
Managing Chronic Health Conditions with Limited Resources

by

Luke J. DeRoos

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Industrial and Operations Engineering)

in the University of Michigan
2023

Doctoral Committee:

Associate Professor Mariel Lavieri, Chair
Associate Professor David Hutton
Assistant Professor Neehar Parikh
Professor Kerby Shedden
Associate Professor Cong Shi



Luke J. DeRoos

lkbruski@umich.edu

ORCID iD: 0000-0001-7275-7457

© Luke J. DeRoos 2023



ACKNOWLEDGMENTS

I would like to start by acknowledging my advisor, Mariel Lavieri. Your ability to bring out the
best in your students is a gift to us all. Thank you for your foresight, passion, and advocacy.

Thank you to my medical collaborators, Neehar Parikh and Joshua Stein, who gave the very
precious gift of their time and guided me throughout this dissertation. Your insights turned my
abstract ideas into something meaningful. Thanks also to David Zacks for letting me shadow your
clinical work, and to Chris Andrews, Jason Miller, and Elliot Tapper for sharing your expertise.

Thank you to David Hutton, Kerby Shedden, and Cong Shi for serving on my dissertation
committee. Your guidance on everything from data sources to model development to validation has
been invaluable. Thank you to my lab-mates Daniel Otero-Leon, Lauren Czerniak, Gian-Gabriel
Garcia, and Wesley Marrero. You have made me a better researcher, communicator, and teacher,
and I am honored to count myself among your ranks. Thanks to Julia Coxen, Erkin Otles, Sajjad
Seyedsalehi, and the rest of my PhD colleagues. It is a luxury to have such brilliant, compassionate,
and funny friends as coworkers. Thank you to the staff in the IOE department for the countless
support services and smiles over the years. Thank you to the Rackham Merit Fellowship and the
Seth Bonder Foundation for your financial support and for believing in this work.

Thank you to the many friends outside of my department who have supported me throughout
my PhD journey. A special thanks to Vincenzo, Julia, Sarah, and Ariel for serving as equal parts
therapist, advisor, and friend. Thank you to my family, who have given me nothing less than their
unconditional love and support. Thank you to my parents–James, Lucia, Brian, and Shari–who
through lived example have taught me the value of community and hard work. Thank you to
Margaret for filling my life with joy and purpose. And thank you to Logan, for everything.

Finally, I want to acknowledge anyone who has ever experienced a chronic disease, and the
healthcare workers who serve them. A special thank you to the patients and staff at the Kellogg
Eye Center and the United Network for Organ Sharing for making these models meaningful. May
we all continue to strive for better, together.

ii



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Chapter 2: Finding the Optimal Treatment Interval . . . . . . . . . . . . . . . . 3

1.2.1 Key contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Chapter 3: Synchronizing the Treatment of Multiple Chronic Conditions . . . . . 5

1.3.1 Key contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Chapter 4: Increasing Organ Donation Rates . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Key contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Finding the Optimal Treatment Interval . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.1 Treat-and-extend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Chapter outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Relevant Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Chronic disease treatment scheduling . . . . . . . . . . . . . . . . . . . 11
2.2.3 Age-related macular degeneration . . . . . . . . . . . . . . . . . . . . . 12

2.3 Modeling Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Model notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 State transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Current beliefs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.4 Optimality equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Analytical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

iii



2.4.1 Calculating the optimal policy . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Identifying the MSTI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.3 Relaxing the stationary MSTI assumption . . . . . . . . . . . . . . . . . 25
2.4.4 Incorporating a patient health state . . . . . . . . . . . . . . . . . . . . . 27

2.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.1 Data sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.2 Model parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.3 Example patient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5.4 Optimal policies for population-level initial beliefs . . . . . . . . . . . . 34
2.5.5 Population level analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5.6 Population level results . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Synchronizing the Treatment of Multiple Chronic Conditions . . . . . . . . . . . . . 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.1 Chapter outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Relevant Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Modeling Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.2 State space and state transitions . . . . . . . . . . . . . . . . . . . . . . 45
3.3.3 Optimality equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Analytical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.2 Synchronizing treatment . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.3 Coordinating two conditions . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.4 Using a heuristic for large state spaces . . . . . . . . . . . . . . . . . . . 58

3.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5.1 Example patient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5.2 Heuristic and baseline policy analysis . . . . . . . . . . . . . . . . . . . 63
3.5.3 Synchronization threshold analysis . . . . . . . . . . . . . . . . . . . . 66
3.5.4 Population level analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Increasing Organ Donation Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 Increasing Donation via Presumed Consent . . . . . . . . . . . . . . . . . . . . 75

4.2.1 Modeling approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Increasing Donation via “Ineligible” Donors . . . . . . . . . . . . . . . . . . . . 85
4.3.1 Modeling approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

iv



5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

v



LIST OF FIGURES

FIGURE

1.1 An overview of the dissertation structure. . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 An example of a patient with two chronic conditions with MSTIs of 3 and 4 periods,

respectively. Even with known maximum safe treatment intervals, optimizing the
treatment of multiple chronic conditions is difficult. Patients could save a visit by
synchronizing treatment, but this synchronization would require additional treatment
costs long-term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 The sequence of events during a decision epoch in the MSTI exploration model. . . . 13
2.2 A description of how the lower and upper state indices l and u are updated after

observing the outcome of the previous treatment interval. . . . . . . . . . . . . . . . . 15
2.3 A visual representation of the proof for Theorem 2.4.1. We use Lemma 2.4.1 to show

how to calculate the cost-to-go for state spaces with a single available action. We
then show that the cost-to-go of any action can be calculated as a function of these
single-state cost-to-go values V (P, i, i). . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 The proportion of Kellogg patients with a given maximum safe treatment interval. . . 31
2.5 An example of a patient following the ordinal MDP using regression-based initial

beliefs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6 The optimal actions to take under the prevalence-based ordinal MDP and the treat-

and-extend policies. As the initial beliefs P are shared across all patients, we show
the optimal action in terms of the remaining state parameters l and u. Highlighted
cells show where the policies differ. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7 A visual representation of the discrete event simulation. To estimate the variance in
the optimal interval distribution, the simulation was performed on 100 different 50/50
training/testing splits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8 Plots comparing the ordinal MDP and treat-and-extend in terms of 1) the average num-
ber of weeks with fluid and 2) the average number of visits until reaching a stationary
interval. Results are shown across r/c ratios and initial prediction methods. AUC -
area under the curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.9 Plots comparing the ordinal MDP and treat-and-extend in terms of 1) the average num-
ber of weeks with fluid and 2) the average number of visits until reaching a stationary
interval. Results are shown across discount factors and initial prediction methods.
AUC - area under the curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 The sequence of events in each decision epoch. . . . . . . . . . . . . . . . . . . . . . 44

vi



3.2 An example treatment schedule following π1 for a patient with M1 = 3 and M2 = 11.
Assuming that the patient receives treatment for both conditions at time t = 0, this
specifically represents the treatment cycle corresponding to the cost-to-go value Φπ1

defined in Appendix B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3 An overview of the proof of Theorem 3.4.2. Using the policy iteration method of

solving dynamic programs, we select π1 as our initial policy. We then check whether
we can improve upon π1, which depends on the problem parameters. The conditions
under which we cannot improve upon π1 are the conditions under which π1 is the
optimal policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Plots comparing the performance of the baseline decision policies versus the optimal
policy. Performance is measured in terms of regret (i.e. the percent increase in cost
compared to the optimal decision policy). . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Plots comparing the performance of the baseline decision policies versus the optimal
policy. Performance is measured in terms of regret (i.e. the percent increase in cost
compared to the optimal decision policy). . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6 The full (c̄0) and joint-start ( ¯̄c0) synchronization thresholds across a range of maximum
safe treatment intervals for an AMD patient receiving bevacizumab. . . . . . . . . . . 68

3.7 The full (c̄0) and joint-start ( ¯̄c0) synchronization thresholds for an AMD patient with
MSTIs of 4 and 7 weeks. For each plot, we assume baseline treatment costs of c1 =
c2 = $50, and a discount factor of δ = 0, and vary only the parameter of interest. . . . 69

3.8 The distribution of MSTI combinations for patients in the Kellogg dataset. Blank
spaces indicate that no patients had that MSTI combination. . . . . . . . . . . . . . . 70

3.9 The discounted lifetime costs of following each baseline policy across medications. . . 72

4.1 An overview of the waitlist model dynamics. . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Reduction in the number of removals from the waitlist due to death or illness across all

organs from 2004-2014 with a 5% increase in donors with presumed consent, stratified
by allocation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Removals from the waitlist due to death or illness from 2004-2014 with a 5% increase
in donors with presumed consent, stratified by organ and allocation. . . . . . . . . . . 80

4.4 Reduction in the number of waitlist removals due to death or illness by organ . . . . . 81
4.5 Overall number of waitlist candidates stratified by allocation. . . . . . . . . . . . . . . 81
4.6 Histograms of ineligible donor use rates across OPOs, stratified by organ. . . . . . . . 89
4.7 Kaplan Meier curves for transplant graft survival from January 2008 through Novem-

ber 2020, stratified by organ and donor eligibility. . . . . . . . . . . . . . . . . . . . . 90
4.8 Kaplan Meier curves for transplant patient survival from January 2008 through

November 2020, stratified by organ and donor eligibility. . . . . . . . . . . . . . . . . 91
4.9 Kaplan Meier curves for post-transplant graft survival of deceased brain death dona-

tions, stratified by organ type and donor eligibility. . . . . . . . . . . . . . . . . . . . 93
4.10 Kaplan Meier curves for post-transplant graft survival, stratified by organ type and

donor death type (DCD: deceased cardiac death, DBD: deceased brain death). . . . . . 94
4.11 Kaplan Meier curves for post-transplant graft survival of ineligible donations, strat-

ified by organ type and donor death type (DCD: deceased cardiac death, DBD: de-
ceased brain death). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

vii



4.12 Selected hazard ratios calculated via Cox regression for transplant graft survival from
January 2008 through November 2020. Recipient age is scaled to be in decades.
Recipient age, ethnicity, and BMI were all significantly associated with graft survival
(p≤0.05). Abbreviations: eth.: ethnicity. . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.13 Selected hazard ratios calculated via Cox regression regarding the interaction effect
of donor ineligibility with recipient age, ethnicity, sex, and BMI. Results are stratified
by organ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.14 Map showing the estimated annual increase in life-years gained by organ procurement
organization (OPO), if all OPOs with ineligible donation use rates below the 75th
percentile increased their use to meet the 75th percentile. The increase shown is across
all organs, based on annual use from January 2008 through November 2020. . . . . . 99

C.1 Hazard ratios calculated via Cox regression regarding the association of organ pro-
curement organization (OPO) with graft survival after controlling for donor eligibility,
as well as recipient age, ethnicity, sex, and BMI. OPO names have been de-identified
using a randomly assigned three-digit code. OPO 120 was randomly selected as the
baseline OPO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

viii



LIST OF TABLES

TABLE

3.1 The discounted cost of following different decision policies for a joint-start bilateral
AMD patient being treated with bevacizumab. . . . . . . . . . . . . . . . . . . . . . . 63

4.1 The size of the organ waitlists on January 1st of each respective year. . . . . . . . . . 77
4.2 Mean monthly reduction in removals due to sickness or death by organ, 2004-2014 . . 79
4.3 Percent change in the number of waitlist candidates from 2004-2014 under a random

allocation policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4 Average annual estimated life years gained by organ and presumed consent impact for

both random and ideal allocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.5 Organ donor population description. P-values are the result of χ2-test (categori-

cal) and t-test (continuous) variable comparisons between eligible and ineligible sub-
groups. SD – standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6 Estimated annual increases in transplants and life-years gained associated with in-
creasing ineligible donor use under a range of scenarios. To calculate the percentile
match results, all OPOs with ineligible donor use rates below the given percentile had
their rates increased to match the percentile. . . . . . . . . . . . . . . . . . . . . . . . 98

ix



LIST OF APPENDICES

A Supporting Material for Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

B Supporting Material for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

C Supporting Material for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

x



LIST OF ACRONYMS

AMD age-related macular degeneration

anti-VEGF anti-vascular endothelial growth factor

BMI body mass index

COD cause of death

DCD donation after cardiac death

DBD donation after brain death

HR hazard ratio

MDP Markov Decision Process

MELD model of end-stage liver disease

MSTI maximum safe treatment interval

OCT optical coherence tomography

OPO organ procurement organization

OPTN Organ Procurement and Transplantation Network

SES socioeconomic status

STAR Standard Transplant and Research

UNOS United Network of Organ Sharing

xi



ABSTRACT

In this work, we aim to help patients and providers manage chronic health conditions using oper-
ations research. Providing quality care to patients means managing limited resources, including
time, money, and medication. We explore two approaches to minimize the burden of resource
scarcity on patient outcomes: 1) reducing resource demand and 2) increasing resource availabil-
ity. First, we focus on reducing resource demand by optimizing the treatment regimen required
to prevent disease progression. We provide a means of finding the optimal treatment interval for
a patient in order to minimize the number of treatments and clinic visits without compromising
patient health. We then provide a framework for optimizing the treatment of multiple chronic con-
ditions and describe when it is optimal to synchronize treatment across conditions. We highlight
the usefulness of these treatment planning models using a case study on patients with neovascular
age-related macular degeneration, a chronic eye disease. Second, we seek to maximize the avail-
ability of chronic disease treatment in situations where patients face resource scarcity—such as in
the case of organ transplantation. For patients on the transplant waiting list, the need for trans-
plants far outpaces donation rates. We describe two polices designed to improve patient outcomes
by increasing donation rates. We believe this work offers both theoretical and practical value to the
field of healthcare operations research. By making chronic disease treatment more efficient and
more readily available, we hope that the decision policies presented here drive meaningful change
and make a lasting difference in the lives of patients.
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CHAPTER 1

Introduction

In the United States, 6 in 10 adults have at least one chronic health condition, and 4 in 10 have two
or more. [16] The Centers for Disease Control broadly define a chronic disease as a condition that
lasts 1 year or more, and requires ongoing medical attention or limits the activities of daily living,
or both. [16] On a population level, managing chronic conditions accounts for 90% of healthcare
spend in the United States. [16] On an individual patient level, a chronic disease diagnosis can
mean years of frequent, expensive visits to a healthcare provider. In all cases, both patients and
providers are faced with the challenge of improving or maintaining patient health with a limited
set of resources.

The resources required to manage a chronic condition come in many forms, such as time,
money, and medication. In the face of resource scarcity, two general approaches of improving
outcomes are 1) reducing resource demand or 2) increasing resource availability. In this work, we
seek to improve patient outcomes using both of these approaches. First, we develop a Markov
Decision Process (MDP) to identify the optimal treatment interval for a given condition–an inter-
val which minimizes the number of required treatments without compromising on patient health.
By minimizing the number of visits, we also minimize the resources required to complete these
visits. Second, we develop a dynamic programming model to optimize treatment timing for pa-
tients with multiple chronic conditions. We demonstrate when and how to synchronize treatment
in order to further reduce visit costs. Third, we discuss methods to increase resource availability
for an important chronic disease treatment modality: organ transplant. Figure 1.1 provides a visual
representation of this structure.

1.1 Motivation

While our methods can be applied to chronic conditions more broadly, in this work we focus on
two specific chronic conditions to provide context: neovascular age-related macular degeneration
(AMD) and organ failure.
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Figure 1.1: An overview of the dissertation structure.

Neovascular AMD is a chronic eye disease that places an intense burden on diagnosed patients.
AMD is the most common cause of blindness in people over 55 years old, and nearly 170,000
adults in the United States are diagnosed with neovascular AMD each year [13]. Neovascular
AMD is characterized by the growth of excess blood vessels in the eye, which leak fluid and distort
the surface of the retina. This leads to blurred or distorted vision, which reduces one’s ability to
drive or read, and significantly affects overall quality of life. To assess the progression of AMD
and identify retinal distortion, clinicians rely on optical coherence tomography (OCT) scans, which
provide quantitative measurements of retinal thickness. Clinicians primarily treat AMD through
the injection of anti-vascular endothelial growth factor (anti-VEGF) medication directly into an
affected eye [98]. To prevent fluid from recurring, patients may require injections as frequently
as once per month, imposing a substantial burden on patients, especially patients with significant
vision loss who may not be able to drive themselves to appointments. However the fluid recurrence
rate and the response to medication differs significantly among patients and even between eyes.
As a result, it is challenging for clinicians to determine the optimal timing of treatment for a given
patient. Administering injections too frequently imposes unnecessary discomfort and increases
the risk of serious bleeding, infection, and cataracts—all without providing additional benefit to
the patient’s long-term vision. In contrast, administering injections too infrequently puts a patient
at risk of fluid buildup in the eye, resulting in persistent retinal damage and loss of vision. In
this work, we provide an optimization-based framework to address these scheduling challenges.
Our hope is to provide both clinicians and patients with effective and interpretable tools to help
minimize the burden of this demanding disease.

Organ transplantation is a life-saving and cost-effective intervention for patients with organ
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failure. [6] However, the supply of organs in the United States cannot meet the need of patients
on the waitlist, resulting in prolonged morbidity and increased mortality of waitlisted patients.
[48] In the US, over 7,000 waitlisted candidates die each year before ever receiving a transplant.
Broadly, there are two ways to increase the number of available donors: 1) optimizing donor yield
and 2) increasing the donor pool. Optimizing donor yield requires the use of best practices and
emerging technologies (i.e. machine perfusion) in donor consent and organ retrieval. [96] Even
with these mechanisms, the donor pool is limited and will likely shrink in coming years due to
changing US demographics and population health (e.g. increasing obesity, ageing population),
further exacerbating the disparity between donors and recipients. [70] Additionally, technological
advancements often take years of extensive validation before they can be safely and effectively
implemented. In contrast, an immediate method of reducing the gap between organ donation and
demand is to increase donation rates. In this work, we discuss two methods of increasing organ
donation and characterize the potential impact of these polices on transplant candidate outcomes.
Our goal is to help guide the efforts of policymakers by providing data-driven estimates of policy
outcomes on the many patients in desperate need of an organ transplant.

1.2 Chapter 2: Finding the Optimal Treatment Interval

The goal of Chapter 2 is to minimize the cost of treatment for patients with a chronic disease,
without compromising on their long-term health. We focus on a class of chronic conditions (which
includes AMD) that have what we refer to as a maximum safe treatment interval (MSTI). The
defining characteristic of conditions with an MSTI is intuitive: as long as a condition is treated
within some interval (the MSTI), then we do not expect disease progression. For AMD, patients
receive regular injections to prevent neovascular fluid. As long as they receive injections within
a given interval, fluid is prevented. If they go too long between injections, then fluid reoccurs
and the patient can have long-term vision damage. If the MSTI of a condition is known then,
for a single condition, the optimal treatment schedule is to treat exactly at the MSTI. This mini-
mizes the number of visits without disease progression. However, the MSTI of a condition varies
across patients and conditions, and is initially unknown. Identifying the MSTI can be challenging,
and the searching for it can expose patients to unnecessary costs or health risks if not managed
appropriately.

In our work, we provide an optimization approach to finding the MSTI of a chronic con-
dition. We model this problem as an infinite horizon MDP, designed to balance the explo-
ration/exploitation trade-off found in the MSTI search.
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1.2.1 Key contributions

• Ordinal action space: In the traditional treatment scheduling literature, scheduling deci-
sions are based on whether to treat in each time period. In our model, we instead decide
when to return for the following treatment. Our decision points are each clinical visit (as
opposed to each time period), and our action space is the number of time periods between
now and the next injection. This paradigm shift gives our action space the key property of
ordinality. The primary benefit of ordinality among actions is that we are able to learn about
the expected outcome of multiple actions from a single decision.

• Offline solution: By leveraging the ordinality of our action space, we are able to derive
closed-form solutions for the optimal action in each decision period. This has several bene-
fits. First, it reduces computational complexity, which is a ubiquitous problem when solving
MDPs. Second, it provides each action with an “index” score, representing the value of
picking that action. These index scores improve interpretability from a clinical perspective,
and provide clinicans with a menu of treatment options. For example, if the optimal recom-
mended action is infeasible for some reason (e.g. the patient has a scheduling constraint)
the clinican can look at the other options and see what feasible actions might have minimal
loss of optimality. Third, the index policy allows us to determine under which conditions
commonly used MSTI exploration policies are optimal policies. Fourth, the index policy
allows us to generate interpretable and generalizable policies for clinical scenarios in which
the clinician does not have any prior knowledge about a patient’s health state.

• Data robust policies: By leveraging our index value approach, we are able to provide popu-
lation level policies for situations in which clinicians have no previous knowledge about the
patient. Even without personalized patient data, we are able to improve upon current clinical
protocols with simple recommendations, such as increasing the treatment interval by 1-week
intervals when exploring (versus the current practice of 2-week extensions).

• Long-term treatment guidelines: In general, a patient’s MSTI for a condition like AMD is
stationary. [57, 39, 22] Consequently, once patients reach a MSTI treatment interval, they are
treated at this interval for the remainder of care. However, to generalize our framework, we
consider the case in which a patient’s MSTI changes over time. We provide a mathematical
approach for when clinicians should test longer treatment intervals to determine if the patient
could receive added benefit from an interval extension.

• Practical clinical benefit: As a case study, we apply our framework to the treatment of
AMD using patient data from the Kellogg Eye Center. We demonstrate that following our or-
dinal MDP could reduce patient exposure to symptoms by up to 36% while finding the MSTI
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7% faster than the current standard of care. Additionally, several new treatment modalities
for AMD are anticipated to extend the maximum treatment interval from 12 weeks to one on
the order of months or years. [45] For such extended time periods, there are no recommen-
dations for finding the MSTI, and current protocols will be too slow to be practically useful.
The ordinal MDP can be used to inform the appropriate exploration policy as the range of
available intervals grows.

1.3 Chapter 3: Synchronizing the Treatment of Multiple
Chronic Conditions

Our goal in Chapter 3 is to build upon Chapter 2 and minimize treatment costs for patients with
multiple chronic conditions. For a single condition, once the MSTI is identified, the optimal treat-
ment schedule is straightforward. However, for patients with multiple chronic conditions, knowing
the MSTI is often not enough to provide clear scheduling recommendations. Consider the example
shown in Figure 1.2. Here, a patient has two chronic conditions with MSTIs of 3 and 4 periods,
respectively. To minimize treatment costs, the clinician could schedule treatment at the MSTIs.
However, simply by scheduling the second condition 1 period sooner, the clinician could syn-
chronize the patient’s treatment and save them a visit to the clinic, which often means saving the
patient significant time and money. However, this would require additional condition 2 treatment
costs long-term. In sum, clinicians are constantly managing a trade-off between minimizing visit
costs and minimizing treatment costs.

In this work, we model the multiple condition scheduling problem as a dynamic program to
determine optimal scheduling policies. Beyond finding the optimal scheduling policy, we use our
model to answer a key practical question: when is it worth synchronizing the treatment of multiple
chronic conditions?

1.3.1 Key contributions

• Multiple condition model: On the most basic level, this work is one of the first applications
of treatment optimization for multiple conditions. Managing multiple chronic conditions in-
vokes several important research questions. First, it is unclear how much utility is lost by
scheduling and diagnosing each condition independently instead of jointly. Our model helps
us understand when it is beneficial to schedule treatment for multiple conditions in the same
visit. In practice, scheduling decisions are almost always made considering all conditions, as
they each have a major impact on patient quality of life. This model better aligns mathemat-
ical decision making to the everyday decisions made by clinicians and patients everywhere.
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Figure 1.2: An example of a patient with two chronic conditions with MSTIs of 3 and 4 periods,
respectively. Even with known maximum safe treatment intervals, optimizing the treatment of
multiple chronic conditions is difficult. Patients could save a visit by synchronizing treatment, but
this synchronization would require additional treatment costs long-term.

• Synchronization guidelines: We analytically define conditions under which it is optimal
to synchronize treatment. We show that if a patient’s visit cost is high enough, it is always
optimal to synchronize treatment. Additionally, we provide the optimal synchronization
policy in this case. For patients with 2 chronic conditions, we provide a closed form solution
for the visit cost threshold above which the optimal policy is to synchronize treatment.

• Robust heuristic: We provide an easily solvable heuristic for synchronizing treatment in the
2-condition case, and analytically bound the potential regret of following this heuristic. We
numerically demonstrate that the heuristic is almost always optimal for patients diagnosed
with advanced AMD.

• Practical clinical benefit: Using data from the Kellogg Eye Center, we demonstrate that
our optimization approach could save patients an average of $1,189 in direct medical costs.
Extrapolating this to a national level, this could result in approximately $582 million in
savings. In addition to the direct medical cost savings, a reduced number of visits can also
have a dramatic impact on patient quality of life.

1.4 Chapter 4: Increasing Organ Donation Rates

Our goal in Chapter 4 is to increase the availability of treatment for patients awaiting an organ
transplant. Where Chapters 2 and 3 focus on reducing the treatment demand for chronic dis-
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ease patients, this chapter instead focuses on increasing the supply of a chronic disease treatment
modality. We do this by developing statistical models to assess the impact of policies designed
to increase organ donation rates in the United States. Implementing policies to close the donation
gap would offer a major societal benefit. However, fully implementing any policy is challenging,
especially those on a population level. An understanding of how a policy would impact the trans-
plant candidate population can help focus the efforts of policymakers and improve the likelihood
of implementation.

1.4.1 Key contributions

• Presumed consent simulation: We build a simulation model estimating the impact of a pre-
sumed consent policy on US donation rates. Under this policy, which has been implemented
in several countries, willingness to donate is the default option. [77] We quantify the poten-
tial effect of presumed consent on waitlist mortality and size, and show that implementing
this policy could provide as many as 34,000 life-years annually.

• Ineligible donor survival analysis: We analyze the use of so-called “ineligible” or non-
standard organ donors in the United States. We show that several transplant organizations
successfully use ineligible donors with no or minimal detriment to recipient survival. We
quantify the potential benefit of standardizing ineligible organ donor use nationally, showing
a potential increase of 16,000 life-years annually.

• Ineligible donor use model: We build a beta regression model to understand contextual
factors associated with ineligible donor use. This helps us better understand the heterogene-
ity in donor use, and provides a starting point for best practice sharing among transplant
organizations.

Decision making in healthcare is incredibly complex, and each decision can have a major effect
on a patient’s quality of life. The work presented here is a stepping stone in a long line of research
on chronic disease management. We hope that this work has a meaningful impact on the way we
approach treatment planning, and ultimately on patient lives.
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CHAPTER 2

Finding the Optimal Treatment Interval

2.1 Introduction

For many patients, a chronic disease diagnosis means years of frequent visits to healthcare profes-
sionals to receive expensive, yet essential treatment. For clinicians, appropriately timing treatment
is crucial to providing quality care. Undertreating a condition can lead to poor health outcomes
for patients and increase long-term treatment needs, while overtreating can result in unnecessary
side effects, risks, and increased costs. Many conditions, such as AMD, have what we refer to
as a “maximum safe treatment interval” or MSTI. Finding the MSTI is important, because once
discovered, scheduling exactly at the MSTI is optimal—it minimizes the treatment frequency with-
out compromising the patient’s long-term health. However, even within the same condition, it is
challenging for clinicians to find the MSTI as it can vary significantly among patients [23]. In this
chapter we introduce the ordinal MDP framework as a solution to this challenge. We demonstrate
how the ordinal MDP can quickly identify the appropriate treatment schedule for patients while
reducing exposure to unnecessary risk.

The ordinal MDP derives its name from the ordinality of its action space. The action space
represents different treatment intervals, which can be sorted by length of time. Traditionally, MDP
scheduling models guide decisions around whether or not to treat a patient in each decision epoch.
In contrast, the ordinal MDP suggests when to next treat the patient. By reframing the decision
paradigm, we better align the model with the scheduling choices that clinicians face in practice.
Additionally, the ordinal action space allows clinicians to learn about the expected outcomes of
multiple treatment intervals with only a single scheduling decision, even intervals which the clini-
cian has yet to explore. For example, suppose a clinician schedules treatment three months into the
future and, after observing the patient upon return, the clinician learns that a three month interval
was too long between treatments. Via the same decision, the clinician has learned that any interval
longer than three months is also too long between treatments. More generally, this ordinal struc-
ture allows individual observations to update the expected rewards of multiple actions in a single
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period. This structure allows the ordinal MDP to overcome common challenges such as computa-
tional tractability and practical feasibility. In this work, we demonstrate that the ordinal structure
allows for a closed form, index-based solution of the optimal decision policy under uncertainty.

We focus on chronic health conditions that have an MSTI, such as AMD, diabetic macular
edema, urticaria, and osteoarthritis. [98, 71, 90, 74] For this class of conditions, studies show
that while the MSTI varies significantly among patients, it remains consistent for a given patient
over the course of treatment. [57, 39, 22] As a result, clinical experts emphasize the importance
of identifying personalized fixed-interval treatment schedules when managing this class of condi-
tions. [23, 51] Consistency in individual patient scheduling is important for several reasons. High
variability in treatment timing can result in symptom flare-ups between visits and require excess
treatment to manage both the short- and long-term effects of these symptoms. Highly variable
treatment intervals also make it difficult for patients and caregivers to manage their schedules,
imposing additional financial and psychological burden on people already facing intense phys-
iological obstacles. From a population perspective, this inconsistency also makes it difficult to
identify and share best practices among providers. Currently, clinicians rely on heuristics to find
a patient’s MSTI. [98, 71, 90, 74] With this work, we instead provide an optimization framework
for safely and efficiently finding the optimal treatment interval.

2.1.1 Treat-and-extend

In current practice, a majority of clinicians use the “treat-and-extend” protocol to manage the
treatment of neovascular AMD. [23, 98] Treat-and-extend searches for a patient’s MSTI by first
scheduling patient treatment using the shortest recommended time between injections (4 weeks).
This initial 4-week interval is based on the efficacy of the drug as observed in clinical trials. [98]
Immediately prior to each treatment, the clinician also observes whether or not retinal fluid is
present. Once the patient reaches a baseline response level in which fluid is consistently not
present, the clinician begins extending the treatment interval. The clinician first extends the in-
terval to 6 weeks. If the patient returns with no symptoms, the clinician continues to extend this
interval by 2-week increments until symptoms arise or until the patient reaches the maximum
recommended interval of 12 weeks. [98] Then, the clinician reverts to the longest tested inter-
val in which the patient had no symptoms. If the patient did not reach the 12-week maximum,
the clinician then performs a finer search by extending the interval using 1-week increments until
symptoms again arise or until the patient would reach an interval known to cause symptoms. At
this point, the search is complete, and the clinician indefinitely treats the patient using the longest
interval which does not cause symptoms.

Healthcare providers use protocols similar to treat-and-extend to manage other chronic con-
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ditions where response to medication is stable for a given patient, but varies among individuals.
[71, 90, 74] However, these protocols are a “one-size-fits-all” approach, and they do not take ad-
vantage of personalized patient information which can improve the speed and safety of exploring
available treatment intervals.

2.1.2 Chapter outline

The remainder of this chapter is organized as follows: in Section 2.2 we discuss the literature on
scheduling MDPs with a particular focus on their application to chronic disease. We also provide
background on neovascular AMD and current treatment methods. In Section 2.3 we outline the
formulation of the ordinal MDP. In Section 2.4 we discuss the derivation of the optimal policy
under uncertainty, as well as analytical results and insights around finding a patient’s MSTI with
varying model parameters. We also discuss a method for determining when to check if a patient’s
MSTI has gotten longer over the course of treatment. In Section 2.5 we offer numerical results via
a case study on neovascular AMD. Finally, in Section 2.6 we conclude and discuss future research
avenues.

2.2 Relevant Literature

The use of operations research to address complex healthcare challenges continues to grow. [20]
Even within healthcare, this body of work is broad in both application and approach. To provide
appropriate context for this study, we survey the following themes within operations research: 1)
Markov Decision Processes, 2) chronic disease treatment scheduling, and 3) AMD management.

2.2.1 Markov Decision Processes

Methodologically, this research builds upon the current MDP literature. Our problem is an exam-
ple of an exploration-exploitation trade-off. This trade-off is one where a decision maker seeks
to learn about available options while still exploiting current knowledge to maximize long-term
rewards. Multi-armed bandit (MAB) models are a specific type of MDP that highly useful for
managing the exploration-exploitation trade-off. Gittins (1979) established the primary results of
the MAB problem in his seminal work, where he showed that under certain conditions, the com-
plex exploration-exploitation problem could be simplified to an index-based policy with a closed
form solution. [26] However, these conditions are uncommon in practice, and the literature has
expanded to consider many variants of the MAB, such as the restless bandit [95] or the contextual
bandit [97]. Many implementations of these alternative MAB formulations do not have compu-
tationally tractable solutions, and rely on a vast literature of reinforcement learning heuristics,
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such as the ϵ-greedy [94], interval estimation [43], Boltzmann exploration [54], upper confidence
bound [5], and Thompson sampling [2] algorithms. Some examples of MABs in healthcare fo-
cus on applications such as liver cancer, hepatitis, and multiple sclerosis. [3, 65, 52, 8] Again,
these approaches consider whether or how aggressively to treat a patient in each period, and do
not incorporate an ordinal action space. In this work, we augment the traditional MAB problem
by structuring our model to have dependent arms. Often, independence between arms is consid-
ered a core tenet of a MAB, and relaxing this assumption also relaxes the problem to be a general
MDP. As a result, we refer to our model as an MDP, despite its close connection to the MAB struc-
ture. In this work, we build upon the literature by describing conditions under which the optimal
exploration policy is an index policy, even with dependent arms.

2.2.2 Chronic disease treatment scheduling

Operations researchers have studied treatment scheduling across a number of chronic conditions.
Perhaps closest to our work are Helm et. al (2015) and Schell et. al (2014), who provide heuristic
approaches to calculate the time between visits for patients with glaucoma. [38, 84] However,
these approaches exclusively consider the next visit, and do not consider the impact of timing
on future visits and long-term patient outcomes. Alagoz et. al (2004), Schaefer et. al (2005),
and Denton (2018) provide an overview of how MDPs are typically used in treatment planning,
and how they incorporate long-term rewards to generate more holistic scheduling policies. Some
specific examples of MDPs in treatment scheduling include Schechter et. al (2008), who study
the optimal time to initiate HIV therapy, Ayer et. al (2012), who leverage personalized data to
improve the timing of breast cancer screening, and Kamalzadeh et. al (2021), who use a partially
observable MDP to optimize the timing of diabetes screening. [87, 7, 44] Researchers have also
utilized MDPs to address challenges in organ transplant, head and neck cancer, and chronic kidney
disease. [83, 9, 66, 89]

In our framework, we leverage the ordinal relationship between decisions to gain both manage-
rial insights and computational advantages. This ordinal relationship is one that clinicians often
anecdotally consider in scheduling decisions, but it is not incorporated in personalized scheduling
models. [98] Our paper formally incorporates this clinical use of ordinality into a mathematically
rigorous optimization model. Beyond providing significant practical benefits to patients, research
also suggests that limiting the scope of scheduling policies to those with stationary intervals long-
term has a marginal effect on patient outcomes. [18]
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2.2.3 Age-related macular degeneration

The current AMD treatment landscape is not without scheduling policy recommendations.
Namely, research has shown the treat-and-extend policy to be a cost-effective means of reduc-
ing patient treatment burden without significantly harming health outcomes. [32, 23, 10] In fact,
the structure of treat-and-extend was a significant inspiration for the structure of the ordinal bandit.
However, treat-and-extend was not developed using an optimization approach, nor does it fully
leverage personalized patient information. To the best of our knowledge, there are no studies on
whether or not the current policy parameters (e.g. the rate of interval extension) are optimal, or
whether current patient health information can be used to improve scheduling outcomes. The ordi-
nal bandit enhances the treat-and-extend policy by answering these questions via an optimization
framework.

More generally, machine learning as a means of enhancing AMD treatment has become in-
creasingly popular in recent years. Modern AMD decision making revolves heavily around the
interpretation of OCT images, which provide a visual and statistical representation of a patient’s
retina, including size, shape, and the presence of abnormalities. Bogunovic et. al (2017) and
Schlegl et. al (2018) are among a growing number of works automating the identification of AMD
symptoms using machine learning image processing techniques and estimating individual patient
response to treatment. [11, 85] Other works, such as Schmidt-Erfurth et. al (2018) and Rohm et.
al (2018), have extended this research to estimate long term visual acuity for patients experiencing
AMD. [86, 78] While these models are very useful in understanding current patient biomarkers,
they do not incorporate the clinical decision making process. Our model expands the AMD litera-
ture by offering data-driven recommendations on the timing of treatment.

2.3 Modeling Approach

We model this problem as a discrete time, infinite horizon MDP. The events within each decision
epoch are outlined in Figure 2.1. The decision maker seeks to minimize both the time a patient
experiences symptoms and the required number of treatments. Ultimately, the decision maker is
searching for a patient-specific interval aM , which represents the longest interval between treat-
ments during which the patient will not experience adverse health effects (i.e. the patient’s MSTI).

In an initial treatment phase, the clinician gathers patient information and generates a set of ini-
tial beliefs P , representing her initial beliefs of the true value of aM . Thereafter, in each visit, the
clinician first observes whether or not the patient has experienced symptoms since the last treat-
ment. The clinician uses this observation to update the patient state Xt, which contains information
on the efficacy of scheduling intervals observed prior to visit t. The clinician then updates her set
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Figure 2.1: The sequence of events during a decision epoch in the MSTI exploration model.

of current beliefs Φ(Xt), representing her new estimates of the true value of aM for the individual
patient. The clinician then treats the patient. We assume the amount and type of treatment is given
according to current clinical guidelines. Given her current beliefs, the clinician then selects an ac-
tion ai ∈ A, representing the amount of time until the patient should return for the next treatment.
Based on this decision, the patient receives an immediate reward of r(i|M). This reward represents
the amount of time the patient spends outside of the clinic without experiencing symptoms. The
patient then transitions to a new state Xt+1 according to a transition matrix T (i,Xt). After ai time
periods, the patient returns for the next treatment, and the process repeats.

With this modeling approach, we specifically consider the class of chronic conditions in which
patients have different treatment needs and, after some exploration, eventually follow a person-
alized, fixed-interval treatment plan. In our case, we assume that each patient has an MSTI. We
also assume that the clinician cannot observe the patient between visits. This is appropriate for
conditions such as AMD, where it is difficult for the patient to assess the presence of symptoms at
home. As chronic conditions often affect patients for the remainder of their lifetime, the decision
horizon is generally much longer than individual treatment intervals. We therefore model this as
an infinite horizon problem, as is common in the medical decision making literature. [4, 87, 91]

2.3.1 Model notation

We can formalize our model using the following notation:

• t: the decision epochs, t ∈ {1, . . . ,∞}.

• A: the set of available actions, A = {a1, . . . , aN}. Here, N < ∞ and each ai ∈ A is a
positive value representing a potential treatment interval length. Without loss of generality,
let i < j =⇒ ai < aj , where i, j ∈ {1, . . . , N}.

• aM : the longest interval that does not cause adverse health effects for the patient. We also
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refer to aM as the patient’s maximum safe treatment interval, or MSTI. Here, aM ∈ A is
initially unknown to the clinician.

• pi: the initial belief that action ai is the MSTI, pi := P (ai = aM)

• P : the clinician’s set of initial beliefs, P := {pi : ai ∈ A}.

• l: an index such that al ∈ A is the shortest action that is potentially the MSTI. An alternative
definition of l is that it is the index of longest interval al ∈ A that is known to not cause an
adverse health state for the patient.

• u: an index such that au ∈ A is the longest action that is potentially the MSTI.

• X: the current state, X = (P, l, u). As this is an infinite horizon problem, we omit the time
notation from the state where unambiguous.

• T (i,X): the transition probability matrix given action ai and state X .

• ϕ(i|X): the current belief that action ai is the MSTI given state X , P (ai = aM |X)

• Φ(X): the clinician’s set of current beliefs, Φ = {ϕ(i|P, l, u) : ai ∈ A}.

• r(i|M): the immediate reward for selecting action ai given the MSTI aM .

• δ: the per-period discount factor, δ ∈ (0, 1). Note that a decision epoch may contain multiple
time periods.

2.3.2 State transitions

When a patient returns to a clinic for treatment, we assume that the clinician is able to observe
whether or not the previously scheduled interval was too long to prevent adverse health outcomes.
For example, clinicians may use image scans or blood draws to assess whether there is evidence
of disease progression or whether the patient had symptoms reoccur in between treatments. After
taking an action ai, one of two possible outcomes is observed:

1. the treatment interval was shorter than or equal to the MSTI aM , or

2. the interval was longer than the MSTI aM .

In scenario 1, the clinician has learned that the MSTI is at least as long as the previous ac-
tion. Mathematically, the lower index l can be updated to the index i of the previous action ai. In
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Figure 2.2: A description of how the lower and upper state indices l and u are updated after
observing the outcome of the previous treatment interval.

scenario 2 the clinician has learned that the MSTI is strictly less than the previous action. Mathe-
matically, the upper index u can be updated to be i− 1. Figure 2.2 is a graphical representation of
this transition process.

From Figure 2, we can see that our transition matrix T (i,Xt) is quite sparse: given Xt =

(P, l, u) and action ai, we observe that the subsequent state Xt+1 can only take on two (l, u)

combinations. If no symptoms are observed, then Xt+1 = (P, i, u), which occurs with probability
P (aM ≥ ai) =

∑i
j=l ϕ(j|P, l, u). If symptoms are observed, then Xt+1 = (P, l, i − 1), which

occurs with probability P (aM < ai) =
∑u

j=i+1 ϕ(j|P, l, u).

2.3.3 Current beliefs

The ordinality of A allows us to concisely represent the clinician’s current knowledge at any point
in time using three parameters (P, l, u). Using Bayes’ rule we have:

ϕ(i|P, l, u) =


pi∑u
i=l pi

if l ≤ i ≤ u

0 otherwise
(2.1)

From Equation 2.1 we see that all of the information required to calculate our current beliefs is
contained in our state, and does not require storing any previous state information.

2.3.4 Optimality equation

The state transitions described in Section 2.3.2 allow for an intuitive formulation of the ordinal
bandit optimality equation, written below as Equation 2.2. Because the clinician cannot observe
the patient between visits, she is unable to observe exactly when symptoms arise. She is only
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aware of the existence of symptoms between treatments based on the patient’s health state upon
return. As a result, the immediate rewards associated with changes to the patient’s health state are
only partially observable, and the clinician estimates the immediate rewards based on her current
beliefs.

While the immediate rewards reflect the expected health state of the patient, the future rewards
contain information on both the patient’s future health and the value of knowledge gained from
taking a decision. For example, if a clinician selects the shortest action al, they know by definition
that there will be no adverse health events before the next treatment. However, selecting the short-
est action provides no new information about which scheduling interval is the MSTI. As a result,
when making this decision, the state space will be the same in the next decision epoch. In contrast,
selecting an action that is not the shortest interval will provide additional knowledge on the MSTI,
regardless of whether or not symptoms occur before the next treatment. Equation 2.2 is written to
demonstrate these two scenarios. Additionally, we list the scenarios separately to avoid writing the
degenerate case of V (P, l, l− 1), and to provide intuition for the index policy derivation discussed
in Section 2.4.1.

V (P, l, u) =

max
d∈{l,...,u}



u∑
i=l

(r(l|i) · ϕ(i|P, l, u)) + δalV (P, l, u), if d = l

u∑
i=l

(r(d|i) · ϕ(i|P, l, u)) + . . .

δad

(
d−1∑
i=l

(ϕ(i|P, l, u)) · V (P, l, d− 1) +
u∑

i=d

(ϕ(i|P, l, u)) · V (P, d, u)

)
,

if d ∈ {l + 1, . . . , u}

(2.2)

2.4 Analytical Results

This section demonstrates that the optimal decision policy for the ordinal MDP is an index policy.
The existence of an index policy is useful for multiple reasons. First, the index policy reduces
the computational complexity of the problem, improving tractability for more complex scheduling
paradigms. This is particularly meaningful for chronic conditions that can have a wide range of
treatment intervals among patients. Second, the index policy offers decision makers insight beyond
the optimal action to take in this period. Specifically, calculating an index value for each action al-
lows clinicians to compare multiple actions that may have similar values. For example, if a “short”
treatment interval and a “long” treatment interval have similar index values, a more risk-tolerant
clinician might be willing to choose the longer treatment interval in order to gain knowledge about
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the patient, even if it is not the optimal action. In contrast, a more risk-adverse clinician might
decide that gaining more knowledge about the individual patient is not warranted and choose the
shorter action. An index policy essentially offers decision makers a menu of treatment options.
Utilizing this menu can enable joint decisions between both patients and clinicians when deter-
mining treatment regimens. Third, the index policy allows us to determine under which conditions
commonly used clinical scheduling policies (e.g. a treat-and-extend policy) are optimal policies.
Fourth, the index policy allows us to generate interpretable and generalizable policies for clinical
scenarios in which the clinician does not have any prior knowledge about a patient’s health state.
We discuss these benefits in greater detail in Section 2.5.

2.4.1 Calculating the optimal policy

We prove that the optimal policy is an index policy by showing that the cost-to-go value V (P, l, u)

can be decomposed into several nested sub-problems, each of which can be calculated offline.
First, Lemma 2.4.1 shows how to calculate the cost-to-go for any state space with a single available
action (e.g. V (P, l, l)). Second, Lemma 2.4.2 extends this idea for any state space with n available
actions. Third, we show in Theorem 2.4.1 that the cost-to-go for taking any action can be calculated
as a function of the single-state cost-to-go values (i.e. the V (P, i, i) values, for all ai ∈ A). Figure
2.3 provides a visual representation of this idea.

Figure 2.3: A visual representation of the proof for Theorem 2.4.1. We use Lemma 2.4.1 to show
how to calculate the cost-to-go for state spaces with a single available action. We then show that
the cost-to-go of any action can be calculated as a function of these single-state cost-to-go values
V (P, i, i).

17



Lemma 2.4.1 The cost-to-go for a single action state space V (P, l, l) can be calculated offline as

V (P, l, l) = r(l|l)
1−δl

.

A state space with only a single potential action has a single potential decision policy, which is
to select that action repeatedly. From Equation 2.2, we have that

V (P, l, l) = max

{
l∑

i=l

(r(l|i) · ϕ(i|P, l, l)) + δlV (P, l, l)

}
=r(l|l) · ϕ(l|P, l, l) + δalV (P, l, l)

=r(l|l) · 1 + δalV (P, l, l)

=⇒ V (P, l, l) =
r(l|l)
1− δal

(2.3)

■

Lemma 2.4.2 For any n ∈ N, the cost-to-go for an (n + 1)-action state space V (P, l, l + n) can

be calculated offline.

We prove this using induction on n. The case of a single action (i.e. n = 0) is immediate from
Lemma 2.4.1. We next consider the case where there are two possible actions (i.e. n = 1). Here,
the value function has the form:

V (P, l, l + 1) = max



l+1∑
i=l

(r(l|i) · ϕ(i|P, l, l + 1)) + δalV (P, l, l + 1),

l+1∑
i=l

(r(l + 1|i) · ϕ(i|P, l, l + 1)) + . . .

δal+1

(
l∑

i=l

(ϕ(i|P, l, l)) · V (P, l, l) +
l+1∑

i=l+1

(ϕ(i|P, l, l + 1)) · V (P, l + 1, l + 1)

)
(2.4)

As this is an infinite horizon Markov chain, we know that the optimal policy is a stationary
policy (see [75] for more details). The first component of Equation 2.4 shows us that if the decision
maker chooses the shortest action al, the state space will necessarily remain (P, l, l+1) in the next
decision period. This implies that choosing the shortest action is only optimal in this period if it is
also optimal to choose the shortest action forever, since the state space would not change. Then,
the resulting cost-to-go for this action is a geometric sum, similar to the single action case. We can
substitute this geometric sum into our value function:
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V (P, l, l + 1) = max



l+1∑
i=l

(r(l|i) · ϕ(i|P, l, l + 1))

1− δal
,

l+1∑
i=l

(r(l + 1|i) · ϕ(i|P, l, l + 1)) + . . .

δal+1

(
l∑

i=l

(ϕ(i|P, l, l)) · V (P, l, l) +
l+1∑

i=l+1

(ϕ(i|P, l, l + 1)) · V (P, l + 1, l + 1)

)
(2.5)

We next note that when choosing the longer action al+1, the state space will necessarily transi-
tion into one of two possible single-action states (P, l, l) or (P, l+1, l+1). From Lemma 2.4.1, we
know that there is a closed form solution for any single-action state. Therefore, we can substitute
these closed form solutions into our two-action equation, and we are then able to calculate the
cost-to-go for both possible actions.

We next show the inductive step. Assume that we can calculate V (P, l, l), V (P, l, l +

1), · · · , V (P, l, l + n− 1) offline. For the (n+ 1)-action case, we have:

V (P, l, l + n) = max



l+n∑
i=l

(r(l|i) · ϕ(i|P, l, l + n)) + δalV (P, l, l + n),

l+n∑
i=l

(r(l + 1|i) · ϕ(i|P, l, l + n)) + . . .

δal+1

(
l∑

i=l

(ϕ(i|P, l, l)) · V (P, l, l) +
l+n∑

i=l+1

(ϕ(i|P, l + 1, l + n)) · V (P, l + 1, l + n)

),

...
l+n∑
i=l

(r(l + n|i) · ϕ(i|P, l, l + n)) + . . .

δal+n

(
l+n−1∑
i=l

(ϕ(i|P, l, l + n− 1)) · V (P, l, l + n− 1) + . . .

l+n∑
i=l+n

(ϕ(i|P, l + n, l + n)) · V (P, l + n, l + n)

)
(2.6)

We again see that choosing the shortest action al transitions to the same state space with a
probability of 1. Therefore, the stationary policy principle used in the two-action case also applies
here, and the optimal policy will only choose the shortest action in this period if it is always optimal
to choose the shortest action in this state. Then, Equation 2.6 can be rewritten as:
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V (P, l, l + n) = max



l+n∑
i=l

(r(l|i) · ϕ(i|P, l, l + n))

1− δal
,

l+n∑
i=l

(r(l + 1|i) · ϕ(i|P, l, l + n)) + . . .

δal+1

(
l∑

i=l

(ϕ(i|P, l, l)) · V (P, l, l) +
l+n∑

i=l+1

(ϕ(i|P, l + 1, l + n)) · V (P, l + 1, l + n)

),
...

l+n∑
i=l

(r(l + n|i) · ϕ(i|P, l, l + n)) + . . .

δal+n

(
l+n−1∑
i=l

(ϕ(i|P, l, l + n− 1)) · V (P, l, l + n− 1) + . . .

l+n∑
i=l+n

(ϕ(i|P, l + n, l + n)) · V (P, l + n, l + n)

)
(2.7)

We also note that for any action other than the shortest action, the problem will transition into a
state with fewer available actions. From our inductive hypothesis, we know that there is a closed-
form solution for any of these cost-to-go functions. Thus we can substitute in these closed-form
solutions to calculate the cost-to-go of an (n+ 1)-action space. ■

Theorem 2.4.1 The optimal decision policy is an index policy, with the index value for action

ad = Q(d, P, l, u) and V (P, l, u) = maxd∈{l,...,u}Q(d, P, l, u).

Lemmas 2.4.1 and 2.4.2 demonstrate how to calculate the cost-to-go for any state space with
n ∈ N+ available actions. In particular, Lemma 2.4.2 shows us that V (P, l, l + n) is a function of
the cost-go-values of the “nested” state spaces V (P, i, j) where l ≤ i ≤ j ≤ l+ n. From Equation
2.7, we can define a function Q(d, P, l, l + n) to represent the cost-to-go associated with choosing
action ad in state (P, l, l + n).
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Q(d, P, l, l + n) :=



l+n∑
i=l

(r(l|i) ∗ ϕ(i|P, l, u))

1− δal
if ad = l

l+n∑
i=l

(r(d|i) ∗ ϕ(i|P, l, l + n)) + . . .

δad

(
d−1∑
i=l

(ϕ(i|P, l, l + n)) ∗ V (P, l, d− 1) + . . .

l+n∑
i=a

(ϕ(i|P, l, l + n)) ∗ V (P, d, l + n)

) if ad ∈ {l + 1, . . . , l + n}

(2.8)
Setting u = l + n, we have that Q(d, P, l, u) is the cost-to-go of selecting action ad. Then,

Q(d, P, l, u) is the index value for any action ad ∈ A which can be calculated offline, and

V (P, l, u) := max
d∈{l,...,u}

Q(d, P, l, u). (2.9)

Algorithm 1 in Appendix A provides a method for calculating the index values. ■

2.4.2 Identifying the MSTI

Because V (P, l, u) is based on a set of beliefs P , it is useful to dichotomize the cost-to-go as either
1) the “exploration” component (i.e. decision making to optimize information gained regarding
aM ) or, 2) the “exploitation” component (i.e. decision making to optimize key patient health
metrics, healthcare costs, etc.). For example, while selecting a treatment interval longer than the
MSTI may have short-term unwanted effects to the patient, it also provides valuable knowledge on
the true length of the MSTI. This dichotomy helps us understand when the belief-based decision
policy will discover the patient’s true MSTI.

As the ordinal MDP incorporates both exploration and exploitation reward types, it can help
decisions makers take or avoid calculated risks based on their own values and beliefs. However,
as ours is a belief-based model, it is possible that the exploitation component of the rewards may
significantly outweigh the exploration component. As a result, the model may not have enough
incentive to continue the search for the true MSTI. In Theorem 2.4.2, we provide a condition under
which the optimal policy will always find the patient’s true MSTI. The ability to derive such a
condition is useful in clinical settings where finding the true MSTI is considered necessary, or at
least very important. Theorem 2.4.2 and its Corollary 2.4.1 provide insights into the appropriate
model parameters (i.e. the reward function r(i|j) and the discount factor δ) to ensure this condition
if applicable.
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Theorem 2.4.2 Consider the following reward structure:

• If a patient is not scheduled for treatment and does not have symptoms, they receive a reward

r ≥ 0 in that period.

• If a patient is not scheduled for treatment and does have symptoms, they pay a penalty c > 0

in that period.

• If a patient is scheduled for treatment, they receive no reward or penalty (or, they receive a

reward of 0) in that period.

Then, there exists a per-period reward to cost ratio r/c above which the ordinal MDP will

always converge to the patient’s MSTI.

The key idea behind this proof is centered around the condition where the ordinal MDP chooses
not to explore longer intervals. From Lemma 2.4.2, recall that if the decision maker selects the
shortest available action al, the state space will remain the same in the next decision epoch. Thus,
if it is optimal to select the shortest action in the current period, it will be optimal to select the
shortest action in all future periods due to the stationary policy principle. It follows that if both
1) the optimal policy is to select the shortest available action al and 2) action al < aM (i.e. al

is shorter than the MSTI), then the MDP will never find the MSTI. In other words, the decision
maker always gains more information about the MSTI when the shortest possible action al does
not have the largest index value. Mathematically this is true if there is some action ad ∈ A where

Q(d, P, l, u) > Q(l, P, l, u) =⇒ Q(d, P, l, u)−Q(l, P, l, u) > 0 (2.10)

Per Theorem 2.4.1, we are able to calculate Q(d, P, i, j) offline for any d, and thus we can check
the truth of Equation 2.10 using Algorithm 1. As long as Equation 2.10 holds for all combinations
of (l, u) containing the index of the optimal action aM , the algorithm will converge to the optimal
action.

Because of the complex form of the Q(d, P, l, u) values, it is helpful to derive an interpretable
form of the threshold in Equation 2.10. As such, we define a lower bound for Q(d, P, l, u) which
we write as Q−(d, P, l, u), where
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Q−(d, P, l, u) =



u∑
i=l

(r(l|i) · ϕ(i|P, l, u))

1− δal
if d = l

u∑
i=l

(r(d|i) · ϕ(i|P, l, u)) + . . .

δad

(
d−1∑
i=l

(ϕ(i|P, l, u)) ·Q(l, P, l, d− 1) + . . .

u∑
i=d

(ϕ(i|P, l, u)) ·Q(d, P, d, u)

) if d ∈ {l + 1, . . . , u}

(2.11)
The difference between Q and Q− is that Q− replaces all cost-to-go functions V (P, i, j) with

the index value of the lowest action Q(i, P, i, j). Because Q(i, P, i, j) ≤ V (P, i, j),∀ i, j by
definition, we know that Q−(d, P, l, u) ≤ Q(d, P, l, u). Then,

Q−(d, P, l, u)−Q(l, P, l, u) > 0 =⇒ Q(d, P, l, u)−Q(l, P, l, u) > 0 (2.12)

Using the argument in Lemma 2.4.2, we can also calculate Q−(d, P, l, u) for any d ∈ {l, . . . , u}.
As long as Equation 2.12 is true for all ad ≤ aM , d ∈ {l, . . . , u}, the MDP will eventually select
the true MSTI. We also note that Equation 2.12 is equivalent to Equation 2.10 when there are only
two potential actions in the state space (i.e. when u = l + 1).

To gain insight into the convergence threshold, we consider a common reward structure for
r(d|M). Assume that there is a stationary reward r ≥ 0, r ∈ R for every time period “at home” (i.e.
not visiting the clinic) in which no adverse event has occurred, and a stationary cost c > 0, c ∈ R
for every time period at home in which an adverse event has occurred and has not been treated. For
periods in which the patient visits the clinic to receive treatment, there is no reward or cost. For
integer values ad, aM ≥ 1, we can write this as:

r(d|M) =


0 if ad = 1
d−1∑
i=1

δair if 1 < ad ≤ aM

M−1∑
i=1

δair −
d−1∑
i=M

δaic if ad > aM

(2.13)

Since only one action must have a higher index value than action al for convergence, a sufficient
condition is to check if choosing action al+1 is preferable to choosing action al. Mathematically,
we can write this as Q−(l + 1, P, l, u) > Q(l, P, l, u). Under our per-period reward paradigm, it is
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useful to write Q−(l + 1, P, l, u) and Q(l, P, l, u) in terms of the probability of an adverse event.
Letting d = l + 1, Equation 2.12 can be written as:

ϕ(l|P, l, u)

l−1∑
i=1

δair − δlc+ δal+1

l−1∑
i=1

δair

1−δal
−

l−1∑
i=1

δair

1−δal

+ (1− ϕ(l|P, l, u))

 l∑
i=1

δair

1−δal+1 −
l−1∑
i=1

δair

1−δal

 > 0

(2.14)
We can rewrite this as an inequality regarding the reward to cost ratio r/c:

Q−(l + 1, P, l, u)−Q(l, P, l, u) > 0

⇐⇒ r

c
>

ϕ(l|P, l, u)δal

ϕ(l|P, l, u)

l−1∑
i=1

δai + δal+1

l−1∑
i=1

δai

1−δal
−

l−1∑
i=1

δai

1−δal

+ (1− ϕ(l|P, l, u))

 l∑
i=1

δai

1−δal+1 −
l−1∑
i=1

δai

1−δal



=
ϕ(l|P, l, u)δal

ϕ(l|P, l, u)
(
(δal+1 − δal)

l−1∑
i=1

δai
)
+ (1− ϕ(l|P, l, u))

 l∑
i=1

δai

1−δal+1 −
l−1∑
i=1

δai

1−δal


(2.15)

■

The threshold in Equation 2.15 offers insight into the requirements for convergence. The nu-
merator of this threshold corresponds to the likelihood of experiencing an adverse event between
now and the next visit given action ad and the current state (P, l, u). The denominator has two pri-
mary components: 1) the expected loss in long-term rewards if the decision maker takes a risk and
the patient experiences an adverse event and, 2) the long-term expected value of potentially learn-
ing of a new safe interval that is longer than l. The relationship shown in Equation 2.15 matches
clinical intuition. If the current belief state suggests a high likelihood of experiencing an adverse
event through longer scheduling intervals, the per period value of rewards r must be higher to take
the risks associated with finding the MSTI.

From Equation 2.15, we can also see that the discount factor δ plays an important role in the
threshold value. In particular, we have the following corollary:

Corollary 2.4.1 Under the per-period reward structure with r, c > 0, the reward to cost threshold

goes to 0 as the discount factor δ approaches 1.

Because only one action needs to have a higher index value than action al, it is again sufficient
to show that this is true for the threshold shown in Equation 2.15, where d = l + 1. We can take
the limit of the threshold in Equation 2.15 as δ approaches 1 from the left:
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lim
δ−→−1


ϕ(l|P, l, u)δal

ϕ(l|P, l, u)
(
(δal+1 − δal)

al−1∑
i=1

δai
)
+ (1− ϕ(l|P, l, u))

 l∑
i=1

δai

1−δal+1 −
l−1∑
i=1

δai

1−δal




=

ϕ(l|P, l, u)

ϕ(l|P, l, u)
(

1
al
− 1
)
+ (1− ϕ(l|P, l, u))(∞)

= 0

■

Corollary 2.4.1 suggests that as the importance of the future increases, it is always worth se-
lecting a longer decision to gain more information about the patient’s MSTI. This is an important
consideration for clinical contexts in which finding the true MSTI is important for health or fi-
nancial reasons. It suggests that a sufficiently large discount factor can help ensure that patients
eventually reach their true MSTIs while still taking advantage of the ordinal MDP’s suggested
exploration policy.

2.4.3 Relaxing the stationary MSTI assumption

For conditions like AMD, each patient’s MSTI is generally stationary throughout a patient’s treat-
ment. [57, 39, 22] However, we can still generalize our model to situations in which the MSTI may
change over time to gain insights for other chronic conditions. There are several approaches to this
generalization. One example is instead of assuming that a given treatment interval will or will not
cause fluid, we can assign a probability distribution to each interval representing the likelihood of
fluid when choosing that interval. Then, we can update these distributions over time based on the
patient’s measured response to each selected treatment interval. In practice, this distributional ap-
proach is not very valuable. The distributional convergence is typically much slower than even the
treat-and-extend approach, and can often suggest that clinicians test intervals that cause symptoms
multiple times.

Another approach with better practical outcomes is to assume that the MSTI is stationary
throughout the initial exploration component. Then, once a patient has reached a steady state,
there is some time-to-event probability representing the time until the MSTI changes. This allows
for the exploration speed necessary for good clinical outcomes while still generalizing the model
for potential MSTI changes. This is the approach that we focus on in this section.

Under our modeling approach, once a patient reaches a steady state scheduling paradigm (i.e.
is being treated at their MSTI) it will be obvious if the MSTI ever becomes shorter. For example,
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if the patient is being regularly treated at 6 weeks intervals, if the MSTI reduces to 5 weeks, the
patient will show up at the clinic with symptoms, and this will immediately flag that the MSTI
has gotten shorter. The more challenging situation is determining when the MSTI has increased.
The clinician will only be able to observe an MSTI increase if they test a longer treatment interval.
Testing a longer interval has inherent risk, as it exposes the patient to a treatment interval that was
previously shown to cause symptoms. The key question becomes: when is it worth testing a longer
interval to see if the MSTI has increased? We answer this question directly in Theorem 2.4.3.

Theorem 2.4.3 Assume that the time until a patient’s MSTI increases occurs via an exponential

distribution with rate λ. Then, the clinician should only check for a longer MSTI if it has been at

least τ time periods since the last check, where

τ =
1

λ
ln

(
V (P,M + 1,M + 1) + r(M + 1|M) + δM+1V (P,M,M)

V (P,M + 1,M + 1)

)
. (2.16)

The most general answer to the question of when to test for an MSTI increase can be answered
by the following inequality:

P (longer MSTI) ∗Benefit(longer MSTI) > P (sameMSTI) ∗Risk(sameMSTI)

In words, it is worth testing for a longer MSTI when the expected benefit of treating less often
is greater than the expected risk of exposing the patient to symptoms.

For our analysis, assume that a patient’s MSTI increases according to a time-based exponential
distribution with rate λ ≥ 0. Specifically, let L(τ) represent the probability that a patient’s MSTI
increases within τ time periods of finding the original MSTI. Then we have

L(τ) = 1− e−λτ. (2.17)

We can also quantify the value of testing a longer MSTI given that the MSTI is in fact longer.
Assuming that a clinician extends the treatment interval by one period, the long-term value of a
longer MSTI is

Benefit(longer MSTI) = V (P,M + 1,M + 1).

In contrast, if the MSTI is in fact the same, the patient will be exposed to one period of symp-
toms and then revert to being treated at the original MSTI. We can write this as

Risk(sameMSTI) = r(M + 1|M) + δM+1V (P,M,M).

26



We can then formalize our testing inequality as the following:

L(τ)V (P,M + 1,M + 1) > (1− L(τ))(r(M + 1|M) + δM+1V (P,M,M)) (2.18)

In order to isolate the τ we can rewrite Equation 2.18 as

L(τ)V (P,M + 1,M + 1) > (1− L(τ))(r(M + 1|M) + δM+1V (P,M,M))

=⇒ (1− e−λτ )V (P,M + 1,M + 1) > e−λτ (r(M + 1|M) + δM+1V (P,M,M))

=⇒ e−λτ <
V (P,M + 1,M + 1)

V (P,M + 1,M + 1) + r(M + 1|M) + δM+1V (P,M,M)

=⇒ − λτ < ln

(
V (P,M + 1,M + 1)

V (P,M + 1,M + 1) + r(M + 1|M) + δM+1V (P,M,M)

)

=⇒ τ > −1

λ
ln

(
V (P,M + 1,M + 1)

V (P,M + 1,M + 1) + r(M + 1|M) + δM+1V (P,M,M)

)

=⇒ τ >
1

λ
ln

(
V (P,M + 1,M + 1) + r(M + 1|M) + δM+1V (P,M,M)

V (P,M + 1,M + 1)

)
Since r(M + 1|M) + δM+1V (P,M,M) ≥ 0, we know that the value of the log is always

non-negative. ■

Theorem 2.4.3 provides useful intuition around when to test for a longer MSTI. Note that for
an exponential distribution, 1

λ
is the mean time to an event. In this case, 1

λ
represents the mean

time until a patient’s MSTI increases. Then, Theorem 2.4.3 says that the recommended time to
test for a longer MSTI is the average time until an MSTI increase scaled by the log of the relative
risk-benefit ratio for the patient. As the cost of symptoms for that patient increases, the time to test
increases. In contrast, as the potential benefit of an MSTI increases, the time to test decreases.

2.4.4 Incorporating a patient health state

Conditions managed with a treat-and-extend protocol have a unique feature: clinicians intention-
ally expose patients to symptoms for a brief period of time in order to determine their MSTI. For
these conditions, while these brief exposures to symptoms might have short-term consequences
(e.g. blurred central vision in the case of AMD) they typically do not have significant long term
effects (e.g. permanent vision loss with AMD). [32, 23, 10] Otherwise, clinicians would be unwill-
ing to expose patients even temporarily to these symptom windows. Even if there is some effect on
long-term health, it is generally difficult to quantify during these brief exposures. For this reason,
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our baseline model described in Section 2.3 does not incorporate a patient health variable into the
state space. Instead, we focus on short-term rewards and costs regarding symptoms and visit costs.

However, it is possible to generalize our baseline model in Section 2.3 to incorporate a long-
term patient health state. For conditions where even short exposures could have long-term conse-
quences, this incorporation is vital in decision making. In this section, we describe how to adapt
our model to this paradigm while still enabling the index policy described in Theorem 2.4.1.

We can redefine some of the features of the baseline model, as well as define additional model
parameters:

• H: the set of available health states, H = {h1, h2, . . . , hK}, where K <∞.

• X = (P, l, u, h), the current state with the patient’s health h added.

• ϕ(i|P, l, u): the current belief that action ai is the MSTI, P (ai = aM |P, l, u). Note that we
assume that the MSTI is independent of the patient’s health.

• T (i,X): the state transition matrix, which now includes the patient health.

• T (h′|i,X): the probability that patient’s health state in the following period will be h′ given
action ai and current state X .

• r(i|M,h): the reward for selecting action ai given the MSTI aM and the patient’s health
state h.

To align with our assumption that a patient’s MSTI is stationary over time, we also assume that a
patient’s MSTI is independent of their health state. Additionally, we assume that a patient’s health
state only changes (deteriorates) if they are exposed to symptoms. To account for the dynamically
changing health state, our simplified optimality equation in Equation 2.2 must be rewritten to
incorporate health transitions. With a health state, our optimality equation becomes:
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V (X) =

max
d∈{l,...,u}



u∑
i=l

(r(l|i, h) · ϕ(i|P, l, u)) + δalV (P, l, u, h), if d = l

u∑
i=l

(r(d|i, h) · ϕ(i|P, l, u)) + . . .

δad

(
d−1∑
i=l

(
ϕ(i|P, l, u)

)
· V (P, l, d− 1, h) + . . .

u∑
i=d

(
ϕ(i|P, l, u) ·

∑
h′

(T (h′|i,X) · V (P, d, u, h′))

))
,

if d ∈ {l + 1, . . . , u}

(2.19)
With the above incorporation of a patient health state, we use Corollary 2.4.2 to show that using

this formulation retains the index policy feature of Theorem 2.4.1.

Corollary 2.4.2 For the ordinal MDP with a discrete, finite set of health states H , the optimal

policy remains an index policy if preventing symptoms also prevents disease progression.

We prove this using the same approach as Theorem 2.4.1. In Lemma 2.4.1, we show that the
value function for a patient with a known MSTI can be calculated offline. That is, we show that
V (P, i, i) can be calculated offline for any action ai ∈ A. To extend this to the current scenario,
we must show that we can calculate V (P, i, i, h) offline for all ai ∈ A and h ∈ H . Here, because
we have narrowed the action space down to a single action, the only component of our state space
that changes over time is the patient’s health state. For any ai ∈ A we can rewrite our optimality
equation as

V (P, i, i, h) = r(i|i, h) · ϕ(i|P, i, i) + δai
∑
h′

(T (h′|i,X)V (P, i, i, h′)) ∀ h ∈ H (2.20)

From Equation 2.20 we have [H] equations with [H] unknowns for each potential action ai,
and can therefore solve for the cost-to-go values directly. Since we are able to calculate the cost-
to-go values for all actions with a known state, we can then apply the proof by induction results
from Lemma 2.4.2 to see that the index value solution is also true for this health state modeling
approach. ■
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2.5 Numerical Results

We next evaluate the results derived in Section 2.4 via a case study on neovascular AMD, utiliz-
ing real-world patient data collected from the University of Michigan’s Kellogg Eye Center. We
first discuss model parameterization using both patient data and clinical expertise. We provide an
example of a patient following the ordinal MDP treatment policy, and describe best practices for
treating patients whose MSTI is difficult or impossible to estimate prior to starting treatment. We
then simulate the use of the ordinal MDP policy on Kellogg patients. We measure key patient
metrics and compare them to the outcomes of following the commonly used treat-and-extend pol-
icy, and discuss the effects of the reward function and discount factor on model performance. All
analyses in this section were performed using Python version 3.7.11. The University of Michigan
Institutional Review Board approved the use of patient data in this study (HUM00156855).

2.5.1 Data sources

The data for this study were collected from neovascular AMD patients treated at the Kellogg Eye
Center between June 2013 and March 2020. To be included in this study, patients must have
received anti-VEGF injections as their primary method of treatment. We excluded patients that
stopped receiving treatment before reaching an MSTI. There are many reasons patients may pre-
maturely stop receiving treatment, including switching providers, treatment refusal, or death. We
identified an MSTI as 4 or more consecutive treatments with the same amount of time between vis-
its, within 1 week. We excluded patients that did not have archived OCT information at their visits,
which are a common diagnostic tool for managing AMD, and are used in our models for generat-
ing initial beliefs. [98] A total of 242 patients met these inclusion criteria, and the distribution of
MSTIs among patients is shown in Figure 2.4.

2.5.2 Model parameterization

The core parameters for our model are the action space A, the reward function r(i|j), the discount
factor δ and the initial beliefs P . All other model parameters can be derived from these four core
parameters as shown in Section 2.3. The first three of these are primarily derived from clinical
expertise, as discussed below:

• A : We use a set of actions A = {4, 5, . . . , 12} weeks. The range and spacing of treatment
intervals is based on average patient response to current injection medications as shown in
clinical trials and used in the treat-and-extend protocol. [98]
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Figure 2.4: The proportion of Kellogg patients with a given maximum safe treatment interval.

• r(i|j): We use the reward function described in Equation 2.13. As a sensitivity analysis, we
test a range of reward to cost ratios where r/c ∈ [2−1, 25]. To our knowledge, there are no
current studies that directly relate a week of time with or without fluid to long-term health
metrics, such as quality-adjusted life years. In lieu of this information, we worked closely
with our clinical collaborators to discuss the relative importance of a week with no fluid
versus a week with fluid on long-term vision when determining the range of our sensitivity
analysis. As a result of these discussions, we selected r/c = 2.0 as a baseline scenario.

• δ : As a sensitivity analysis, we test a range of discount factors δ ∈ [0.990, 0.999]. Similar
to the reward function, we worked closely with our clinical collaborators to discuss the
importance of future reward values. In general, clinicians value the future significantly, as
their goal is ultimately find a long-term treatment paradigm for the patient. We selected
δ = 0.995 as a baseline scenario.

2.5.2.1 Initial beliefs

For the fourth parameter P , there are a number of methods for deriving the set of initial beliefs. In
this paper, we offer two approaches:

• Using a machine learning predictive model: One method for predicting the initial beliefs
is to take baseline patient health measurements and use a machine learning model to estimate
probabilities. In our analysis, we used a multinomial logistic regression, which output the
likelihood that each element of A is the true MSTI. The covariates included patient age,
sex, visual acuity, and retinal thickness as measured by an OCT scan. To parameterize our
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classification model, we fit a model using the sklearn package version 0.24.2 in Python on
a training subset. Other classification methods such as ordinal regression, neural networks,
or support vector classification can also be used to predict P . For our case study, multinomial
logistic regression provided the highest predictive power amongst all tested models, with the
primary metric being area under the curve (AUC). We used this prediction method as our
baseline approach.

• Using the population level prevalence of MSTIs: A second method for calculating the
initial beliefs is to use the prevalence of MSTIs across the entire patient population. For
example, in our patient subset, approximately 18% of patients have a 4-week MSTI. Thus,
we can initialize P (aM = 4) = 0.18. The benefit of this approach is that it requires no
individual patient health information prior to treatment, and can be used even when such
information is unavailable. One potential drawback of this approach is that it uses the same
initial beliefs across the population, and ignores potentially insightful patient information
that could inform a better policy for individual patients.

Of note, the predictive ability of any machine learning approach to initializing P can vary
significantly. For example, the Kellogg Eye Center data available to our team contained only
high-level patient information, and the average AUC of our best model was 0.58. As a sensitivity
analysis on the effects of this predictive ability we also tested a model built on simulated patient
data with an average AUC of 0.70. From related literature, we believe this is a conservative estimate
of the potential predictive ability of a machine learning model had we had access to more detailed
OCT information (i.e. full images resulting from OCT scans). [11, 86, 85, 78] We generated our
simulated data using sklearn in Python, and designed it to have a similar size and number of
features as the Kellogg patient data. We applied the same multi-class logistic regression model to
this data, and added noise to the data in order to reduce the model’s average AUC to 0.70. On
the other end of the predictive ability spectrum, the prevalence-based belief analysis ignores all
individual patient information and uses only population level information. We therefore use it to
represent the scenario with the lowest reasonable predictive ability.

2.5.3 Example patient

To illustrate the ordinal MDP framework, we present an example patient in Figure 2.5. Here, the
clinician chooses among weekly scheduling options ranging from 4- to 12-week intervals. The
patient has an MSTI of aM = 8 weeks, which is unknown to both the clinician and the model,
but can be used to validate the outcome of scheduling decisions. The clinician first observes the
patient’s initial health information, including demographics and retinal thickness measurements
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Figure 2.5: An example of a patient following the ordinal MDP using regression-based initial
beliefs.

from an OCT scan. This information is input into a multi-class logistic regression model, which
estimates the probability set P , representing the likelihood that a given interval is the MSTI. The
initial state space X for the patient includes this set P , as well as the lower and upper scheduling
intervals for this problem, which are initialized as al = 4 and au = 12. We solve for the index
values using Algorithm 1 in Appendix A, and the model recommends that the patient return in 7
weeks. Because this decision is less than the true MSTI, there is no fluid when the patient returns.
The clinician then updates her state space X = (P, l, u) = (P, 7, 12) and her corresponding belief
set Φ(X). After recalculating the index values, the model recommends the patient return in 8
weeks. As this is the MSTI, there is again no fluid when the patient returns. Still, the model
does not yet know with certainty that this is the MSTI, and the state space is updated to be X =

(P, 8, 12). Solving for the index values recommends the patient return in 9 weeks, in order to
reduce the uncertainty around the MSTI. As 9 weeks is longer than the MSTI, there is fluid when
the patient returns, and the state is updated to X = (P, 8, 8). At this point, the only available
action is to return every 8 weeks indefinitely, and the decision making process can terminate. In
this scenario, the patient experiences 1 week with fluid and requires 3 injections until learning the
MSTI.

For context, we can compare the ordinal MDP policy to the treat-and-extend policy. Recall
that, after an initial dosing period using 4-week intervals, treat-and-extend explores by scheduling
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the patient to return after a 6-week interval. If the patient returns with no symptoms, it continues
to extend this interval by 2-week increments until symptoms arise or until the patient reaches the
maximum interval of 12 weeks. Then, the policy reverts to the longest tested interval in which
the patient had no symptoms. If the patient did not reach the 12-week maximum, the policy then
performs a finer search by extending the interval using 1-week increments until symptoms again
arise or until the patient would reach an interval known to cause symptoms. At this point, the search
is complete, and the clinician indefinitely schedules the patient using the longest interval which
does not cause symptoms. Had this patient followed the treat-and-extend policy, the intervals
would have been 6 −→ 8 −→ 10 −→ 8 −→ 9 weeks before treating at 8-week intervals indefinitely.
These 5 injections required to learn the optimal interval would have resulted in 3 weeks with fluid.

We can also compare the regression-based initial beliefs to other prediction methods. Had the
clinician used the ordinal MDP with prevalence-based initial beliefs, the intervals would have been
5 −→ 6 −→ 7 −→ 8 −→ 9 weeks before treating at 8-week intervals indefinitely. This would have
required 5 injections to learn the MSTI and resulted in 1 week of fluid.

2.5.4 Optimal policies for population-level initial beliefs

For approaches using a common set of initial beliefs, such as the prevalence-based belief method,
we can describe general treatment recommendations for all patients. Not varying the initial be-
liefs P means that all patients follow the same policy based on the current values of l and u.
Describing these policies is useful for two reasons: 1) the results are informative in situations in
which clinicians cannot make personalized predictions and 2) it allows for direct comparison to
(and improvement upon) clinical policies such as treat-and-extend. In Figure 2.6, we show the
recommended action to take when following the prevalence-based and treat-and-extend policies
under the baseline parameters of A = {4, 5, . . . , 12}, r/c = 2.0, and δ = 0.995. In Figure 2.6, ac-
tions highlighted in gray show where the treat-and-extend policy differs from the prevalence-based
policy.

Interestingly, the optimal policy when using prevalence-based initial beliefs recommends start-
ing with a 5-week interval and extending the treatment interval by 1-week increments until fluid
is observed. This suggests that without individual patient information, the optimal policy should
use 1-week extensions instead of the 2-week extensions recommended by treat-and-extend. This
indicates that the risk of fluid in the current form of treat-and-extend, as well as the backtracking
required to find the MSTI, outweighs any advantages from its quicker initial exploration. This is an
important finding from a clinical standpoint—even without personalized initial beliefs, by solving
the bandit we can make a data-driven recommendation for improving the current treat-and-extend
framework.
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Figure 2.6: The optimal actions to take under the prevalence-based ordinal MDP and the treat-and-
extend policies. As the initial beliefs P are shared across all patients, we show the optimal action
in terms of the remaining state parameters l and u. Highlighted cells show where the policies differ.

2.5.5 Population level analysis

We simulated the application of the ordinal MDP on our subset of Kellogg Eye Center patients to
test the model’s efficacy. Figure 2.7 is a visual representation of our discrete event simulation. Af-
ter randomly dividing the patient data into a 50/50 training/testing split, the simulation initializes
the parameters A, δ, r, and c. If there are I patients in the test set, for each patient i the simulation
then estimates P and calculates the index values for every possible combination of l and u values
using Algorithm 1. Calculating the index values for all possible l and u combinations provides a
complete description of the optimal treatment policy for that patient. Once that policy is estab-
lished, the simulation applies it to the patient by selecting the highest index value given the current
l and u values. Any ties are broken by selecting the shorter of the two intervals. After this selec-
tion, the simulation calculates the key patient metrics given the true value of aM for the current
patient.

In Figure 2.7, we represent the previously selected action as a−1. We also use Nv to represent
the number of visits until the patient reaches an MSTI and Wf to represent the cumulative number
of weeks the patient experiences symptoms (i.e. exudative fluid). While the model does not know
the MSTI of any patient when making recommendations, we are able to validate our results by
using the MSTI observed in the data for each patient. For example, if we know that the patient
has an 8-week MSTI, we can assume that intervals longer than 8 weeks will result in fluid, while
intervals shorter than or equal to 8 weeks will not result in fluid. To better understand potential
variance of our estimates of population level parameters, we performed the simulation 100 times,
each time using a different 50/50 training/testing split on the population. In each iteration, the
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Figure 2.7: A visual representation of the discrete event simulation. To estimate the variance in the
optimal interval distribution, the simulation was performed on 100 different 50/50 training/testing
splits.

metrics are calculated only using the testing subset of patients.

2.5.6 Population level results

We next discuss the results of the population-level simulation in terms of two key health parame-
ters: 1) the average amount of time patients have fluid in their eye and 2) the average amount of
time until the patient reaches a stationary interval. Considering both of these metrics helps capture
the balance between finding a patient’s MSTI quickly and not exposing them to unnecessary symp-
toms. For context, we compare the ordinal MDP results across the different prediction methods
described in Section 2.5.2, as well as the treat-and-extend clinical policy.

Figure 2.8 shows the results across a range of reward to cost ratios. For these results, the
discount factor is held at the baseline level of δ = 0.995. Figure 2.9 shows the results across a
range of discount factors, where the reward to cost ratio is held at the baseline level of r/c = 2.0.

Across the entire parameter range studied, following the ordinal MDP policy resulted in fewer
weeks with fluid and fewer visits until stationary for patients, regardless of the initial belief method.
This suggests that the ordinal MDP is useful even without access to prior patient information or a
strong predictive model for the initial beliefs. The prevalence-based model, by using single week
extensions starting at 5 weeks, was not only faster than treat-and-extend at finding the MSTI, but
also reduced the time with fluid by 38% at baseline. The logistic regression model performed
similarly to the prevalence-based model, but was slightly faster by taking taking larger exploration
steps if individual patient information suggested it was appropriate. At baseline, a logistic re-
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Figure 2.8: Plots comparing the ordinal MDP and treat-and-extend in terms of 1) the average
number of weeks with fluid and 2) the average number of visits until reaching a stationary interval.
Results are shown across r/c ratios and initial prediction methods. AUC - area under the curve

gression prediction model with a higher AUC (in this case, an average AUC of 0.70) significantly
reduced the time to find the stationary interval without increasing exposure to symptoms. The
improved predictive ability allowed the model to be more strategic and effective in exploration,
making larger extensions when appropriate, and being conservative otherwise.

Generally, a very small reward to cost ratio, such as 2−1 resulted in the fewest weeks with fluid.
A small r/c suggests that it is much more important to avoid fluid than it is to minimize the num-
ber of visits. Consequently, the model often recommends shorter interval extensions during the
exploration phase. Recall that from Theorem 2.4.2, it is also possible that the model might rec-
ommend scheduling shorter intervals for the entirety of the patient’s follow up, even if it reduces
the likelihood that the patient reaches their MSTI. This not only avoids fluid, but also means that
patients reach a stationary policy quickly, because the model does not recommend exploring alter-
natives. A consequence of not reaching the MSTI is that the patient must attend a larger number
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Figure 2.9: Plots comparing the ordinal MDP and treat-and-extend in terms of 1) the average
number of weeks with fluid and 2) the average number of visits until reaching a stationary interval.
Results are shown across discount factors and initial prediction methods. AUC - area under the
curve

of visits in the long run. However, across our baseline reward to cost sensitivity analysis, 100%
of patients reached their MSTI, even at the lowest ratio of r/c = 2−1. A similar result is seen for
discount factors higher than the δ = 0.995 baseline, as suggested by Corollary 2.4.1. The ordi-
nal MDP is designed so that patients will not experience fluid long-term, and any fluid exposure
will occur during the exploration phase. As a result, when the future is less important, avoiding
fluid becomes more important. However, even at the lowest end of our sensitivity analysis when
δ = 0.990, 99.2% of patients reached their MSTI.

In 2018, an estimated 168,400 patients were newly diagnosed with neovascular AMD. [13] At
our baseline reward to cost ratio and discount factor, we can extrapolate our average results from
Figures 2.8 and 2.9 to a population total. In this scenario, we estimate that following the ordinal
MDP would result in approximately 79,100 fewer weeks with fluid and 47,100 fewer injections
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overall. Translating a single week with exogenous fluid to a long-term effect on a patient’s vision
is difficult, and to the best of our knowledge such a relationship has not been clinically established.
However, in 2021, the drug costs for treating AMD ranged from $50 to $1,300 per injection,
depending on the choice of medication [35], and the average clinical costs were estimated to be
$244 per visit [17]. This suggests that following the ordinal MDP policy when establishing patient
treatment schedules could result in a reduction of up to $61 million in treatment costs annually,
in addition to the significant reduction in patient symptoms and long-term costs associated with
damaged vision.

2.6 Discussion

In this work we introduce the ordinal MDP as a solution to the fixed-interval treatment planning
problem seen in many chronic conditions. In current clinical practice, finding the optimal treatment
interval for individual patients is time consuming and can expose patients to unnecessary symptoms
and risks. While some clinical heuristics, such as treat-and-extend, currently exist to identify the
appropriate treatment interval, they do not leverage the data-driven, optimization-based approach
outlined in this paper. The ordinal MDP offers a safe and efficient way to identify a fixed-interval
treatment plan for patients diagnosed with a chronic condition.

The ordinal MDP has many practical advantages. First, it can be solved via an index policy,
which both reduces the computational complexity typically found in MDP models and provides
clinicians with a menu of treatment options. This menu of treatment options is particularly useful
in situations in which patients cannot strictly follow an optimal treatment policy due to personal
constraints. Second, the ordinal MDP offers insight into the risk-benefit tradeoff found in this
exploration problem. Theorem 2.4.2 and Corollary 2.4.1 discuss conditions under which finding
a patient’s true steady state interval (i.e. the “exploration” component) is more important than
avoiding patient symptoms (i.e. the “exploitation” component). Third, the ordinal MDP allows for
the incorporation of personalized health information when designing the optimal policy. By using
a machine learning model to establish initial beliefs, decision makers can be strategic in when and
how they take risks during the exploration phase. While a higher predictive ability can improve
patient outcomes, our case study also suggests that the ordinal MDP is robust to this predictive
ability, outperforming current clinical heuristics even without prior patient information.

Beyond its use in scheduling treatment for patients with AMD, we note that the ordinal MDP
could be applied to any chronic condition using this fixed-interval treatment paradigm. Outside of
treatment scheduling, the ordinal MDP can be generalized to a reward-adjusted binary search. As
a result, the model could be applied to several situations where a decision maker’s goal is to guide
a process to a steady state, and where the process cannot be observed between decision epochs. As
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an example, we can consider a machine maintenance problem where a piece of equipment requires
the tuning of a given parameter that can only be adjusted during scheduled downtime. In many
cases, key outcomes such as internal wear can only be observed when the equipment is stopped,
which comes with significant costs and lost revenue. Balancing the learning curve of this process
would be valuable to decision makers and could identify best practices across equipment.

We recognize some key assumptions of the ordinal MDP that limit the scope of this work.
First, the baseline formation outlined here requires the assumption that a fixed-interval treatment
plan is the appropriate plan, and that an individual patient’s optimal interval does not change over
time. While we discuss how this assumption can be relaxed in Section 2.4.4, we are unable to
parameterize our numerical AMD model using this formulation due to the condition’s behavior in
clinical practice. Second, the ordinal MDP does not require that the decision maker find a patient’s
true steady state interval with certainty. As discussed in Theorem 2.4.2 and Corollary 2.4.1, this
is a function of the reward function, the discount factor, and the initial beliefs. Should finding
the true steady state of all patients be critically important, one easily implementable adaptation
of this framework would be to calculate the reward-to-cost threshold that guarantees discovery
of a patient’s true steady state, and to use a personalized reward-to-cost ratio which is above this
threshold. Third, to the best of our knowledge there is no clinically valid method of estimating the
effect of a single week of fluid on long-term vision. As a result, we had to restrict our analysis to
more indirect metrics, such as time with symptoms. As the clinical understanding of AMD grows,
we hope that we can improve our objective function parameters and more directly relate them to
primary health metrics.

Overall, the ordinal MDP provides an approach to safely and efficiently identify a personalized
fixed-interval treatment schedule for patients. This work builds upon the MAB and MDP literature
by introducing an ordinal action space and demonstrates that the optimal policy is an index policy.
A simulation on patient data from the Kellogg Eye Center at the University of Michigan illustrates
that using the ordinal MDP could reduce patient symptoms while also reducing the number of
required visits and overall treatment costs. We hope that our introduction to this framework inspires
further development and validation, and eventually serves to improve the treatment of patients
diagnosed with chronic conditions.
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CHAPTER 3

Synchronizing the Treatment of Multiple Chronic
Conditions

3.1 Introduction

For the 4 in 10 U.S. adults diagnosed with multiple chronic conditions, scheduling treatment is a
major challenge. [16] Even if the MSTI of each condition is known, the overall optimal treatment
schedule is often very unclear. Recall the example shown in Figure 1.2, which highlights a patient
with only two chronic conditions. This example patient has MSTIs of 3 and 4 periods, respectively.
To minimize treatment costs, the clinician could schedule treatment at the MSTIs. However, by
simply scheduling both conditions to be treated every 3 periods, the clinician could synchronize the
patient’s treatment and avoid several visits to the clinic. A reduced number of visits often means
saving the patient significant time and money. However, synchronizing the treatment of the condi-
tions requires treating one of them more frequently than necessary, resulting in additional treatment
costs long-term. When coordinating multiple conditions, clinicians must constantly manage this
trade-off between minimizing visit costs and minimizing treatment costs.

A common example of managing multiple chronic conditions is again neovascular AMD. Of
the 3 million U.S. adults diagnosed with advanced AMD, approximately one-third have bilateral
AMD, or AMD in both eyes. [13] The treatment of both of these eyes is managed by a single
clinician, meaning that scheduling decisions for each eye are easily synchronized or kept indepen-
dent. Additionally, an anti-VEGF injection to treat AMD takes only a few minutes, meaning that
treating both eyes (versus a single eye) has a marginal impact on the length and cost of a clinical
visit. Patients can easily save a trip to the clinic for an injection by synchronizing the injection tim-
ing for each eye. However, saving a visit often means additional treatment for one of the patient’s
eyes, and the cost of treatment can range dramatically depending on which medication the patient
is receiving. For example, one commonly used anti-VEGF agent (bevacizmab) costs only $50 per
injection, while the primary alternative medication (aflibercept) costs $1,600 per injection. [35]
The price discrepancy is primarily driven by the fact that bevacizumab was not originally designed
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for AMD treatment, but instead for cancer treatment. It was ultimately found to be a viable and
often very effective treatment for AMD, and its lower price point is clearly very attractive to pa-
tients. [13] However, not all AMD patients respond to bevacizumab. [13] Aflibercept, in contrast,
was designed specifically for AMD treatment. However, because of the price structure of these
medications, clinicians typically start a patient on bevacizumab treatment to see if they respond
well to this medication. If not, clinicians switch the patient to aflibercept despite its higher price
point. As might be expected, the decision whether or not to synchronize the injections for both
eyes depends heavily on the individual patient’s visit and treatment costs.

3.1.1 Chapter outline

In this chapter we answer the following key question: When is it worth synchronizing the treat-
ment of multiple chronic conditions? In Section 3.2, we discuss the current state of the literature
on managing multiple conditions. In Section 3.3, we describe our novel dynamic programming
approach to treatment scheduling. This model can be used to provide optimal treatment schedules
for patients with multiple chronic conditions generally. In Section 3.4 we use our model to demon-
strate that there is a visit cost threshold above which the optimal policy is always to synchronize
treatment. We also provide the specific synchronization policy in this instance. For the 2-condition
case, we provide a closed-form equation representing this threshold. We then describe the effect
that treatment costs and the patient’s MSTIs have on this threshold. To reduce the computational
complexity of the optimal policy for large state spaces, we provide an easily calculable heuris-
tic policy, derived from a small subset of high performing baseline policies. In Section 3.5, we
demonstrate the performance of the optimal, baseline, and heuristic policies via a case study on
patients with bilateral AMD at the Kellogg eye center. We show that following our framework can
reduce direct medical costs by $1,183 per patient. Extrapolating our findings to a national level,
this would translate to $583 million in savings.

3.2 Relevant Literature

The work in this chapter builds heavily on our work in Chapter 2. As such, much of the literature
discussed in Section 2.2 is relevant for this section as well. However, this work is one of the first
operations research approaches to managing multiple chronic conditions.

From a medical literature perspective, there is a great deal of research illustrating the importance
of considering each of a patient’s conditions when making medical decisions. [49, 53, 72, 73, 69]
Specifically for AMD, several studies have found that synchronized injections is a safe and often
cost-effective approach to treatment. [25, 80, 42] Some medical studies have even incorporated the
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existence of comorbidities into decision making, such as Taksler et. al (2013), who use a Markov
model to estimate how patient behavior changes (e.g. quitting smoking, eating healthier, etc.)
effect an individual patient’s life expectancy. [92] However, this and similar studies only consider
one-time recommendations for patients, as opposed to the dynamic decision making in this work.
[92, 12]

To the best of our knowledge, very few operations research approaches incorporate multiple
conditions into their decision making frameworks. Perhaps the closest examples are found in
Mason et. al (2014) and Hajjar and Alagoz (2022). [59, 33] Mason et. al (2014) develop an MDP
for the simultaneous management of blood pressure and cholesterol. However, their model focuses
on when to initiate treatment, and does not provide long-term scheduling recommendations for
follow-up treatment. Similarly, Hajjar and Alagoz (2022) enhance their disease screening model
by incorporating the health state of a secondary chronic condition. As an example, they show how
screening policies for breast cancer can be improved by incorporating whether or not an individual
also has type-II diabetes.

Outside of healthcare, there are some parallels between our treatment scheduling problem and
a machine maintenance problem. For example, we could re-frame our scenario to represent a tech-
nician who must travel to a site to perform preventative maintenance on a set of machines with
differing repair needs. The technician may be able to service multiple machines in the same visit,
however, there is a cost with each repair. While there are a number of preventative maintenance ap-
plications considering multiple machines (e.g. [24, 81, 63]), the reward functions in previous work
are insufficient for our scenario. Generally, researchers accept machine breakdowns as a common
occurrence. In health applications, a parallel to a “machine breakdown” could have significant
long-term effects on patient health, and are avoided whenever possible. This makes applying past
machine maintenance work to our problem impractical. Additionally, the current literature does
not consider the grouping of repair tasks in the form of site visits over time. In this way, we believe
our model could also provide benefit outside of healthcare applications.

In this work, we hope to demonstrate the importance of considering multiple chronic conditions,
and set a strong foundation for future research on this topic.

3.3 Modeling Approach

We model this problem using a discrete time, infinite horizon dynamic program. Our decision
maker is a clinician simultaneously scheduling the treatment of N chronic conditions. The clini-
cian’s goal is to minimize the lifetime cost of treatment for all conditions without causing patient
symptoms. In each time period t the clinician first observes the time since the patient last received
treatment for each condition i, represented as xi,t. The clinician then decides which, if any, of the
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Figure 3.1: The sequence of events in each decision epoch.

conditions to treat in this period. We assume that each condition i has some known maximum safe
treatment interval Mi. If xi,t = Mi, then the clinician must treat condition i in period t. If the
clinician chooses to treat at least one condition, they incur a visit cost c0(A), where A is an action
set representing which conditions to treat. Additionally, administering treatment incurs treatment
costs c(A,X), depending on which conditions are being treated and the time since last treatment
for each condition. If condition i is treated in period t, then xi,t+1 = 1, otherwise xi,t+1 = xi,t + 1.
This decision cycle then repeats in all following periods, and is outlined in Figure 3.1. As chronic
conditions often affect patients for the remainder of their lifetime, the decision horizon is generally
much longer than individual treatment intervals. We therefore model this as an infinite horizon
problem, as is common in the medical decision making literature. [4, 87, 91]

3.3.1 Notation

We can describe our model using the following notation:

• t, the current period.

• N , the number of chronic conditions under consideration.

• Mi, the maximum number of periods that condition i can go between treatments, for i ∈ [N ].
Without loss of generality, we order the condition indices in terms of increasing Mi values.
That is, i < j =⇒ Mi ≤Mj .

• xi,t, the number of periods since condition i was treated prior to period t, where xi,t ∈
{1, 2, . . . ,Mi}. As this is an infinite horizon problem, we eliminate the time subscript when
unambiguous.

• Xt, the set of xi,t values for all conditions, Xt = {x1,t, . . . , xN,t}.

• ai,t, the decision whether or not to treat condition i in period t, for i ∈ [N ]. If xi,t < Mi,
then ai,t ∈ {0, 1}. If xi,t ≥Mi, then ai,t = 1 (i.e. the condition must be treated this period).
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• At, the set of clinician decisions for all conditions in period t, At = {a1,t, . . . , aN,t}.

• c0(A), the visit cost associated with treating at least one condition. Generally, this represents
administrative or overhead costs for the patient or provider (e.g. travel costs, office visit
billing costs, etc.). We assume c0(·) ≥ 0.

• c(A,X), the treatment cost associated with treatment decisions A and the time since each
condition was last treated. Generally, this represents medication costs, as well as long term
health effects associated with (not) treating after a given interval. We assume c(·, ·) ≥ 0.

• δ, the per period discount factor, δ ∈ (0, 1).

3.3.2 State space and state transitions

We define our state space as the set X = {x1, . . . , xN}, which is the number of periods since
condition i was treated prior to the current period, for all i ∈ [N ]. The transitions in this model
are deterministic, as described in Equation 3.1. If the clinician decides to treat a condition in the
current period, the time since last treatment for that condition will be 1 in the following period. If
the clinician decides to not treat a condition in the current period, the time since last treatment will
increase by 1 in the following period.

xi,t+1 =

xi,t + 1 if ai = 0

1 if ai = 1
(3.1)

3.3.3 Optimality equation

Our optimality equation is shown in Equation 3.2. We formulate this as a cost-minimization prob-
lem. The immediate costs include the visit cost c0(A) and the treatment costs, c(A,X). We let X ′

represent the future state in the following period, which is deterministic given X and A.

V (X) = min
A
{c0(A) + c(A,X) + δV (X ′|A,X)} (3.2)

3.4 Analytical Results

In this section, we provide analytical insights derived from this multiple condition decision making
framework. We discuss scenarios in which synchronizing treatment is beneficial for patients being
treated for N conditions. We provide a specific synchronized decision policy that minimizes pa-
tient visit costs, and discuss when it is the optimal policy. We also provide a scheduling heuristic
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that is useful for complex problem formulations (e.g. when the MSTIs are very large, and thus
the state space becomes large) and bound the regret of following this heuristic. For the latter part
of this section, we focus our analysis on insights that are useful in the context of treating N = 2

conditions, as it is particularly relevant for the treatment of patients with bilateral AMD.

3.4.1 Assumptions

We first outline assumptions which better align our model to the treatment of conditions like neo-
vascular AMD. This allows us to derive more meaningful insights with an immediately practical
clinical context. These assumptions are:

• The clinician cannot intentionally cause disease progression. That is, if xi,t ≥ Mi, then
ai,t = 1

• There is a fixed visit cost if at least one condition is treated in a decision epoch, and no visit
cost otherwise. Mathematically, we say that c0(A) is equal to a non-negative constant c0 if
any number of the conditions are treated, and is equal to 0 otherwise.

• There is a fixed treatment cost for treating a given condition that does not depend on the time
since last treatment. Mathematically, we say that ci(1, xi) is equal to a non-negative constant
ci if condition i is treated, and is equal to 0 otherwise.

3.4.2 Synchronizing treatment

An important topic when treating multiple conditions is the potential benefit of coordinating treat-
ment. By scheduling treatment for multiple conditions in the same clinical visit, the clinician can
eliminate the need for a additional visits and the associated visit costs. However, coordinating this
treatment means potentially over-treating some conditions, which might result in higher treatment
costs long-term. In general, it is difficult for clinicians and patients to understand this tradeoff
when scheduling treatment. In this section, we describe conditions under which the optimal policy
is to always synchronize the treatment of the conditions.

Definition 3.4.1 A decision policy is a synchronized policy if it never recommends treating a con-

dition i ∈ {2, . . . , N} without also treating condition 1.

Recall that, without loss of generality, the condition 1 has the shortest maximum safe treatment
interval (i.e. M1 ≤ Mi). Note that per Definition 3.4.1, condition 1 may be treated on its own
as part of a synchronized policy. This is to incorporate situations in which condition 1 requires
treatment much more often than condition i. For example, if condition 1 requires weekly treatment
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while condition i only requires yearly treatment, it is clearly impractical to treat both conditions at
the same frequency.

In this analysis, we will pay special attention to one particular synchronized policy, which we
refer to as π1. This policy is one which treats condition 1 at its MSTI, and reduces visit costs
by treating the other conditions at one of these regular condition 1 visits. We formally define π1

below, and provide an example patient in Figure 3.2.

Definition 3.4.2 We define a decision policy π1(X) via the following:

• If for any i ∈ [N ] we have xi = Mi then:

– ai = 1 and a1 = 1

– aj = 1 for all j ̸= 1 s.t. Mj − xj < M1

– ak = 0 for all k ̸= 1 s.t. Mk − xk ≥M1

• Else:

– ai = 0 for all i ∈ [N ]

In words, π1 represents the following: if you must treat a condition now (i.e. if xi = Mi), you
also treat condition 1 and any other condition that will require treatment before the next condition 1
treatment (i.e. in less than M1 periods). The π1 decision policy reduces visit costs by synchronizing
treatment to occur only every M1 periods. In fact, this policy is of particular interest, because it
minimizes overall visit costs, which we prove in Lemma 3.4.1 below.

Lemma 3.4.1 For constant visit costs (i.e. when c0(A) = c0 ∈ R+ for all A), the π1 decision

policy minimizes a patient’s lifetime visit costs.

Case 1: Condition 1 will require treatment at least as soon as all other conditions will require

treatment (i.e. M1 − x1 ≤Mi − xi, ∀ i ∈ {2, ..., N}.
First, we note that scheduling a visit before at least one condition requires treatment is imme-

diately sub-optimal. Such a decision would add extra visit and treatment costs, with no benefit.
Therefore, the clinician should not treat until at least one condition requires treatment. In this case,
that will include condition 1.

Long term, since the clinician must treat condition 1 every M1 periods, the minimum number
of visits is 1 visit per M1 periods. Starting from the period in which we first treat condition 1,
this means paying c0 every M1 periods. The cost of this is an infinite discounted geometric series,
which has a lifetime cost of c0

1−δM1
. This means that the minimum lifetime visit cost is c0

1−δM1
. By
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following π1, you will only treat on the frequency of M1, which means that the long-term visit cost
of following π1 is also c0

1−δM1
. Therefore, π1 achieves the minimum possible visit cost.

Case 2: Condition 1 only requires treatment after at least one other conditions will require

treatment (i.e. ∃ i ∈ {2, ..., N} s.t. M1 − x1 > Mi − xi.

In this case, if following π1, you would wait until one of the conditions (i.e. condition i) requires
treatment and then treat at least condition i and condition 1. Beyond this, you would continue to
treat every M1 periods. Alternatively, you could delay treating some of the conditions that do not
require treatment at the same time as condition i to potential reduce long-term treatment costs. We
next show that this delay (i.e. deviating from π1) is never optimal.

Should you choose to delay some conditions beyond the condition i treatment visit, you would
pay c0 for each additional delayed visit until condition 1 reaches its MSTI. Once condition 1
reaches its MSTI, we know from Case 1 that the best you can do in terms of visit cost is c0

1−δM1
.

However, because of the delay, this long-term visit cost is discounted. At best, you only require
one additional visit (i.e. one c0 payment) for the condition i visit before treating condition 1
(assuming no other conditions need to be treated in between, which would only worsen the visit
cost). Therefore, the best possible long-term visit cost is c0 + δM1−x1

(
c0

1−δM1

)
when delaying

treatment. Note that this cost is calculated starting the period in which you treat condition i.
Alternatively, we know that the cost of following π1 starting in this period is c0

1−δM1
. So for deviating

to be better than π1, we would need:

c0 + δM1−x1

(
c0

1− δM1

)
<

c0
1− δM1

=⇒ c0 <

(
c0

1− δM1

)
(1− δM1−x1)

=⇒ 1 <

(
1− δM1−x1

1− δM1

)
=⇒ δM1−x1 < δM1

which is a contradiction, since δ ∈ (0, 1) and M1, x1 ≥ 1. Therefore, deviating is never optimal,
and π1 also minimizes visit costs in this case. ■

As a consequence of Lemma 3.4.1, we introduce Theorem 3.4.1. This theorem describes a visit
cost threshold c̄0, above which the optimal policy is a synchronized policy. More specifically, the
optimal policy above this threshold is π1. This threshold allows us to derive important managerial
insights for managing multiple conditions. In the example of AMD, individual patients experience
unique visit cost demands. Because AMD can lead to vision loss, a major burden patients expe-
rience is coordinating transportation to the clinic for treatment. Patients with significant vision
loss may require a caretaker to drive them to the appointment, while others may still be able to
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drive themselves. Additionally, rural patients may need to travel long distances to appointments,
increasing transportation demands. Long travel times might also require patients to take time off
of work to make their appointment, resulting in lost wages. The threshold described in Theorem
3.4.1 helps us understand which categories of patients might require synchronized treatment, and
can inform population-level treatment policies.

Theorem 3.4.1 For constant visit and treatment costs (i.e. if c0(A) = c0 ∈ R ∀A and ci(A,X) =

ci ∈ R∀ i, A,X), there exists a visit cost threshold c̄0 above which the optimal policy is always π1.

The long-term costs in this decision making problem are a sum of visit and treatment treatment
costs. As such, we can write the long-term cost of following any policy as a linear combination of
c0 and ci values. First, consider the cost of following π1, which we can write as:

V π1(X) = k0(X)c0 +
N∑
i=1

ki(X)ci

In this linear version of our π1 cost-to-go function, we let k0(X) represent a visit cost coef-
ficient, and the ki(X) values represent treatment cost coefficients. Both of these long-term cost
scaling coefficients are dependent on the patient’s current state X .

Then consider the cost of following some arbitrary decision policy π2, which we can similarly
write as:

V π2(X) = l0(X)c0 +
N∑
i=1

li(X)ci

From Lemma 3.4.1 we have that k0(X) ≤ l0(X), since π1 minimizes overall visit costs. We
use this fact to show that if c0 is large enough, π1 is the optimal decision policy. We do this across
two cases.

Case 1: k0(X) < l0(X) ∀X
In this case, we assume π1 results in strictly lower overall visit costs. Then, the cost of following
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π1 is at least as good as π2 if, for all X , we have that

k0(X)c0 +
N∑
i=1

ki(X)ci ≤ l0(X)c0 +
N∑
i=1

li(X)ci

=⇒ c0(l0(X)− k0(X)) ≥
N∑
i=1

(ki(X)− li(X))ci

=⇒ c0 ≥
∑N

i=1(ki(X)− li(X))ci
l0(X)− k0(X)

.

Since k0(X) < l0(X), we know that the overall c0 coefficient is positive and this inequality
represents a lower bound on c0. Therefore, for any π2 policy and corresponding l0(X) and li(X)

values, there is some finite visit cost value above which π1 is at least as good as π2.

Case 2: k0(X) = l0(X) for at least one value of X

In this case, if k0(X) = l0(X), then our inequality comparison reduces to

k0(X)c0 +
N∑
i=1

ki(X)ci ≤ l0(X)c0 +
N∑
i=1

li(X)ci

=⇒ c0(l0(X)− k0(X)) ≥
N∑
i=1

(ki(X)− li(X))ci

=⇒ 0 ≥
N∑
i=1

(ki(X)− li(X))ci.

If k0(X) = l0(X) then we must have that π2 also minimizes visit costs. From the proof of Lemma
3.4.1, we know that this can only occur if π2 also treats every M1 periods, similar to π1. Note
that π1 is also designed to minimize treatment costs while treating on the M1 frequency (i.e.
treat condition i every κM1 periods where κ is the largest positive integer such that κM1 ≤ Mi).
Therefore, any alternative policy π2 which treats on the same frequency as π1 would have to
treat at least one other condition i ∈ {2, ..., N} more frequently than needed. This means
that ki(X) < li(X) for any condition i treated more frequently than π1 and kj(X) = lj(X)

for any condition j treated at the same frequency as π1. Therefore, the overall treatment costs∑N
i=1(ki(X)− li(X))ci ≤ 0, which means that our inequality comparison always holds, regardless

of the value of c0. Therefore, π1 is at least as good as any policy π2 which fits into this case. ■

In Theorem 3.4.1, we prove the existence of a synchronization threshold c̄0. This is useful,
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because it tells us that for patients with “high” visit costs, π1 is always the optimal scheduling
policy. From a practical perspective, however, this is less helpful if we cannot calculate the specific
value of c̄0 for an individual patient. In the generic N -condition case, this is a daunting analytical
task, because calculating the value of this threshold requires calculating the value of all possible
k0(X), ki(X), l0(X), and li(X) values. In such cases, it is generally easier to do a numeric search
over a range of visit costs to determine when π1 becomes optimal. However, in Section 3.4.3
below, we provide a closed-form method for calculating these values in the 2-condition scenario.
Additionally, we use these formulas to derive key managerial insights for patients being treated for
2 conditions, such as patients being treated for bilateral AMD.

3.4.3 Coordinating two conditions

To get insights regarding the treatment of bilateral AMD, we can rewrite Equation 3.2 in the context
of N = 2 conditions. In this scenario, there are at most 4 possible actions that the clinician can
take in each period: (i) treat both conditions, (ii) treat only condition 1, (iii) treat only condition
2, or (iv) treat neither condition. When all 4 of these actions are available to a clinician, we can
reformulate Equation 3.2 as Equation 3.3, with the cost-to-go of all 4 actions listed in the same
order as above.

V (x1, x2) = min



c0 + c1 + c2 + δV (1, 1),

c0 + c1 + δV (1, x2 + 1),

c0 + c2 + δV (x1 + 1, 1),

δV (x1 + 1, x2 + 1)


(3.3)

Note that these 4 actions are not always available to the clinician. If x1 = M1, then the clinician
must treat at least condition 1 (i.e. actions (iii) and (iv) are not available). Similarly if x2 = M2,
then the clinician must treat at least condition 2 (i.e. actions (ii) and (iv) are not available). In these
cases, we can simply write the optimality equation using a subset of the options in Equation 3.3.

In Theorem 3.4.2 are able to derive a closed-form threshold for c̄0 when N = 2 conditions.
The threshold described in Theorem 3.4.2 helps us understand specifically which AMD patients
would benefit from synchronized treatment, and can inform population-level treatment policies.
By deriving this closed form solution, we are also able to gather insights on the effect of prob-
lem parameters on the synchronization threshold. For example, the 2-condition threshold can help
us understand how medication and administrative pricing affects optimal decision policy. Addi-
tionally, Theorem 3.4.2 and it’s corollaries provide insight into how the maximum safe treatment
intervals and the discount factor affect any potential advantages of synchronizing treatment.
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Theorem 3.4.2 For N = 2 conditions, the c̄0 threshold is:

c̄0 = max{

−c1 ∗
(
δM1−x1 − 1

1− δM1

)
− c2 ∗

δ
(
⌊
M2−M1+x1

M1

⌋
+1)M1−x1 − δ

M1

⌊
M2
M1

⌋

1− δ
M1

⌊
M2
M1

⌋


(
δM1−x1 − δM1

1− δM1

) , (3.4)

−c1 ∗
(
δM1−x1 − 1

1− δM1

)
− c2 ∗

δM1−x1 − δ
M1

⌊
M2
M1

⌋

1− δ
M1

⌊
M2
M1

⌋


(
δM1−x1 − δM1

1− δM1

) ,

− c1 − c2

(
δM2−x2 − 1

1− δ
M1

⌊
M2
M1

⌋
)(

1− δM1

δM2−x2 − δM1

)
,

− c1 − c2

δ
(
⌊
M2−x2−M1

M1

⌋
+1)M1 − δ

(
⌊
M2−x2−M1+x1

M1

⌋
+1)M1−x1

1− δ
M1

⌊
M2
M1

⌋
( 1− δM1

1− δM1−x1

)
,

− c1 − c2

(
δM1 − δM1−x1

1− δ
M1

⌊
M2
M1

⌋
)(

1− δM1

1− δM1−x1

)
,

− c1 − c2

(
δM2−x2 − δM1−x1

1− δ
M1

⌊
M2
M1

⌋
)(

1− δM1

1− δM1 + δM2−x2 − δM1−x1

)
,

−c1 ∗
(
δM1−x1 − δM2−x2

1− δM1

)
− c2 ∗

1 +
δ
(
⌊
M2−M1+x1

M1

⌋
+1)M1−x1 − δM2−x2

1− δ
M1

⌊
M2
M1

⌋


(
1 +

δM1−x1 − δM2−x2

1− δM1

) }

Recall that, π1 describes a treatment policy where the conditions are synchronized to be treated
using intervals that are a multiple of M1. Figure 3.2 shows an example of a patient following the
π1 decision policy. In this example, the second condition is treated every 9 periods (as opposed to
the MSTI of 11 periods) as a means of reducing visit costs. The consequence of this action is that
it increases lifetime treatment costs for condition 2.

To describe the conditions under which π1 is an optimal policy, we leverage the policy iteration
method of solving infinite horizon dynamic programs. Figure 3.3 shows an outline of our approach.
We start by calculating the π1 policy cost-to-go values V π1(X) for all possible values of X . We
then perform a single loop of policy iteration. In the policy evaluation step of policy iteration, we
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Figure 3.2: An example treatment schedule following π1 for a patient with M1 = 3 and M2 = 11.
Assuming that the patient receives treatment for both conditions at time t = 0, this specifically
represents the treatment cycle corresponding to the cost-to-go value Φπ1 defined in Appendix B.

first calculate the “would-be” cost-to-go values for each available decision had we selected that
action in the current period, and then followed π1 afterwards. We can define the “would-be” cost-
to-go for a given action a as Qπ1(X, a). In the policy update step of policy iteration, we update the
optimal action a∗(X) = argmaxa{Q(X, a)}.

Figure 3.3: An overview of the proof of Theorem 3.4.2. Using the policy iteration method of
solving dynamic programs, we select π1 as our initial policy. We then check whether we can
improve upon π1, which depends on the problem parameters. The conditions under which we
cannot improve upon π1 are the conditions under which π1 is the optimal policy.

The key idea of our proof is that π1 is an optimal policy if and only if a∗(X) matches π1 exactly
for all values of X and the policy iteration algorithm immediately converges. That is, π1 is optimal
if the evaluation step of policy iteration finds that the best (in this case, lowest) cost-to-go values
are those that correspond with following π1. The number of indivdiual state comparisons makes
the proof of Theorem 3.4.2 relatively long, so we put it in Appendix B for brevity. The key result
is that there are 7 relevant inequalities across all states in X that must be true for π1 to be optimal,
and these 7 inequalities comprise Theorem 3.4.2.
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3.4.3.1 A sufficient synchronization threshold

In Theorem 3.4.2, we derived 7 visit cost thresholds which depend on the current state X of
the patient. If the visit cost is above these 7 thresholds for all possible state spaces, then π1 is
universally an optimal policy. We next come to an important observation:

Observation 3.4.1 In practice, it is unlikely that a patient will visit all possible state spaces.

Suppose that, at the start of treatment, a clinician treats both eyes at the same period to get
patients to a baseline level (i.e. suppose that after the first visit, the patient’s state is X = (1, 1)).
Next, suppose that the patient follows policy π1 to schedule treatment. As seen in Figure 3.2, the
patient will follow a cyclical treatment pattern. As a result, the states that the patient enters will also
follow a cyclical pattern, and will consist of a subset of all available states, say Sπ1 . If the patient
begins treatment in some state X0 ∈ Sπ1 and follows the π1 policy, they will never leave this subset
of states. Thus, we only need to consider states that the patient will actually enter to determine
the conditions under which π1 is optimal. If π1 is the optimal policy for every X ∈ Sπ1 , then
the patient’s state will never leave Sπ1 , as leaving would be sub-optimal. Therefore, the optimal
action in states outside of Sπ1 do not affect our decision making. If we assume that a patient enters
X = (1, 1) after the first visit, we only need to consider the thresholds for states X ∈ Sπ1 .

Definition 3.4.3 Let Sπ1 be the set of states visited if following the π1 decision policy starting from

state X = (1, 1). By following the decision rules of π1 we can describe the set of states in Sπ1 as

Sπ1 = {(x1, x2) : x2 = x1 + lM1} (3.5)

where l is any integer such that 0 ≤ l < ⌊M2

M1
⌋ − 1.

We can refer to a visit cost threshold that only considers states X ∈ Sπ1 as a “joint-start thresh-
old”. It represents the threshold required to continue following π1 if a patient starts in a state
within Sπ1 . Mathematically, let ¯̄c0 represent the joint-start threshold. As almost all patients begin
treatment by getting both eyes to a baseline level, ¯̄c0 is a practically relevant threshold that will be
sufficient for most patients. Since the joint-start threshold ¯̄c0 includes a fewer number of conditions
as the “full threshold” c̄0 outlined in Theorem 3.4.2, we know that ¯̄c0 ≤ c̄0. In particular, when only
considering states within Sπ1 , we will never enter Case 2 of Theorem 3.4.2. As a result, we can
exclude Equations B.4 and B.5 from the conditions required for ¯̄c0. The other cases and subcases
that can be excluded depend on the patient-specific combination of M1 and M2 and are not easily
generalizable.
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3.4.3.2 The effects of treatment cost on the synchronization threshold

We next consider how the treatment cost parameters c1 and c2 affect the synchronization thresholds
c̄0 and ¯̄c0. We also show how the joint-start threshold offers important managerial insights that the
full threshold does not provide. Specifically, we show the following:

• For joint-start patients, if the cost of treating condition 1 is high enough, π1 is always optimal,
regardless of the visit cost.

• For all patients, if the cost of treating condition 2 is high enough, π1 is never optimal.

• For all patients, if the treatment cost for both conditions is zero, π1 is always optimal.

• For all patients, if the MSTI of condition 2 is a multiple of the MSTI of condition 1, π1 is
always optimal.

Corollary 3.4.1 As the cost to treat condition 1 goes to infinity the full synchronization threshold

goes to infinity, but the joint-start threshold goes to zero. That is, as c1 −→ ∞, c̄0 −→ ∞ and
¯̄c0 −→ 0.

To prove this, we look at the coefficients of c1 across Equations B.4-B.10. In Equations B.4
and B.5, these coefficients are positive. In Equations B.6-B.9, these coefficients are negative. In
Equation B.10, this coefficient could be either positive or negative, depending on the state X and
the values of M1 and M2. The full threshold c̄0 includes all of these equations. Since at least two
of these equations have positive coefficients, as c0 −→ ∞, the minimum of these equations also
goes to infinity. Therefore, c̄0 also goes to infinity.

Recall that the joint-start threshold ¯̄c0 does not include Equations B.4 and B.5, as they are a
result of Case 2 of Theorem 3.4.2. We then need to consider the c1 coefficient in Case 6. When
in the subset of states Sπ1 , if following π1, it will always be that M1 − x1 ≤ M2 − x2. With this
fact, we can see that δM1−x1 − δM2−x2 ≥ 0. Therefore, the coefficient on c1 will be negative for the
states in Sπ1 . As a result, all of the c0 coefficients for the relevant joint-start equations are negative.
Then, as c0 −→ ∞ the minimum of these equations goes to negative infinity. However, since we
assume that c0 ≥ 0 we say that ¯̄c0 −→ 0. ■

Corollary 3.4.2 As the cost to treat condition 2 goes to infinity both the full and joint-start syn-

chronization thresholds also go to infinity. That is, as c2 −→∞, c̄0 and ¯̄c0 −→∞.

To prove this, it is sufficient to show that one of the equations comprising each of the thresholds
goes to infinity as c2 goes to infinity. Equivalently, we can say that this is true if at least one of the
c2 coefficients is positive. Then, by recognizing that Equation B.8 has a positive c2 coefficient, and
is a relevant threshold for both c̄0 and ¯̄c0, the proof is complete. ■
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Corollary 3.4.3 If the treatment costs for both conditions are 0, the optimal policy is always π1.

That is, as c1 and c2 −→ 0, c̄0 and ¯̄c0 −→ 0.

To show this, we can simply set c1 = c2 = 0 and see that Equations B.4-B.10 all become
c0 ≥ 0.

■

Corollaries 3.4.1, 3.4.2, and 3.4.3 demonstrate the importance of treatment cost in the optimal
policy. Generally, π1 is designed to minimize both the visit costs and condition 1 treatment costs.
It does this by accepting additional condition 2 treatment costs as a trade-off. As c1 becomes more
expensive, it is intuitive that π1 would be optimal, as minimizing condition 1 treatments becomes
essential, and π1 does this while also reducing visit costs. As c2 becomes more expensive, then
the trade-off of extra condition 2 visits that π1 uses to reduce visit costs is no longer worthwhile.
If treatment costs are zero, then the decision maker is only concerned with minimizing visit costs.
From Corollary 3.4.3, we can see that π1 is optimal in this case, and therefore is the policy that
minimizes visit costs.

Corollary 3.4.1 highlights the importance of considering both the full threshold and the joint-
start threshold. Looking at just the full threshold would be counter-intuitive, as it suggests that
even though π1 minimizes the treatment costs of condition 1, it is not a good policy when treating
condition 1 is expensive. Instead, the full threshold tells us that, for a high c1 there are certain

states where π1 is unlikely to be optimal regardless of c0. For example, imagine a patient just
received treatment for condition 1 in the previous period, and now condition 2 must be treated in
the current period. In this case, π1 would require that you treat condition 1 again, in back-to-back
periods, regardless of how long it might be before condition 1 truly requires treatment. Treating
condition 1 in back-to-back periods is very unlikely to be optimal, especially if c1 is high. Instead,
the optimal policy is to not synchronize treatment initially, and instead synchronize treatment later
on, when condition 1 is closer to its maximum safe treatment interval. In this way, the gap between
c̄0 and ¯̄c0 represents a “start-up” cost of following π1. If the patient begins treatment in some state
outside of Sπ1 they may not follow π1 initially, but once they enter a state in this cycle, π1 is optimal
for the remainder of treatment. If the visit cost is above both c̄0 and ¯̄c0, then the patient is willing
to pay the start-up cost of following π1. If not, then the patient would rather avoid synchronizing
treatment initially, and reconsider synchronization at the next visit.

Corollary 3.4.4 If the maximum safe treatment intervals are multiples of one another, the joint-

start synchronization threshold is zero. That is, if M2 = kM1 for k ∈ N+ then ¯̄c0 = 0.

To prove this, we utilize Lemma 3.4.2 to demonstrate which conditions in Theorem 3.4.2 are
relevant to ¯̄c0.
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Lemma 3.4.2 If M2 = kM1 then ¯̄c0 is fully described by Equation B.7.

The proof of Lemma 3.4.2 is in Appendix B. Given Lemma 3.4.2, we only need to show that
Equation B.7 reduces to c0 ≥ 0 in order to show that ¯̄c0 = 0. We start by substituting M2 = kM1

into Equation B.7:

c0 ≥ −c1 − c2

δ
(
⌊
M2−x2−M1

M1

⌋
+1)M1 − δ

(
⌊
M2−x2−M1+x1

M1

⌋
+1)M1−x1

1− δ
M1

⌊
M2
M1

⌋
( 1− δM1

1− δM1−x1

)

=⇒ c0 ≥ −c1 − c2

δ
(
⌊
(k−1)M1−x2

M1

⌋
+1)M1 − δ

(
⌊
(k−1)M1−x2+x1

M1

⌋
+1)M1−x1

1− δ
M1

⌊
kM1
M1

⌋
( 1− δM1

1− δM1−x1

)

=⇒ c0 ≥−c1 − c2

δ
(
⌊
(k−1)M1−x1−lM1

M1

⌋
+1)M1 − δ

(
⌊
(k−1)M1−lM1

M1

⌋
+1)M1−x1

1− δkM1

( 1− δM1

1− δM1−x1

)
.

We next show that the coefficients on both c1 and c2 are negative. The c1 coefficient is −1,
which is immediate. For the c2 coefficient, we consider the numerators and denominators of the
two fractions individually. Since δ ∈ (0, 1), the second numerator and both denominators are
clearly positive. Next we note that(⌊

(k − 1)M1 − lM1

M1

⌋
+ 1

)
M1 − x1 =

(⌊
(k − 1)M1 − lM1

M1

⌋
+

x1

M1

)
M1

>

(⌊
(k − 1)M1 − x1 − lM1

M1

⌋
+ 1

)
M1,

which implies that the first numerator is also positive. Thus, the entire coefficient is negative.
Then, since c1 and c2 are non-negative by definition, we can reduce this threshold to c0 ≥ 0. We
have then shown that ¯̄c0 = 0 if M2 = kM1. ■

Corollary 3.4.4 is another example of the importance of considering both the full and joint-
start threshold values. The high-level result from Corollary 3.4.4 is intuitive. If the maximum
safe treatment intervals are multiples of each other, you do not need to adjust the timing of the
second condition to synchronize the visits. In a sense they are naturally aligned, and thus there
is no downside to synchronizing visits. However, the result of Corollary 3.4.4 only holds for the
joint-start threshold, because it relies on the fact that patients within this synchronization cycle do
not enter a majority of the possible states (i.e. Sπ1 is relatively small). However, the full threshold
does not ignore any states and always applies all of the equations within Theorem 3.4.2. As a
result, c̄0 is almost always non-zero, and can be counter-intuitive if considered in isolation. The
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full threshold could be interpreted as saying that even if condition 2 can naturally be synchronized
with condition 1, you should not do so. However what a non-zero full threshold really implies is
that even if the maximum safe treatment intervals are naturally synchronized, if patients start in a
state where the time since last treatment has been staggered (e.g. one of the conditions is offset
from this natural synchronization), you may wish to initially deviate from π1 to align the treatment
timing of the conditions for the future. That is, an additional condition 2 visit now might allow for
lower costs across the treatment horizon.

3.4.4 Using a heuristic for large state spaces

Solving dynamic programs using policy iteration has a computational complexity of O(|A||S|2 +
|S|3), where |A| is the size of the action space and |S| is the size of the state space. [75] For this
problem, the size of our state space |S| =

∏N
i=1 Mi. From a practical perspective, we can then see

that the computational complexity of this problem can increase dramatically as either the number
of conditions N increases or the length of the MSTIs Mi increase.

For conditions such as AMD, new drugs are often coming out which are designed to reduce
treatment burden by extending the feasible MSTIs for patients. For example, faricimab is a newer
anti-VEGF treatment which has shown potential for extending the maximum MSTI from 12 to
16 weeks. [37] As the scheduling windows grow, we can reduce the burden of computational
complexity on clinicians who need to make quick scheduling recommendations for patients during
a clinical visit by providing a heuristic for solving the 2-condition problem. In the following
section, we outline this heuristic, which is a combination of 3 simple policies that can be solved
offline. We then bound the regret of this heuristic and discuss the effect of different problem
parameters on this bound.

3.4.4.1 Baseline decision policies

For the 2-condition case, we highlight 3 baseline decision policies that comprise our decision
heuristic. The first of these is π1, which is defined in Definition 3.4.2. We can anecdotally refer
to π1 as the “cycle 1” policy, as it cyclically synchronizes treatment using visit intervals of length
M1. The other two policies we refer to as π2 and πI , which we define below.

The π2 policy, is similar to π1, in that it reduces visit costs by synchronizing visits. In contrast
to π1, this policy reduces visits by synchronizing treatment on the frequency of condition 2 (hence
the 2 subscript). In summary, π2 is designed to reduce visit costs while minimizing condition 2
treatment costs. We can anecdotally refer to π2 as “cycle 2” as it synchronizes treatment on a visit
cycle of length M2.
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Definition 3.4.4 In the N = 2 condition scenario, we define a decision policy π2(X) via the

following:

• If X2 = M2 then a1 = 1 and a2 = 1

• Else if X1 = M1 then a1 = 1 and a2 = 0

• Else a1 = 0 and a2 = 0

We next define the πI policy, which can be anecdotally referred to as an “independent” policy.
The πI policy treats each condition separately with no regard to visit cost. This policy only treats
each condition at its MSTI. Generally, πI is closest to current practice for conditions such as AMD.
While πI does not consider visit costs, it has the advantage of minimizing treatment costs, which
makes it a useful policy in specific scenarios (e.g. if treatment is very expensive relative to visit
costs).

Definition 3.4.5 We define a decision policy πI(X) via the following:

• For all i ∈ [N ]:

– If Xi = Mi then ai = 1

– Else ai = 0

After defining our baseline policies π1, π2, and πI , we can now describe our heuristic policy
πH . For each possible state X , the heuristic policy looks at the cost to go V π(X) of the baseline
policies. It then selects the action from the baseline policy with the lowest cost to go for that state
X . We define this formally below.

Definition 3.4.6 We define a decision policy πH such that πH(X) = argminπ{V π(X)} for π ∈
{π1, π2, πI}.

3.4.4.2 Bounding the heuristic regret

In this section, we provide a bound on the optimality loss from using the heuristic policy πH

versus solving for the full optimal policy. To do this, we first define a super-optimal cost-to-go
value V ∗(X). We define V ∗(X) such that it is as good or better than the following the optimal
decision policy (i.e. it may be unachievable in practice) and such that its value is describable in
closed-form. Having a closed-form description of V ∗(X) allows us to make a direct comparison
to our heuristic value V πH (X). Since V ∗(X) is as good or better than the optimal cost-to-go, it
follows that the difference V ∗(X)−V πH (X) is greater than or equal to the difference between our
heuristic and the optimal policy. This difference can therefore serve as a regret bound, which we
outline in Theorem 3.4.3.
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Theorem 3.4.3 We can define a regret bound for following πH in the 2-condition joint-start sce-

nario as R(πH), where

R(πH) = min

{
c2

(
1

1− δM1⌊M2/M1⌋ −
1

1− δM2

)
,

(c0 + c1)

δM2 − δ
M1

(
⌊M2−1

M1
⌋+1

)
(1− δM1)(1− δM2)

 ,

c0

(
1

1− δM2
− 1

1− δLCM(M1,M2)

)}
(3.6)

To define a super-optimal cost-to-go V ∗(X) we consider the following ideal scenario: a decision
policy that fully minimizes both visit costs (like π1) and fully minimizes treatment costs (like πI).
In general, minimizing both of these costs is unachievable except in specific scenarios. Recall that
π1 minimizes visit costs by requiring extra treatment for condition 2, and therefore by intentionally
not minimizing treatment costs. Then, assuming that we start in a period where both conditions are
treated together (e.g. a “joint-start” patient, who can be described as starting in X0 = (M1,M2)),
we have the following:

V ∗(M1,M2) =
c0

1− δM1
+

N∑
i=1

ci
1− δMi

.

Here, we only require visit costs every M1 periods, and treatment costs for each condition i

every Mi periods. Again, this is generally impossible, as we cannot have a treatment cost in a
period without an additional visit cost, unless it aligns naturally.

Our heuristic policy πH is a combination of the baseline policies π1, π2, and πI . Therefore, we
know that the cost-to-go of our heuristic policy V πH cannot be higher than the cost-to-go of any of
the baseline policies. That is V πH (X) ≤ min{V π1(X), V π2(X), V πI (X)}. When X = (M1,M2),
we can write the cost-to-go values of our baseline policies in closed-form. We have:

V π1(M1,M2) =
c0 + c1
1− δM1

+
c2

1− δM1⌊M2/M1⌋

V π2(M1,M2) =
c2

1− δM2
+

⌊M2−1
M1

⌋∑
i=1

δM1i

(
c0 + c1
1− δM2

)

V πI (M1,M2) =
c0 + c1
1− δM1

+
c0 + c2
1− δM2

− c0
1− δLCM(M1,M2)

In the πI cost-to-go, LCM(M1,M2) represents the least common multiple of M1 and M2. This
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subtraction of visit costs represents visits where both condition 1 and condition 2 naturally align
to be treated in the same period, and would otherwise be “double-counted”.

Then, a regret bound R(πH) for a joint-start patient can be written as

R(πH) = V ∗(M1,M2)−min{V π1(M1,M2), V
π2(M1,M2), V

πI (M1,M2)}

Then, by substituting in the values for V π(M1,M2) we can write our regret bound as

R(πH) = min

{
c2

(
1

1− δM1⌊M2/M1⌋ −
1

1− δM2

)
,

(c0 + c1)

δM2 − δ
M1

(
⌊M2−1

M1
⌋+1

)
(1− δM1)(1− δM2)

 ,

c0

(
1

1− δM2
− 1

1− δLCM(M1,M2)

)}
■

From 3.4.3, we can gather insight into the effect of visit and treatment costs on heuristic per-
formance. First, we can see that if the cost of treating condition 2 is 0, the regret also goes to 0.
In this case, following π1 would minimize visit costs with no downside in terms of treatment cost,
and would therefore be the optimal policy. Similarly, if the visit cost is 0, the regret goes to 0. In
this case, the only goal is to minimize treatment costs. Since the independent policy πI , does just
that, it becomes the optimal policy.

This regret bound also provides interesting insight into the effect of the MSTIs on policy perfor-
mance. If M2 gets large while M1 remains constant, we can see that the regret term associated with
π2 goes to zero. If both M1 and M2 get large, from all three of the baseline policy regret values, we
can see that the heuristic regret depends less on the absolute size of the MSTIs and more on their
relative values respective to one another. For example, the πI regret term has the LCM(M1,M2)

factor. Because of this term, MSTIs that align naturally (e.g. 4 weeks and 8 weeks) will have a
regret bound of 0. A similar effect can be seen due to the M1⌊M2/M1⌋ term in the other individual
regret bounds. For this reason, in our numerical analysis in Section 3.5, we describe the effects of
an MSTI alignment term, defined as M2 mod M1.

Another advantage of Theorem 3.4.3 is that it provides regret bounds for the individual baseline
policies. The components inside of the minimization function represent the regret bounds for
π1, π2, and πI , respectively. In current practice, most clinicians follow πI and treat conditions
independently. The regret bound shown here also allows us to calculate a regret bound for current
practice in closed form.
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3.5 Numerical Results

In this section we demonstrate the value of our framework through a case study on bilateral AMD.
We provide an example patient, and discuss the improvement gained from using the optimal policy
versus current practice. We also discuss the performance of the baseline policies. We then study
the effect of problem parameters (e.g. visit costs, treatment costs, etc.) on policy performance. We
also study the effect of the problem parameters on the synchronization thresholds c̄0 and ¯̄c0. Finally
we discuss the potential impact of following our optimization based framework on population level
AMD costs.

Throughout our analysis, we study a range of treatment and visit costs. At the Kellogg Eye
Center, the most common treatment options available for AMD are bevacizumab and aflibercept.
These are anti-VEGF medications designed to prevent the progression of AMD. Individual patients
respond differently to each medication, with some medications being ineffective for some patients.
Very recently, a newer drug called faricimab has also entered the market, with potential of enabling
longer MSTIs for patients. [37] Per our clinical collaborators, the cost of a single injection for
each drug at the Kellogg Eye Center is $50 for bevacizumab, $1,300 for aflibercept, and $1,800 for
faricimab. The dramatic price discrepancy comes from the fact that bevacizumab was not originally
designed for AMD treatment (in contrast to the other two medications). However, clinical trials
have shown bevacizumab to be as effective as the other medications despite its off-label use. [31,
10, 13] Consequently, clinicians typically prescribe bevacizumab to patients as a first attempt to
prevent disease progression. If patients do not respond to this drug, clinicians then use a step-
therapy approach, trying more expensive drugs as needed. In our analysis, we test the treatment
cost values in the $0-$1,800 range. Note that a $0 treatment cost might represent a patient who
has full insurance coverage for the injection. Visit costs at the Kellogg Eye Center are currently
billed at $244 per visit. Note that this cost only includes administrative fees, and does not include
personalized patient costs, such as travel or caregiver costs. As a result, we test a range of patient
visit costs from $0-$1,000.

Other problem parameters include the patient’s MSTIs. The MSTIs for individual eyes diag-
nosed with neovascular AMD currently range from 4 to 12 weeks, and are treated using weekly
intervals. We study all weekly scheduling options within this range. While the specific MSTI
values are important parameters, an additional useful consideration is how well the MSTI values
align. For example, MSTIs of 4 and 8 weeks are quite easy to schedule, as they naturally align. In
contrast, the best policy for patients with MSTIs of 4 and 11 weeks is much less intuitive. As a re-
sult, we study the effect of MSTI alignment on policy performance using the quantity M2 modM1

as a measure of the level of alignment.
The appropriate discount factor δ for a patient is difficult to quantify, so we test a range of dis-
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count factors between 0.01 and 0.99. For individual patients, we turn to our clinical collaborators
for guidance. Generally, the future is of high value, however since treating within the MSTI does
not cause disease progression, the future costs are mostly monetary (versus health-based). As a
result, maintaining a relatively high discount factor (such as δ ∈ (0.990, 0.999) used in Chapter 2)
is considered less important in this analysis.

3.5.1 Example patient

Consider a patient with bilateral AMD who has MSTIs of 4 weeks and 7 weeks. Recall that
bevacizumab is generally the first medication administered to a patient due to its relatively low
cost and high efficacy. [13] Assume that the patient responds to bevacizumab treatment and pays
$50 per injection (i.e. c1 = c2 = $50). Additionally, assume that the patient only pays the $244
administrative visit fee, and does not consider other visit costs such as travel or the value of time.
For a joint-start patient, we can see the outcome of following different treatment policies in Table
3.1 below. Table 3.1 shows us that following an optimal decision policy could reduce patient
costs by $2,064 (in terms of discounted lifetime costs) versus the current practice policy of πI .
Additionally, we can see that for this patient, the cost of following optimal policy is equivalent to
both π1 and the heuristic policy πH .

Policy π∗ π1 π2 πI πH

Discounted Lifetime Cost $8,730 $8,730 $9,220 $10,794 $8,730

Table 3.1: The discounted cost of following different decision policies for a joint-start bilateral
AMD patient being treated with bevacizumab.

For this same example patient, we can also calculate the synchronization thresholds c̄0 and ¯̄c0

as $300 and $103, respectively. Recall that the more practical threshold for interpretation is ¯̄c0. We
see that this patient has a visit cost above ¯̄c0, which is why the π1 policy is optimal for this joint
start patient. Interestingly, the patient’s $244 visit cost is not above the c̄0 threshold. This means
that if the patient had a different initial state, they may not have followed π1 exactly as the optimal
policy. For examples such as this, where the patient’s visit cost is in between the thresholds, the
optimal policy only differs from π1 at the start of treatment. Once the patient reaches a state inside
of Sπ1 , they follow π1 for the remainder of treatment.

3.5.2 Heuristic and baseline policy analysis

In this section, we show how varying each of the problem parameters affects the average policy
performance for the optimal, heuristic, and baseline policies. Figure 3.4 below shows the average
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performance effect across a range of visit costs, treatment costs, and discount factors for a joint-
start patient. Additionally, Figure 3.4 shows the effect of the alignment between the MSTIs, as
measured by M2 modM1.

Across all of the graphs in Figure 3.4, we see that our heuristic policy is very robust to the
problem parameters, and performs nearly optimal across all test cases. In our simulation, we tested
20,520 parameter combinations, and the heuristic was equivalent to the optimal policy in 19,887
(96.9%) of those combinations. For the combinations where πH was sub-optimal, the maximum
regret was 4.0%.

In Figure 3.4, we see that as the visit cost increases, the π1 policy gets closer to the optimal
policy. This matches the intuition derived from Theorem 3.4.2. We also see that for small visit
costs, the independent policy πI gets closer to optimal. This is intuitive, because for low visit costs,
minimizing treatment is most important, and πI minimizes treatment costs. In fact, when the visit
cost is $0, πI is optimal.

As the treatment cost for condition 1 increases we see that both the π1 and πI policies per-
form closer to optimal. The π2 policy starts to perform worse, because π2 reduces visit costs by
scheduling additional condition 1 treatment. As condition 1 treatment becomes more expensive,
this trade-off becomes less valuable. We see similar results regarding the treatment cost of condi-
tion 2. In this case, π1 starts to perform worse as the cost increases, again due to the trade off of
visit and treatment costs for condition 2. Notably, if condition 2 treatment costs are $0, then π1 is
optimal. This makes sense, because π1 minimizes both visit costs and condition 1 treatment costs,
which would be the only cost components in this scenario.

As the discount factor approaches 1, the regret for each of the baseline policies grows dra-
matically. This is primarily because repeated deviations from the optimal policy become more
important as the value of the future increases–therefore even slight policy differences start to have
a large impact on cost. Notably, our heuristic policy remains robust even as the discount factor gets
very close to 1. The effect of the MSTI alignment depends on the policy of interest. If M2modM1

is small, this means that shortening the treatment interval of the second condition (which π1 does)
does not have as large of an impact on cost. Therefore, for a smaller alignment metric, π1 performs
better. In contrast, if the MSTI alignment metric is large, this means that adding in an extra condi-
tion 1 visit to synchronize with condition 2 (which π2 does) happens less frequently and therefore
has a smaller cost impact. Therefore, for larger M2modM1, we see that π2 starts to perform better.
Again, our heuristic balances the best of both of these policies and performed well for all of the
alignment metrics in our analysis.

In Figure 3.5, we analyze the contribution of each of the baseline policies to our regret bound
for a joint start patient. From Equation 3.6, we see that the actual regret bound is the minimum of
the 3 lines shown in each of the plots within Figure 3.5. Similar to the results found in Figure 3.4,
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Figure 3.4: Plots comparing the performance of the baseline decision policies versus the optimal
policy. Performance is measured in terms of regret (i.e. the percent increase in cost compared to
the optimal decision policy).
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we see that a discount factor close to one has arguably the largest effect on regret, and therefore
the regret bound as well. However, even in this scenario our measured regret was only as high as
4.0%.

3.5.3 Synchronization threshold analysis

In this section, we analyze the effect of the patient-specific parameters on the synchronization
thresholds c̄0 and ¯̄c0, and highlight the key differences between the thresholds.

Figure 3.6 shows both the full and joint-start thresholds for an AMD patient receiving beva-
cizumab (i.e. c1 = c2 = $50) with a discount factor of 0.99. From this figure, we can see the
results of Corollary 3.4.4, which say that when M1 = M2, the joint-start threshold is zero. In-
terestingly, we see that for AMD patients, the majority of MSTI combinations have a joint-start
threshold of 0. This suggests that for many patients, the π1 policy is always optimal, regardless
of the visit cost. The combinations where π1 is not optimal are generally those where reducing
the treatment interval of condition 2 to match condition 1 would have a dramatic increase in treat-
ment frequency. For example, treating a 7 week condition every 4 weeks would nearly double the
treatment frequency, and is less likely to be optimal. This matches the results in Figure 3.4, which
suggest that a high M2 mod M1 was associated with poor π1 performance. Additionally, Figure
3.6, highlights a dramatic difference in the full and joint-start thresholds. This demonstrates the
practical importance of the joint-start threshold when deriving policy insights.

In Figure 3.7 we show the effect of treatment costs and the discount factor on the synchroniza-
tion thresholds. Because the thresholds depend significantly on the patient’s MSTI, we consider
an example patient with MSTIs of 4 and 7 weeks to isolate the effect of treatment cost and the
discount factor. Additionally we only display a range of discount factors from δ ∈ (0.50, 0.99).
For discount factors very close to 0, the thresholds get extremely large, and make visual interpreta-
tion of the parameter effect very difficult. We can still derive a practical insight from this effect–for
very small δ, the future is considered unimportant. Therefore, the optimal policy is a greedy policy,
which only focuses on the current period. In that case, you should only treat a condition if required
in this period, which makes π1 almost never optimal.

From Figure 3.7, we can see that our numerical analyses confirm our findings from Corollaries
3.4.1 and 3.4.2. As the cost of treating condition 1 goes up, π1 is more likely to be optimal for
joint-start patients. In this analysis, we see that for AMD patients, the threshold goes to zero
quite quickly, even for poorly aligned MSTIs like the 4- and 7-week combination in our example.
Additionally, we see that as the cost to treat condition 2 goes up, π1 is almost never optimal, and
instead the patient should follow a policy closer to π2.
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Figure 3.5: Plots comparing the performance of the baseline decision policies versus the optimal
policy. Performance is measured in terms of regret (i.e. the percent increase in cost compared to
the optimal decision policy).
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Figure 3.6: The full (c̄0) and joint-start ( ¯̄c0) synchronization thresholds across a range of maximum
safe treatment intervals for an AMD patient receiving bevacizumab.
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Figure 3.7: The full (c̄0) and joint-start ( ¯̄c0) synchronization thresholds for an AMD patient with
MSTIs of 4 and 7 weeks. For each plot, we assume baseline treatment costs of c1 = c2 = $50, and
a discount factor of δ = 0, and vary only the parameter of interest.
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Figure 3.8: The distribution of MSTI combinations for patients in the Kellogg dataset. Blank
spaces indicate that no patients had that MSTI combination.

3.5.4 Population level analysis

In this section, we use patient data from the Kellogg Eye Center at the University of Michigan to
estimate the potential population level benefit of following our treatment scheduling framework.
For our analysis, we looked at patients with bilateral AMD being treated with either bevacizumab
or aflibercept. We only considered patients with known MSTIs in both eyes, and whose MSTIs
were not equal. We only considered unequal MSTI combinations because Corollary 3.4.4 shows
that the scheduling problem is trivial if the MSTIs are equal. In our dataset, 186 patients met these
criteria, and the distribution of the MSTIs are shown in Figure 3.8.

Using each individual patient’s MSTI values and treatment costs, we calculated the lifetime
cost of following each of the baseline decision policies. Because we did not have access to indi-
vidual visit cost information, we used the baseline visit cost of $244 per visit, which only includes
the administrative cost of a visit, and ignores external factors, such as travel and caregiver costs.
Additionally, we used a discount factor of δ = 0.99 based on clinical recommendation.

Figure 3.9 shows the discounted lifetime cost distributions of following each policy for both
bevacizumab and aflibercept patients. Recall that current practice is to schedule treatment using
the independent policy πI . In Figure 3.9, we see that for patients receiving bevacizumab injec-
tions, following the optimal policy offers a significant improvement over current practice. On
average, patients saw an cost reduction of $2,127. Additionally, the optimal policy was equivalent
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to both the π1 and πH policies. For patients receiving aflibercept injections, the optimal policy
was equivalent to the independent treatment policy for almost all patients, with the optimal policy
offering an average improvement of only $50 per patient. This is because aflibercept injections
have a significantly higher treatment cost of $1,300 per injection, versus the $50 per injection cost
of bevacizumab. In this scenario, minimizing treatment costs is extremely important. Across all
patients and medications, the average improvement in discounted lifetime cost was $1,189 over
current practice.

An estimated 3 million U.S. adults have advanced AMD with a third of these patients diag-
nosed with bilateral AMD. [13] In the Kellogg dataset, 49% of patients had different MSTIs be-
tween eyes. Extrapolating the results of the Kellogg patient data to a population level, these results
suggest that following an optimization based approach to treatment scheduling could offer a dis-
counted savings of approximately $582 million in direct medical costs alone. These are estimated
lifetime savings for patients currently diagnosed with bilateral AMD. As new diagnoses occur, the
potential savings from considering synchronization would continue to grow. Additionally, incor-
porating indirect costs like transportation and caregiver costs would further increase this estimate.

3.6 Discussion

In this chapter, we introduce a dynamic programming approach to scheduling treatment for patients
with multiple chronic conditions. We discuss when it is beneficial for patients to synchronize
the treatment of their different conditions, thereby reducing their overall visit costs. We show
that for a high enough visit cost, the optimal policy is to always synchronize visits using the π1

policy, regardless of the number of conditions. For patients with two conditions, such as those with
bilateral AMD, we calculate these visit cost thresholds directly. We also analyze how individual
patient parameters such as treatment costs and MSTIs affect these thresholds.

One particularly interesting finding of this work is the important distinction between the full
and joint-start thresholds c̄0 and ¯̄c0. From a fully theoretical point of view, we cannot call the
π1 synchronized policy optimal unless a patient’s visit cost is above the c̄0 threshold. However,
this threshold is much less useful from a practical point of view. Even following a fully indepen-
dent scheduling policy, patients will eventually synchronize their visits at some point in the future,
reaching a “joint-start” state. After this point, the ¯̄c0 threshold is the only meaningful threshold.
Consequently, following the traditional definition of an optimal policy can actually be misleading
for patients, causing them to over-complicate their scheduling approach. By distinguishing be-
tween the two thresholds, we are able to highlight that the optimal policy for many patients is in
fact a simple policy, such as π1, π2 or πI . We also show that an easy to solve heuristic based on
these simple baseline policies performed well across a range of problem parameters.
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Figure 3.9: The discounted lifetime costs of following each baseline policy across medications.
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As an application to AMD, we demonstrate the power of our optimization approach in reducing
direct medical costs for patients. From a holistic perspective, we believe that our estimated $582
million savings is conservative, as it does not include the many indirect or intangible costs that
patients with bilateral AMD face. As just one example, AMD is a disease that causes blindness,
and for many patients even getting to the clinic can be a massive emotional and financial burden.
They often rely on caregivers to transport them to the clinic, or have to miss time from work.
Saving even a single visit can have a major impact on a patient’s quality of life, not just on their
wallet.

Beyond AMD, this work is one of the first approaches to managing multiple chronic conditions.
We note that bilateral AMD is one of the best candidates for synchronizing treatment for a number
of reasons. For example, both eyes are managed by the same clinician, which means that coordi-
nating the schedules of multiple clinicians is not required to synchronize treatment. Additionally,
having the same treatment for both eyes means that there are no potential interaction effects be-
tween multiple medications. However, we happily note that our model is able to adapt to scenarios
without these features. As one example, if certain medications are incompatible for synchroniza-
tion (perhaps due to interaction effects), we could limit our available action set A to not allow for
combinations that could have a negative impact on patient outcomes. As another example, if con-
ditions managed by different providers are treated in the same period, we could add a coordination
fee to the visit cost. Our baseline modeling approach is flexible enough to incorporate a range of
scenarios while still providing insights into how best to manage multiple conditions.

Recall that 4 in 10 U.S. adults suffer from multiple chronic conditions. [16] We hope this work
is a stepping stone to a modeling paradigm where considering all of a patient’s conditions is the
norm, not the exception.
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CHAPTER 4

Increasing Organ Donation Rates

4.1 Introduction

Organ transplantation is a life-saving and cost-effective intervention for patients for patients with
organ failure. The need for organ transplantation far outpaces the rate of organ donation in the US,
resulting in over 7,000 waitlisted candidates dying annually. [40] Even patients who ultimately
undergo transplantation experience prolonged morbidity due to long wait times. Wait times vary
drastically by organ procurement organization (OPO)—for example, the proportion of patients
receiving kidney transplants within the first 5 years of listing varies from 10% to nearly 80%
across donation service areas. [34]

In this chapter, we analyze two policies with the potential to reduce waitlist mortality by in-
creasing organ donation rates. In Section 4.2, we discuss a presumed consent donation policy in
which willingness to donate is the default option. Presumed consent has been implemented inter-
nationally, and has been associated with significant increases in donation. [77] However, the effect
of an associated increase might have on key patient outcomes is unclear. We simulate the effect
this policy would have on waitlist size and mortality across a range of donation rate increases.

In Section 4.3, we discuss the use of “ineligible” donors. These are donors who have already
expressed a willingness to donate, but due to specific health criteria are not formally considered
good candidates for organ donation. However, the health criteria describing an “eligible” donor are
not true requirements for donation. For example, one eligibility criterion is that an organ donor be
younger than 76 years old. It is a common practice that transplant physicians accept donations from
healthy individuals older than this age if they believe the transplant will have a positive impact on a
waiting patient. [40] We study the difference in survival for recipients of eligible versus ineligible
donations, and estimate the impact of standardizing ineligible donor use nationally.
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4.2 Increasing Donation via Presumed Consent

One potential, albeit controversial, policy that has been proposed to increase organ donation is
presumed consent, or an opt-out policy. Such a policy would make willingness to donate the
default option, unless an individual explicitly opts not to be an organ donor. [47] Variations of
this policy have been adopted in several countries worldwide, with mixed results. [1, 62, 82]
Nonetheless, there is evidence that lack of consent plays a role in preventing donation in up to
20-40% of otherwise eligible deceased donors in the US. [88, 29] This, however, is likely an
underestimation of the donors missed due to lack of authorization, because it is calculated based
on a limited pool of donors pre-defined as having an “eligible death,” and many organ transplants
occur from donors outside of this definition. [55] Thus presumed consent has been proposed as a
potential avenue to increase organs available for transplant. In this chapter, we develop a model
to examine the impact of such a policy on a historical cohort of waitlisted patients to give realistic
estimates of the impact of a presumed consent policy in the United States.

4.2.1 Modeling approach

We analyzed data from the Organ Procurement and Transplantation Network (OPTN) from 2004-
2014 to develop a waitlist model for solid organ transplant. The data was restricted to adult (18+)
solid organ donation candidates (heart, kidney, liver, lung, pancreas), and included information on
candidate age, organ(s) requested, date added to the waitlist, date removed from the waitlist, and
removal reason. Removal reasons were classified into the categories of 1) received living donor
transplant, 2) received deceased donor transplant, 3) died while waiting for transplant or became
too ill to receive transplant, and 4) other.

We simulated the impact of a presumed consent policy on waitlist outcomes by organ type in
monthly intervals during the 10-year study period. The key metrics used to assess this impact
were the number of patients on the waitlist and the number of patient removals due to illness or
death. The model simulated the effects of presumed consent by increasing the number of deceased
donors that donated at least one organ. For analyses considering all organs, candidates waiting
for multiple organs were listed only once. For analyses scoped to individual organs, candidates
waiting for multiple organs were listed on all corresponding waitlists. In all instances, candidates
who were simultaneously listed at multiple centers for the same organ were only counted once. As
new organs became available, the model considered two allocation policies when adjusting waitlist
removal rates. Candidates who were listed, underwent transplant, and later relisted were counted
multiple times. A schematic of the model can be seen in Figure 4.1.

A systematic review by Rithalia, et al. examining the impact of the institution of presumed
consent policy from several countries worldwide, showed that the policy is associated with up to
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Figure 4.1: An overview of the waitlist model dynamics.

a 25% increase in the deceased donor availability rate. [77] However, more recent studies have
reported more modest improvement in deceased donor availability. [82, 67, 99] Accordingly, we
modeled a practical range of potential deceased donor increases from 5% to 25% with such a policy
change in the US. We refer to a 5% increase in deceased organ donations as the base case for a
presumed consent impact. In all cases, the number of living donor donations and waitlist addition
quantities were not changed from true historical values.

In order to translate a deceased donor increase to an increase in the number of transplants, we
also incorporated organ yield rates into our model. According to the OPTN Annual Data Report,
the average annual organ yield for deceased donors was 0.29 hearts per donor, 1.47 kidneys per
donor, 0.76 livers per donor, 0.34 lungs per donor, and 0.15 pancreata per donor over the model
time period. [41]

When simulating the impact of additional donors, there is significant variation in the allocation
of organs to patients. [28] Deciding which individual will receive a newly available organ depends
on several factors such as blood type, geography, physician decision making, patient availability,
etc. Limitations in our data set and modeling methodology did not allow us to utilize a single
prescriptive allocation method that appropriately matched clinical practice. As a result, the study
developed two allocation policies which are intended to represent the range of potential outcomes.

In the first allocation policy—referred to as a random policy—additional organs were assigned
to currently waiting candidates regardless of patient demographics, such as age, time on the wait-
list, medical illness, or waitlist priority. As current clinical allocation policies are designed to help
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patients with the most need, a random allocation policy would serve as a lower bound for the
possible impact of presumed consent.

In the second allocation policy—referred to as an ideal policy—the model matched additionally
available organs with candidates that would have otherwise died or become too sick for transplant
in that same time period. Waitlisted patients who were delisted due to death or illness were given
newly available organs first, just prior to their waitlist removal. This scenario was designed to
emulate the case in which clinicians are able to perfectly forecast patient health and need, and that
all additionally available organs are compatible with the sickest patients. This is considered the
ideal scenario in terms of impact on patient health and, while unlikely, can serve as an upper bound
for the possible impact of presumed consent. The true effect of a presumed consent policy would
lie somewhere in between a random and ideal allocation model.

The model output included the estimated number of waitlist candidates in each time period,
as well as the number of candidates in each removal category for each organ. This output was
combined with published results on organ transplant survival benefit to estimate the potential effect
of presumed consent on patient life years gained from transplant. [76]

4.2.2 Numerical results

4.2.2.1 Historical data

From 2004-2014, there were in total 524,359 unique potential organ recipients on the waitlist. The
number of candidates on the waitlist on a year to year basis saw wide fluctuation based on the organ
type, from an 83% increase in kidney transplant candidates, to a 56% decrease in lung transplant
candidates. The number of patients on the waitlist at the beginning of each year is shown in Table
4.1.

Table 4.1: The size of the organ waitlists on January 1st of each respective year.

Year Heart Kidney Liver Lung Pancreas All Organs
2004 3,252 54,779 15,249 3,641 3,665 78,011
2005 2,938 58,507 15,409 3,619 3,777 81,623
2006 2,742 63,010 15,447 2,915 3,868 85,254
2007 2,593 67,759 15,490 2,649 3,805 89,612
2008 2,393 72,946 15,331 2,007 3,643 93,677
2009 2,498 76,660 14,919 1,881 3,565 96,828
2010 2,792 81,801 14,967 1,755 3,424 102,038
2011 2,886 86,307 15,301 1,706 3,384 106,729
2012 2,829 89,399 15,295 1,606 3,173 109,514
2013 3,073 93,526 15,077 1,588 3,069 113,449
2014 3,427 97,774 15,106 1,563 2,968 117,914
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Figure 4.2: Reduction in the number of removals from the waitlist due to death or illness across
all organs from 2004-2014 with a 5% increase in donors with presumed consent, stratified by
allocation.

4.2.2.2 Presumed consent impact

To determine the impact of presumed consent, we considered a range of increases to the number
of deceased donor transplants. Figure 4.2 presents the potential impact of the presumed consent
base case (5% increase in donation) on the number of candidates removed due to death or illness
under both allocation policies. The impact on the number of removals due to sickness or death
varied between scenarios. In the base case, the random allocation policy reduced these removals
by an average of 3% over the time period, while the ideal allocation policy would have reduced
these removals by an average of 10%.

The ideal allocation policy would have an immediate impact on the number of removals due to
death or illness (9%-14%). This impact trended lower over time (8%-10%) because the increase
in donors is not enough to completely eliminate removals due to patient death or illness, so the
waitlist continued to grow over the time period studied. Conversely, the random allocation policy
would have a smaller impact on removals due to death or illness (∼1%) that grew to approximately
4% over the time period studied. This is because with a random allocation, the rate of deaths and
illness is proportional to the size of the waitlist and as the random policy reduces the size of the
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waitlist, it also reduces the number of removals due to deaths or illness. A breakdown of the impact
over time on the number of removals due to illness or death by organ type and allocation policy is
presented in Figure 4.3 and Figure 4.4. The variation in the curves reflect the variation in monthly
removals from the waitlist.

Table 4.2 shows the average monthly reduction in these removals for each organ over a range
of presumed-consent related donation increases. Even an ideal allocation scenario with a 25%
increase in presumed consent-associated organ donors would not have provided enough donors to
eliminate deaths or removals due to illness while waiting for an organ transplant.

Table 4.2: Mean monthly reduction in removals due to sickness or death by organ, 2004-2014

5% Impact 15% Impact 25% Impact
Organ Random

Allocation
Ideal
Allocation

Random
Allocation

Ideal
Allocation

Random
Allocation

Ideal
Allocation

Heart 2% 6% 7% 18% 11% 29%
Kidney 4% 12% 10% 37% 17% 62%

Liver 3% 8% 9% 25% 16% 41%
Lung 4% 7% 10% 22% 16% 36%

Pancreas 1% 3% 2% 10% 4% 16%
Combined 3% 10% 10% 31% 16% 52%

Figure 4.5 shows the number of candidates on the waitlist by allocation policy for the base
case. Under an ideal allocation policy, presumed consent would need to generate enough additional
organs to eliminate removals due to deaths and sickness before other candidates that would remain
on the waitlist are affected. The impact on a random allocation policy on the organ waitlist is shown
in Table 4.3. The random allocation policy in the base case scenario did result in a reduction in
waitlist quantities, however this is because this policy does not perfectly assign additional organs
to patients that would have died or become too sick. The random allocation scenario resulted in
a 4%, 13%, and 22% reduction in the number of candidates awaiting solid organ transplant at the
end of the study period given a 5%, 15% and 25% impact, respectively. The model using a random
allocation policy reduced the combined waitlist growth from 54% to 48% in the base case. The
simulation results found that, under the random allocation policy, the impact required to eliminate
organ waitlists in the study period varied between organs, ranging from a 97% increase for the
lung waitlist to a 373% for the pancreas waitlist. There would be no change in the waitlist with
ideal allocation policies because all excess organs would be allocated to patients who would of
otherwise left the waitlist, even in a 25% increase scenario.
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Figure 4.3: Removals from the waitlist due to death or illness from 2004-2014 with a 5% increase
in donors with presumed consent, stratified by organ and allocation.
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Figure 4.4: Reduction in the number of waitlist removals due to death or illness by organ

Figure 4.5: Overall number of waitlist candidates stratified by allocation.
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Table 4.3: Percent change in the number of waitlist candidates from 2004-2014 under a random
allocation policy

Organ
Opt-In Policy
(Historic)

Presumed Consent Impact Impact needed to eliminate
waitlist over time frame5% 15% 25%

Heart 11% 8% 3% -3% 207%
Kidney 83% 76% 59% 42% 106%

Liver -4% -9% -17% -26% 109%
Lung -56% -58% -63% -67% 97%

Pancreas -21% -22% -24% -26% 373%
Combined 54% 48% 34% 20% 373%

4.2.2.3 Survival benefit

Using the estimated survival benefit associated with organ transplant, Table 4.4 shows the expected
life years gained under varying impact levels with a random and ideal allocation. Our model shows
that over the study period, the presumed consent base case would have gained an annual average of
approximately 4,000 life-years under the random allocation scenario, with the biggest impacts seen
in kidney and liver transplants. With a 25% impact, this increased up to 21,000 life-years gained.
Under the ideal allocation scenario, the average annual life-years gained ranged from 11,000 in the
base case to over 34,000 at higher presumed consent policy impacts.

4.2.3 Discussion

Presumed consent is a policy that has been proposed in several countries worldwide, however the
realistic impact of such a policy in the US are uncertain. In our analysis we used estimates of
the impact of presumed consent derived from other countries that have instituted such a policy
worldwide. [77, 82] We found that even in the best case scenario, the presumed consent policy
would have modest impacts on waitlists for all organs and would not resolve removals due to death
or illness under an ideal allocation policy. This highlights the multifaceted approach that is needed
even if deceased donation is increased through policy change such as presumed consent.

4.2.3.1 Expectations and precedents for presumed consent

In our analysis, we modeled a 5%-25% increase in deceased donation and conservatively used 5%
as a base case because of the well-established deceased donor transplant system with relatively high
donation rates in the US. Our upper bound of a 25% increase was based on the largest systematic
review of presumed consent which included Austria, Belgium, and Singapore, where presumed
consent resulted in a 20-25% increase in the number of donors available. [77] Data from before
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Table 4.4: Average annual estimated life years gained by organ and presumed consent impact for
both random and ideal allocations

Random Allocation

Organ
Life Years per
Transplant

Presumed Consent Impact
5% 15% 25%

Heart 4.4 3,452 10,357 17,262
Kidney 4.3 24 72 119

Liver 4.9 892 2,676 4,461
Lung 2.6 139 416 694

Pancreas 2.4 69 208 346
Combined – 4,283 12,849 21,415

Ideal Allocation

Organ
Life Years per
Transplant

Presumed Consent Impact
5% 15% 25%

Heart 12.1 9,494 18,989 28,483
Kidney 14.5 144 288 432

Liver 10.1 2,095 4,191 6,286
Lung 9.5 269 538 807

Pancreas 4.9 130 261 391
Combined – 11,355 22,710 34,066

and after implementation in several countries in South America and Europe have shown even more
dramatic increases in liver and kidney donation rates (28%-1186%), however there are likely other
policy changes and secular factors that may have influenced the results. [82] In contrast, recent
data from the early experience in Wales, has shown no measurable impact on donor availability 18
months after the policy change. [67]

Several factors influence organ donation. Economic conditions, structural changes to the organ
transplantation infrastructure, healthcare system characteristics, and societal norms must be taken
into account when measuring the impact of policy changes over time. The mixed results following
implementation of presumed consent policies likely reflect the complex interaction of these factors
and highlight the difficulty of extrapolating the experience of one country to another. The specifics
of a given country’s policy implementation may also impact the availability of deceased donors
including the details on how patients opt-out and the ultimate role of the potential donor’s family
in making organ donation decisions.

4.2.3.2 Public policy impact

One point of contention about implementation of presumed consent has been public backlash to
such a policy. A 2012 survey of 3,200 representative US adults addressed presumed consent. The
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survey found that the majority (51.1%) of surveyed American supported or strongly supported a
presumed consent policy and 23.4% of patients would opt-out of such a system. [36] Addition-
ally, early data from the policy implementation in Wales suggests that there has not yet been a
public backlash to implementation. [67] However, careful planning and public education would be
required prior to implementation of such a policy to ensure that the risk of backlash is minimized.

The other major potential drawback to a presumed consent policy could be a drop in living
donor liver transplantation, currently a major source of kidney transplants in the US and a growing
source for liver transplantation. However, as our analysis shows, a presumed consent alone would
fail to counteract the ongoing growth of the waitlist for living donor eligible patients (kidney and
liver) and thus there will be a continued need to increase donor availability in other ways, including
promoting living donation.

4.2.3.3 Contextual factors

Our study has many strengths and limitations that warrant highlighting. First, we used a historical
cohort to model the impact of a presumed consent system and these results may not necessarily
apply to a contemporary cohort of patients. However, the population of patients with organ failure
requiring transplant only continues to grow with commensurate growth in waitlist removal, thus
the impact of our analysis may be conservative. [48] Other metrics such as organ yield may change
with advent of new technologies (i.e. machine perfusion), and thus the overall impact of a policy
on transplants and life years gained would likely fluctuate. Second, any organ allocation policy
changes created for individual organs may impact the estimates presented in our analysis. Third,
we could not accurately model the allocation of newly available organs associated with presumed
consent, due to the central role in human decision making in organ allocation, thus we estimated
a random and an ideal allocation system to approximate the lower and upper bounds. Finally,
we derived the most appropriate estimate of life years gained currently available in the literature.
However, in the random allocation policy, these estimates are a lower bound for life years gained,
as they are based on already realized gains from transplant patients. Many of the patients in the
study were still living at the time of the analysis where we derived the estimated benefits and were
therefore still accruing life years. [76] Thus, these estimates for life years gained are also likely
lower bounds for presumed consent impact. In the ideal allocation we used average post-transplant
survival since all organs were allocated to patients who would have otherwise been removed from
the waitlist.
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4.3 Increasing Donation via “Ineligible” Donors

Variation in organ availability across OPOs is in part due to difference in organ acceptance patterns,
including variation in the use of donors that do not meet OPTN eligibility criteria. [19, 27, 21]
Eligible donors include people living within each OPO’s service area who died 75 years or younger
with a body mass index (BMI) less than 50 kg/m2, in addition to other organ-specific criteria.
In general, donor eligibility criteria are designed to outline desirable health characteristics for
organ donors. A formal eligibility definition is also helpful in understanding OPO and transplant
center performance. For example, a key performance metric is the proportion of potential donors
recovered and used for transplant within an OPO service area. However, the health characteristics
of potential donor populations can vary among OPOs, and certain areas might have a particularly
high prevalence of conditions that are prohibitive to the donation of certain organs. By measuring
recovery metrics in terms of the proportion of eligible donors, we avoid penalizing centers for
population characteristics out of their control. However, a drawback of the eligibility definition
is that, in many cases, it only outlines desirable characteristics, not required characteristics. For
example, there is a general age cut off of 75 years for a patient to be considered eligible, yet there
are many examples of patients older than this cutoff who have successfully donated. Across OPOs,
the use of ineligible donors varies significantly, with anywhere from 5% to 39% of deceased organ
donations coming from ineligible donors. [21] Previous work has also found that donor eligibility
plays a major role in our understanding of OPO performance and the state of the US transplant
system more generally. [21] In 2020, the Advancing American Kidney Health executive order
called for improved organ donation metrics, and the Centers for Medicare and Medicaid Services
issued a final rule standardizing the eligibility definition based on potential donors’ cause of death.
[68] A national policy to standardize the use of ineligible donors could spur efforts within low-
performing OPOs to improve organ procurement and increase overall organ availability.

A barrier to increasing the use of ineligible donors are potential concerns about worsening
transplant recipient outcomes (e.g. survival) when using “lower quality” organs. [64] Historically,
survival outcomes after receiving an ineligible organ donation vary by organ, center, and patient
subgroup. [64, 50, 61, 79, 15, 14, 46] This fact, combined with the significant differences in
ineligible donor use by OPO, obscures the potential outcomes of a national policy to standardize
ineligible donor use.

In this section, we perform a comprehensive analysis on the association of donor eligibility with
graft and patient survival. Our goal was to offer insight on the viability and impact of increasing
ineligible donor use. We combine national donation and survival data on solid-organ transplants to
compare the outcomes of eligible and ineligible donations and to isolate this association. We also
aimed to model these results as potential life-year increases associated with best practice sharing
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across OPOs.

4.3.1 Modeling approach

Our analysis included data from the Standard Transplant and Research (STAR) files collected
by the United Network of Organ Sharing (UNOS) from January 2008 through November 2020.
UNOS is the private, non-profit organization that manages organ transplant in the United States
under contract with the federal government. We included adult recipients of deceased donor solid
organ transplants: heart, kidney, liver, lung, and pancreas. Our data also included UNOS-reported
information categorizing eligible vs non-eligible deaths over the study period. Eligible deaths
were patients declared brain dead according to state and local law with no exclusionary criteria
as defined by OPTN policy. Example criteria include that prospective donors must be 75 years or
younger with a BMI less than 50 kg/m2, in addition to other organ-specific criteria. A complete list
of the eligibility criteria is included in Appendix C. For OPO-level analyses, each organization was
given a unique identifier distinct from the STAR dataset. The University of Michigan institutional
review board provided an exemption for the secondary use of de-identified data in this study.

4.3.1.1 Donor eligibility

The broad spectrum of eligibility characteristics for individual donors are not stored in the UNOS
data set in their entirety. Instead, the overall eligibility of an individual donor is reported to UNOS.
As a result, we defined an eligible donor as any donor listed in both the STAR file deceased donor
dataset and the UNOS reported eligible death dataset. Likewise, an ineligible donor was any
donor listed in the deceased donor dataset but not in the eligible death dataset. We compared
the mean age and BMI of eligible and ineligible donors using t-tests. We calculated the percent
of donors meeting eligibility requirements by organ, sex, ethnicity, and year of donation. We
tested for significant differences across eligible and ineligible groups using chi-squared tests. Data
preparation and statistical tests comparing populations were performed using Python version 3.7.9.
Statistical significance was defined as a p-value<0.05.

4.3.1.2 Association of donor eligibility and survival

We analyzed graft and patient survival by organ for both eligible and ineligible donors using Kaplan
Meier curves. We compared survival rates using log rank tests. To better understand the influence
of brain death versus cardiac death on eligibility-related survival, we compared Kaplan Meier
curves for 1) the entire study population and 2) exclusively donation after brain death (DBD)
donations as donation after cardiac death (DCD) donor status is a common reason for ineligibility.
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We calculated hazard ratios for age, ethnicity, gender, BMI, blood type compatibility, donor
cause of death (COD), and OPO of donation using a Cox proportional hazards model. We in-
cluded interaction effects between donor eligibility and all main effects for kidney, liver, lung,
and pancreas transplants. We did not include these interaction terms for heart transplants, as the
relatively small number of ineligible heart donations prevented convergence for several regression
parameters, making the model uninterpretable. Our regression tests were performed in R version
4.0.5.

4.3.1.3 Estimated impact of increasing ineligible donor use

We estimated the effect that increasing the use of ineligible donors would have had on the number
of transplants and the number of life years gained over the study period. For each organ (heart,
kidney, liver, lung, pancreas), we began by calculating the ineligible donor use rate by OPO. In
those OPOs which had an ineligible donor utilization rate below pre-specified percentiles (50th,
75th, and 100th percentiles, respectively), we modeled scenarios where the OPOs would increase
utilization to the pre-specified percentile. In the simulations, we did not change the ineligible donor
use rate of OPOs with rates at or above the specified percentile. After simulating the adjusted
ineligible donor use rates, we calculated the number of additional transplants corresponding to this
increase in donations.

After calculating the increase in the number of transplants, we converted this increase into a
life-years gained metric using data from Rana et. al (2015). [76] Rana et. al used propensity
score matching to estimate the increase in life-years from receiving a transplant versus remaining
on the waitlist. We leveraged this propensity score matching to improve our estimates of life-
years gained. We adjusted Rana et. al’s estimated life-years gained per transplant by the survival
difference between eligible and ineligible donations found in our own model. We mapped the
estimated increases in life-years gained using Tableau version 2020.4.

4.3.2 Numerical results

4.3.2.1 Overall cohort characteristics

From January 2008 through November 2020, there were 296,095 adult solid organ transplants
(61% male, 54% White individuals). Table 4.5 provides a description of the study population.
Over the study period, 86% of donors met eligibility requirements. Eligibility rates varied by
organ, with as many as 20% of kidney donations and as few as 2% of heart donations coming from
ineligible donors. Figure 4.6 shows the distribution of ineligible donor use rates across OPOs.

The distribution of eligible and ineligible donor groups was statistically different in terms of
both donor and recipient sex and ethnicity (p<0.01 for all). White individuals were more likely to

87



Table 4.5: Organ donor population description. P-values are the result of χ2-test (categorical) and
t-test (continuous) variable comparisons between eligible and ineligible subgroups. SD – standard
deviation.

All Eligible Ineligible
donations donations donations p-value

N 297,223 255,039 42,184
N by organ (%) <0.001

Heart 30,103 (10%) 29,540 (12%) 563 (1%)
Kidney 152,216 (51%) 121,240 (48%) 30,976 (73%)

Liver 79,180 (27%) 70,102 (27%) 9,078 (22%)
Lung 24,802 (8%) 23,598 (09%) 1,204 (3%)

Pancreas 10,922 (4%) 10,559 (04%) 363 (1%)
N by donor ethnicity (%) <0.001

White 197,068 (66%) 163,965 (64%) 32,676 (78%)
Black 45,979 (15%) 42,049 (16%) 3,860 (9%)

Hispanic 41,948 (14%) 38,086 (15%) 3,804 (9%)
Other 12,228 (4%) 10,939 (4%) 1,289 (3%)

N by recipient ethnicity (%) <0.001
White 164,338 (56%) 142,613 (57%) 21,725 (52%)
Black 66,992 (23%) 56,408 (22%) 10,584 (25%)

Hispanic 42,439 (14%) 36,195 (14%) 6,244 (15%)
Other 19,729 (7%) 16,240 (6%) 3,489 (8%)

N by donor sex (%) <0.001
Male 183,766 (62%) 156,759 (61%) 27,007 (64%)

Female 113,457 (38%) 98,280 (39%) 15,177 (36%)
N by recipient sex (%) 0.0395

Male 187,645 (64%) 160,954 (64%) 15,351 (37%)
Female 105,853 (36%) 90,502 (36%) 26,691 (63%)

Mean donor age (yr) (SD) 39.38 (14.15) 38.82 (13.92) 42.75 (14.99) <0.001
Mean recipient age (yr) (SD) 53.56 (12.53) 53.31 (12.58) 55.06 (12.09) <0.001

Donor BMI (kg/m2) 27.84 (6.43) 27.68 (6.26) 28.76 (7.30) <0.001
Recipient BMI (kg/m2) 27.96 (5.47) 27.86 (5.46) 28.56 (5.46) <0.001

88



Figure 4.6: Histograms of ineligible donor use rates across OPOs, stratified by organ.

be an ineligible donor and less likely to receive a transplant from an ineligible donor, when com-
pared to non-white individuals. Similarly, men were more likely than women to be an ineligible
donor but less likely to receive a transplant from an ineligible donor.

4.3.2.2 Donor eligibility and survival

Figure 4.7 shows Kaplan Meier curves of graft survival for recipients of both eligible and inel-
igible donors by organ. There were statistically significant differences in graft survival between
kidney and liver donations using eligible and ineligible donations (p<0.01 for both). Recipients
of ineligible kidney donations saw a 0.74%, 1.12%, 1.28%, and 2.20% relative decrease in 1-,
3-, 5-, and 10-year graft survival probability, respectively. Recipients of ineligible liver donations
saw a 3.62%, 4.99%, 5.88%, and 9.38% relative decrease in 1-, 3-, 5-, and 10-year graft survival
probability, respectively.

Figure 4.8 shows Kaplan Meier curves for patient survival. Log rank tests also found statisti-
cally significant differences in patient survival for kidney and liver donors (p=0.01 and p<0.01,
respectively). Recipients of ineligible kidney donations saw a 0.21%, 0.43%, 0.45%, and 1.48%
relative decrease in 1-, 3-, 5-, and 10-year patient survival probability, respectively. Recipients in
ineligible liver donations saw a 1.35%, 2.37%, 3.15%, and 7.22% decrease in 1-, 3-, 5-, and 10-
year patient survival probability, respectively. There were no statistically significant differences in
patient survival for heart, lung, and pancreas transplants using ineligible donors, when compared
to transplants using eligible donors.
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Figure 4.7: Kaplan Meier curves for transplant graft survival from January 2008 through November
2020, stratified by organ and donor eligibility.
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Figure 4.8: Kaplan Meier curves for transplant patient survival from January 2008 through Novem-
ber 2020, stratified by organ and donor eligibility.
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4.3.2.3 Donation after cardiac versus brain death donor eligibility and survival

Figures 4.9-4.11 show Kaplan Meier curves by DBD and DCD status. Log rank tests found that,
across the entire population, DCD donations provided lower graft survival for kidney and liver
transplants (p<0.01 for both) and no statistically significant difference for other organs. How-
ever, when exclusively examining ineligible donations, ineligible DBD donations provided signifi-
cantly lower graft survival for kidney and pancreas donations compared to eligible DBD donations
(p<0.01 and p=0.01, respectively) with no statistically significant differences for other organs. Our
analysis also found that survival loss was primarily associated with ineligible DBD donors, and not
DCD donors. When looking exclusively at DBD donations across all organs, the 10-year graft sur-
vival probability loss associated with ineligible donors increased by 6.90% when compared to all
donors.

4.3.2.4 Multivariate survival modeling

A Cox proportional hazard model for each organ type provided estimates of the association of
graft survival with donor eligibility and OPO, as well as recipient age, sex, ethnicity, and BMI.
Additionally, the models provided estimates for the interaction effects of each variable with donor
eligibility. Figure 4.12 shows hazard ratio (HR) estimates for the main effect of each variable by
organ, excluding the OPO variable. Due to the large number of OPOs, hazard ratios for the OPO
of donation are shown by organ in Figure C.1 in Appendix C. After accounting for demographic
factors, likelihood ratio tests found that donor eligibility (including its interaction effects with other
variables) was significantly associated with kidney, liver, and lung graft survival (kidney, p=0.01;
liver, p<0.01; lung, p=0.02;). Figure 4.13 shows HR estimates for the interaction of eligibility and
all other variables.

4.3.2.5 Eligibility interactions

Recipient age and ethnicity were significantly associated with graft survival for all organs (Age:
heart, p<0.01; kidney, p<0.01; liver, p<0.01; lung, p<0.01; pancreas, p=0.04. Ethnicity: heart,
p=0.04; kidney, p<0.01; liver, p<0.01; lung, p=0.03; pancreas, p<0.01). Interaction terms sug-
gested that the survival loss associated with ineligibility was significantly increased for older re-
cipients of kidney and lung transplants (p<0.01 for both). Two significant interactions between
eligibility and ethnicity were found: one in Black recipients of kidney transplants, with a reduced
HR effect of 0.93 (95% CI: 0.87-0.9873, p=0.02); and another in lung transplant recipients of
Other ethnicities, with an increased HR effect of 2.4520 (95% CI: 1.30-4.62, p<0.01).

Sex was significantly associated with graft survival for kidney, liver, lung, and pancreas trans-
plants (kidney, p<0.01; liver, p<0.01; lung, p<0.01; pancreas, p=0.02), however there was no
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Figure 4.9: Kaplan Meier curves for post-transplant graft survival of deceased brain death dona-
tions, stratified by organ type and donor eligibility.
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Figure 4.10: Kaplan Meier curves for post-transplant graft survival, stratified by organ type and
donor death type (DCD: deceased cardiac death, DBD: deceased brain death).
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Figure 4.11: Kaplan Meier curves for post-transplant graft survival of ineligible donations, strat-
ified by organ type and donor death type (DCD: deceased cardiac death, DBD: deceased brain
death).
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Figure 4.12: Selected hazard ratios calculated via Cox regression for transplant graft survival from
January 2008 through November 2020. Recipient age is scaled to be in decades. Recipient age,
ethnicity, and BMI were all significantly associated with graft survival (p≤0.05). Abbreviations:
eth.: ethnicity.
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Figure 4.13: Selected hazard ratios calculated via Cox regression regarding the interaction effect
of donor ineligibility with recipient age, ethnicity, sex, and BMI. Results are stratified by organ.

significant interaction found between donor eligibility and recipient sex. Similarly, while BMI was
associated with graft survival for all organs (heart, p<0.01; kidney, p<0.01; liver, p=0.03; lung,
p=0.03; pancreas, p=0.02 for all), there was no statistically significant interaction found between
donor eligibility and recipient BMI.

The OPO of donation was associated with graft survival for all organs (p<0.01 for all). There
were statistically significant interactions with OPO and eligibility which are not listed here for
brevity.

4.3.2.6 Estimated impact of increasing ineligible donor use

We simulated the impact of individual OPOs increasing ineligible donor use rates to match the
50th, 75th, and 100th percentiles of use across the study period. For example, across all OPOs, the
75th percentile of ineligible liver donor use was 13.7%. Any OPO that had an ineligible donor use
rate lower than 13.7% had its rate increased to this value in the 75th percentile match scenario. We
did not change the ineligible donor use rate of any OPO having a rate greater than 13.7%. We then
calculated the corresponding increase in donations and transplants with this increased donation
rate. We performed this same technique for all organs and the other percentiles. Table 4.6 shows
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the estimated mean increase in transplants and life-years gained for each percentile. Across all
organs and OPOs, the estimated increase in the number transplants ranged from 6,061 to 33,470
throughout the study period, depending on the percentile. This translated to an estimated increase
of 38,409 to 206,741 life-years gained over the same time frame.

Table 4.6: Estimated annual increases in transplants and life-years gained associated with increas-
ing ineligible donor use under a range of scenarios. To calculate the percentile match results, all
OPOs with ineligible donor use rates below the given percentile had their rates increased to match
the percentile.

Estimated
life-years
gained per
transplant

Annual increase in # of transplants Annual increase in life-years gained
50th
percentile
match

75th
percentile
match

100th
percentile
match

50th
percentile
match

75th
percentile
match

100th
percentile
match

Heart 6.8 7 21 89 49 145 603
Kidney 6.6 377 752 1,623 2,457 4,907 10,588

Liver 6.5 67 176 586 404 1,058 3,516
Lung 2.8 15 39 172 41 109 480

Pancreas 6.7 3 11 122 22 73 819
Overall – 469 1,000 2,591 2,974 6,291 16,006

Figure 4.14 maps the increase in life-years gained by OPO if all OPOs below the 75th percentile
rose to meet that use rate. At this percentile match, the overall increase in life-years gained ranged
from 0 to 8,284 across the study period, depending on current ineligible use rate and the volume
of transplants. OPOs shown with no increase in life-years gained were either at or above the 75th
percentile of ineligible donor use.

4.3.3 Discussion

Reducing regional heterogeneity in the use of ineligible organ donations is one strategy to address
the current donation shortage. For heart, lung, and pancreas transplants, using an organ from an
ineligible donor had no difference in either graft or patient survival. In contrast, kidney and liver
transplants had statistically lower survival rates when using ineligible donors. The rate of ineligible
donor use varies from 5-39% across OPOs, suggesting that measures to better standardize ineligible
donor use could be taken nationally. [21] Our modeling showed that increasing use of ineligible
donors could result in an additional 469-2,591 organ transplants annually, providing an additional
2,974-16,006 life-years for waitlisted patients each year.

In December 2020, the Centers for Medicare and Medicaid Services issued a final rule that
would update the eligibility definition to be based on standardized data from the Centers for Dis-
ease Control and Prevention mortality files (i.e. ICD-10 cause of death codes consistent with
organ donation). [68] This update occurred after our study period, but could be an opportunity
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Figure 4.14: Map showing the estimated annual increase in life-years gained by organ procure-
ment organization (OPO), if all OPOs with ineligible donation use rates below the 75th percentile
increased their use to meet the 75th percentile. The increase shown is across all organs, based on
annual use from January 2008 through November 2020.
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to reduce regional heterogeneity in ineligible donor use. As this update is designed to reduce
subjectivity in OPO performance metrics, it also provides an opportunity to evaluate differences
in ineligible donor use across OPOs, with close attention and efforts to improve performance of
under-performing OPOs. [30]

4.3.3.1 Survival differences for ineligible donations

The lack of significant detriment in graft survival for recipients of heart, lung, and pancreas ineli-
gible donations may be related to low use rates (3-5%) of ineligible donations for these organs and
stringent selection. Kidney and liver recipients, however, did see small but statistically significant
decreases in graft survival when using ineligible donations. Notably, the median graft and patient
survival for recipients of ineligible donations is still significantly higher than those of waitlisted
patients who never receive a transplant, suggesting that there is a benefit to using select ineligible
donations compared to no transplant at all. [76] We also note that a decrease in patient survival
could have an impact on the timing of re-transplantation for recipients of ineligible donations. This
suggests that perhaps the use of ineligible donations might be more appropriate in certain recipient
populations. For example, older patients who may have a lower overall likelihood of requiring re-
transplantation would also have a lower likelihood of being affected by any graft survival detriment
derived from using an ineligible donation. However, the graft and patient survival loss from using
ineligible donations was significantly higher for older recipients, so careful consideration would
be required to balance these competing effects.

The data suggest that the graft survival detriment associated using ineligible kidney donations
is primarily from the use of DBD donations. When looking exclusively at DBD donations across
all organs, the 10-year graft survival probability loss associated with ineligible donors increased
by 6.90% when compared to all donors. Additionally, while DCD donations were associated with
worse graft survival for kidney and liver donations overall, this effect was actually reversed when
considering only ineligible donations. Kidney and pancreas DCD donations actually corresponded
with higher survival probabilities than ineligible DBD donations. Liver, heart, and lung DCD
donations did not see a significantly lower graft survival probability than ineligible DBD donations.
This could reflect a more stringent selection process of DCD donors.

4.3.3.2 Association of recipient demographics with survival

Our Cox regression model offers insight into the association of eligibility with graft survival when
controlling for a recipient’s age, ethnicity, sex, BMI, and OPO of donation. After controlling for
these demographics, donor ineligibility and/or its interaction with recipient ethnicity was associ-
ated with lower graft survival for kidney, liver, and lung transplants.
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Our Cox regression found higher hazard rates for Black recipients of heart, kidney, and liver
donations, when compared to White recipients. Research suggests a number of potential sources
for this disparity. Across organs, research suggests that a correlation between Black ethnicity
and low socioeconomic status (SES) reduces access to medical care, and may result in difficulty
adhering to treatment regimens. [56, 58, 93] However, prior studies have also shown that SES
and adherence does not fully describe this disparity, and suggest that there are other systemic
factors also contributing to this problem which are hard to define. [56, 58] Regarding kidney and
liver transplants, Black recipients had higher a median time on dialysis prior to transplant, and a
higher median model of end-stage liver disease (MELD) score at the time of listing, which are also
correlated with decreased graft survival. [56, 93, 60]

Our model also found that the survival loss for kidney and liver transplants associated with the
use of ineligible donors was increased for older recipients. However, recipients with higher BMI
values did not experience an increased survival loss. This suggests that while older recipients have
less reserve to handle marginal organs, high BMI patients might not have this same issue with
reserve.

4.3.3.3 Potential Benefit of Increased Ineligible Donor Use

In many OPOs, the use of ineligible donations is already a common tool for addressing the need to
increase organ donation. [21] However, the use of ineligible donations varies drastically by OPO.
Our results suggest that the use of ineligible donations can provide a significant benefit to patients
on the waiting list, and are a viable method for reducing patient morbidity and mortality. Regu-
latory changes in the definitions of eligibility, improved benchmarking of minimum standards of
ineligible donor use, and/or sharing best practices to increase ineligible donor usage could improve
ineligible donor utilization.

4.3.3.4 Contextual factors

This study benefitted from a large sample size via the use of a national, multi-organ data set con-
taining nearly 13 years of data. Previous studies on the survival effects of ineligibility have focused
on individual organs and/or a limited number of transplant centers. By including all adult solid-
organ transplants from January 2008 through November 2020, we were able to provide a holistic
view of the impact of ineligible donor use in the US. Our use of recipient demographics and Cox re-
gression allowed us to better understand the specific association of ineligibility after controlling for
known correlates with survival. The broad scope of our analysis prevented us from including more
detailed patient health characteristics, which might better describe ineligible donor use patterns.
Specific reasons for donor ineligibility by organ were not readily available for a more granular
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analysis of which factors that determine ineligibility lead to worse outcomes. Additionally, the eli-
gibility definition was changed in January 2017, which directly affected OPO performance metrics
and could have impacted ineligible donor use. [21] While the data do not suggest a sudden shift in
use associated with this specific change, we used an eligibility definition based on a donors eligi-
bility at the time of donation to be as consistent as possible in our analyses. Small sample sizes for
ineligible heart, lung, and pancreas in certain OPOs also made parameter estimation challenging
in our Cox regression. As a result, we were unable to estimate interaction effects between donor
eligibility and some recipient characteristics for these organs.

We only considered graft and patient survival as quality outcomes when comparing eligible and
ineligible donations. There are many other metrics that also provide valuable information on organ
quality, such as delayed graft function, graft loss, readmission rates, etc., but were not within the
scope of this analysis. Additionally, like most elements of the organ donation process, ineligible
donor use depends on decisions made by individual clinicians, recipients, and other stakeholders,
and is not fully dependent on OPOs. However, the granularity of our data limited our analysis
to the OPO level. We also note that there may be heterogeneity in eligibility reporting standards
across OPOs, which could cause misclassification in terms of eligibility and affect our calculation
of donation rates and survival estimates by OPO.

4.4 Discussion

An immediate method to reduce the morbidity and mortality of patients awaiting an organ trans-
plant is to increase the number of donated organs. In this chapter, we analyze the potential benefits
of increasing organ donation via 1) implementing a presumed consent donation policy and 2) stan-
dardizing the use of ineligible organ donors.

In Section 4.2, we show the potential realistic impact of a presumed consent policy on solid
organ transplant in the US. While there are ongoing ethical concerns regarding the implementation
of such a policy that must first be resolved, a presumed consent policy is an immediate way to
increase organ donation. We show that while presumed consent alone may not solve the organ
shortage in the US it might result in large gains in life years and would be highly cost-effective for
the US healthcare system. We believe that further public discourse about the ethics, logistics, and
risks of a presumed consent policy are appropriate given the potential benefits.

In Section 4.3, we performed a national level review of graft and patient survival outcomes for
ineligible versus eligible solid organ donations. We found that transplants using ineligible dona-
tions offer significant benefit for waitlisted patients who might otherwise never receive a transplant.
We demonstrate that increasing the use of ineligible donors is an immediate method of reducing
the current organ donation shortage and could significantly reduce patient morbidity and mortality.
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We demonstrate that either policy has significant potential to reduce the gap between organ
supply and demand and consequently, save the lives of thousands of patients with organ failure.
We hope that this work provides insight to policy makers on the viability of these policies, and
ultimately leads to improved outcomes for patients facing the immense burden of organ failure.
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CHAPTER 5

Conclusion

Managing chronic conditions is one of the biggest healthcare challenges we face today. Over half
of Americans have a chronic disease, and managing these conditions accounts for the vast majority
of U.S. healthcare spend. [16] Because of the extreme burden of these conditions, the availability
of resources like time, money, and medication play a large role in medical decision making. In this
work, we present operations research methodologies to both reduce resource burden and increase
resource availability.

In Chapter 2 we provide an MDP approach to identifying the optimal treatment interval for
a chronic disease. By building a model that decides when to treat instead of whether to treat,
we can derive closed-form solutions. These closed-form solutions allow for interpretable policy
recommendations and can be presented to clinical decision makers as a menu of treatment options.
As an application to AMD, we demonstrate that following this approach could save up to $61
million in treatment costs annually.

In Chapter 3 we provide a dynamic programming approach to coordinating the treatment of
multiple chronic conditions. Even if the optimal treatment interval for individual conditions is
known, simultaneously considering multiple conditions adds significant complexity to treatment
scheduling. In many cases, patients can significantly reduce their visit costs by coordinating mul-
tiple treatments at a single visit. However, this often comes at the expense of additional treatment
costs. Beyond just providing a method for finding the optimal treatment schedule, we identify
conditions under which it is always optimal to synchronize treatment. We also identify the specific
synchronization policy under these conditions. For situations where these conditions are not met,
we provide a simple, closed-form heuristic policy and bound the regret of following this policy. As
an application to AMD, we demonstrate that following the optimal policy (and in fact, following
the heuristic policy) can save $582 million in direct medical costs alone.

In Chapter 4 we analyze and highlight two potential policies for increasing organ donation–a
critical and limited resource for patients with chronic organ failure. For the 100,000+ patients on
the organ waiting lists, we show that a presumed consent donation policy could add as many as
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34,000 life-years annually. Similarly, we show that standardizing the use of ineligible organ donors
could add up to 16,000 life-years annually.

5.1 Future Work

There are several avenues for future work building upon the ordinal MDP in Chapter 2. Examples
of interesting extensions include:

• What is the optimal policy if the MSTI changes during the exploration phase?

• How does the exploration process change as the reward structure changes?

• How do patient and clinician risk tolerance affect decision making?

Some of these questions are relaxations of our ordinal MDP assumptions. One approach
to relaxing the stationary MSTI assumption could assign a distribution to the outcome of each
potential scheduling interval. Then, similar to our problem, should a clinician observe that an
interval was too long (or short), she could update her distributional beliefs for that action as well
as all actions longer than (or shorter than) the previously selected interval. While our model does
allow for general reward structures, our numerical analysis and Theorem 2.4.2 are based on a
constant per-period reward function. The behavior of the model in practice would likely vary
as the reward structure takes on more complex forms, and is worth exploring. Additionally, we
emphasize our model’s ability to provide a menu of treatment options via its index policy. When
provided with a list of options, some clinicians may decide to be more or less aggressive with
treatment scheduling to either protect patient health or reduce patient cost. An interesting question
involves how deviating from a risk-neutral optimization recommendation affects long-term patient
outcomes.

The multiple condition model in Chapter 3 also has several interesting extensions. Some of the
key questions include:

• What if the MSTIs for multiple conditions are unknown?

• What if clinicians are willing to schedule beyond the MSTI?

• How might multiple clinician decision makers affect the ability to synchronize treatment?

Perhaps the most immediate question in the multiple condition scenario involves what to do if
the MSTIs are initially unknown. This extension would likely require the incorporation of health
costs (such as exposure to fluid) in addition to direct medical costs, since we could no longer
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feasibly guarantee that patients are not exposed to symptoms. For example, you could expand the
model in Chapter 2 to consider multiple conditions. Considering the needs of multiple conditions
during the exploration process could have a dramatic effect on the optimal searching policy, both
in terms of search speed and patient health. For example, a patient may be willing to accept short-
term symptoms from one of the conditions via a longer treatment interval if it provides useful
information about the MSTIs of the other conditions.

A major practical consideration when managing multiple conditions is that patients are often
treated by multiple healthcare providers. In these cases, synchronizing treatment is often not an
easy logistical task. An interesting model could incorporate the concept of multiple decision
makers. Potential avenues might include an additional synchronization cost, or a probability
parameter around the likelihood that different treatments are actually able to be synchronized for a
given visit. Additionally, it may be that conditions can be grouped according to which healthcare
providers are managing them. For example, some combinations of conditions may be easily
synchronized, while others are more difficult or even impossible.

The work presented in Chapter 4 can be most readily expanded by applying our population level
findings to the patient level. The choice to use an organ donation from an ineligible donor is ulti-
mately a decision between the individual patient and healthcare professionals. The choice is very
complex and situational, and depends heavily on the individual patient, donor, hospital, and OPO.
A decision making model for the individual patient could provide data-driven recommendations
regarding organ acceptance, and a powerful next step in standardizing and improving ineligible
donor use nationally. Some of the key questions that this model could address include:

• When is it preferable to accept an ineligible organ offer versus deferring for a potential future
eligible organ offer?

• How do regional heterogeneity in donation rates and waitlist size affect individual acceptance
decisions?

• How do acceptance decisions for one patient affect the remaining waitlist population?

As one example, this model could be formulated as an MDP, where the actions are to accept or
reject an organ offer in a given period. The state space would likely include the patient’s health
over time, and the goal could be to maximize survival and quality of life. Even if such a model is
unable to fully incorporate all of the context that goes into an acceptance decision, a data-driven
framework could help identify and highlight which portions of the acceptance process can be
improved.
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5.2 Concluding Remarks

We hope that this work offers both theoretical and practical value to the field of medical decision
making. Chronic diseases are both ubiquitous and incredibly personal. They effect the lives of
virtually everyone, whether directly or through a loved one. By reducing the resource burden or
increasing resource availability, we hope that the research presented here drives meaningful change
and makes a lasting difference the lives of patients.
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APPENDIX A

Supporting Material for Chapter 2

A.1 Algorithm for finding the optimal treatment interval

To help characterize the ordinal bandit, we provide a method for calculating the index values in
Algorithm 1 below. The algorithm requires calculating and storing |u−l|·(|u−l|+1)

2
cost-to-go values,

one for each possible combination of lower and upper action indices.

Result: Index values Q(d, P, l, u) and optimal decisions a∗(P,l,u)
Initialize P, l, u, r(·|·), and δ as appropriate;
for d← l to u by 1 do

Calculate V (P, d, d) = r(d|d)
1−δad

;
end
for n← 1 to u− l by 1 do

for l← 0 to n by 1 do
for d← l to l + n by 1 do

Calculate Q(d, P, l, l + n);
end
V (P, l, l + n)← maxd∈{l,...,l+n}{Q(d, P, l, l + n)};
a∗(P,l,l+n) ← argmaxad∈{al,...,al+n}{Q(d, P, l, l + n)};

end
end
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APPENDIX B

Supporting Material for Chapter 3

B.1 Proof of Theorem 3.4.2

First, we define a cost-to-go value Φπ1 that is the cost-to-go for following policy π1 starting from
a period in which both conditions must be treated (i.e. the cost-to-go when starting in state X =

(M1,M2)). Under this policy, the clinician treats condition 1 every M1 periods. Condition 2
is synchronized to be treated during the condition 1 visit that is closest to (but still less than)
M2. Looking back at Figure 3.2, we note that it specifically shows a visual representation of the
treatment cycle corresponding to Φπ1 .

By following the cycle outlined in Figure 3.2 and noting that the visit and treatment costs
represent geometric series, we can then write

Φπ1 =
c0 + c1
1− δM1

+
c2

1− δM1⌊M2/M1⌋
(B.1)

Using Φπ1 , we can also calculate the cost-to-go of following π1 when starting in any state
X . Since Φπ1 is the cost-to-go when starting from a period in which both conditions are treated,
calculating a general cost-to-go V π1(x1, x2) requires us to first find the cost of getting to a period
where we treat both conditions. This cost depends on how many periods are remaining before we
need to treat each condition. We can consider 3 different scenarios:

• Scenario 1: The clinician must treat condition 1 multiple times before they will need to treat
condition 2. Mathematically, this is when (M2 − x2)− (M1 − x1) ≥M1.

• Scenario 2: The clinician must treat condition 1 exactly once before they will need to treat
condition 2. Mathematically, this is when (M1 − x1) ≤ (M2 − x2) < M1.

• Scenario 3: The clinician must treat condition 2 before they will need to treat condition 1.
Mathematically, this is when (M2 − x2) < (M1 − x1).
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In scenario 1, we must calculate the number of condition 1 visits required before the next
condition 2 treatment. Under π1 we can write this as:

λ(x1, x2) =

⌊
(M2 − x2)− (M1 − x1)

M1

⌋
(B.2)

where the partial brackets represent the floor function.
In scenario 2, we will treat both conditions together at the next visit, which will occur when

we need to treat condition 1 (i.e. in M1 − x1 periods). In scenario 3, we will again treat both
conditions together at the next visit, which will instead occur when we need to treat condition 2
(i.e. in M2 − x2 periods).

Combining this information, we can write the cost-to-go under π1 more generally as:

V π1(x1, x2) =


λ(x1,x2)∑

i=1

δM1i−x1(c0 + c1) + δ(λ(x1,x2)+1)M1−x1Φπ1 if (M2 − x2)− (M1 − x1) ≥M1

δM1−x1Φπ1 if (M1 − x1) ≤ (M2 − x2) < M1

δM2−x2Φπ1 if (M2 − x2) < (M1 − x1)

(B.3)
We next show the analytical results of policy evaluation across a range different state spaces.

These ranges are based on the rules outlined in π1.

Case 1: x1 = M1 and x2 = M2

In this case, the clinician must treat both conditions in this period, as they are both at their MSTI
values. As the only available action is to treat both conditions, π1 is optimal regardless of c0. □

Case 2: x1 < M1 and x2 = M2

In this case, the clinician must treat condition 2 in this period, but does not need to treat condi-
tion 1. The available actions are to treat both conditions or treat only condition 2. Under π1, the
policy is to treat both conditions. We can use the following comparison to find necessary conditions
for π1 to be optimal.

Comparison 2.1: Treating both conditions must be at least as good as treating only condition 2.

Mathematically, this comparison is true when

c0 + c1 + c2 + δV π1(1, 1) ≤ c0 + c2 + δV π1(x1 + 1, 1).

The truth of this comparison depends on the the current state X . We decompose this into two
possible scenarios.

Subcase 2.1.1: (M2 − 1)− (M1 − x1 − 1) ≥M1
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By substituting in for V π1 and Φπ1 and then isolating c0, we can rewrite this inequality as

c0 ≥

−c1 ∗
(
δM1−x1 − 1

1− δM1

)
− c2 ∗

δ
(
⌊
M2−M1+x1

M1

⌋
+1)M1−x1 − δ

M1

⌊
M2
M1

⌋

1− δ
M1

⌊
M2
M1

⌋


(
δM1−x1 − δM1

1− δM1

) (B.4)

Subcase 2.1.1: (M2 − 1)− (M1 − x1 − 1) < M1

By substituting in for V π1 and Φπ1 and then isolating c0, we can rewrite this inequality as

c0 ≥

−c1 ∗
(
δM1−x1 − 1

1− δM1

)
− c2 ∗

δM1−x1 − δ
M1

⌊
M2
M1

⌋

1− δ
M1

⌊
M2
M1

⌋


(
δM1−x1 − δM1

1− δM1

) (B.5)

Therefore, we have found two equations which must be satisfied for π1 to be an optimal policy.
We will continue to do this for the remainder of the cases to see other relevant comparisons. □

Case 3: x1 = M1 and x2 < M2 and M2 − x2 < M1

In this case, the clinician must treat condition 1 in this period, but does not need to treat condi-
tion 2. The available actions are to treat both conditions or treat only condition 1. Under π1, the
policy is to treat both conditions.

Comparison 3.1: Treating both conditions must be at least as good as treating only condition 1.

Mathematically, this comparison is true when

c0 + c1 + c2 + δV π1(1, 1) ≤ c0 + c1 + δV π1(1, x2 + 1).

By substituting in for V π1 and Φπ1 and then isolating c0, we can rewrite this inequality as

c0 ≥ −c1 − c2

(
δM2−x2 − 1

1− δ
M1

⌊
M2
M1

⌋
)(

1− δM1

δM2−x2 − δM1

)
(B.6)

□

Case 4: x1 = M1 and x2 < M2 and M2 − x2 ≥M1

In this case, the clinician must treat condition 1 in this period, but does not need to treat condi-
tion 2. The available actions are to treat both conditions or treat only condition 1. Under π1, the
policy is to treat only condition 1.

Comparison 4.1: Treating only condition 1 must be at least as good as treating both conditions.
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Mathematically, this comparison is true when

c0 + c1 + δV π1(1, x2 + 1) ≤ c0 + c1 + c2 + δV π1(1, 1).

By substituting in for V π1 and Φπ1 and then isolating c0, we see that this is true for all c0 ≥ 0.
□

Case 5: x1 < M1 and x2 < M2 and M1 − x1 < M2 − x2

In this case, the clinician does not have to treat either of the conditions in this period, and all
actions are available. Condition 1 is closer to its MSTI than condition 2. Under π1, the policy is to
treat neither condition.

Comparison 5.1: Treating neither condition must be at least as good as treating both conditions.

Mathematically, this comparison is true when

δV π1(x1 + 1, x2 + 1) ≤ c0 + c1 + c2 + δV π1(1, 1).

By substituting in for V π1 and Φπ1 and then isolating c0, we see that this is true for all c0 ≥ 0.
□

Comparison 5.2: Treating neither condition must be at least as good as treating only condition 1.

Mathematically, this comparison is true when

δV π1(x1 + 1, x2 + 1) ≤ c0 + c1 + δV π1(1, x2 + 1).

The above comparison depends on the current state X , so we separate this proof into 3 subcases.

Subcase 5.2.1: (M2 − x2 − 1)− (M1 − x1 − 1) ≥M1

By substituting in for V π1 and Φπ1 and then isolating c0, we can rewrite this inequality as

c0 ≥ −c1 − c2

δ
(
⌊
M2−x2−M1

M1

⌋
+1)M1 − δ

(
⌊
M2−x2−M1+x1

M1

⌋
+1)M1−x1

1− δ
M1

⌊
M2
M1

⌋
( 1− δM1

1− δM1−x1

)
(B.7)

Subcase 5.2.2: (M1 − 1) ≤ (M2 − x2 − 1)− (M1 − x1 − 1) < M1

By substituting in for V π1 and Φπ1 and then isolating c0, we can rewrite this inequality as

c0 ≥ −c1 − c2

(
δM1 − δM1−x1

1− δ
M1

⌊
M2
M1

⌋
)(

1− δM1

1− δM1−x1

)
(B.8)
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Subcase 5.2.2: (M2 − x2 − 1) < (M1 − 1)

By substituting in for V π1 and Φπ1 and then isolating c0, we can rewrite this inequality as

c0 ≥ −c1 − c2

(
δM2−x2 − δM1−x1

1− δ
M1

⌊
M2
M1

⌋
)(

1− δM1

1− δM1 + δM2−x2 − δM1−x1

)
(B.9)

Comparison 5.3: Treating neither condition must be at least as good as treating only condition 2.

Mathematically, this comparison is true when

δV π1(x1 + 1, x2 + 1) ≤ c0 + c2 + δV π1(x1 + 1, 1).

By substituting in for V π1 and Φπ1 and then isolating c0, we see that this is true for all c0 ≥ 0.
□

Case 6: x1 < M1 and x2 < M2 and M1 − x1 ≥M2 − x2

In this case, the clinician does not have to treat either of the conditions in this period, and all
actions are available. Condition 2 is as close or closer to its maximum safe treatment interval when
compared to condition 1. Under π1, the policy is to treat neither condition.

Comparison 6.1: Treating neither condition must be at least as good as treating both conditions.

Mathematically, this comparison is true when

δV π1(x1 + 1, x2 + 1) ≤ c0 + c1 + c2 + δV π1(1, 1).

By substituting in for V π1 and Φπ1 and then isolating c0, we see that this is true for all c0 ≥ 0.

Comparison 6.2: Treating neither condition must be at least as good as treating only condition 1.

Mathematically, this comparison is true when

δV π1(x1 + 1, x2 + 1) ≤ c0 + c1 + δV π1(1, x2 + 1).

By substituting in for V π1 and Φπ1 and then isolating c0, we see that this is true for all c0 ≥ 0.

Comparison 6.3: Treating neither condition must be at least as good as treating only condition 2.

Mathematically, this comparison is true when

δV π1(x1 + 1, x2 + 1) ≤ c0 + c2 + δV π1(x1 + 1, 1).

The truth of this comparison depends on the state space X , so we break up this into 2 subcases.

Subcase 6.3.1: (M2 − 1)− (M1 − x1 − 1) ≥M1

By substituting in for V π1 and Φπ1 and then isolating c0, we can rewrite this inequality as
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c0 ≥

−c1 ∗
(
δM1−x1 − δM2−x2

1− δM1

)
− c2 ∗

1 +
δ
(
⌊
M2−M1+x1

M1

⌋
+1)M1−x1 − δM2−x2

1− δ
M1

⌊
M2
M1

⌋


(
1 +

δM1−x1 − δM2−x2

1− δM1

) (B.10)

□

Subcase 6.3.2: (M2 − 1)− (M1 − x1 − 1) < M1

By substituting in for V π1 and Φπ1 and then isolating c0, we see that this is true for all c0 ≥ 0.
□

By looking across all cases, we have shown that if Equations B.4-B.10 are satisfied, then π1 is
the optimal decision policy. Each of these equations represents a lower bound on the visit cost c0,
so if c0 is large enough (i.e. above each of these thresholds for all possible values of X) then the
optimal treatment policy is always the synchronized policy π1. Therefore, we can write c̄0 as the
maximum of these thresholds. ■

B.2 Proof of Lemma 3.4.2

Recall that Lemma 3.4.2 states the following: If M2 = kM1 then ¯̄c0 is fully described by Equation

B.7.

To prove Lemma 3.4.2, we will look at each equation within Theorem 3.4.2 individually. Be-
cause we are considering ¯̄c0, we immediately know that we do not need to consider Equations B.4
and B.5 as they do not affect this threshold. For the other equations, we will utilize the definition
of states within Sπ1 as described in Equation 3.5. As a reminder, for all states in Sπ1 , we have that
x2 = x1 + lM1, where l is any integer such that 0 ≤ l < ⌊M2

M1
⌋ − 1. In our case, since M2 = kM1,

we have that 0 ≤ l < k − 1.
We next show that when M2 = kM1, Equation B.6 is also irrelevant. This is because we never

enter Case 3 (i.e., the states in Case 3 are not included in Sπ1). Assume instead that we would enter
Case 3. Then, we be in a state such that
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M2 − x2 < M1

=⇒ kM1 − x2 < M1

=⇒ kM1 − x1 − lM1 < M1

=⇒ kM1 −M1 − lM1 < M1

=⇒ (k − l)M1 < 2M1

=⇒ k − l < 2

=⇒ l ≥k − 1

which is a contradiction, since l < k − 1.
Similarly, we can show that Equation B.8 is irrelevant by contradiction. Assume instead that

we can enter this subcase. Then, we would have that

(M2 − x2 − 1)− (M1 − x1 − 1) =M1 − 1

=⇒ M2 − x2 −M1 + x1 =M1 − 1

=⇒ kM1 − x1 − lM1 −M1 + x1 =M1 − 1

=⇒ (k − l)M1 −M1 =M1 − 1

=⇒ (k − l − 2)M1 = −1

=⇒ k − l =2− 1

M1

which is a contradiction, since M1 > 0 and l < k − 1 =⇒ k − l ≥ 2.
Similarly, we can show that Equation B.9 is irrelevant by contradiction. Assume instead that

we can enter this subcase. Then, we would have that

M2 − x2 − 1 <M1 − 1

=⇒ M2 − x2 < M1

=⇒ kM1 − x2 < M1

=⇒ kM1 − x1 − lM1 < M1

=⇒ (k − l − 1)M1 − x1 < 0

=⇒ k − 1 <1− x1

M1

115



which is a contradiction, since x1 < M1 =⇒ 1 + x1

M1
< 2 =⇒ k − l < 2 =⇒ l ≥ k − 1.

Similarly, we can show that Equation B.10 is irrelevant by contradiction. Assume instead that
we can enter this subcase. Then, we would have that

M1 − x1 ≥ M2 − x2

=⇒ M1 − x1 ≥kM1 − x1 − lM1

=⇒ (k − l − 1)M1 ≤ 0

=⇒ k − l ≤ 1

=⇒ l ≥ k − 1

which is a contradiction.
Thus, we have shown that if M2 = kM1, then the ¯̄c0 threshold is simply Equation B.7.
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APPENDIX C

Supporting Material for Chapter 4

C.1 Organ Procurement and Transplantation Network
(OPTN) Eligible Death Criteria

Source: https://optn.transplant.hrsa.gov/media/1200/optn policies.pdf (Accessed August 08,
2021)

For reporting purposes of performance assessments, an eligible death for deceased organ dona-
tion is defined as the death of a patient who meets all the following characteristics:

• Is 75 years old or less

• Is legally declared dead by neurologic criteria according to state or local law

• Has body weight of 5 kg or greater

• Has a body mass index (BMI) of 50 kg/m2 or less

• Has at least one kidney, liver, heart or lung that is deemed to meet the eligible data definition
as defined below:

– The kidney would initially meet the eligible data definition unless the donor meets any
of the following criteria:

* Greater than 70 years old

* Age 50-69 years with history of type 1 diabetes for more than 20 years

* Polycystic kidney disease

* Glomerulosclerosis greater than or equal to 20% by kidney biopsy

* Terminal serum creatinine greater than 4.0 mg/dL
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* Chronic renal failure

* No urine output for 24 hours or longer

– The liver would initially meet the eligible data definition unless the donor meets any of
the following criteria:

* Cirrhosis

* Terminal total bilirubin greater than or equal to 4 mg/dL

* Portal hypertension

* Macrosteatosis greater than or equal to 50% or fibrosis greater than or equal to
stage II

* Fulminant hepatic failure

* Terminal AST/ALT greater than 700 U/L

– The heart would initially meet the eligible data definition unless the donor meets any
of the following criteria:

* Greater than 60 years old

* 45 years old or older with a history of 10 or more years of HTN or 10 or more
years of type 1 diabetes

* History of coronary artery bypass graft (CABG)

* History of coronary stent/intervention

* Current or past medical history of myocardial infarction (MI)

* Severe vessel diagnosis as supported by cardiac catheterization (that is more than
50 percent occlusion or 2+ vessel disease)

* Acute myocarditis or endocarditis, or both

* Heart failure due to cardiomyopathy

* Internal defibrillator or pacemaker

* Moderate to severe single valve or 2-valve disease documented by echo or cardiac
catheterization, or previous valve repair

* Serial echo results showing severe global hypokinesis

* Myxoma

* Congenital defects (surgically corrected or not)

– The lung would initially meet the eligible data definition unless the donor meets any of
the following criteria:

* Greater than 65 years old
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* Diagnosed with COPD

* Terminal PaO2/FiO2 less than 250 mmHg

* Asthma (with daily prescription)

* Asthma is the cause of death

* Pulmonary fibrosis

* Previous lobectomy Multiple blebs documented on computed axial tomography
(CAT) scan

* Pneumonia as indicated on computed tomography (CT), X-ray, bronchoscopy, or
cultures

* Bilateral severe pulmonary contusions as per CT

If a deceased patient meets the above criteria they would be classified as an eligible death unless
the donor meets any of the following criteria:

• The donor goes to the operating room with intent to recover organs for transplant and all
organs are deemed not medically suitable for transplant

• The donor exhibits any of the following active infections (with a specific diagnosis):

– Bacterial: tuberculosis, gangrenous bowel or perforated bowel or intra-abdominal sep-
sis

– Viral: HIV infection by serologic or molecular detection, rabies, reactive hepatitis B
surface antigen, retroviral infections including viral encephalitis or meningitis, active
herpes simplex, varicella zoster, or cytomegalovirus viremia or pneumonia, acute ep-
stein barr virus (mononucleosis), West Nile virus infection, or SARS. However, an HIV
positive organ procured for transplantation into an HIV positive recipient at a transplant
hospital that meets the requirements in Policy 15.7: Open Variance for the Recovery
and Transplantation of Organs from HIV Positive Donors would still meet the require-
ments of an eligible death, according to the OPTN Final Rule.

– Fungal: active infection with cryptococcus, aspergillus, histoplasma, coccidioides, ac-
tive candidemia or invasive yeast infection

– Parasites: active infection with trypanosoma cruzi (Chagas’), Leishmania, strongy-
loides, or malaria (plasmodium sp.)

– Prion: Creutzfeldt-Jacob disease

The following are general exclusions:
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• Aplastic anemia, agranulocytosis

• Current malignant neoplasms, except non-melanoma skin cancers such as basal cell and
squamous cell cancer and primary CNS tumors without evident metastatic disease

• Previous malignant neoplasms with current evident metastatic disease

• A history of melanoma

• Hematologic malignancies: leukemia, Hodgkin’s disease, lymphoma, multiple myeloma

• Active fungal, parasitic, viral, or bacterial meningitis or encephalitis

• No discernible cause of death
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Figure C.1: Hazard ratios calculated via Cox regression regarding the association of organ pro-
curement organization (OPO) with graft survival after controlling for donor eligibility, as well as
recipient age, ethnicity, sex, and BMI. OPO names have been de-identified using a randomly as-
signed three-digit code. OPO 120 was randomly selected as the baseline OPO.
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