the model can learn robustness without losing benign accuracy, suggesting

a cause of the effect shown in Figure 6.2b.

For most models, we believe the ideal training procedure would be between the two

extremes.

Remark 1. Our procedure provides flexibility through balancing time spent in the two

stages. By tuning the hyperparameter of training in the two stages, a user can decide

between total time and computation cost, desired benign accuracy, and desired robustness

on a model by model level.

6.3 Evaluation

6.3.1 Evaluation Metrics

We compare our proposed framework against vanilla adversarial fine-tuning. For fair com-

parison, we utilize two metrics that are used in the original paper, which also happen to

be standard metrics in the community. The first is accuracy on the original benign data

which we will call benign accuracy. The second is accuracy under a PGD based attack,

which we call robustness. A higher robustness value is ideal - a robustness value of 100

means that every attack is unsuccessful. We run attack settings under three PGD based

attack settings. ϵ = 8/255 and ϵ = 10/255 are standard comparison metrics. We also

include a third metric, a PGD attack with ϵ = 16/255 to show an extreme attack scenario.

Because AutoAttack [33] is designed to mitigate all adversarial training scenarios, we do

not include it in our evaluation.

We run our experiments on two different datasets: GTSRB and CIFAR-10. All results

are averaged over 3 different trials.

93

(a) Change from Stage 1 to Stage 2 (b) Percentage of epochs (GTSRB)

(c) GTSRB Stage 1 only

Figure 6.2: Graphs showing the results of various training experiments. Figure 6.2a shows
the benign accuracy and robustness accuracy during a sample training session on GTSRB.
The blue dashed line represents the change from Stage 1 and Stage 2. Notice the drop in
benign accuracy. Graphs showing the results of various training experiments. Figure 6.2b
shows the effect of benign accuracy and robustness when we vary the percentage of training
epochs spent in Stage 1. Figure 6.2c shows the effect of benign accuracy and robustness
when we train a model on GTSRB using just Stage 1.

To start, we trained a regular model from scratch. We utilized a VGG model architecture

(VGG-16) for the GTSRB dataset and a ResNet architecture (Resnet-34) for CIFAR-10.

We achieve a 97.11% regular accuracy on GTSRB and a 94.84 % accuracy on the CIFAR

dataset. As a point of comparison, the base model for GTSRB obtains a 15.47 % accuracy

94

GTSRB

Vanilla FT Our Method (10 epochs) Our Method (25 Epochs) Regular Model

Benign Accuracy 81.03 (SD 0.02) 85.83 (SD 0.04) 84.29(SD 0.02) 97.11

PGD (8/255) 31.57 (SD 0.04) 43.1 (SD 0.02) 51.27 (SD 0.04) 15.47

PGD (10/255) 23.37 (SD 0.03) 33.53 (SD 0.01) 41.54 (SD 0.01) 6.94

PGD (12/255) 6.65 (SD 0.02) 13.53 (SD 0.01) 19.65 (SD 0.02) 0.47

CIFAR-10

Vanilla FT Our Method Regular Model

Benign Accuracy 92.35 (SD 0.02 93.71 (SD 0.28) 94.84

PGD (8/255) 61.26 (SD 0.07) 79.08 (SD 0.27) 19.62

PGD (10/255) 51.19 (SD 0.04) 73.55 (SD 0.31) 12.0

PGD (12/255) 26.42 (SD 0.02) 54.32 (SD 0.27) 2.0

Table 6.1: Accuracies for our trained models on the PGD attack. In terms of both benign
accuracy and accuracy under attack, our models match or exceed that created by vanilla
adversarial fine-tuning

when faced with an adversarial attack under PGD with ϵ = 8/255, while the base model

for CIFAR obtains an accuracy of 19.62%. For all adversarial training methodologies, we

utilize a PGD attack with ϵ = 8/255 and allow for 20 iterations.

6.3.2 Accuracy

It is not often to see a tradeoff between benign accuracy and robustness - that is to increase

a model’s robustness, one has to often sacrifice accuracy on normal data. However, we find

with our methodology, we are able to achieve better results in both benign accuracy and

robustness across both datasets. As mentioned in Section 6.2, the amount of time spent in

Stage 1 during training affects the final results.

As a fair comparison point, we show results after running for 10 epochs (5 in Stage

95

1 and 5 in Stage 2), which is the same number of epochs run for the vanilla adversarial

fine-tuning. Our results for the GTSRB dataset is shown in Table 6.1 Using the above

training procedure, we obtain a benign accuracy of an average of 85.83% with a robustness

accuracy of 43.1%. Both these numbers exceed the accuracies obtained with the original

vanilla fine-tuning procedure. To show the potential for our methodology, we also showcase

results after running for 25 epochs to show what could be possible. For instance, running

for 20 epochs in Stage 1 and 5 in Stage 2 drastically increases the robustness of the model.

It is worth keeping in mind that both methodologies are well under the time it takes to run

full adversarial training (Section 6.3.3)

To show that our model isn’t somehow ”overfitting” on PGD-based adversarial attacks,

we also report accuracies while launching the Carlini-Wagner (CW) attack [16] on the

models. For these attacks, the tradeoff between weighting amount of distortion (L2 norm)

versus strength of the adversarial attack is a hyperparameter that needs to be meticulously

tuned. Stronger models will require adversarial attacks to have more distortion to reach the

same level of success. For our evaluation, we try to get as close to 0% as possible while

not reaching it and trying to keep all the models at roughly the same accuracy for a direct

comparison. Table 6.2 shows our results, which shows that our model is able to resist the

Carlini-Wagner attack as well.

Remark 2. Our methodology matches or surpasses the original adversarial fine-tuning

methodology in terms of robustness and benign accuracies.

6.3.3 Timing

Because a major advantage and the entire purpose of adversarial fine-tuning is the time

saved in training, we also evaluate on the timing. We ensure that the same amount of GPU

96

Accuracies under CW Attack

Vanilla FT Our Method Regular Model

L2 norm (GTSRB) 0.0078 0.013 0.0063

Robust Accuracy % (GTSRB) 4.02 4.41 4.51

L2 norm (CIFAR10) 0.04 0.04 0.02

Robust Accuracy % (CIFAR10) 0.14 0.52 0.83

Table 6.2: The results of the Carlini-Wagner attack on our models versus compared to
vanilla fine-tuning. We are able to match or exceed performance on both GTSRB and
CIFAR10

Time to train (seconds)

Vanilla FT (GTSRB) 640

Our method (GTSRB) 515

Regular AT (GTSRB) 20000

Vanilla FT (CIFAR-10) 10100

Our Method (CIFAR-10) 12000

Regular AT (CIFAR-10) 42000

Table 6.3: Average time to train each model averaged over 3 runs. Notice the sharp dis-
crepancy between fine-tuning (FT) and regular adversarial training (AT)

cores are used throughout each dataset to allow for a fair comparison. One GPU core was

used for GTSRB training while two were used for CIFAR-10. Once again, we run our

results 3 times and average the results.

Depending on the exact training regimen used, the exact time differs. For instance, our

model on GTRSB in which we utilize the same number of total epochs runs faster than

vanilla adversarial fine tuning. However, our model on CIFAR-10 which we trained for a

total of 22 epoch, takes a bit longer - 12000 seconds versus 10100 seconds. However, the

key is that our approach is still orders of magnitude faster than full adversarial training,

which takes roughly 42000 seconds on CIFAR-10 and roughly 20000 seconds on GTSRB.

97

Remark 3. In terms of timing, our methodology is close to the original fine-tuning

methodology. More importantly, it is still much faster than regular adversarial training,

and maintains the ”spirit” of fine-tuning.

6.3.4 Limitations

We note a few limitations for our defenses. For one, we were unable to run on larger

datasets like ImageNet. We also did not evaluate on black box attacks. Nevertheless, a

few points remains: one, against the attacks evaluated in the original paper, our fine-tuning

approach attains a better result. two - as a sanity check, we performed adapative attacks

and even ran on extreme attack scenarios (i.e. PGD with a high ϵ value and CW with a high

level of distortion) to help validate our results.

In short, though our work shows strong robustness against the attacks mentioned in this

paper, it is not clear how well it works on other attacks. This is an interesting follow-up

work to consider.

6.4 Conclusion

In this work, we propose a new training methodology for fine-tuning a model against ad-

versarial examples. Our methodology involves balancing between two stage, which offers

flexibility based on model type, desired accuracy, and desired computation cost. Our eval-

uation on the GTSRB and CIFAR-10 datasets show that our techniques exceed previous

adversarial fine-tuning work, all while maintaining comparable training time.

98

CHAPTER 7

Conclusion

In this dissertation, we explored the different ways that adversaries can target machine

learning and deep learning models. We showed that across different types of attacks, such

as inference based and training based attacks, there are still missing gaps in terms of knowl-

edge and defenses. In every scenario, we aimed to fill the gap in the knowledge and helped

contribute to meaningful defenses against the various types of attacks. We can now revisit

the questions posed in Chapter 1.

RQ 1: What are some current threats to models during inference time and can we

build effective defenses? At the time this work was done, we realized there was a gap

in understanding the effectiveness of adversarial examples on sensor fusion models. In

Chapter 3, we showed that it is possible to conduct adversarial attacks on sensor fusion

models with only modifying one of the inputs, namely the image input. We were able

to construct a variety of attacks and tested some defenses, putting forth recommendations

such as adversarial training.

In Chapter 6, we put forth a new training methodology for adversarial training that

utilizes a pre-trained model and finetuning it to provide robustness against adversarial ex-

amples. Our evaluations on CIFAR-10 and GTSRB showed that it surpasses state of the

art fine-tuning methods in terms of accuracy and matches accuracies provided by regular

99

adversarial training. Equally as importantly, our technique also takes much less time than

regular adversarial training.

RQ 2: How can we improve defenses against attacks during training phase? Our

work showed that there was a gap in the study of backdoor attacks, namely in the frequency

domain of images. We showed in Chapter 4 that taking advantage of the frequency domains

allows us to effectively detect backdoor triggers. We also show a technique to craft stronger

attacks that do not leave high-frequency residues, but also show that taking these attacks

into account allows us to build stronger defenses.

RQ 3: How can we provide a defense against anomalous inputs in industry systems?

We showed in Chapter 5 that by utilizing an autoencoder based architecture, we were able

to construct an anomaly detector that fit all of Ericsson’s needs and metrics and was able

to maintain competitive accuracies to traditional methods (DBSCAN and MAD). Not only

that, but our methodology saves memory and time compared to the previous methods.

7.1 Limitations and Future Work

No work is perfect, and this dissertation is included in that statement. A major limitation to

this work (as many) is that we could not run our experiments on as many cases as we had

wanted. For example, in Chapter 3, we were limited by the availability of sensor fusion

models at the time and lack of authors’ responses. Throughout the work, we also were

constrained by the fact that we could not test on every available dataset.

Nevertheless, security is a rapidly evolving field - with attacks and defenses constantly

playing a cat and mouse game to ”beat” the other side. The security of machine learning

is no different and we believe that we have contributed to move the aforementioned cat-

100

and-mouse game forward. In fact, in some cases, our work has been left obsolete through

the passage of time, but we still believe we have made an important contribution. Since

our work shown in Chapter 3, several works have explored the robustness of sensor fusion

models [172, 22]. In another example, our frequency work shown in Chapter 4 has inspired

new generation of attacks [203, 195] that can surpass even the one posited in our work.

Other works that have drawn upon ours include attacks in new areas [59, 107] and newly

inspired defenses [106, 176].

We also remark, as stated in Chapter 1, the work presented in the dissertation is not

the only security concerns faced by machine learning systems. Even during the time that

this work was performed and written, new attacks have emerged, especially in the privacy

space. For example, Carlini et al. [15] found that large language neural networks (like

used by Google in their search recommendations) can memorize training inputs, leading to

privacy concerns. Other privacy works include those that found one can regenerate training

examples [201] and other membership inference attacks [152, 13, 123, 63, 165, 72, 2, 143,

188, 193].

7.2 Concluding Remarks

It is an indelible fact that machine learning systems are here to stay, and almost certainly

become more and more ubiquitous. As the attack surface area continues to grow, it becomes

difficult to assure the expected security of said systems.

This dissertation proposes practical solutions to understand some potential lapses in

some machine learning systems and provides some potential suggestions for defenses. We

hope that this work is just one stepping stone in the continued study for more secure and

robust machine learning systems.

101

APPENDIX A

Technical Formality on Optimizing the

Adversarial Training Equation

In Chapter 6, we define adversarial training as solving the following minimax equation:

min
θ

1

|S|
∑

(x,y)∈S

max
δ∈∆(x)

L(Fθ(x+ δ), y)

where L is the loss function with respect to a classifier F with model parameters θ taking

in input x and output y. The adversary tries to add a perturbation δ to x bounded by some

bound ∆(x) and S is the training set that we take the expected loss over.

In the chapter, we oversimplified and went straight to the end result of how to solve this

function in practice. Here is the more formal breakdown.

Similar to how one would train a model normally, the way to solve the above minimax

problem in practice is to use a gradient descent algorithm (like stochastic gradient descent

with minibatch B and learning rate α) to update the model parameters θ:

θ := θ − α

|B|
∑

(x,y)∈B

∇θ max
δ∈∆(x)

L(Fθ(x+ δ), y)

The gradient of the inner maximization function can be taken by applying Danskin’s

Theorem, which states (for the purpose of this) that finding the gradient of the maximum

102

function is given by the gradient of said function evaluated at the maximum.

Thus, we can define δ∗ as follows:

δ∗ = argmax
δ∈∆(x)

L(Fθ(x+ δ), y)

This is the exact procedure for finding the best adversarial example(!) This also allows

us to solve the inner maximization problem without a dependence on θ:

∇θ max
δ∈∆(x)

L(Fθ(x+ δ), y) = ∇θL(Fθ(x+ δ∗), y)

.

We now see why the simplified procedure shown in Chapter 6 where we alternate be-

tween finding an adversarial example and then training over said examples works.

An important note is worth mentioning: because we are using gradient descent to find

δ∗, we are not finding the true maximum and Danskin’s Theorem technically only applies

in theory. Nevertheless, empirical studies shows that a local maximum is usually good

enough. However, the strength of the model does depend on how close δ∗ is to the max-

imum and so in adversarial training, careful care should be given to try to maximize said

adversarial example. In short, δ∗ should be optimal enough such that an adversary cannot

”do better” in terms of the maximization function after the model is trained.

103

BIBLIOGRAPHY

[1] Scott Alfeld, Xiaojin Zhu, and Paul Barford. Data poisoning attacks against au-
toregressive models. Proceedings of the AAAI Conference on Artificial Intelligence,
30(1), Feb. 2016.

[2] Saeed Ranjbar Alvar, Lanjun Wang, Jian Pei, and Yong Zhang. Membership privacy
protection for image translation models via adversarial knowledge distillation, 2022.

[3] Jinwon An and Sungzoon Cho. Variational autoencoder based anomaly detection
using reconstruction probability. Special lecture on IE, 2(1):1–18, 2015.

[4] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a
false sense of security: Circumventing defenses to adversarial examples. In Interna-
tional conference on machine learning, pages 274–283. PMLR, 2018.

[5] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing
robust adversarial examples, 2017.

[6] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly
Shmatikov. How to backdoor federated learning. In Silvia Chiappa and Roberto
Calandra, editors, Proceedings of the Twenty Third International Conference on Ar-
tificial Intelligence and Statistics, volume 108 of Proceedings of Machine Learning
Research, pages 2938–2948. PMLR, 26–28 Aug 2020.

[7] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D. Joseph, and J. D. Tygar.
Can machine learning be secure? In Proceedings of the 2006 ACM Symposium on
Information, Computer and Communications Security, ASIACCS ’06, page 16–25,
New York, NY, USA, 2006. Association for Computing Machinery.

[8] Battista Biggio, Luca Didaci, Giorgio Fumera, and Fabio Roli. Poisoning attacks to
compromise face templates. In 2013 International Conference on Biometrics (ICB),
pages 1–7, 2013.

[9] Battista Biggio, Giorgio Fumera, Fabio Roli, and Luca Didaci. Poisoning adaptive
biometric systems. In Georgy Gimel’farb, Edwin Hancock, Atsushi Imiya, Arjan
Kuijper, Mineichi Kudo, Shinichiro Omachi, Terry Windeatt, and Keiji Yamada,

104

editors, Structural, Syntactic, and Statistical Pattern Recognition, pages 417–425,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[10] Eitan Borgnia, Valeriia Cherepanova, Liam Fowl, Amin Ghiasi, Jonas Geiping,
Micah Goldblum, Tom Goldstein, and Arjun Gupta. Strong data augmentation san-
itizes poisoning and backdoor attacks without an accuracy tradeoff, 2020.

[11] Geoffrey J Burton and Ian R Moorhead. Color and spatial structure in natural scenes.
Applied optics, 26(1):157–170, 1987.

[12] Yulong Cao, Chaowei Xiao, Benjamin Cyr, Yimeng Zhou, Won Park, Sara Ram-
pazzi, Qi Alfred Chen, Kevin Fu, and Zhuoqing Morley Mao. Adversarial Sensor
Attack on LiDAR-based Perception in Autonomous Driving. In Proceedings of the
26th ACM Conference on Computer and Communications Security (CCS’19), Lon-
don, UK, November 2019.

[13] Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Flo-
rian Tramer. Membership inference attacks from first principles, 2021.

[14] Nicholas Carlini and Hany Farid. Evading deepfake-image detectors with white- and
black-box attacks, 2020.

[15] Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The
secret sharer: Evaluating and testing unintended memorization in neural networks.
In 28th USENIX Security Symposium (USENIX Security 19), pages 267–284, Santa
Clara, CA, August 2019. USENIX Association.

[16] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural
networks. 2017 IEEE Symposium on Security and Privacy (SP), May 2017.

[17] Nicholas Carlini and David Wagner. Audio adversarial examples: Targeted attacks
on speech-to-text, 2018.

[18] Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C Duchi, and Percy S
Liang. Unlabeled data improves adversarial robustness. Advances in neural infor-
mation processing systems, 32, 2019.

[19] Junbum Cha, Kyungjae Lee, Sungrae Park, and Sanghyuk Chun. Domain general-
ization by mutual-information regularization with pre-trained models, 2022.

[20] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Ed-
wards, Taesung Lee, Ian Molloy, and Biplav Srivastava. Detecting backdoor attacks
on deep neural networks by activation clustering. arXiv preprint arXiv:1811.03728,
2018.

105

[21] Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar. Deepinspect: A black-
box trojan detection and mitigation framework for deep neural networks. In Proceed-
ings of the Twenty-Eighth International Joint Conference on Artificial Intelligence,
IJCAI-19, pages 4658–4664. International Joint Conferences on Artificial Intelli-
gence Organization, 7 2019.

[22] JXingyu Chen, Zhengxiong Li, Baicheng Chen, Yi Zhu, Chris Xiaoxuan Lu,
Zhengyu Peng, Feng Lin, Wenyao Xu, Kui Ren, and Chunming Qiao. Metawave:
Attacking mmwave sensing with meta-material-enhanced tags. In The 30th Network
and Distributed System Security (NDSS) Symposium 2023, 2023.

[23] Tianlong Chen, Sijia Liu, Shiyu Chang, Yu Cheng, Lisa Amini, and Zhangyang
Wang. Adversarial robustness: From self-supervised pre-training to fine-tuning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pages 699–708, 2020.

[24] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A sim-
ple framework for contrastive learning of visual representations. In International
conference on machine learning, pages 1597–1607. PMLR, 2020.

[25] Xiaoyi Chen, Ahmed Salem, Michael Backes, Shiqing Ma, and Yang Zhang. Badnl:
Backdoor attacks against nlp models, 2020.

[26] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. Multi-view 3d object
detection network for autonomous driving. In IEEE CVPR, 2017.

[27] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pages 15750–15758, 2021.

[28] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor
attacks on deep learning systems using data poisoning, 2017.

[29] Edward Chou, Florian Tramèr, and Giancarlo Pellegrino. Sentinet: Detecting local-
ized universal attacks against deep learning systems. In Deep Learning and Security
Workshop, 2020.

[30] Dan Ciresan, Alessandro Giusti, Luca Gambardella, and Jürgen Schmidhuber. Deep
neural networks segment neuronal membranes in electron microscopy images. In
F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 25. Curran Associates, Inc., 2012.

[31] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness
via randomized smoothing. In international conference on machine learning, pages
1310–1320. PMLR, 2019.

106

[32] Francesco Croce, Maksym Andriushchenko, and Matthias Hein. Provable robust-
ness of relu networks via maximization of linear regions. In the 22nd International
Conference on Artificial Intelligence and Statistics, pages 2057–2066. PMLR, 2019.

[33] Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness
with an ensemble of diverse parameter-free attacks. In International conference on
machine learning, pages 2206–2216. PMLR, 2020.

[34] Francesco Croce and Matthias Hein. Adversarial robustness against multiple and
single lp-threat models via quick fine-tuning of robust classifiers, 2021.

[35] Ali Dabouei, Sobhan Soleymani, Fariborz Taherkhani, Jeremy Dawson, and Nasser
Nasrabadi. Smoothfool: An efficient framework for computing smooth adversarial
perturbations. In Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pages 2665–2674, 2020.

[36] J. Dai, C. Chen, and Y. Li. A backdoor attack against lstm-based text classification
systems. IEEE Access, 7:138872–138878, 2019.

[37] Shaohua Ding, Yulong Tian, Fengyuan Xu, Qun Li, and Sheng Zhong. Trojan at-
tack on deep generative models in autonomous driving. In Songqing Chen, Kim-
Kwang Raymond Choo, Xinwen Fu, Wenjing Lou, and Aziz Mohaisen, editors,
Security and Privacy in Communication Networks, pages 299–318, Cham, 2019.
Springer International Publishing.

[38] H. Drucker, Donghui Wu, and V.N. Vapnik. Support vector machines for spam
categorization. IEEE Transactions on Neural Networks, 10(5):1048–1054, 1999.

[39] Min Du, Ruoxi Jia, and Dawn Song. Robust anomaly detection and backdoor attack
detection via differential privacy. arXiv preprint arXiv:1911.07116, 2019.

[40] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Florian
Tramèr, Atul Prakash, Tadayoshi Kohno, and Dawn Song. Physical adversarial ex-
amples for object detectors. In Proceedings of the 12th USENIX Conference on
Offensive Technologies, WOOT’18, page 1, USA, 2018. USENIX Association.

[41] Samuel G. Finlayson, John D. Bowers, Joichi Ito, Jonathan L. Zittrain, Andrew L.
Beam, and Isaac S. Kohane. Adversarial attacks on medical machine learning. Sci-
ence, 363(6433):1287–1289, 2019.

[42] Vlad Firoiu, William F Whitney, and Joshua B Tenenbaum. Beating the world’s
best at super smash bros. with deep reinforcement learning. arXiv preprint
arXiv:1702.06230, 2017.

107

[43] Forbes. Machine learning (ml) market size, share &; covid-19 impact analysis,
by component (solution, and services), by enterprise size (smes, and large enter-
prises), by deployment (cloud and on-premise), by end-user (healthcare, retail, it
and telecommunication, bfsi, automotive and transportation, advertising and media,
manufacturing, and others), and regional forecast, 2022-2029. Fortune Business
Insights Market Research Report, 2022.

[44] Joel Frank, Thorsten Eisenhofer, Lea Schönherr, Asja Fischer, Dorothea Kolossa,
and Thorsten Holz. Leveraging frequency analysis for deep fake image recognition.
In International Conference on Machine Learning, pages 3247–3258. PMLR, 2020.

[45] Song Fu, Shisheng Zhong, Lin Lin, and Minghang Zhao. A re-optimized deep auto-
encoder for gas turbine unsupervised anomaly detection. Engineering Applications
of Artificial Intelligence, 101:104199, 2021.

[46] Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C. Ranasinghe, and
Surya Nepal. Strip: A defence against trojan attacks on deep neural networks. In
Proceedings of the 35th Annual Computer Security Applications Conference, AC-
SAC ’19, page 113–125, New York, NY, USA, 2019. Association for Computing
Machinery.

[47] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets
robotics: The kitti dataset. International Journal of Robotics Research (IJRR), 2013.

[48] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harness-
ing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[49] Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli
Qin, Jonathan Uesato, Relja Arandjelovic, Timothy Mann, and Pushmeet Kohli. On
the effectiveness of interval bound propagation for training verifiably robust models.
arXiv preprint arXiv:1810.12715, 2018.

[50] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre
Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo,
Mohammad Gheshlaghi Azar, et al. Bootstrap your own latent-a new approach
to self-supervised learning. Advances in neural information processing systems,
33:21271–21284, 2020.

[51] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and Patrick
McDaniel. Adversarial perturbations against deep neural networks for malware clas-
sification, 2016.

[52] Matt Growkoot. This ai image fooled judges and won a photography contest.

108

[53] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identify-
ing vulnerabilities in the machine learning model supply chain. arXiv preprint
arXiv:1708.06733, 2017.

[54] Wenbo Guo, Lun Wang, Xinyu Xing, Min Du, and Dawn Song. Tabor: A highly
accurate approach to inspecting and restoring trojan backdoors in ai systems, 2019.

[55] Yong Guo, David Stutz, and Bernt Schiele. Improving corruption and adversarial
robustness by enhancing weak subnets. arXiv preprint arXiv:2201.12765, 2022.

[56] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momen-
tum contrast for unsupervised visual representation learning. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages 9729–
9738, 2020.

[57] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition, 2015.

[58] Warren He, James Wei, Xinyun Chen, Nicholas Carlini, and Dawn Song. Adversar-
ial example defenses: Ensembles of weak defenses are not strong, 2017.

[59] Xuanli He, Qiongkai Xu, Yi Zeng, Lingjuan Lyu, Fangzhao Wu, Jiwei Li, and Ruoxi
Jia. Cater: Intellectual property protection on text generation apis via conditional
watermarks, 2022.

[60] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness
to common corruptions and perturbations. In International Conference on Learning
Representations, 2019.

[61] Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using pre-training can improve
model robustness and uncertainty. In International Conference on Machine Learn-
ing, pages 2712–2721. PMLR, 2019.

[62] Pengyue Hou, Ming Zhou, Jie Han, Petr Musilek, and Xingyu Li. Adversarial fine-
tune with dynamically regulated adversary, 2022.

[63] Hongsheng Hu, Zoran Salcic, Lichao Sun, Gillian Dobbie, Philip S. Yu, and Xuyun
Zhang. Membership inference attacks on machine learning: A survey. ACM Comput.
Surv., 54(11s), sep 2022.

[64] Lifeng Huang, Chengying Gao, Yuyin Zhou, Changqing Zou, Cihang Xie, Alan
Yuille, and Ning Liu. Upc: Learning universal physical camouflage attacks on object
detectors, 2019.

[65] Xijie Huang, Moustafa Alzantot, and Mani Srivastava. Neuroninspect: Detecting
backdoors in neural networks via output explanations, 2019.

109

[66] Yi Huang, Adams Wai Kin Kong, and Kwok-Yan Lam. Adversarial signboard
against object detector. In British Machine Vision Conference, 2019.

[67] Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom
Soderstrom. Detecting spacecraft anomalies using lstms and nonparametric dynamic
thresholding. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 387–395, 07 2018.

[68] IARPA. Trojans in artificial intelligence (trojai), Feb 2019.

[69] IBM. Ibm global ai adoption index 2022, 2022.

[70] iTrust Labs. Datasets, 2020.

[71] Gauri Jagatap, Ameya Joshi, Animesh Basak Chowdhury, Siddharth Garg, and Chin-
may Hegde. Adversarially robust learning via entropic regularization. Frontiers in
artificial intelligence, 4:780843, 2022.

[72] Ismat Jarin and Birhanu Eshete. Miashield: Defending membership inference at-
tacks via preemptive exclusion of members, 2022.

[73] Ahmadreza Jeddi, Mohammad Javad Shafiee, and Alexander Wong. A simple fine-
tuning is all you need: Towards robust deep learning via adversarial fine-tuning.
CoRR, abs/2012.13628, 2020.

[74] Jinyuan Jia, Xiaoyu Cao, and Neil Zhenqiang Gong. Intrinsic certified robustness of
bagging against data poisoning attacks, 2020.

[75] Jinyuan Jia, Xiaoyu Cao, and Neil Zhenqiang Gong. Certified robustness of nearest
neighbors against data poisoning attacks, 2021.

[76] Jinyuan Jia, Yupei Liu, and Neil Zhenqiang Gong. Badencoder: Backdoor attacks
to pre-trained encoders in self-supervised learning, 2021.

[77] Michael Kearns and Ming Li. Learning in the presence of malicious errors. In
Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing,
STOC ’88, page 267–280, New York, NY, USA, 1988. Association for Computing
Machinery.

[78] Taewan Kim and Joydeep Ghosh. On single source robustness in deep fusion models.
In NeurIPS, 2019.

[79] P. Kiourti, K. Wardega, S. Jha, and W. Li. Trojdrl: Evaluation of backdoor attacks
on deep reinforcement learning. In 2020 57th ACM/IEEE Design Automation Con-
ference (DAC), pages 1–6, 2020.

110

[80] Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. Last layer re-
training is sufficient for robustness to spurious correlations, 2022.

[81] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influ-
ence functions. In Doina Precup and Yee Whye Teh, editors, Proceedings of the
34th International Conference on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pages 1885–1894, International Convention Centre,
Sydney, Australia, 06–11 Aug 2017. PMLR.

[82] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou,
and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems,
volume 25. Curran Associates, Inc., 2012.

[83] Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh, and Steven Lake Waslan-
der. Joint 3d proposal generation and object detection from view aggregation. CoRR,
abs/1712.02294, 2017.

[84] Ananya Kumar, Aditi Raghunathan, Robbie Matthew Jones, Tengyu Ma, and
Percy Liang. Fine-tuning can distort pretrained features and underperform out-of-
distribution. In International Conference on Learning Representations, 2022.

[85] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the
physical world, 2016.

[86] Tencent Keen Security Lab. Experimental security research of tesla autopilot. Tech-
nical report, Tencent Keen Security Lab, 2019.

[87] Anukool Lakhina, Mark Crovella, and Christophe Diot. Diagnosing network-wide
traffic anomalies. SIGCOMM Comput. Commun. Rev., 34(4):219–230, aug 2004.

[88] M.R. Leadbetter. On a basis for ‘peaks over threshold’ modeling. Statistics & Prob-
ability Letters, 12(4):357–362, 1991.

[89] Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman
Jana. Certified robustness to adversarial examples with differential privacy. In 2019
IEEE Symposium on Security and Privacy (SP), pages 656–672. IEEE, 2019.

[90] Alexander Levine and Soheil Feizi. Deep partition aggregation: Provable defense
against general poisoning attacks, 2020.

[91] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training
of deep visuomotor policies, 2015.

[92] Bai Li, Changyou Chen, Wenlin Wang, and Lawrence Carin. Certified adversarial
robustness with additive noise. Advances in neural information processing systems,
32, 2019.

111

[93] Dan Li, Dacheng Chen, Lei Shi, Baihong Jin, Jonathan Goh, and See-Kiong Ng.
Mad-gan: Multivariate anomaly detection for time series data with generative adver-
sarial networks, 2019.

[94] Shaofeng Li, Benjamin Zi Hao Zhao, Jiahao Yu, Minhui Xue, Dali Kaafar, and
Haojin Zhu. Invisible backdoor attacks against deep neural networks. arXiv preprint
arXiv:1909.02742, 2019.

[95] Shun Li and Jin Wen. A model-based fault detection and diagnostic methodology
based on pca method and wavelet transform. Energy and Buildings, 68:63–71, 01
2014.

[96] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Anti-
backdoor learning: Training clean models on poisoned data, 2021.

[97] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Neural
attention distillation: Erasing backdoor triggers from deep neural networks. arXiv
preprint arXiv:2101.05930, 2021.

[98] Chang Liu, Bo Li, Yevgeniy Vorobeychik, and Alina Oprea. Robust high-
dimensional linear regression, 2016.

[99] Chang Liu, Bo Li, Yevgeniy Vorobeychik, and Alina Oprea. Robust linear regression
against training data poisoning. In AISec, AISec ’17, page 91–102, New York, NY,
USA, 2017. Association for Computing Machinery.

[100] Dapeng Liu, Youjian Zhao, Haowen Xu, Yongqian Sun, Dan Pei, Jiao Luo, Xiaowei
Jing, and Mei Feng. Opprentice: Towards practical and automatic anomaly detection
through machine learning. Proceedings of the 2015 Internet Measurement Confer-
ence, 2015.

[101] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation-based anomaly detection.
ACM Trans. Knowl. Discov. Data, 6(1), mar 2012.

[102] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending
against backdooring attacks on deep neural networks. In Research in Attacks, Intru-
sions, and Defenses: 21st International Symposium, RAID 2018, Heraklion, Crete,
Greece, September 10-12, 2018, Proceedings 21, pages 273–294. Springer, 2018.

[103] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra Aafer, and Xi-
angyu Zhang. Abs: Scanning neural networks for back-doors by artificial brain
stimulation. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’19, page 1265–1282, New York, NY, USA,
2019. Association for Computing Machinery.

112

[104] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang,
and Xiangyu Zhang. Trojaning attack on neural networks. In 25nd Annual Network
and Distributed System Security Symposium, NDSS. The Internet Society, 2018.

[105] Yuntao Liu, Yang Xie, and Ankur Srivastava. Neural trojans. In 2017 IEEE Interna-
tional Conference on Computer Design (ICCD), pages 45–48. IEEE, 2017.

[106] Zeyan Liu, Fengjun Li, Zhu Li, and Bo Luo. Loneneuron: A highly-effective feature-
domain neural trojan using invisible and polymorphic watermarks. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’22, page 2129–2143, New York, NY, USA, 2022. Association for Computing
Machinery.

[107] Chengxiao Luo, Yiming Li, Yong Jiang, and Shu-Tao Xia. Untargeted backdoor
attack against object detection, 2022.

[108] Shiqing Ma, Yingqi Liu, G. Tao, W. Lee, and X. Zhang. Nic: Detecting adversarial
samples with neural network invariant checking. In NDSS, 2019.

[109] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In
International Conference on Learning Representations, 2018.

[110] Larry M. Manevitz and Malik Yousef. One-class svms for document classification.
J. Mach. Learn. Res., 2:139–154, mar 2002.

[111] Shike Mei and Xiaojin Zhu. The Security of Latent Dirichlet Allocation. In Guy
Lebanon and S. V. N. Vishwanathan, editors, Proceedings of the Eighteenth Interna-
tional Conference on Artificial Intelligence and Statistics, volume 38 of Proceedings
of Machine Learning Research, pages 681–689, San Diego, California, USA, 09–12
May 2015. PMLR.

[112] Byeongjun Min, Jihoon Yoo, Sangsoo Kim, Dongil Shin, and Dongkyoo Shin. Net-
work anomaly detection using memory-augmented deep autoencoder. IEEE Access,
9:104695–104706, 2021.

[113] Matthew Mirman, Timon Gehr, and Martin Vechev. Differentiable abstract inter-
pretation for provably robust neural networks. In Jennifer Dy and Andreas Krause,
editors, Proceedings of the 35th International Conference on Machine Learning, vol-
ume 80 of Proceedings of Machine Learning Research, pages 3578–3586. PMLR,
10–15 Jul 2018.

[114] Tom M. Mitchell. Machine learning, International Edition. McGraw-Hill Series in
Computer Science. McGraw-Hill, 1997.

113

[115] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep rein-
forcement learning, 2013.

[116] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and P. Frossard.
Universal adversarial perturbations. 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 86–94, 2017.

[117] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal
Frossard. Universal adversarial perturbations. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages 1765–1773, 2017.

[118] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool:
a simple and accurate method to fool deep neural networks. CoRR, abs/1511.04599,
2015.

[119] Konda Reddy Mopuri, Aditya Ganeshan, and R. Babu. Generalizable data-free ob-
jective for crafting universal adversarial perturbations. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 41, 01 2018.

[120] Marius Mosbach, Maksym Andriushchenko, Thomas Trost, Matthias Hein, and Di-
etrich Klakow. Logit pairing methods can fool gradient-based attacks, 2018.

[121] Nour Moustafa and Jill Slay. Unsw-nb15: a comprehensive data set for network
intrusion detection systems (unsw-nb15 network data set). In 2015 Military Com-
munications and Information Systems Conference (MilCIS), pages 1–6, 2015.

[122] Bingxu Mu, Zhenxing Niu, Le Wang, Xue Wang, Rong Jin, and Gang Hua. Progres-
sive backdoor erasing via connecting backdoor and adversarial attacks, 2022.

[123] Milad Nasr, Reza Shokri, and Amir Houmansadr. Machine learning with member-
ship privacy using adversarial regularization, 2018.

[124] Blaine Nelson and Anthony D. Joseph. Bounding an attack ’ s complexity for a
simple learning model. In First Workshop on Tackling Computer Systems Problems
with MachineLearning Techniques (SysML), 2006.

[125] Andrew Ng. Ai is the new electricity, Jan 2017. Remarks by Dr. Andrew Ng at
Stanford MSx Future Forum.

[126] H.D. Nguyen, K.P. Tran, S. Thomassey, and M. Hamad. Forecasting and anomaly
detection approaches using lstm and lstm autoencoder techniques with the applica-
tions in supply chain management. International Journal of Information Manage-
ment, 57:102282, 2021.

[127] Tuan Anh Nguyen and Anh Tran. Input-aware dynamic backdoor attack. Advances
in Neural Information Processing Systems, 33:3454–3464, 2020.

114

[128] Ren Pang, Hua Shen, Xinyang Zhang, Shouling Ji, Yevgeniy Vorobeychik, Xiapu
Luo, Alex Liu, and Ting Wang. A tale of evil twins: Adversarial inputs versus poi-
soned models. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, pages 85–99, 2020.

[129] Ren Pang, Zheng Zhang, Xiangshan Gao, Zhaohan Xi, Shouling Ji, Peng Cheng,
Xiapu Luo, and Ting Wang. TrojanZoo: Towards unified, holistic, and practical
evaluation of neural backdoors. In 2022 IEEE 7th European Symposium on Security
and Privacy. IEEE, jun 2022.

[130] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik,
and Ananthram Swami. The limitations of deep learning in adversarial settings,
2015.

[131] Andrea Paudice, Luis Muñoz-González, Andras Gyorgy, and Emil C. Lupu. Detec-
tion of adversarial training examples in poisoning attacks through anomaly detec-
tion, 2018.

[132] R. Perdisci, D. Dagon, Wenke Lee, P. Fogla, and M. Sharif. Misleading worm sig-
nature generators using deliberate noise injection. In 2006 IEEE Symposium on
Security and Privacy (S&P’06), pages 15 pp.–31, 2006.

[133] Neehar Peri, Neal Gupta, W. Ronny Huang, Liam Fowl, Chen Zhu, Soheil Feizi,
Tom Goldstein, and John P. Dickerson. Deep k-nn defense against clean-label data
poisoning attacks, 2020.

[134] Anastaslia Poiner, David Wright, Gina Schaefer, Kartik Thopalli, Tanya Telford, and
Tanya Urbanik. Automation with intelligence, 2022.

[135] PyTorch. Bootstrapping a multimodal project using mmf, a pytorch powered multi-
modal framework, 2020.

[136] Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J. Guibas. Frustum
pointnets for 3d object detection from rgb-d data. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), June 2018.

[137] Aditi Raghunathan, Sang Michael Xie, Fanny Yang, John Duchi, and Percy Liang.
Understanding and mitigating the tradeoff between robustness and accuracy, 2020.

[138] Aditi Raghunathan, Sang Michael Xie, Fanny Yang, John C. Duchi, and Percy Liang.
Adversarial training can hurt generalization, 2019.

[139] Jee Rim. Introducing new scaled algorithms for improved outlier detection, 2017.

[140] Rui Zhang and Quanyan Zhu. A game-theoretic analysis of label flipping attacks on
distributed support vector machines. In 2017 51st Annual Conference on Information
Sciences and Systems (CISS), pages 1–6, 2017.

115

[141] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. Imagenet large scale visual recognition challenge, 2014.

[142] Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. Hidden trigger
backdoor attacks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 11957–11965, 2020.

[143] Ahmed Salem, Giovanni Cherubin, David Evans, Boris Köpf, Andrew Paverd, An-
shuman Suri, Shruti Tople, and Santiago Zanella-Béguelin. Sok: Let the privacy
games begin! a unified treatment of data inference privacy in machine learning,
2022.

[144] Ahmed Salem, Yannick Sautter, Michael Backes, Mathias Humbert, and Yang
Zhang. Baaan: Backdoor attacks against autoencoder and gan-based machine learn-
ing models, 2020.

[145] Esha Sarkar, Hadjer Benkraouda, and Michail Maniatakos. Facehack: Triggering
backdoored facial recognition systems using facial characteristics. arXiv preprint
arXiv:2006.11623, 2020.

[146] Dr. Eric Schmidt, Hon. Robert O. Work, Safra Catzand Dr. Steve Chien,
Hon. Mignon Clyburn, Christopher Darby, Dr. Kenneth Ford, Dr. Jose Marie Grif-
fiths, Dr. Eric Horvitz, Andrew Jassy, Gilman Louie, Dr. William Mark, Dr. Jason
Matheny, Hon. Katharina McFarland, and Dr. Andrew Moore. Interim report novem-
ber 2019. Technical report, National Security Commission On Artificial Intelligence,
2019.

[147] Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Alek-
sander Madry. Adversarially robust generalization requires more data. Advances
in neural information processing systems, 31, 2018.

[148] Roei Schuster, Congzheng Song, Eran Tromer, and Vitaly Shmatikov. You autocom-
plete me: Poisoning vulnerabilities in neural code completion, 2020.

[149] Giorgio Severi, Jim Meyer, Scott Coull, and Alina Oprea. Explanation-guided back-
door poisoning attacks against malware classifiers, 2021.

[150] Zeyang Sha, Xinlei He, Pascal Berrang, Mathias Humbert, and Yang Zhang.
Fine-tuning is all you need to mitigate backdoor attacks. arXiv preprint
arXiv:2212.09067, 2022.

[151] Iman Sharafaldin, Arash Habibi Lashkari, and Ali Ghorbani. Toward generating
a new intrusion detection dataset and intrusion traffic characterization. In ICISSP,
pages 108–116, 01 2018.

116

[152] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership
inference attacks against machine learning models. In 2017 IEEE symposium on
security and privacy (SP), pages 3–18. IEEE, 2017.

[153] Shoaib Ahmed Siddiqui and Thomas Breuel. Identifying layers susceptible to ad-
versarial attacks, 2021.

[154] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner,
Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore
Graepel, and Demis Hassabis. Mastering the game of Go with deep neural networks
and tree search. Nature, 529(7587):484–489, January 2016.

[155] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition, 2014.

[156] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german
traffic sign recognition benchmark: a multi-class classification competition. In The
2011 international joint conference on neural networks, pages 1453–1460. IEEE,
2011.

[157] Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang. Certified defenses for data
poisoning attacks. Advances in neural information processing systems, 30, 2017.

[158] David Stutz, Matthias Hein, and Bernt Schiele. Disentangling adversarial robustness
and generalization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6976–6987, 2019.

[159] Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust
anomaly detection for multivariate time series through stochastic recurrent neural
network. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD ’19, page 2828–2837, New York, NY,
USA, 2019. Association for Computing Machinery.

[160] Jiachen Sun, Yulong Cao, Qi Alfred Chen, and Z. Morley Mao. Towards robust
lidar-based perception in autonomous driving: General black-box adversarial sensor
attack and countermeasures. In 29th USENIX Security Symposium (USENIX Secu-
rity 20), pages 877–894. USENIX Association, August 2020.

[161] Lichao Sun. Natural backdoor attack on text data, 2021.

[162] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions, 2014.

117

[163] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew
Wojna. Rethinking the inception architecture for computer vision, 2015.

[164] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

[165] Xinyu Tang, Saeed Mahloujifar, Liwei Song, Virat Shejwalkar, Milad Nasr, Amir
Houmansadr, and Prateek Mittal. Mitigating membership inference attacks by {Self-
Distillation} through a novel ensemble architecture. In 31st USENIX Security Sym-
posium (USENIX Security 22), pages 1433–1450, 2022.

[166] Markus Thill, Wolfgang Konen, Hao Wang, and Thomas Bäck. Temporal convolu-
tional autoencoder for unsupervised anomaly detection in time series. Applied Soft
Computing, 112:107751, 2021.

[167] S. Thys, W. V. Ranst, and T. Goedemé. Fooling automated surveillance cameras:
Adversarial patches to attack person detection. In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), pages 49–55, 2019.

[168] DJ Tolhurst, Y Tadmor, and Tang Chao. Amplitude spectra of natural images.
Ophthalmic and Physiological Optics, 12(2):229–232, 1992.

[169] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor
attacks. In Advances in Neural Information Processing Systems, pages 8000–8010,
2018.

[170] Trieu H Trinh, Minh-Thang Luong, and Quoc V Le. Selfie: Self-supervised pre-
training for image embedding. arXiv preprint arXiv:1906.02940, 2019.

[171] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Alek-
sander Madry. Robustness may be at odds with accuracy, 2018.

[172] James Tu, Huichen Li, Xinchen Yan, Mengye Ren, Yun Chen, Ming Liang, Eilyan
Bitar, Ersin Yumer, and Raquel Urtasun. Exploring adversarial robustness of multi-
sensor perception systems in self driving, 2021.

[173] James Tu, Mengye Ren, Sivabalan Manivasagam, Ming Liang, Bin Yang, Richard
Du, Frank Cheng, and Raquel Urtasun. Physically realizable adversarial examples
for lidar object detection. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2020.

[174] Julian von Schleinitz, Michael Graf, Wolfgang Trutschnig, and Andreas Schröder.
Vasp: An autoencoder-based approach for multivariate anomaly detection and robust
time series prediction with application in motorsport. Engineering Applications of
Artificial Intelligence, 104:104354, 2021.

118

[175] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, B. Viswanath, H. Zheng,
and B. Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural
networks. In 2019 IEEE Symposium on Security and Privacy), pages 707–723, 2019.

[176] Haotao Wang, Junyuan Hong, Aston Zhang, Jiayu Zhou, and Zhangyang Wang. Trap
and replace: Defending backdoor attacks by trapping them into an easy-to-replace
subnetwork, 2022.

[177] Shaojie Wang, Tong Wu, and Yevgeniy Vorobeychik. Towards robust sensor fusion
in visual perception, 2020.

[178] Yue Wang, Esha Sarkar, Wenqing Li, Michail Maniatakos, and Saif Eddin Jabari.
Stop-and-go: Exploring backdoor attacks on deep reinforcement learning-based traf-
fic congestion control systems, 2021.

[179] Yuxin Wen, Jiehong Lin, Ke Chen, and Kui Jia. Geometry-aware generation of
adversarial and cooperative point clouds. CoRR, abs/1912.11171, 2019.

[180] Emily Wenger, Josephine Passananti, Yuanshun Yao, Haitao Zheng, and Ben Y
Zhao. Backdoor attacks on facial recognition in the physical world. arXiv preprint
arXiv:2006.14580, 2020.

[181] Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J Zico Kolter. Scaling provable
adversarial defenses. Advances in Neural Information Processing Systems, 31, 2018.

[182] Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial weight perturbation
helps robust generalization. Advances in Neural Information Processing Systems,
33:2958–2969, 2020.

[183] Zhaohan Xi, Ren Pang, Shouling Ji, and Ting Wang. Graph backdoor, 2021.

[184] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert, and
Fabio Roli. Is feature selection secure against training data poisoning? In interna-
tional conference on machine learning, pages 1689–1698. PMLR, 2015.

[185] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, and Alan
Yuille. Adversarial examples for semantic segmentation and object detection. 2017
IEEE International Conference on Computer Vision (ICCV), Oct 2017.

[186] Cong Xu, Dan Li, and Min Yang. Adversarial momentum-contrastive pre-training.
Pattern Recognition Letters, 160:172–179, 2022.

[187] Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li, Ying
Liu, Youjian Zhao, Dan Pei, Yang Feng, et al. Unsupervised anomaly detection via
variational auto-encoder for seasonal kpis in web applications. In Proceedings of the
2018 World Wide Web Conference on World Wide Web, pages 187–196. International
World Wide Web Conferences Steering Committee, 2018.

119

[188] Nuo Xu, Binghui Wang, Ran Ran, Wujie Wen, and Parv Venkitasubramaniam. Neu-
Guard: Lightweight neuron-guided defense against membership inference attacks.
In Proceedings of the 38th Annual Computer Security Applications Conference.
ACM, dec 2022.

[189] Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A Gunter, and Bo Li. De-
tecting ai trojans using meta neural analysis. arXiv preprint arXiv:1910.03137, 2019.

[190] Chaofei Yang, Qing Wu, Hai Li, and Yiran Chen. Generative poisoning attack
method against neural networks, 2017.

[191] Yao-Yuan Yang, Cyrus Rashtchian, Hongyang Zhang, Russ R Salakhutdinov, and
Kamalika Chaudhuri. A closer look at accuracy vs. robustness. Advances in neural
information processing systems, 33:8588–8601, 2020.

[192] Zhaoyuan Yang, Naresh Iyer, Johan Reimann, and Nurali Virani. Design of inten-
tional backdoors in sequential models, 2019.

[193] Ziqi Yang, Lijin Wang, Da Yang, Jie Wan, Ziming Zhao, Ee-Chien Chang, Fan
Zhang, and Kui Ren. Purifier: Defending data inference attacks via transforming
confidence scores, 2022.

[194] Youngjoon Yu, Hong Joo Lee, Byeong Cheon Kim, Jung Uk Kim, and Yong Man
Ro. Investigating vulnerability to adversarial examples on multimodal data fusion in
deep learning, 2020.

[195] Yi Zeng, Minzhou Pan, Hoang Anh Just, Lingjuan Lyu, Meikang Qiu, and Ruoxi Jia.
Narcissus: A practical clean-label backdoor attack with limited information. arXiv
preprint arXiv:2204.05255, 2022.

[196] Yi Zeng, Han Qiu, Shangwei Guo, Tianwei Zhang, Meikang Qiu, and Bhavani Thu-
raisingham. Deepsweep: An evaluation framework for mitigating dnn backdoor
attacks using data augmentation. arXiv preprint arXiv:2012.07006, 2020.

[197] Chuxu Zhang, Dongjin Song, Yuncong Chen, Xinyang Feng, Cristian Lumezanu,
Wei Cheng, Jingchao Ni, Bo Zong, Haifeng Chen, and N. Chawla. A deep neu-
ral network for unsupervised anomaly detection and diagnosis in multivariate time
series data. In AAAI, 2019.

[198] Guoming Zhang, Chen Yan, Xiaoyu Ji, Tianchen Zhang, Taimin Zhang, and
Wenyuan Xu. Dolphinattack. In Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security. ACM, oct 2017.

[199] H. Zhang and J. Wang. Towards adversarially robust object detection. In ICCV,
pages 421–430, 2019.

120

[200] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and
Michael Jordan. Theoretically principled trade-off between robustness and accuracy.
In International conference on machine learning, pages 7472–7482. PMLR, 2019.

[201] Yuheng Zhang, Ruoxi Jia, Hengzhi Pei, Wenxiao Wang, Bo Li, and Dawn Song. The
secret revealer: Generative model-inversion attacks against deep neural networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), June 2020.

[202] Yue Zhao, Hong Zhu, Ruigang Liang, Qintao Shen, Shengzhi Zhang, and Kai Chen.
Seeing isn’t believing: Towards more robust adversarial attack against real world
object detectors. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’19, page 1989–2004, New York, NY, USA,
2019. Association for Computing Machinery.

[203] Zhendong Zhao, Xiaojun Chen, Yuexin Xuan, Ye Dong, Dakui Wang, and Kaitai
Liang. Defeat: Deep hidden feature backdoor attacks by imperceptible perturbation
and latent representation constraints. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 15213–15222, June
2022.

[204] Panpan Zheng, Shuhan Yuan, Xintao Wu, Jun Li, and Aidong Lu. One-class ad-
versarial nets for fraud detection. Proceedings of the AAAI Conference on Artificial
Intelligence, 33(01):1286–1293, Jul. 2019.

[205] Bin Zhou, Shenghua Liu, Bryan Hooi, Xueqi Cheng, and Jing Ye. Beatgan: Anoma-
lous rhythm detection using adversarially generated time series. In Proceedings of
the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-
19, pages 4433–4439. International Joint Conferences on Artificial Intelligence Or-
ganization, 7 2019.

[206] Yingjie Zhou, Xucheng Song, Yanru Zhang, Fanxing Liu, Ce Zhu, and Lingqiao
Liu. Feature encoding with autoencoders for weakly supervised anomaly detection.
IEEE Transactions on Neural Networks and Learning Systems, pages 1–12, 2021.

[207] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu,
Hui Xiong, and Qing He. A comprehensive survey on transfer learning, 2019.

[208] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki
Cho, and Haifeng Chen. Deep autoencoding gaussian mixture model for unsuper-
vised anomaly detection. In International Conference on Learning Representations,
2018.

121

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Motivation
	Research Questions
	Thesis Organization

	Background and Related Work
	High Overview of Machine Learning Systems
	Security of Machine Learning Systems
	Related Work

	Adversarial Examples on Sensor Fusion Models
	Introduction
	Threat Model
	Disappearance Attack
	Towards Generalizability
	Spoofing Attack
	Analysis of Sensor Input
	Exploring Defenses
	Conclusion

	Using Frequency for Poisoning Attacks
	Introduction
	Frequency Artifacts
	Frequency-Based Backdoor Data Detection
	Creating Smooth Triggers
	Conclusion

	Detection of Security Anomalies in Industry
	Introduction
	Our Approach
	Evaluation
	Conclusion and Future Work

	Adversarial Fine Tuning
	Introduction
	Methodology
	Evaluation
	Conclusion

	Conclusion
	Limitations and Future Work
	Concluding Remarks

	Appendix
	Technical Formality on Optimizing the Adversarial Training Equation
	Bibliography

