
The Power of Adaptivity for Decision-Making under Uncertainty
by

Rohan Ghuge

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Industrial and Operations Engineering)

in the University of Michigan
2023

Doctoral Committee:
Associate Professor Viswanath Nagarajan, Chair
Professor Nikhil Bansal
Professor Xiuli Chao
Professor Jon Lee
Associate Professor Cong Shi

Rohan Ghuge

rghuge@umich.edu

ORCID iD: 0000-0002-4681-9121

© Rohan Ghuge 2023

Dedication

Dedicated to my grandfather.

ii

Acknowledgements

First of all, I would like to express my heartfelt gratitude to my advisor, Viswanath Na-

garajan, for his unwavering support, guidance, and mentorship throughout my PhD. He

always made himself available to discuss my ideas, answer my questions, and provide me

with constructive feedback. His commitment to my success has been truly inspiring, and I

am incredibly fortunate to have received the opportunity to work with him.

I am thankful to my collaborators Anupam Gupta and Arpit Agarwal for their time,

expertise, and resources that led to successful research projects. I learnt a lot while working

with Anupam: how to approach a hard problem, thinking about the right extensions, and

lastly how to write/present research ideas well. Arpit introduced me to research in learning

theory; specifically in dueling bandits. I am particularly thankful to Arpit for always being

available (even on weekends) to discuss research ideas.

I also want to thank my thesis committee members, Nikhil Bansal, Xiuli Chao, Jon Lee,

and Cong Shi. I am deeply grateful for the invaluable discussions I had with them at various

stages of the PhD journey, which covered a wide range of topics related to research, the

academic life, and beyond.

I am extremely grateful for my PhD cohort, which made my first two years at Ann Arbor

feel like home: from Luke DeRoos’ baking and Julia Coxen’s stash of snacks to finding

amazing friends in Daniel Otero-León and Kamolnat Tabattanon. I am especially grateful

to Xubo Yue and Seokhyun Chung who, like me, were night owls; our frequent breaks and

chats not only provided much-needed relief from the stress of research but also helped us

form a lasting bond that I will deeply cherish.

I would also like to thank my friends for supporting me: Arpit Agarwal, Prathmesh

Deshmukh, Eddie Kong, Prathamesh Patil, Dushyant Sahoo, Rahul Iyer, Tilak Vaidya,

iii

Yash Deshpande, Ria Pawar, and Tryambak Tope. Their kind words, encouragement, and

willingness to listen have made all the difference.

Finally, I would like to thank my parents, brother, grandmother, and late grandfather

for their unwavering support and encouragement throughout my PhD. I would also like to

express my deepest gratitude to my partner, Yihan Li, for always being by my side. She has

made numerous sacrifices, putting her own needs and aspirations on hold to support me in

pursuing mine, and I will be forever grateful for her selflessness and dedication.

iv

Contents

Dedication ii

Acknowledgements iii

List of Tables x

Abstract xi

Chapter

1 Overview 1

1.1 Motivation . 1

1.2 Thesis Goal . 3

1.3 Thesis Contributions . 3

2 Stochastic Submodular Cover 6

2.1 Introduction . 6

2.1.1 Results and Techniques . 8

2.2 Related Work . 10

2.3 Definitions . 12

2.4 Stochastic Submodular Cover . 13

2.4.1 Analysis for a Call to ParCA . 16

2.5 Proof of the Key Lemma (Lemma 2.4.3) . 17

2.5.1 A Lower Bound for G . 18

2.5.2 An Upper Bound for G . 24

v

2.5.3 Wrapping Up . 25

2.6 Applications . 25

2.6.1 Stochastic Set Cover . 25

2.6.2 Sensor Placement with Unreliable Sensors 26

2.6.3 Shared Filter Evaluation . 27

2.6.4 Stochastic Score Classification . 28

2.7 Computational Results . 29

2.7.1 Stochastic Set Cover . 29

2.8 Set-based Model for Rounds . 31

2.8.1 Conversion Theorems . 32

2.9 Items realizing to subsets . 35

2.10 Estimating Scores in Algorithm ParCA . 36

3 Scenario Submodular Cover 39

3.1 Introduction . 39

3.1.1 Results and Techniques . 41

3.2 Related Work . 43

3.3 Definitions . 44

3.4 Scenario Submodular Cover . 46

3.4.1 The Algorithm . 46

3.4.2 Analysis for the partial covering algorithm 50

3.5 Proof of the key lemma for Scenario Submodular Cover 51

3.5.1 Lower bounding G . 52

3.5.2 Upper bounding G . 57

3.5.3 Completing proof of Lemma 3.4.3 . 58

3.5.4 Tight approximation using more rounds 58

3.6 Lower Bound for Scenario Submodular Cover 60

3.6.1 Hard Instances for Scenario Submodular Cover 61

3.6.2 Lower bound proof . 63

3.7 Applications . 66

vi

3.7.1 Optimal Decision Tree . 66

3.7.2 Correlated Knapsack Cover . 68

3.8 Computational Results . 68

3.8.1 Optimal Decision Tree . 68

3.9 An Information-Theoretic Lower Bound for ODT 71

3.10 Additional Plots . 73

4 Stochastic Score Classification 76

4.1 Introduction . 76

4.1.1 Problem Definitions . 78

4.1.2 Results and Techniques . 79

4.1.3 Related Work . 83

4.2 Preliminaries . 84

4.3 The Stochastic Score Classification Algorithm 85

4.3.1 The Algorithm . 85

4.3.2 The Analysis . 87

4.3.3 Proof of Lemma 4.3.3 . 89

4.3.4 Proof of the Key Lemma . 90

4.4 d-Dimensional Stochastic Score Classification 94

4.4.1 The Analysis . 95

4.4.2 Proof of Lemma 4.4.2 . 96

4.5 Explainable Stochastic Halfspace Evaluation 98

4.6 Computational Results . 101

4.6.1 An Information-Theoretic Lower Bound for SSClass 104

4.7 Handling Negative Weights . 105

4.8 Proof of Theorem 4.2.1 . 106

5 Introduction to Batched Dueling Bandits 109

5.1 Motivation . 109

5.2 Preliminaries . 110

5.2.1 Batch Policies . 111

vii

5.3 Overview of Results . 112

5.4 Related Work . 115

5.5 All Pairs Comparison Algorithm . 117

5.5.1 The Algorithm . 118

5.5.2 Regret Analysis . 119

6 Algorithms using Seeded Comparisons for Batched Dueling Bandits 122

6.1 Overview . 122

6.1.1 Results and Techniques . 122

6.2 The Algorithms . 125

6.2.1 Seeded Comparisons Algorithms . 125

6.2.2 Regret Analysis . 128

6.2.3 Proofs of Theorems 6.2.1 and 6.2.2 129

6.3 A Recursive Algorithm for Batched Dueling Bandits 134

6.3.1 The Analysis . 136

6.4 Experimental Results . 140

6.5 Lower Bound . 142

6.5.1 Proof of Theorem 6.5.1 . 144

7 An Improved Algorithm for Batched Dueling Bandits under Condorcet

Condition 150

7.1 Overview . 150

7.1.1 Contributions . 150

7.1.2 Results and Techniques . 151

7.2 The Batched Algorithm . 153

7.2.1 The Analysis . 156

7.3 Computational Results . 164

7.4 The Batched Algorithm with KL-based Elimination Criterion 168

7.4.1 The Analysis . 170

8 Directions for Future Work 177

viii

Bibliography 180

ix

List of Tables

4.1 Average performance ratios relative to the lower bound. 103

5.1 Instance-dependent regret bounds vs. rounds in Theorem 5.3.4; here, E =∑
j:∆j>0

1
∆j

. 114

x

Abstract

In this thesis, we study the role of adaptivity in decision-making problems under uncertainty.

The first part of the thesis focuses on combinatorial problems, while the second part of the

thesis deals with the K-armed dueling bandits problem. Combinatorial optimization cap-

tures many natural decision-making problems such as matching, load balancing, assortment

optimization, network design, and submodular optimization. In many practical settings, we

have to solve such combinatorial problems under uncertainty; specifically when we only have

partial knowledge about the input. Solutions to such problems are sequential decision pro-

cesses that make decisions one by one “adaptively” (depending on prior observations). While

such adaptive solutions achieve the best objective, the inherently sequential nature makes

them undesirable in many applications. Specifically, we ask: how well can solutions with

only a few adaptive rounds approximate fully-adaptive solutions?

• We study (and answer) the above question for the stochastic submodular cover and

scenario submodular cover problems. These models capture many problems such as

sensor placement with unreliable sensors, optimal decision tree, stochastic set cover,

and correlated knapsack cover. We show how to obtain solutions that approximate

fully-adaptive solutions using only a few “rounds” of adaptivity.

• We also study the stochastic score classification problem. We provide the first constant-

factor approximation algorithm for this problem, which improves over the previously-

known logarithmic approximation ratio. Moreover, our algorithm is non adaptive: it

just involves performing tests in a fixed order until the class is identified.

• For both problems, we present experimental results demonstrating the practical efficacy

of our algorithms. We find that a few rounds of adaptivity suffice to obtain high-quality

solutions in practice.

xi

In the second part of the thesis, we study the K-armed dueling bandits problem, which

has applications in a wide-variety of domains like search ranking, recommendation systems

and sports ranking where eliciting qualitative feedback is easy while real-valued feedback is

not easily interpretable; thus, it has been a popular topic of research in the machine learning

community. Previous works have only focused on the sequential setting where the policy

adapts after every comparison. However, in many applications such as search ranking and

recommendation systems, it is preferable to perform comparisons in a limited number of

parallel batches. We introduce and study the batched dueling bandits problem under two

standard settings: (i) existence of a Condorcet winner, and (ii) strong stochastic transitivity

and stochastic triangle inequality. For both settings, we obtain algorithms with a smooth

trade-off between the number of batches and regret. We complement our regret analysis

with a nearly-matching lower bound. Finally, in experiments over a variety of real-world

datasets, we observe that our algorithm using only a logarithmic number of rounds achieves

almost the same performance as fully sequential algorithms (that use T rounds).

xii

Chapter 1

Overview

1.1 Motivation

Many important problems involve decision making under uncertainty; for example, we may

have to make decisions when the input is not fully-specified, or when our algorithms receive

noisy observations. Typically, solutions for such problems involve sequential decision making:

where all previous decisions and feedback are used to make the next decision. This makes

the solutions inherently adaptive which may be undesirable in applications involving long

wait-times for feedback (for example, waiting for test results in medical diagnosis). A central

theme studied in this thesis is the following: how well do solutions with only a few adaptive

rounds compare to fully-adaptive solutions for a given problem? Next, we motivate this

question using a few applications.

A.1. Medical Diagnosis. Consider an application arising in medical diagnosis, where

we know the possible conditions that a patient may suffer from, along with the priors on

their occurrence, but not the actual underlying condition (see, for e.g., [49]). Under this

uncertainty, our goal is to perform tests to identify the correct condition at minimum ex-

pected cost. This application involves uncertain data: the precise outcome of a medical

test is not known until it is performed. Furthermore, performing such tests may involve

long wait-times, making adaptive solutions undesirable. Therefore, solutions with only few

rounds of adaptivity are preferable.

A.2. Sensor Placement. In a sensor placement application, we need to place a col-

1

lection of sensors to monitor some phenomenon, such as air quality or traffic behavior (see

[106]). The coverage area of each sensor is uncertain, and may depend on obstructions, the

local geography, or even unexpected failures. The goal is to deploy the fewest sensors to

cover some target region. The uncertainty in this application arises from the fact that the

precise area covered by a sensor may not be known until the sensor is deployed. Addition-

ally, physically deploying a sensor may take hours or days which, again, makes adaptive

solutions undesirable. As in the previous application, solutions with a few adaptive rounds

are preferable.

A.3. Diagnosing Complex Systems. Another important application of optimization

under uncertainty is in diagnosing complex systems. A complex system comprises several

components, and diagnosing it involves running a large number of tests for each component.

The goal of testing is to determine what sort of intervention needs to be undertaken; for

example, does simple maintenance suffice or should the entire system be replaced? Con-

cretely, we consider a setting where the goal is to test various components, in order to assign

a risk class (e.g., low/medium/high) to the system. One option to diagnose such systems

is to perform tests on all components, which can be prohibitively expensive. Thus, we are

interested in a policy that tests components one by one, and minimizes the average cost of

testing. (See [107] for a survey.) Our focus is in designing non-adaptive solutions, which

are simply described by a priority list: the components are tested in this fixed order until

the class can be uniquely determined. Such solutions are simpler and faster to implement,

compared to their adaptive counterparts. However, they are weaker than adaptive solutions,

and our main research question is: can we bound the multiplicative ratio (or, adaptivity gap)

between the performance of a non-adaptive solution to that of the optimal adaptive one?

A.4. Web-Search Ranking. A different stochastic optimization problem arises in

web-search ranking where the goal is to provide a ranked list of documents to the user of the

system in response to a query. Modern day search engines comprise hundreds of parameters

which are used to output a ranked list in response to a query. However, manually tuning

these parameters is infeasible, and online learning frameworks (based on user feedback) have

been invaluable in automatically tuning these parameters. For example, given two rankings

ℓ1 and ℓ2, they can be interleaved and presented to the user in such a way that clicks

2

indicate which of the two rankings is more preferable to the user [96]. The availability of

such pairwise comparison data led to the introduction of the dueling bandits problem [112],

a variation of the traditional stochastic bandit problem in which feedback is obtained in the

form of pairwise preferences. Previous learning algorithms for the dueling bandits problem

have focused on a fully adaptive setting; in the web-ranking application this corresponds to

the learning algorithm updating its parameters after each query. Such updates might be

impractical in large systems due to limited computational resources or when a large amount

of feedback is obtained simultaneously. Here we ask: can we obtain low-regret learning

algorithms that make a limited number of policy updates?

1.2 Thesis Goal

In this thesis our goal is to, in a principled manner, quantify the power of adaptivity in prob-

lems involving uncertainty. The notion of adaptivity may change depending on the problem:

for example, in the sensor placement problem, adapting to decisions involves waiting for

feedback while in the web-search ranking problem, it translates to selecting an adaptive

batch of queries to be executed. However, in either case, being adaptive leads to “better”

solutions.

Concretely, this thesis makes an attempt to answer the following question for some specific

problems: can we give provable guarantees on the performance of solutions which use only a

few adaptive rounds when compared to fully-adaptive solutions?

Although we are able to understand the power of adaptivity for some problems, much

more remains open. I believe that the techniques developed in this thesis will find use in

proving guarantees for solutions with low adaptivity for other optimization problems under

uncertainty.

1.3 Thesis Contributions

We conclude this chapter by giving an overview of our contributions.

3

Scenario Submodular Cover (ScnSC). This problem was introduced in [58] as a gen-

eralization of several problems including optimal decision tree, which models the medical

diagnosis application (A.1). In [51], we give the first r-round algorithm for ScnSC that

achieves an approximation guarantee with a smooth trade-off with r, the number of rounds

of adaptivity available. Furthermore, the guarantee matches the one obtained in the fully

adaptive setting using only a logarithmic number of rounds. We also provide a nearly match-

ing lower bound on the approximation guarantee for any r-round algorithm (see Chapter 3).

Stochastic Submodular Cover (SSC). SSC formalizes the sensor deployment application

(A.2). In [51], we study SSC under the limited adaptivity framework: we designed an r-round

algorithm with a nearly tight approximation guarantee that obtains a smooth trade-off with

r. We showed that a logarithmic number of adaptive rounds suffice to obtain solutions as

good as fully adaptive algorithms. SSC is a generalization of the stochastic set cover problem

studied by [54]: our result resolved (up to one logarithmic factor) the adaptivity gap for the

stochastic set cover problem, an open question posed by [54]. See Chapter 2 for details.

Stochastic Score Classification (SSClass). This problem models the problem of diag-

nosing complex systems (A.3). This problem was introduced by [53], who showed that it

can be formulated as an instance of stochastic submodular cover, and also obtained constant

factor non-adaptive approximation algorithms for some special cases of the problem. A main

open question from this work was the possibility of a constant factor approximation (even

under full adaptivity) for the general SSClass problem. We answer this question in the

affirmative [52] (Chapter 4). Moreover, our algorithm is non-adaptive: so we also bound the

adaptivity gap.

Dueling Bandits (DB). The DB problem has been widely studied in machine learning due

to its utility in applications like search ranking (A.4) (see [22] for a recent survey). We

introduce the batched dueling bandits (BatchedDB) problem where the learning algorithm

can make a limited number of updates [4]. The details regarding this appear in Chapter 5.

We study BatchedDB under the strong stochastic transitivity (SST) and strong triangle

inequality (STI) assumptions (these imply a linear order across the bandits), and obtain

4

a smooth trade-off between the expected regret and the number of batches. Furthermore,

we obtained regret bounds that nearly match those in the sequential setting using only a

logarithmic number of batches. We also provided a nearly matching lower bound on the

expected regret (see Chapter 6). In recent work [3], we study the BatchedDB under the more

general Condorcet setting, which only assumes the existence of a “best” bandit. Again, we

designed an algorithm which achieves a smooth trade-off between the expected regret and

the number of batches. Surprisingly, in a logarithmic number of rounds, our regret bounds

nearly match (up to logarithmic factors) the best regret bounds known in the fully sequential

setting, showing that a logarithmic number of rounds are sufficient to achieve asymptotically

optimal regret for the DB under the Condorcet setting (refer to Chapter 7 for details).

5

Chapter 2

Stochastic Submodular Cover

2.1 Introduction

Submodularity is a fundamental notion that arises in applications such as image segmen-

tation, data summarization [102, 83, 103], hypothesis identification [17, 32], information

gathering [95], and social networks [75] . The submodular cover optimization problem re-

quires us to pick a minimum-cost subset S of items to cover a monotone submodular function

f . Submodular cover has been extensively studied in machine learning, computer science

and operations research [110, 55, 88, 18]: here is an example from sensor deployment.

In the sensor deployment setting, we consider the problem of deploying a collection of

sensors to monitor some phenomenon [80, 87, 106], for example, we may wish to monitor air

quality or traffic situations. The area each sensor can cover depends on its sensing range.

The goal of the problem is to deploy as few sensors as possible to cover a desired region

entirely. The area covered as a function of the sensors deployed is a submodular function,

and we can cast the sensor deployment problem as a special case of submodular cover.

Observe that this application involves uncertain data: the precise area covered by a sensor

is not known before the sensor is actually setup. This uncertainty can be modeled using

stochastic submodular optimization, where the items are stochastic. As a simple example of

the stochastic nature, each item may be active or inactive (with known probabilities), and

only active items contribute to the submodular function.

A solution for stochastic submodular cover is now a sequential decision process. At each

6

step, an item is probed and its realization (e.g., active or inactive) is observed. The process is

typically adaptive, where all the information from previously probed items is used to identify

the next item to probe. This process continues until the submodular function is covered,

and the goal is to minimize the expected cost of probed items. Such adaptive solutions are

inherently fully sequential, which is undesirable if probing an item is time-consuming. E.g.,

in sensor deployment, probing a sensor corresponds to physically deploying a sensor and

observing whether it functions as expected, which may take hours or days. Therefore, we

prefer solutions with only few rounds of adaptivity.

Motivated by this, we ask: how well do solutions with only a few adaptive rounds approx-

imate fully-adaptive solutions for the stochastic submodular cover problem? In this chapter,

we consider the case where realizations of different items are independent. We give nearly

tight answers, with smooth tradeoffs between the number r of adaptive rounds and the

solution quality (relative to fully adaptive solutions).

Our main contribution is an r-round adaptive solution for stochastic submodular cover in

the “set-based” model for adaptive rounds. In this model, a fixed subset of items is probed

in parallel every round (and their total cost is incurred). The decisions in the current round

can depend on the realizations seen in all previous rounds. However, as noted in [2], if we

require function f to be covered with probability one then the r-round-adaptivity gap turns

out to be very large. (See §2.8 for an example.)

Therefore, we focus on set-based solutions that are only required to cover the function

with high probability.

In designing algorithms, it turns out to be more convenient to work with the “permuta-

tion” model for adaptive rounds, where the function is covered with probability one. This

model was also used in prior literature [54, 2]. Here, every round of an r-round-adaptive

solution specifies an ordering of all remaining items and probes them in this order until some

stopping rule. See Definition 2.3.2 for a formal definition. Moreover, our r-round adaptive

algorithm in the permutation model can be transformed into an r-round adaptive algorithm

in the set-based model. We obtain algorithms in the set-based model that:

• for any η ∈ (0, 1), finds an r-round adaptive solution that has expected cost at most

rα
η
· OPT and covers the function with probability at least 1− η.

7

• finds an O(r)-round adaptive solution that has expected cost at most O(α) · OPT and

covers the function with probability at least 1− e−Ω(r).

Here OPT is the cost of an optimal fully-adaptive solution and α is the approximation ratio

of our algorithm in the permutation model. The first algorithm above is for the case where

r, the number of rounds of adaptivity, is small (say, a constant). In this, we keep the number

of rounds the same, but we lose a factor r in the expected cost. The second algorithm is for

the case that r is large, e.g., more than a constant. Here, the number of set-based rounds

increases by a factor 2, but we only lose a constant factor in expected cost. We formalize and

prove these results in §2.8. For the rest of the paper, an r-round adaptive algorithm refers

to an an r-round adaptive algorithm in the permutation model (unless specified otherwise).

2.1.1 Results and Techniques

Consider a monotone submodular function f : 2U → Z≥0 with Q := f(U). There are m

items, where each item i is a random variable Xi having cost ci and corresponding to a

random element of U . (Our results extend to the more general setting where each item

realizes to a subset of U .) The goal is to select a set of items such that the union S of

their corresponding realizations satisfies f(S) = Q, and the expected cost is minimized. We

obtain the following result when items have independent distributions.

Theorem 2.1.1 (Independent Items). For any integer r ≥ 1, there is an r-round adaptive

algorithm for the stochastic submodular cover problem with cost O(Q1/r · logQ) times the cost

of an optimal adaptive algorithm.

This improves over an O(r Q1/r logQ log(mcmax)) bound from [2] by eliminating the

dependence on the number of items m and the item costs (which could be much larger than

Q). Moreover, our result nearly matches the lower bound of Ω(1
r3
Q1/r) from [2]. Setting r =

logQ shows that O(logQ) adaptive rounds give an O(logQ)-approximation. By transforming

this algorithm into a set-based solution using Theorem 2.8.2, we get:

Corollary 2.1.2 (Independent Items: Set-Based Model). There is an O(logQ) round al-

gorithm for stochastic submodular cover in the set-based model that (i) has expected cost

8

O(logQ) times the optimal (fully) adaptive cost, and (ii) covers the function with probability

at least 1− 1
Q
.

This approximation ratio of O(logQ) is the best possible (unless P=NP) even with

an arbitrary number (r = m) of adaptive rounds. Previously, one could only obtain an

O(log2Q log(mcmax))-approximation in a logarithmic number of rounds [2], or anO(log(mQcmax))-

approximation in O(logm log(Qmcmax)) set-based rounds [44].

Moreover, Theorem 2.1.1 (with r = 1) implies an O(Q logQ) adaptivity gap for stochastic

set cover (a special case of submodular cover), resolving an open question from [54] up to

an O(logQ) factor, where Q is the number of objects in set cover.

Finally, we note that our algorithm is also easy to implement. We tested it on synthetic

and real datasets that validate the practical performance of our algorithms. Specifically, we

test our algorithm for the independent case (Theorem 2.1.1) on instances of stochastic set

cover. For stochastic set cover, we use real-world datasets to generate instances with ≈ 1200

items. We observe a sharp improvement in performance within a few rounds of adaptivity,

and that 6-7 rounds of adaptivity are nearly as good as fully adaptive solutions. We also

compared our algorithm’s cost to a information-theoretic lower bound: our costs are typically

within 50% of these lower bounds.

Techniques. In each round the algorithm, we iteratively compute a “score” for each item

and greedily select the item of maximum score. This results in a non-adaptive list of all

remaining items, and the items are probed in this order until a stopping rule. The ParCA

stopping rule corresponds to reducing the remaining target (on the function value) by a

factor of Q1/r.

The analysis for Theorem 2.1.1 is as follows. For each i ≥ 0, we relate the “non-

completion” probabilities of the algorithm after cost α · 2i to the optimal adaptive solution

after cost 2i. The “stretch” factor α corresponds to the approximation ratio. In order to

relate these non-completion probabilities, we consider the total score G of items selected by

the algorithm between cost α2i−1 and α2i. The crux of the analysis lies in giving lower and

upper bounds on the total score G.

For the independent case, the score of any item Xe is an estimate of its relative marginal

9

gain, where we take an expectation over all previous items as well as Xe. We also normalize

this gain by the item’s cost. See Equation (2.1) for the definition. In lower bounding

the total score G, we use a variant of a sampling lemma from [2] as well as the constant-

factor adaptivity gap for submodular maximization [26]. We also need to partition the

outcome space (of all previous realizations) into “good” and bad outcomes: conditional on

a good outcome, OPT has a high probability of completing before cost 2i. Good outcomes

are necessary in our proof of the sampling lemma, but luckily the total probability of bad

outcomes is small (and they can be effectively ignored). In upper bounding G, we consider

the total score as a sum over decision/sample paths and use the fact that the sum of relative

gains corresponds to a harmonic series.

2.2 Related Work

A (1+ lnQ)-approximation algorithm for the basic submodular cover problem was obtained

in [110]. This is also the best possible (unless P=NP) as the set cover problem is a special

case [45]. In the past several years, there have been many papers on stochastic variants of

submodular cover as this framework captures many different applications; see [55, 67, 40,

58, 92]

The stochastic set cover problem was first studied by [54], who showed that the adaptivity

gap lies between Ω(d) and O(d2) where d is the number of objects to be covered. Recently,

[2] improved the upper bound to O(d log d log(mcmax)). As a corollary of Theorem 2.1.1,

we obtain a tighter O(d log d) adaptivity gap. Importantly, we eliminate the dependence of

the items m and maximum-cost, which may even be exponential in d.

An O(logQ) adaptive approximation algorithm for stochastic submodular cover (inde-

pendent items) follows from [67]. Related results for special cases or with weaker bounds

were obtained in [85, 55, 56, 40]. As mentioned earlier, [2] obtained r-round-adaptivity gaps

for independent items. Theorem 2.1.1 improves their bound by an O(r · log(mcmax)) fac-

tor. Moreover, our algorithm is greedy-style and much simpler to implement. We bypass

computationally expensive steps in prior work such as solving several instances of stochastic

submodular maximization. Our analysis (outlined above) is also very different. While we use

10

a sampling lemma similar to [2], this result is applied in different manner and it only affects

the analysis (see Lemma 2.5.2). We note that our high-level approach of lower/upper bound-

ing the total score is similar to the analysis in [67] for the fully adaptive problem. However,

the details are very different because we need to handle issues of r-round-adaptivity gaps.

The framework of “adaptive submodularity”, introduced by [56], models correlations in

stochastic submodular cover. Adaptive submodularity is a combined condition on the goal

function f (that needs to be covered) and the distribution D on items. While stochastic

submodular cover with independent items satisfies adaptive-submodularity, scenario sub-

modular cover does not. [56] gave a fully-adaptive O(log2(mQ))-approximation algorithm

for adaptive-submodular cover (AdSubCov) when all costs are unit. Recently, [44] improved

this to an O(log(mQ))-approximation in O(logm log(Qm)) rounds of adaptivity, still as-

suming unit costs. When costs are arbitrary, the result in [44] implies an O(log(mQcmax))-

approximation in O(logm log(Qmcmax)) rounds: this result also applies to stochastic sub-

modular cover and can be compared to Corollary 2.1.2 that we obtain.

The role of adaptivity has been extensively studied for stochastic submodular maxi-

mization. A constant adaptivity gap under matroid constraints (on the probed items) was

obtained in [8]. Later, [64] obtained a constant adaptivity gap for a very large class of “prefix

closed” constraints; the constant factor was subsequently improved to 2 which is also the

best possible [26]. We make use of this result in our analysis. More generally, the role of

adaptivity has been extensively studied for various stochastic “maximization” problems such

as knapsack [38, 23], matching [15, 19], probing [62] and orienteering [59, 61, 16].

[74, 43] and [47] study the role of adaptivity and batch processing in the online learn-

ing setting. Their work is motivated by noting that many real-world data observations are

processed in batches. Recently, there have also been several results examining the role of

adaptivity in (deterministic) submodular optimization(see, for example, [13, 11, 14, 12]

and [30]). The motivation here was in parallelizing function queries (that are often expen-

sive). In many settings, there are algorithms using (poly)logarithmic number of rounds that

nearly match the best sequential (or fully adaptive) approximation algorithms. While our

motivation is similar (in parallelizing the expensive probing steps), the techniques used are

completely different.

11

2.3 Definitions

In the stochastic submodular cover problem, the input is a collection of m random variables

(or items) X = {X1, . . . ,Xm}. Each item Xi has a cost ci ∈ R+, and realizes to a random

element of groundset U . Let the joint distribution of X be denoted by D. Here, we assume

that the random variables Xi are independent. The realization of item Xi is denoted by

Xi ∈ U ; this realization is only known when Xi is probed at a cost of ci. Extending this

notation, given a subset of items S ⊆ X , its realization is denoted S = {Xi : Xi ∈ S} ⊆ U .

In addition, we are given an integer-valued monotone submodular function f : 2U → Z+

with f(U) = Q. A realization S of items S ⊆ X is feasible if and only if f(S) = Q the

maximal value; in this case, we also say that S covers f . The goal is to probe (possibly

adaptively) a subset S ⊆ X of items that gets realized to a feasible set. We use the shorthand

c(S) :=
∑

i:Xi∈S ci to denote the total cost of items in S ⊆ X . The objective is to minimize

the expected cost of probed items, where the expectation is taken over the randomness in

X . We consider the following types of solutions.

Definition 2.3.1. For an integer r ≥ 1, an r-round-adaptive solution in the set-based

model proceeds as follows. For each round k = 1, . . . , r, it specifies a subset Sk of items

that is probed in parallel. The cost incurred in round k is c(Sk) the total cost of all probed

items in that round. The subset Sk in round k can depend on realizations seen in all previous

rounds 1, . . . , k − 1.

In the set-based model, we allow solutions to be infeasible (i.e., fail to cover f) with some

small probability η > 0. As shown in Appendix 2.8, such a relaxed solution is necessary. In

designing algorithms, we will work with the “permutation” model, as defined next.

Definition 2.3.2. For an integer r ≥ 1, an r-round-adaptive solution in the permuta-

tion model proceeds in r rounds of adaptivity. In each round k ∈ {1, . . . , r}, the solution

specifies an ordering of all remaining items and probes them in this order until some stopping

rule. The decisions in round k can depend on the realizations seen in rounds 1, . . . , k − 1.

In the permutation model, solutions must be feasible with probability one. As shown in

§2.8, our algorithms in the permutation model can be converted into algorithms in the set-

12

based (with similar approximation ratios). Henceforth, an r-round adaptive algorithm refers

to an an r-round adaptive algorithm in the permutation model (unless specified otherwise).

Setting r = 1 in Definition 2.3.2 gives us a non-adaptive solution as studied in [54,

2]. Setting r = m gives us a (fully) adaptive solution. Having more rounds leads to a

smaller objective value, so adaptive solutions have the least objective value. Our performance

guarantees are relative to an optimal fully adaptive solution; let OPT denote this solution and

its cost. The r-round-adaptivity gap is defined as follows:

sup
instance I

E[cost of best r-round adaptive solution on I]

E[cost of best adaptive solution on I]

Setting r = 1 gives the adaptivity gap.

2.4 Stochastic Submodular Cover

We now consider the (independent) stochastic submodular cover problem and prove The-

orem 2.1.1. For simplicity, we assume that costs ci are integers. Our results also hold for

arbitrary costs (by replacing certain summations in the analysis by integrals).

We find it convenient to solve a partial cover version of the stochastic submodular cover

problem. In this partial cover version, we are given a parameter δ ∈ [0, 1] and the goal is to

probe some R that realizes to a set R achieving value f(R) > Q(1− δ). We are interested in

a non adaptive algorithm for this problem. Clearly, if δ = 1/Q, the integrality of the function

f means that f(R) = Q, and we solve the original (full coverage) problem. Moreover, we can

use this algorithm with different thresholds to also get the r-round version of the problem.

The main result of this section is:

Theorem 2.4.1. There is a non-adaptive algorithm for the partial cover version of stochastic

submodular cover with cost O
(ln 1/δ

δ

)
times the optimal adaptive cost for the (full) submodular

cover.

The algorithm first creates an ordering/list L of the items non-adaptively; that is, without

knowing the realizations of the items. To do so, at each step we pick a new item that

maximizes a carefully-defined score function (Equation (2.1)). The score of an item cannot

13

depend on the realizations of previous items on the list (since we are non-adaptive). However,

it depends on the marginal relative increase for a random draw from the previously chosen

items. Once this ordering L is specified, the algorithm starts probing and realizing the items

in this order, and does so until the realized value exceeds (1− δ)Q.

Algorithm 1 PARtial Covering Algorithm ParCA(X , f, Q, δ)
1: S ← ∅, list L← ⟨⟩, τ ← Q(1− δ)
2: while S ≠ X do ▷ Building the list non-adaptively
3: select an item Xe ∈ X \ S that maximizes:

score(Xe) :=
1

ce
·

∑
S∼S:f(S)≤τ

P(S = S) · EXe∼Xe

[
f(S ∪Xe)− f(S)

Q− f(S)

]
(2.1)

4: S ← S ∪ {Xe} and list L← L ◦ Xe

5: R ← ∅, R← ∅
6: while f(R) ≤ τ do ▷ Probing items on the list
7: Xe ← first r.v. in list L not in R, and let Xe ∈ U be its realization.
8: R← R ∪ {Xe},R ← R∪ {Xe}
9: return probed items R and their realizations R.

Given this partial covering algorithm we immediately get an algorithm for the r-round

version of the problem, where we are allowed to make r rounds of adaptive decisions. Indeed,

we can first set δ = Q−1/r and solve the partial covering problem with this value of δ. Suppose

we probe variables R and their realizations are given by the set R ⊆ U . Then we can

condition on these values to get the marginal value function fR (which is submodular), and

inductively get an r− 1-round solution for this problem. The following algorithm formalizes

this.

Algorithm 2 r-round adaptive algorithm for stochastic submodular cover SSC(r,X , f)
1: run ParCA (X , f, Q,Q−1/r) for round #1.
2: let R (resp. R) denote the probed items (resp. their realizations) in ParCA.

3: define residual submodular function f̂ := fR.
4: recursively solve SSC(r − 1,X \ R, f̂).

Theorem 2.4.2. Algorithm 2 is an r-round adaptive algorithm for stochastic submodular

cover with cost O(Q1/r logQ) times the optimal adaptive cost.

14

Proof. We proceed by induction on the number of rounds r. Let OPT denote the cost of

an optimal adaptive solution. The base case is r = 1, in which case δ = Q−1/r = 1
Q
. By

Theorem 2.4.1, the partial cover algorithm ParCA(X , f, Q,Q−1/r) obtains a realization R

with f(R) > (1 − δ)Q = Q − 1. As f is integer-valued, we must have f(R) = Q, which

means the function is fully covered. So the algorithm’s expected cost is O(Q logQ) · OPT.

We now consider r > 1 and assume (inductively) that Algorithm 2 finds an r − 1-round

O(Q
1

r−1 logQ)-approximation algorithm for any instance of stochastic submodular cover.

Let δ = Q−1/r. By Theorem 2.4.1, the expected cost in round 1 (step 1 in Algorithm 2)

is O(1
r
Q1/r logQ). Let Q̂ := Q − f(R) = f̂(U) denote the maximal value of the residual

submodular function f̂ = fR. Note that Q̂ < δQ = Q(r−1)/r, by the definition of the partial

covering algorithm. The optimal solution OPT conditioned on the variables in R realizing to

R gives a feasible adaptive solution to the residual problem of covering f̂ ; we denote this

conditional solution by ÔPT. We inductively get that the cost of our r− 1-round solution on

f̂ is at most

O(Q̂
1

r−1 log Q̂) · ÔPT ≤ O

(
r − 1

r
Q1/r logQ

)
· ÔPT,

where we used Q̂ < Q(r−1)/r. As this holds for every realization R, we can take expec-

tations over R to get that the (unconditional) expected cost of the last r − 1 rounds is

O
(
r−1
r
Q1/r logQ

)
· OPT. Adding to this the cost of the first round, which is O

(
1
r
Q1/r logQ

)
,

completes the proof.

Remark: Assuming that the scores (2.1) can be computed in polynomial time, it is clear

that our entire algorithm can be implemented in polynomial time. In particular, if T denotes

the time taken to calculate the score of one item, then the overall algorithm runs in time

poly(m,T) where m is the number of items. We are not aware of a closed-form expression

for the scores (for arbitrary submodular functions f). However, as discussed in the full

version, we can use sampling to estimate these scores to within a constant factor. However,

as discussed in §2.10, we can use sampling to estimate these scores to within a constant

factor. Moreover, our analysis works even if we only choose an approximate maximizer for

(2.1) at each step. It turns out that T = poly(m, cmax) many samples suffice to estimate

these scores. So, the final runtime is poly(m, cmax); note that this does not depend on the

15

number |U | of elements. We note that even the previous algorithms [2, 44] have a polynomial

dependence on cmax in their runtime. In the following analysis we will assume that the scores

(2.1) are computed exactly. In the following analysis we will assume that the scores (2.1)

are computed exactly; see §2.10 for the sampling details.

2.4.1 Analysis for a Call to ParCA

We now prove Theorem 2.4.1. We denote by OPT an optimal adaptive solution for the

covering problem on f . Now we analyze the cost incurred by following the non-adaptive

strategy (which we call NA): probe variables according to the order given by the list L

generated by ParCA, and stop when the realized coverage exceeds τ := Q(1 − δ) (see

Algorithm 1 for details). We consider the expected cost of this strategy, and relate it to the

cost of OPT.

We refer to the cumulative cost incurred (either by OPT or by NA) until any point in a

solution as time elapsing. We say that OPT is in phase i when it is in the time interval

[2i, 2i+1) for i ≥ 0. Let α := O
(

ln 1/δ
δ

)
. We say that NA is in phase i when it is in time

interval [α · 2i−1, α · 2i) for i ≥ 1; phase 0 refers to the interval [1, α). Define

• ui: probability that NA goes beyond phase i; that is, has cost at least α · 2i.

• u∗i : probability that OPT goes beyond phase i− 1; that is, costs at least 2i.

Since all costs are integers, u∗0 = 1. For ease of notation, we also use OPT and NA to denote

the random cost incurred by OPT and NA respectively. The following lemma forms the crux

of the analysis.

Lemma 2.4.3. For any phase i ≥ 1, we have ui ≤ ui−1

4
+ 6

5
u∗i .

Before we prove this lemma, we use it to prove Theorem 2.4.1.

Proof of Theorem 2.4.1. With probability (ui−1 − ui), NA ends in phase i with cost at most

α · 2i. As a consequence of this, we have

E[NA] ≤ α · (1− u0) +
∑
i≥1

α · 2i · (ui−1 − ui) = α + α ·
∑
i≥0

2iui. (2.2)

16

Similarly, we can bound the cost of the optimal adaptive algorithm as

E[OPT] ≥
∑
i≥0

2i(u∗i − u∗i+1) ≥ u∗0 +
1

2
·
∑
i≥1

2iu∗i = 1 +
1

2
·
∑
i≥1

2iu∗i , (2.3)

where the final equality uses the fact that u∗0 = 1. Define Γ :=
∑

i≥0 2
iui. We have

Γ :=
∑
i≥0

2iui ≤ u0 +
1

4

∑
i≥1

2i · ui−1 +
6

5

∑
i≥1

2i · u∗i

≤ u0 +
1

4

∑
i≥1

2iui−1 +
12

5
· (E[OPT]− 1)

= u0 +
1

2

(∑
i≥0

2iui

)
+

12

5
· (E[OPT]− 1)

≤ 1

2
Γ +

12

5
E[OPT]− 1,

where the first inequality follows from Lemma 2.4.3, the second inequality from (2.3), and

the last inequality from the fact that u0 ≤ 1. Thus, Γ ≤ 24
5
· E[OPT] − 2. From (2.2), we

conclude E[NA] ≤ 24
5
α · E[OPT]. Setting α = O

(
ln(1/δ)

δ

)
completes the proof.

2.5 Proof of the Key Lemma (Lemma 2.4.3)

Recall the setting of Lemma 2.4.3 and fix the phase i ≥ 1. Consider the list L generated by

ParCA(X , f, Q, δ). Let NA denote both the non-adaptive strategy of Algorithm 1, as well

as its cost. Note that NA probes items in the order given by L until a coverage value greater

than τ := Q(1− δ) is achieved.

We will assume (without loss of generality) that δ is a power-of-two, i.e., δ = 2−z for

some integer z ≥ 0. Indeed, if this is not the case, we can use a power-of-two value δ′ where

δ
2
≤ δ′ ≤ δ: this only increases the approximation ratio O(1

δ
ln 1

δ
) in Theorem 2.4.1 by a

constant factor.

For each time t ≥ 0, let Xe(t) denote the item that would be selected at time t. In other

words, this is the item which causes the cumulative cost of L to exceed t for the first time.

17

We define the total gain as the random variable

G :=
α2i∑

t=α2i−1

score(Xe(t)), (2.4)

which corresponds to the sum of scores over the time interval [α · 2i−1, α · 2i). The proof of

Lemma 2.4.3 will be completed by giving upper- and lower-bounds on G, which we do next.

The lower bound views G as a sum over time steps, whereas the upper bound views G as a

sum over decision paths.

2.5.1 A Lower Bound for G

Fix some time t ∈ [α2i−1, α2i) in phase i of our algorithm. Let S be the random variable

denoting the set of chosen items (added to list L) until some time t, and let S denote its

realization. We also need the following definitions:

1. For any power-of-two θ ∈ { 1
2j

: 0 ≤ j ≤ logQ}, we say that a realization S of S belongs

to scale θ iff θ
2
< Q−f(S)

Q
≤ θ. We use Eθ to denote all outcomes of S that belong to

scale θ. We also use S ∼ Eθ to denote the conditional distribution of S corresponding

to Eθ.

2. For any scale θ, let r∗iθ := P(OPT covers f with cost at most 2i and S ∈ Eθ).

3. Scale θ is called good if
r∗iθ

P(Eθ)
≥ 1

6
where P(Eθ) := PS∼S(S ∈ Eθ).

Lemma 2.5.1. NA terminates by time t if and only if the realization of S is in a scale θ ≤ δ.

Proof. Note that if the realization of S is in some scale θ ≥ 2δ then

f(S) < Q− θQ

2
≤ Q− δQ = τ,

and NA would not terminate before time t. On the other hand, if the realization of S is in a

scale θ ≤ δ (note that all scales are powers-of-two) then f(S) ≥ Q− θQ ≥ τ, and NA would

terminate before time t.

18

We now define a function

g(T) :=
∑
θ>δ

P(Eθ) · ES∼Eθ

[
f(S ∪ T)− f(S)

Q− f(S)

]
=

∑
S∼S:f(S)<τ

P(S = S) · fS(T)

Q− f(S)
, ∀T ⊆ U.

(2.5)

The second equality is by Lemma 2.5.1. The function g is monotone and submodular, since

fS is monotone and submodular for each S ⊆ U , and g is a non-negative linear combination

of such functions. Moreover, for any item Xe, we have score(Xe) =
1
ce
· EXe [g(Xe)].

Constrained stochastic submodular maximization. Our analysis makes use of some

known results for stochastic submodular maximization. Here, we are given as input a non-

negative monotone submodular function g : 2U → R≥0, independent stochastic items X =

{X1, . . . ,Xm} such that each Xi realizes to some element of the groundset U . There is a cost

ci associated with each item Xi, and a budget B on the total cost. The goal is to select

S ⊆ X such that the total cost of S is at most B and it maximizes the expected value

ES∼S [g(S)]. The adaptivity gap for stochastic submodular maximization is at most 2; see

Theorem 1 in [26].

Lemma 2.5.2. For any good scale θ, there exists a subset Tθ ⊆ X \ S with c(Tθ) ≤ 144
θ
· 2i

such that:

ES∼EθETθ∼Tθ

[
f(S ∪ Tθ)− f(S)

]
≥ θQ

6
· r∗iθ
P(Eθ)

. (2.6)

Proof. We construct set Tθ as follows. Initially, Tθ ← ∅. For each k = 1, 2, . . . , 144
θ
:

1. Sample realization S of S from Eθ.

2. Let Tk ⊆ X \ S be an optimal non-adaptive solution to the stochastic submodular

maximization instance with function fS and cost budget 2i.

3. Set Tθ ← Tθ ∪ Tk.

By construction, c(Tθ) ≤ 144
θ
· 2i. So we focus on the expected function value. Consider

any S ∈ Eθ as the realization of S. Let TS denote the non-adaptive solution obtained in

step 2 above for realization S. Define w∗
i,S as the probability that OPT covers f with cost at

19

most 2i given that S realizes to S, i.e.,

w∗
i,S := P(OPT covers f with cost at most 2i | S = S).

Note that
∑

S∈Eθ w
∗
i,S · P(S = S) = r∗iθ. Let AD denote OPT until time 2i and restricted

to items X \ S. Note that AD is a feasible adaptive solution to the stochastic submodular

maximization instance with function fS: every decision path has total cost at most 2i. The

expected value of AD is at least (Q − f(S)) · w∗
i,S by definition of w∗

i,S. As S ∈ Eθ, we have

Q − f(S) ≥ θQ
2
, which implies AD has value at least θQ

2
· w∗

i,S. Now, using the factor 2

adaptivity gap for stochastic submodular maximization (discussed above), it follows that the

non-adaptive solution TS has expected value:

ETS∼TS [f(S ∪ TS)− f(S)] ≥
θQ

4
· w∗

i,S, ∀S ∈ Eθ.

Taking expectations,

ESETS
[f(S ∪ TS)− f(S) | S ∈ Eθ] ≥

∑
S∈Eθ

θQ

4
· w∗

i,S ·P(S = S | S ∈ Eθ)

=
θQ

4
·
∑
S∈Eθ

w∗
i,S ·

P(S = S)

P(Eθ)
=
θQ

4
· r∗iθ
P(Eθ)

.

The left-hand-side of the above relation can be rewritten to give

ES∼EθETS
[f(S ∪ TS)− f(S)] ≥

θQ

4
· r∗iθ
P(Eθ)

. (2.7)

For a contradiction to (2.6), suppose that

ES∼EθETθ
[f(S ∪ Tθ)− f(S)] <

θQ

6
· r∗iθ
P(Eθ)

. (2.8)

20

Subtracting Equation (2.8) from Equation (2.7) gives the following:

θQ

12
· r∗iθ
P(Eθ)

< ES∼EθETS
ETθ

[f(S ∪ TS)− f(S ∪ Tθ)]

≤ ES∼EθETS
ETθ

[f(S ∪ Tθ ∪ TS)− f(S ∪ Tθ)]

≤ ES∼EθETS
ETθ

[f(Tθ ∪ TS)− f(Tθ)] (2.9)

where the second inequality uses monotonicity of f , and the last one its submodularity.

Let T (k) = T1 ∪ T2 . . . ∪ Tk denote the items selected until iteration k. We write a

telescoping sum as follows

ETθ
[f(Tθ)] =

∑
k

ET (k)

[
f(T (k))− f(T (k−1))

]

where we define f(T (0)) := 0. Note that in each iteration k, the sample S is drawn indepen-

dently and identically from Eθ, and items Tk = TS are added.

ET (k)

[
f(T (k))− f(T (k−1))

]
= ES∼EθETS

ETk−1

[
f(T (k−1) ∪ TS)− f(T (k−1))

]
≥ ES∼EθETS

ETθ
[f(Tθ ∪ TS)− f(Tθ)] >

θQ

12
· r∗iθ
P(Eθ)

.

The first inequality above uses T (k−1) ⊆ Tθ and submodularity, and the second inequality

uses (2.9). Adding over all iterations k,

ETθ
[f(Tθ)] >

∑
k

θQ

12
· r∗iθ
P(Eθ)

=
144

θ
· θQ
12
· r∗iθ
P(Eθ)

≥ 2Q,

where the last inequality uses the fact that θ is a good scale. This is a contradiction since

the maximum function value is Q. This completes the proof of (2.6).

Lemma 2.5.3. For any S ⊆ X , there exists a subset T ⊆ X \S of total cost at most 144
δ
· 2i

with

ET∼T [g(T)] ≥ 1

6
·
∑

θ>δ, good

r∗iθ.

Proof. Let B denote the set of good scales θ with θ > δ. Note that
∑

θ∈B
1
θ
≤ 1

δ
as the scales

21

are powers of two. From Lemma 2.5.2, let Tθ denote the items satisfying (2.6) for each scale

θ ∈ B. Define T = ∪θ∈BTθ. As claimed, the total cost is

c(T) ≤
∑
θ∈B

c(Tθ) ≤ 2i
∑
θ∈B

144

θ
≤ 144

δ
· 2i.

Next, we bound the expected increase in the value of f . By (2.6) and T ⊇ Tθ, it follows that

ES∼EθET∼T [f(S ∪ T)− f(S)] ≥
θQ

6
· r∗iθ
P(Eθ)

for each θ ∈ B. Using the fact that θQ
2
< Q− f(S) ≤ θQ for all S ∈ Eθ, we get:

ES∼EθET∼T

[
f(S ∪ T)− f(S)

Q− f(S)

]
≥ 1

6
· r∗iθ
P(Eθ)

, ∀θ ∈ B.

By definition of function g (see (2.5)),

ET∼T [g(T)] =
∑
θ>δ

P(Eθ) · ES∼EθET∼T

[
f(S ∪ T)− f(S)

Q− f(S)

]
≥

∑
θ∈B

P(Eθ) · ES∼Eθ ET∼T

[
f(S ∪ T)− f(S)

Q− f(S)

]
≥ 1

6
·
∑
θ∈B

r∗iθ,

which completes the proof of the lemma.

Using Lemma 2.5.3 and averaging,

max
Xe∈X\S

score(Xe) ≥ max
Xe∈T

score(Xe) ≥
∑

Xe∈T E[g(Xe)]

c(T)
=

ET∼T [
∑

Xe∈T g(Xe)]

c(T)

≥ ET∼T [g(T)]

c(T)
≥ δ

β · 2i
·
∑

θ>δ, good

r∗iθ, (2.10)

where β = O(1).

Lemma 2.5.4. We have
∑

θ>δ, good r
∗
iθ ≥ ui − 6u∗

i

5
.

Proof. First, we upper bound
∑

θ not good r
∗
iθ. Consider any scale θ that is not good. Then,

r∗iθ
P(Eθ)

< 1
6
, i.e., P(OPT < 2i | S ∼ Eθ) < 1/6, which implies P(OPT ≥ 2i | S ∼ Eθ) > 5

6
>

22

5
r∗iθ

P(Eθ)
. So,

∑
θ not good

r∗iθ <
1

5

∑
θ not good

P(Eθ) ·P(OPT ≥ 2i | S ∼ Eθ) ≤
1

5

∑
θ

P(OPT ≥ 2i and S ∼ Eθ) ≤
u∗i
5

(2.11)

where the last inequality uses the fact that
∑

θ P(OPT ≥ 2i and S ∼ Eθ) = u∗i .

We now upper bound
∑

θ≤δ r
∗
iθ. By Lemma 2.5.1, if the realization S is in scale θ ≤ δ

then NA ends before time t ≤ α2i, i.e., it does not go beyond phase i. Hence,

∑
θ≤δ

r∗iθ ≤
∑
θ≤δ

P(S ∼ Eθ) ≤ 1− ui. (2.12)

We now use the fact that 1− u∗i =
∑

θ r
∗
iθ where we sum over all scales. So,

∑
θ>δ, good

r∗iθ ≥
∑
θ

r∗iθ −
∑

θ not good

r∗iθ −
∑
θ≤δ

r∗iθ ≥ (1− u∗i)−
u∗i
5
− (1− ui) = ui −

6u∗i
5
,

where we used (2.11) and (2.12).

Combining (2.10) and Lemma 2.5.4, and using the greedy choice in step 3 (Algorithm 1),

the score at time t,

score(Xe(t)) ≥ δ

β2i

(
ui −

6

5
u∗i

)
.

We note that this inequality continues to hold (with a larger constant β) even if we choose

an item that only maximizes the score (2.1) within a constant factor.

Using the above inequality for each time t during phase i, we have

G ≥ α2i−1 · δ

β2i

(
ui −

6

5
u∗i

)
=

αδ

2β
·
(
ui −

6

5
u∗i

)
. (2.13)

We will use this lower bound for G in conjunction with an upper bound, which we prove

next.

23

2.5.2 An Upper Bound for G

We now consider the implementation of the non-adaptive list L and calculate G as a sum

of contributions over the observed decision path. Let Π denote the (random) decision path

followed by the non-adaptive strategy NA: this consists of a prefix of L along with their

realizations. Denote by ⟨X1, X2, . . . , ⟩ the sequence of realizations (each in U) observed on

Π. So item Xj is selected between time
∑j−1

ℓ=1 cℓ and
∑j

ℓ=1 cℓ. Let h (resp. p) index the first

(resp. last) item in Π (if any) that is selected (even partially) during phase i, i.e., between

time α2i−1 and α2i. For each index h ≤ j ≤ p, let tj denote the duration of time that item

Xj is selected during in phase i; so tj is the width of interval [
∑j−1

ℓ=1 cℓ,
∑j

ℓ=1 cℓ]
⋂
[α2i−1, α2i].

It follows that tj ≤ cj.

Define G(Π) := 0 if index h is undefined (i.e., Π terminates before phase i), and otherwise:

G(Π) :=

p∑
j=h

tj
cj
·f({X1, . . . , Xj})− f({X1, . . . , Xj−1})

Q− f({X1, . . . , Xj−1})
≤

p∑
j=h

f({X1, . . . , Xj})− f({X1, . . . , Xj−1})
Q− f({X1, . . . , Xj−1})

.

(2.14)

By the stopping criterion for L, the f value before the end of Π remains at most τ = Q(1−δ).

So the denominator above, i.e., Q− f({X1, . . . , Xj−1}) is at least δQ for all j.

Lemma 2.5.5. For any decision path Π, we have G(Π) ≤ 1 + ln(1/δ).

Proof. For each h ≤ j ≤ p, let Vj := f({X1, . . . , Xj}); also let V0 = 0. For j ≤ p − 1, as

noted above, Vj ≤ τ ; as f is integer-valued, Vj ∈ {0, 1, · · · , ⌊τ⌋}. We have:

p−1∑
j=h

Vj − Vj−1

Q− Vj−1

≤
p−1∑
j=h

Vj−Vj−1−1∑
y=0

1

Q− Vj−1 − y
≤

Q∑
ℓ=δQ+1

1

ℓ
≤ ln

(
Q

δQ

)
= ln(1/δ).

The second inequality above uses Q − Vj−1 − y ≥ Q − Vj + 1 ≥ Q − τ + 1 = δQ + 1. The

right-hand-side of (2.14) is then:

p−1∑
j=h

Vj − Vj−1

Q− Vj−1

+
Vp − Vp−1

Q− Vp−1

≤ 1 + ln(1/δ),

where we used Vp ≤ Q. This completes the proof.

24

Taking expectations over the various decision paths meansG = EΠ[G(Π)], so Lemma 2.5.5

gives

G ≤ (1 + ln(1/δ)) ·P(Π doesn’t terminate before phase i) = (1 + ln(1/δ)) · ui−1. (2.15)

2.5.3 Wrapping Up

To complete the proof of Lemma 2.4.3, we set α := 8β
δ
(1+ln(1/δ)) = O

(ln(1/δ)
δ

)
, and combine

(2.13) and (2.15) to get

ui−1 ≥
G

1 + ln(1/δ)
≥ αδ

2β(1 + ln(1/δ))
·
(
ui −

6

5
u∗i

)
= 4

(
ui −

6

5
u∗i

)
.

This completes the proof of Lemma 2.4.3 and hence Theorem 2.1.1.

2.6 Applications

2.6.1 Stochastic Set Cover

The stochastic set cover problem is a special case of stochastic submodular cover. The

input is a universe E of d objects and a collection {X1, . . . ,Xm} of m items. Each item Xi

has a cost ci ∈ R+ and corresponds to a random subset of objects (with a known explicit

distribution). Different items are independent of each other. The goal is to select a set

of items such that the realized subsets cover E and the expected cost is minimized. This

problem was first studied by [54], where it was shown that the adaptivity gap lies between

Ω(d) and O(d2). The correct adaptivity gap for stochastic set cover was posed as an open

question by [54]. Subsequently, [2] made significant progress, by showing that the adaptivity

gap is O(d log d · log(mcmax)). However, as a function of the natural parameter d (number

of objects), the best adaptivity gap remained O(d2) because the number of stochastic sets

m and maximum cost cmax may be arbitrarily larger than d.

As a corollary of Theorem 2.1.1, we obtain an O(d log d) adaptivity gap that nearly

matches the Ω(d) lower bound. In fact, for any r ≥ 1, we obtain an r-round adaptive

25

algorithm that costs at most O(d1/r log d) times the fully adaptive cost. This nearly matches

the Ω(1
r3
d1/r) r-round-adaptivity gap shown in [2]. We note that when r = log d, we obtain

an O(log d)-approximation algorithm with a logarithmic number of adaptive rounds; this

approximation ratio is the best possible even for deterministic set cover.

2.6.2 Sensor Placement with Unreliable Sensors

In the sensor placement problem, we are concerned with deploying a collection of sensors

for visual surveillance or to acquire information on air quality, temperature, humidity etc.

One approach to model this problem (suitable for visual surveillance) is to assume that each

sensor has a particular sensing region, and to minimize the number of sensors required to

cover some target region. This corresponds to the art gallery problem (see [57]), which in

turn is a special case of set cover. In the setting with unreliable sensors that we consider,

each sensor may fail independently with some probability (in which case it does not cover its

region), and the goal is to minimize the expected number of sensors so as to cover the target

region. This can be modeled as an instance of stochastic set cover, discussed in §2.6.1.

An alternative approach (suitable for information acquisition) is to model sensor readings

as Gaussian processes ([39]), where the goal is to place the minimum number of sensors

so as to achieve a target level of “information gain”. Formally, let [m] denote the set of

locations and Zi be a random variable representing the information at location i ∈ [m]. Let

Z = ⟨Zi : i ∈ [m]⟩ denote the information at all locations. A sensor at location i makes

observation Yi = Zi + ϵi where ϵi is an independent (random) noise term. For any subset

A ⊆ [m], let YA = {Yi : i ∈ A} denote the random observations at the locations in A. Given

YA = YA, we can use E[Zi | YA = YA] to make predictions on the information at any location

i. The information gain of the system if we place sensors at locations A ⊆ [m] is defined as:

g(A) = H(Z)−H(Z | YA)

where H(Z | YA) = EYA
[H(Z | YA = YA)] denotes the conditional entropy of Z given YA.

[79] showed that the function g(A) is monotone and submodular in A assuming that the

observations YA are conditionally independent given Z; see Corollary 4 in their paper. The

26

conditional independence assumption is satisfied in our setting because the noise terms ϵi

are independent. Given a target Q̂ on the information gain, the goal in the deterministic

problem is to find sensor locations A ⊆ [m] so that g(A) ≥ Q̂.

In the stochastic setting (with unreliable sensors), each sensor i ∈ [m] is active indepen-

dently with some probability pi (and fails otherwise). The goal is to place sensors (possibly

adapting based on the active/failure outcomes) so that the information gain from the active

sensors is at least Q̂. This can be modeled as an instance of stochastic submodular cover

as follows. The items correspond to the m locations. For each sensor at location i ∈ [m],

we define two elements Ti and Fi corresponding to active and failure outcomes respectively.

The groundset U = {Ti : i ∈ [m]}∪{Fi : i ∈ [m]}. For each i ∈ [m], random variable Xi = Ti

with probability pi and Xi = Fi otherwise. Define function f : 2U → R+ as follows

f(S) = g(W (S)), where W (S) = {i ∈ [m] : Ti ∈ S}, ∀S ⊆ U.

Observe that f is monotone and submodular because g is monotone and submodular (over

[m]). Furthermore, let M be a large enough integer so that scaling f by a factor of M

makes it integer-valued. Theorem 2.1.1 can be applied to the scaled function f with target

Q = M · Q̂. Then, we obtain an r-round adaptive algorithm of cost at most O
(
Q1/r logQ

)
times an optimal fully adaptive algorithm for the unreliable sensor placement problem.

2.6.3 Shared Filter Evaluation

This problem was introduced by [90] in the context of executing multiple queries on a dataset

with shared (boolean) filters. There are n independent “filters” X1, · · · ,Xn, where each filter

i has cost ci and evaluates to true with probability pi (and false otherwise). There are also

m conjunctive queries, where each query j ∈ [m] is the “and” of some subset Qi ⊆ [n] of the

filters. So query j is true iff Xi = true for all i ∈ Qj. The goal is to evaluate all queries at

the minimum expected cost. This can be modeled as an instance of stochastic submodular

cover. The items correspond to filters. The groundset U = {Ti, Fi}ni=1 where Ti (resp. Fi)

27

corresponds to filter i evaluating to true (resp. false). The submodular function is:

f(S) :=
m∑
j=1

min {|Qj| , |Qj| · |S ∩ {Fi : i ∈ Qj}|+ |S ∩ {Ti : i ∈ Qj}|} .

Note that the term for query Qj is |Qj| iff the query’s value is determined: it is false when a

single false filter is seen and it’s true when all its filters are true. The maximal value of the

function is Q =
∑m

j=1 |Qj| ≤ mn. Using Theorem 2.1.1, for any r ≥ 1, we obtain an r-round

adaptive algorithm with cost at most O((mn)1/r · log(mn)) times the optimal adaptive cost.

2.6.4 Stochastic Score Classification

The stochastic score classification (SSClass) problem introduced by [53], models applications

such as assessing disease risk-levels of patients and giving a quality ratings to products.

Formally, there are n binary random variables X1, ...,Xn, which are used to compute a score

r(X) =
∑n

i=1 aiXi where ai ∈ Z+ for all i. The realization Xi ∈ {0, 1} of variable Xi can be

determined by performing a query of cost ci ∈ R+. Additionally, there are B + 1 integers

α1 < · · · < αB+1 that partition the possible scores into classes. Realization X of X is in class

j ∈ [B] iff αj ≤ r(X) ≤ αj+1 − 1. We can view the αj values as “cutoffs” for the classes.

The goal is to determine the correct class by querying variables at minimum expected cost.

Note that it is not necessary to query all variables to determine the class.

[53] showed that any instance of SSClass can be converted into an instance of stochastic

submodular cover as follows. The groundset U = {(i, 0), (i, 1) : i ∈ [n]} corresponding to

the possible realizations of the variables. Consider any index j ∈ {2, · · ·B}. Recall the cutoff

αj and let βj :=
∑n

i=1 ai − αj + 1. Define two submodular functions:

R1
j (S) := min

αj,
∑

(i,1)∈S

ai

 and R0
j (S) := min

βj, ∑
(i,0)∈S

ai

 , ∀S ⊆ U.

Observe that R1
j (S) = αj (i.e. R1

j is covered) iff the realizations in S imply that the score

is at least αj. Similarly, R0
j (S) = βj iff the realizations in S imply that the score is at

most αj+1− 1. We combine these two functions using the “OR construction” of submodular

28

functions to get:

gj(S) = αjβj − (αj −R1
j (S)) · (βj −R0

j (S)).

Note that gj is covered (i.e. has value αjβj) if, and only if, either R1
j or R0

j is covered.

Moreover, gj is monotone and submodular. Finally, we combine all these B functions using

the “AND” construction to obtain f(S) :=
∑B

j=2 gj(S). Note that f is monotone and

submodular, and it is covered if, and only if, each of the gjs is covered, which implies that

the class is correctly identified. Moreover, the maximal value of f is Q =
∑B

j=2 αjβj ≤

BW 2 ≤ W 3, where W :=
∑n

i=1 ai.

Using Theorems 2.1.1 we obtain an r-round adaptive algorithm for independent distribu-

tions with approximation ratio O(W 3/r logW) (relative to the fully adaptive optimum). See

Chapter 4 for a non-adaptive (i.e., one round) algorithm that achieves an O(1) approxima-

tion for stochastic score classification with independent distributions. Note that the result

is not applicable for correlated distributions.

We can also extend our result to the d-dimensional score classification problem, where

one needs to determine the classes of d different score functions r1, · · · rd. For each score

rk, we define a submodular function fk as above, and define a combined function f(S) :=∑d
k=1 fk(S). Now, the maximal value Q ≤ dW 3. So we obtain r-round-adaptivity gaps of

O(d1/rW 3/r log(dW)) for the independent case.

2.7 Computational Results

We provide a summary of computational results of our r-round adaptive algorithms for the

stochastic set cover problem. We conducted all experiments using Python 3.8 and Gurobi

8.1 with a 2.3 Ghz Intel Core i5 processor and 16 GB 2133 MHz LPDDR3 memory.

2.7.1 Stochastic Set Cover

Instances. We use the Epinions network (http://snap.stanford.edu/) and a Facebook

messages dataset described in [98] to generate instances of the stochastic set cover problem.

The Epinions network consists of 75, 879 nodes and 508, 837 directed edges. We compute

29

http://snap.stanford.edu/

the subgraph induced by the top 1, 000 nodes with the highest out-degree (this subgraph has

57, 092 directed edges) and use this to generate the stochastic set cover instance. The Face-

book messages dataset consists 1, 266 nodes and 6, 451 directed edges. Given an underlying

directed graph, we generate an instance of the stochastic set cover problem as follows. We

associate the ground set U with the set of nodes of the underlying graph. We associate an

item Xu with each node u. Let Γ(u) denote the out-neighbors of u. We sample a subset of

Γ(u) using the binomial distribution with p = 0.1 for 500 times. Let S ⊆ Γ(u) be sampled

αS times: then Xu realizes to S ∪{u} with probability αS/500. This ensures that Xu always

covers u. We set f to be the coverage function. We interpret the realization of a node

as the set of neighbors it influences, and so f computes the total number of people that

are influenced. We set Q = δn where n represents the number of nodes in the underlying

network. We use δ = 0.5 for the Epinions network. However, since the Facebook messages

network is sparse, we set δ = 0.25 in the second instance. All costs are one.

1 2 3 4 5 6 7 8 9
Rounds of adaptivity

53

54

55

56

57

Co
st

Information-theoretic Lower Bound: 40.6

Our Algorithm
Fully Adaptive

(a) Epinions network

1 2 3 4 5 6 7 8 9
Rounds of adaptivity

88

90

92

94

96

Co
st

Information-theoretic Lower Bound: 64.85

Our Algorithm
Fully Adaptive

(b) Facebook messages network

Figure 2.1: Computational results for Stochastic Set Cover

Results. We test our r-round adaptive algorithm on the two kinds of instances described

above. We vary the number r of rounds over integers in the interval [1, log n], where n ≈ 1000.

We compare to our fully-adaptive algorithm which adapts after every probe: in each step,

this algorithm probes the item that maximizes the score (2.1) with S = ∅. We note that

this also corresponds to the adaptive algorithm from [67]. To compute an estimate of the

expected cost of any algorithm, we sample item realizations 20 times independently and

take the average cost incurred. We also find an estimate of an information-theoretic lower

30

bound by sampling item realizations 20 times and taking the average cost of an integer linear

program (solved using the Gurobi solver) that computes the optimal offline cost to cover Q

elements for a given realization. Note that no adaptive policy can do better than this lower

bound. In fact, the gap between this information-theoretic lower bound and an optimal

adaptive solution may be as large as Ω(Q) on worst-case instances. We observe that in

both cases, the expected cost of our solution after only a few rounds of adaptivity is within

50% of the information-theoretic lower bound. Moreover, in 6 − 7 rounds of adaptivity we

notice a decrease of ≈ 8% in the expected cost and these solutions are nearly as good as

fully adaptive solutions. We plot this trend in Figure 2.1. Finally, note that the increase

in expected cost with rounds of adaptivity (see Figure 2.1a) can be attributed to the the

probabilistic nature of our algorithm (and the experimental setup). We also notice this in

the next batch of experiments.

2.8 Set-based Model for Rounds

Here we discuss the “set based” model for adaptive rounds, where each round probes a fixed

subset of items (and incurs their total cost). In this model, as noted in [2], we can no longer

require the function f to be covered with probability one. We also provide an example

below where the r-round-adaptivity gap is very large if we require coverage with probability

one. Therefore, we consider solutions that are only required to cover the function with high

probability. We will still compare to the (fully) adaptive optimum OPT that always covers

the function.

Formally, an r-round adaptive solution in the set-based model proceeds as follows. For

each round i = 1, . . . , r, it specifies a subset Si of items (that depends on all realizations in

rounds 1, . . . , i − 1) that are probed in parallel. The cost incurred in round i is c(Si) the

total cost of all probed items in that round.

Example: Consider an instance with |U | = 1, and function f with f(U) = 1 and f(∅) = 0.

So parameter Q = 1. There are m items, where each item i ∈ {1, . . . ,m − 1} has cost 2i

and instantiates to U with probability 1
2
. The last item m costs 2m and instantiates to U

31

with probability one. In the permutation model, there is a non-adaptive solution of cost

O(m), which just probes items in the order 1, 2 . . . ,m. On the other hand, in the set-based

model with r < m rounds we claim that the optimal cost is Ω(2m/r) if we require f to be

covered with probability one. Note that any solution B in the set-based model with r rounds

is given by indices 0 = i(0) ≤ i(1) ≤ . . . , i(r − 1) ≤ i(r) = m where the jth round probes

items i(j − 1) + 1, . . . , i(j) (if f is not already covered). The probability that round j is

needed in B is 2−i(j−1). So the expected cost of B is at least
∑r

j=1 2
−i(j−1) ·2i(j) ≥ 2m/r where

we used
∑r

j=1(i(j) − i(j − 1)) = i(r) − i(0) = m. It follows that the r-round adaptivity

gap in the set-based model is exponential in m (while the adaptivity gap is constant for the

permutation model). This is the reason our set-based algorithms only cover f with high

probability (rather than probability one).

2.8.1 Conversion Theorems

While we give our main technical results in the permutation model to make the analysis

easier, we can translate our r-round algorithm in the permutation model into one in the

set-based model, as we show next. Below, OPT is the cost of an optimal fully-adaptive

solution.

Theorem 2.8.1. For any r ≥ 1 and η > 0, there is a set-based r-round adaptive solution

for stochastic submodular cover (resp. scenario submodular cover) with expected cost at most

O(r
η
Q1/r logQ) · OPT (resp. O

(
r
η
(s1/r log s + r logQ) · OPT

)
) and covers the function with

probability at least 1− η.

Proof. We will show the following “black box” reduction. Suppose there is an r-round

adaptive algorithm in the permutation model with approximation ratio α. Then, there is an

algorithm in the set-based model that for any η ∈ (0, 1), finds an r-round adaptive solution

that has expected cost at most rα
η
· OPT and covers the function with probability at least

1− η. The theorem would then follow from Theorems 2.1.1 and 3.1.1.

Consider any solution A in the permutation-model that always covers the function. For

each round i = 1, . . . , r in A, let Li be the permutation to probe items and let µi be the

expected cost of probed items (after applying the stopping rule). Note that Li and µi depend

32

on realizations in all previous rounds. Let Si denote the maximal prefix of Li that has total

cost at most r
η
µi. We define the set-based solution B as follows. In round i, we probe all

items Si in parallel. Note that the cost of solution B in round i is at most r
η
µi. Taking

expectations and adding over all rounds, the expected cost of B is at most r
η
times that of

A. So the cost is at most rα
η
· OPT.

We refer to round-i as a failure if the round-i stopping rule (in A) does not apply by

the end of Si. By Markov’s inequality, the probability that round-i is a failure is at most η
r
.

Using a union bound over all r rounds, the probability of a failure in any round is at most

η. Note that, if there is no failure then solution B indeed covers the function fully: as the

items probed by B is a superset of those probed by A. Hence, solution B covers the function

with probability at least 1− η.

Note that the approximation ratios for the set-based model are only a factor r more than

in the permutation model (assuming that the “failure probability” η is any constant). So

this is a good result for small (constant) r. When the number of rounds r is larger, we have

a different approach that does not lose this factor r in the approximation ratio, but uses

O(r) set-based rounds.

Theorem 2.8.2. For any r ≥ 1, in the set-based model:

• there is a 2r-round adaptive algorithm for stochastic submodular cover with expected

cost at most O(Q1/r logQ) · OPT

• there is a 4r-round adaptive algorithm for scenario submodular cover with expected cost

at most O(s1/r log(sQ)) · OPT

that covers the function with probability at least 1− e−Ω(r).

Proof. We first consider stochastic submodular cover. We make use of the partial cover

algorithm ParCA (Theorem 2.4.1) in an iterative manner (similar to the r-round algorithm

in the permutation model). The difference is that we will run ParCA for 2r set-based rounds

(instead of r). The items probed in each set-based round is a prefix of the permutation-based

round. Algorithm 3 gives a formal description. The state at any round is the tuple (T , T)

consisting of previously probed items and their realizations. For the analysis, we view the

33

iterative algorithm as a 2r depth tree, where the nodes at depth i are the states in round

i and the branches out of each node represent the observed realizations in that round. For

any i ∈ [2r], let Ωi denote all the states in round i: note that these form a partition of the

outcome space.

Algorithm 3 2r-round set-based algorithm for stochastic submodular cover

1: let T ← ∅ denote the probed items and T ← ∅ their realization.
2: for i = 1, 2, . . . , 2r do
3: run ParCA (X \ T , fT , Q− f(T), Q−1/r).
4: let Li denote the permutation on items X \ T from ParCA.
5: let µi be the expected cost of probing Li (in the permutation model).
6: let Ri denote the maximal prefix of Li of cost at most 4µi.
7: probe items Ri in the set-based solution and let Ri denote their realizations.
8: update T ← T ∪Ri and T ← T ∪Ri.

Expected cost. For any state ω ∈ Ωi, let OPT(ω) denote the expected cost of the optimal

adaptive policy conditioned on the realizations in ω. By Theorem 2.4.1, conditioned on ω, the

expected cost µi(ω) of the permutation Li(ω) is at most α·OPT(ω) where α = O(1
r
Q1/r logQ).

Note that the cost of the set-based round is at most 4 · µi(ω). Hence, the (unconditional)

expected cost in round i is at most

4
∑
ω∈Ωi

Pr[ω] · µi(ω) ≤ 4α
∑
ω∈Ωi

Pr[ω] · OPT(ω) = 4α · OPT,

where we used that Ωi is a partition of all outcomes. It follows that the expected cost of the

set-based algorithm is at most 2r · 4α · OPT = 8rα · OPT as claimed.

Completion probability. Consider any round i and state ω ∈ Ωi. Recall that T denotes

the realizations from prior rounds. The stopping rule for the permutation Li(ω) in ParCA

is that the residual target drops by a factor δ = Q−1/r. In other words, if S denotes

the realizations observed in permutation Li(ω) then the stopping rule is Q − f(T ∪ S) <

δ · (Q− f(T)). Recall that the set-based round-i involves probing the prefix Ri(ω) of Li(ω)

having cost 4 · µi(ω). This round is said to be a success if the stopping rule applies by the

end of Ri(ω). By the choice of Ri and Markov’s inequality, the probability that this round

34

is a success is at least 3
4
. So the expected number of successful rounds is at least 2r · 3

4
= 3

2
r.

Moreover, the success events in different rounds i = 1, . . . , 2r are independent. Hence, by a

Chernoff bound, the probability of seeing less than r successes out of 2r rounds is at most

e−Ω(r). Finally, note that if there are at least r successes then the function f gets covered

completely as each success reduces the residual target by a factor Q−1/r. It follows that our

algorithm covers f with probability 1− e−Ω(r) as claimed.

The proof for scenario submodular cover is identical, except for the use of SParCA

(Corollary 3.5.6) instead of ParCA.

2.9 Items realizing to subsets

Here, we consider a seemingly more general model for stochastic submodular cover, where

each item realizes to a subset of elements. As before, there is a monotone submodular function

f : 2U → Z≥0 with Q := f(U). There arem items, where each item Xi has cost ci and realizes

to a random subset of U . (In the basic model, each item realizes to a single element.) The

goal is to select a set of items such that the union S of their corresponding realizations

satisfies f(S) = Q, and the expected cost is minimized. We can reduce this model to the

usual one (considered in the paper) as follows. Let W := 2U denote an expanded groundset

consisting of all subsets of U . Let function g : 2W → Z≥0 be defined as g(R) = f(∪r∈Rr) for

any R ⊆ W . Note that g is monotone submodular as f is. Note that each item Xi realizes

to a single element of the expanded set W . Moreover, covering function g is equivalent to

covering f , and both have maximal value Q. So it suffices to solve the usual model with

single-element realizations. However, the difficulty with this reduction is that the number

of elements |W | is exponential. Using the fact that our algorithm’s runtime is independent

of the size of the groundset (see remark after Algorithm 2), it follows that we obtain a

polynomial (in m,Q, cmax) time algorithm for this more general model as well.

35

2.10 Estimating Scores in Algorithm ParCA

The partial covering algorithm ParCA (Algorithm 1) relies on computing the maximum

score according to (2.1). We are not aware of a closed-form expression to calculate the score

for general functions f . Instead, we show that sampling can be used to estimate these scores,

which suffices for the overall algorithm. At any point in algorithm ParCA, let S ⊆ X denote

the items already added to the non-adaptive list L. Then, we need to compute the maximum

score(Xe) =
ge
ce

over Xe ∈ X \ S, where

ge :=
∑

S∼S:f(S)≤τ

P(S = S)·EXe∼Xe

[
f(S ∪Xe)− f(S)

Q− f(S)

]
= ES,Xe

[
1f(S)≤τ ·

f(S ∪Xe)− f(S)
Q− f(S)

]
.

To this end, we use K = O(m2cmax log(mcmax)) independent samples to obtain an estimate

ḡe for each item e. Then, we choose the item that maximizes ḡe
ce
. Note that the time taken

in each step is O(m · K), so the overall time taken by algorithm ParCA is O(m2K) =

poly(m, cmax).

Let L denote the list produced by the (sampling based) ParCA algorithm, and let

NA be the resulting non-adaptive solution. We now show that the expected cost of NA is

O(1
δ
log 1

δ
) · OPT. As before, OPT is the cost of an optimal fully-adaptive solution. This would

prove Theorem 2.4.1 even for the sampling-based ParCA algorithm.

Lemma 2.10.1. At any step, with already added items S, we have Pr[f(S) ≤ τ] ≤
∑

Xe∈X\S ge.

Proof. We can write:

∑
Xe∈X\S

ge =
∑

Xe∈X\S

ES,Xe

[
1f(S)≤τ ·

f(S ∪Xe)− f(S)
Q− f(S)

]
= EX

1f(S)≤τ ·
∑

Xe∈X\S

f(S ∪Xe)− f(S)
Q− f(S)


≥ EX

[
1f(S)≤τ ·

f(X)− f(S)
Q− f(S)

]
= EX

[
1f(S)≤τ

]
= Pr[f(S) ≤ τ].

Above, the inequality is by submodularity and the second-last equality uses the fact that

f(X) = Q with probability one.

Let L′ denote the maximal prefix of list L where maxe ge ≥ ε := 1
m2cmax

at each step. Let

NA′ denote the cost incurred by the non-adaptive solution on items in L′ and NA′′ be the cost

36

incurred on items L \ L′. Clearly, E[NA] = E[NA′] + E[NA′′].

By Lemma 2.10.1, it follows that after L′ ends, we have Pr[f(S) ≤ τ] ≤ m · maxe ge ≤

mε ≤ 1
mcmax

. In other words, Pr[NA continues after L′] ≤ 1
mcmax

and hence

E[NA′′] ≤ Pr[NA continues after L′] ·mcmax = O(1).

It now remains to bound E[NA′].

Let N̄A denote any non-adaptive solution obtained by algorithm ParCA assuming that

it always selects an item Xe with score(Xe) ≥ 1
4
maxi score(Xi). In words, N̄A is built using

items having 1
4
-approximately maximum score. It can be easily verified that the analysis in

§2.4.1 can be extended to prove E[N̄A] ≤ O(1
δ
log 1

δ
) · OPT. (The only change is an additional

factor of 1
4
in the right-hand-side of (2.13).) We now bound E[NA′] using E[N̄A].

Lemma 2.10.2. Consider any item Xe in L′ (with S denoting all previous items). Then,

we have score(Xe) ≥ 1
4
maxXi∈X\S score(Xi) with probability at least 1− 1

m2cmax
.

Proof. We partition the remaining items X \ S into I+ = {i : gi ≥ ε/4} and I− = {j : gj <

ε/4}.

Consider any item i ∈ I+: so gi ≥ ε/4. As ḡi is the average of K independent samples

each of mean gi, using a Chernoff bound we obtain Pr[1
2
gi ≤ ḡi ≤ 2gi] ≥ 1 − e−Ω(εK) ≥

1 − 1
m3cmax

. Now consider an item j ∈ I−: so gj < ε/4. By a Chernoff bound again,

Pr[ḡj > ε/2] ≤ e−Ω(εK) ≤ 1
m3cmax

. So, with probability at least 1− 1
m2cmax

,

1

2
gi ≤ ḡi ≤ 2gi for all i ∈ I+, and ḡj ≤

ε

2
for all j ∈ I−.

Below, we condition on this event.

As item e is in L′, we know that maxi gi ≥ ε. So I+ ̸= ∅. Recall that ḡe = maxi ḡi.

Combined with the above, it follows that e ∈ I+. Moreover,

ge ≥
1

2
ḡe =

1

2
max

i
ḡi =

1

2
max
i∈I+

ḡi ≥
1

4
max
i∈I+

gi =
1

4
max

i
gi.

This completes the proof.

37

We say that the sampling was successful if the event in Lemma 2.10.2 occurs for every

item in L′. As there are at most m items, sampling is successful with probability at least

1− 1
mcmax

. Conditioned on the sampling being successful, L′ is a prefix of some non-adaptive

solution N̄A that always selects an item having 1
4
-approximately maximum score. Hence,

E[NA′ |sampling successful] ≤ E[N̄A] ≤ O(
1

δ
log

1

δ
) · OPT.

If sampling is not successful then NA′ costs at most mcmax. So,

E[NA′] ≤ E[NA′ |sampling successful]+Pr(sampling not successful)·mcmax ≤ O

(
1

δ
log

1

δ

)
·OPT.

It now follows that E[NA] = E[NA′] + E[NA′′] ≤ O(1
δ
log 1

δ
) · OPT as desired.

38

Chapter 3

Scenario Submodular Cover

3.1 Introduction

In this chapter we give algorithms for the scenario submodular cover problem (ScnSC). An

instance of ScnSC is the same as an instance of SSC with the difference that the realizations

of the random variables may be correlated. To keep the chapter self-contained, we repeat

details from the previous chapter as required.

Recall that the submodular cover optimization problem requires us to pick a minimum-

cost subset S of items to cover a monotone submodular function f . In the previous chapter,

we discussed an application of submodular cover to sensor deployment. In this chapter, a

more relevant application is in medical diagnosis as described next.

In the medical diagnosis example, we have s possible conditions (hypotheses) the patient

may suffer from along with the priors on their occurrence, and our goal is to perform tests

to identify the correct condition as quickly as possible [49, 78, 37, 35]. This can be cast

as submodular cover by viewing each test as eliminating all inconsistent hypotheses. Hence

we want a coverage value of s − 1: once s − 1 inconsistent hypotheses are eliminated, the

remaining one must be correct. Observe that both this application involves uncertain data:

the precise outcome (positive/negative) of a test is not known until the action has been

taken. This uncertainty can be modeled using stochastic submodular optimization, where

the items are stochastic, and their realizations are correlated.

As before, a solution for such a problem is a sequential decision process. At each step,

39

an item is probed and its realization (e.g., active or inactive) is observed. The process is

typically adaptive, where all the information from previously probed items is used to identify

the next item to probe. This process continues until the submodular function is covered,

and the goal is to minimize the expected cost of probed items. Such adaptive solutions

are inherently fully sequential, which is undesirable if probing an item is time-consuming.

E.g., probing/performing a test in medical diagnosis may involve a long wait for test results.

Therefore, we prefer solutions with only few rounds of adaptivity.

Motivated by this, we ask: how well do solutions with only a few adaptive rounds approx-

imate fully-adaptive solutions for the stochastic submodular cover problem with correlated

items?

We give nearly tight answers, with smooth tradeoffs between the number r of adaptive

rounds and the solution quality (relative to fully adaptive solutions).

The main contribution of our work is an r-round adaptive solution for stochastic sub-

modular cover in the “set-based” model for adaptive rounds. In this model, a fixed subset of

items is probed in parallel every round (and their total cost is incurred). The decisions in the

current round can depend on the realizations seen in all previous rounds. However, as noted

in [2], if we require function f to be covered with probability one then the r-round-adaptivity

gap turns out to be very large. (See §2.8 for an example.)

Therefore, we focus on set-based solutions that are only required to cover the function

with high probability.

In designing algorithms, it turns out to be more convenient to work with the “permuta-

tion” model for adaptive rounds, where the function is covered with probability one. This

model was also used in prior literature [54, 2]. Here, every round of an r-round-adaptive

solution specifies an ordering of all remaining items and probes them in this order until some

stopping rule. See Definition 3.3.2 for a formal definition. Moreover, our r-round adaptive

algorithm in the permutation model can be transformed into an r-round adaptive algorithm

in the set-based model (see Chapter 2 for details). We obtain algorithms in the set-based

model that:

• for any η ∈ (0, 1), finds an r-round adaptive solution that has expected cost at most

rα
η
· OPT and covers the function with probability at least 1− η.

40

• finds an O(r)-round adaptive solution that has expected cost at most O(α) · OPT and

covers the function with probability at least 1− e−Ω(r).

Here OPT is the cost of an optimal fully-adaptive solution and α is the approximation ratio

of our algorithm in the permutation model. The first algorithm above is for the case where

r, the number of rounds of adaptivity, is small (say, a constant). In this, we keep the number

of rounds the same, but we lose a factor r in the expected cost. The second algorithm is for

the case that r is large, e.g., more than a constant. Here, the number of set-based rounds

increases by a factor 2, but we only lose a constant factor in expected cost. We formalize and

prove these results in §2.8. For the rest of the chapter, an r-round adaptive algorithm refers

to an an r-round adaptive algorithm in the permutation model (unless specified otherwise).

3.1.1 Results and Techniques

Consider a monotone submodular function f : 2U → Z≥0 with Q := f(U). There are m

items, where each item i is a random variable Xi having cost ci and corresponding to a

random element of U . (Our results extend to the more general setting where each item

realizes to a subset of U .) The goal is to select a set of items such that the union S of their

corresponding realizations satisfies f(S) = Q, and the expected cost is minimized. Our main

result is when the items have correlated distributions. Let s denote the support size of the

joint distribution D, i.e., the number of scenarios.

Theorem 3.1.1 (Correlated Items). For any integer r ≥ 1, there is an r-round adaptive

algorithm for scenario submodular cover with cost O
(
s1/r(log s+ r logQ)

)
times the cost of

an optimal adaptive algorithm.

We also obtain a 2r-round adaptive algorithm with an better cost guarantee ofO
(
s1/r log(sQ)

)
times the cost of an optimal adaptive algorithm (see Corollary 3.5.6). Combined with the

conversion to a set-based solution (Theorem 2.8.2) and setting r = log s, we can then infer:

Corollary 3.1.2 (Correlated Items: Set-Based Model). There is an O(log s) round algorithm

for scenario submodular cover in the set-based model that (i) has expected cost O(log(sQ))

times the optimal (fully) adaptive cost, and (ii) covers the function with probability at least

1− 1
s
.

41

The above approximation guarantee is nearly the best possible, even with an arbitrary

number of adaptive rounds: there is an Ω(log s)-factor hardness of approximation [27]. Sce-

nario submodular cover generalizes the classic optimal decision tree problem [49, 66, 86, 78,

37, 1, 63]. A fully-adaptive O(log(sQ))-approximation for scenario submodular cover was

obtained in [58]; see also [92] for a more general result. In terms of rounds-of-adaptivity,

an O(log(mQ cmax

pmin
))-approximation in O(logm log(Qm cmax

pmin
)) set-based rounds follows from

[58, 44]. Here pmin ≤ 1
s
is the minimum probability of any scenario.

We note that when the number of rounds is less than logarithmic, our result provides the

first approximation guarantee even in the well-studied special case of optimal decision tree.

The results in Theorem 2.1.1 and Theorem 3.1.1 are incomparable: while the independent

case has more structure in the distribution D, its support size is exponential. Finally, the

dependence on the support size s is necessary in the correlated setting, as our next result

shows.

Theorem 3.1.3 (Lower Bound). For any integer r ≥ 1, there is an instance of scenario

submodular cover with Q = 1 where the cost of any r-round adaptive solution is Ω
(

s1/r

log s

)
times the optimal adaptive cost.

This lower bound is information-theoretic and does not depend on computational as-

sumptions, whereas the upper bound of Theorem 3.1.1 is given by a polynomial algorithm.

Finally, we note that our algorithm is also easy to implement. We tested are algorithm on

synthetic and real datasets that validate the practical performance of our algorithms. Specif-

ically, we test our algorithm on instances of optimal decision tree. We use both real-world

data and synthetic data. The real-world data has ≈ 400 scenarios and the synthetic data has

10, 000 scenarios. We find that about 6 rounds of adaptivity suffice to obtain solutions as

good as fully adaptive ones. We also compared our algorithm’s cost to information-theoretic

lower bounds: our costs are typically within 50% of these lower bounds.

Techniques. In each round the algorithm, we iteratively compute a “score” for each item

and greedily select the item of maximum score. This results in a non-adaptive list of all

remaining items, and the items are probed in this order until a stopping rule. The SParCA

42

rule involves reducing the number of “compatible scenarios” by an s1/r factor in the correlated

case.

The analysis for Theorem 3.1.1 is as follows. For each i ≥ 0, we relate the “non-

completion” probabilities of the algorithm after cost α · 2i to the optimal adaptive solution

after cost 2i. The “stretch” factor α corresponds to the approximation ratio. In order to

relate these non-completion probabilities, we consider the total score G of items selected by

the algorithm between cost α2i−1 and α2i. The crux of the analysis lies in giving lower and

upper bounds on the total score G (as in the independent case).

The score of any item Xe is the sum of two terms (i) its expected relative marginal gain

as in the independent case, and (ii) an estimate of the probability on “eliminated” scenarios.

Both terms are needed because the algorithm needs to balance (i) covering the function

and (ii) identifying the realized scenario (after which it is trivial to cover f). Again, we

normalize by the item’s cost. See Equation (3.1). In lower bounding the total score G,

we partition the outcome space into good/okay/bad outcomes that correspond to a high

conditional probability of OPT (i) covering function f by cost 2i, (ii) eliminating a constant

fraction of scenarios by cost 2i, or (iii) neither of the two cases. Further, by restricting to

outcomes that have a “large” number of compatible scenarios (else, the algorithm’s stopping

rule would apply), we can bound the number of “relevant” outcomes by s1/r. Then we

consider OPT (up to cost 2i) conditional on all good/okay outcomes and show that one of

these items has a high score. To upper bound G, we again consider the total score as a sum

over decision paths.

3.2 Related Work

We refer the reader to Chapter 2 for related work on the submodular cover problem, and on

the stochastic submodular cover problem when item realizations are independent (a special

case of this problem is the stochastic set cover problem).

The scenario submodular cover problem was introduced in [58] as a common generaliza-

tion of several problems including optimal decision tree [49, 63], equivalence class determi-

nation [35] and decision region determination [69]. An O(log(sQ)) fully adaptive algorithm

43

was obtained in [58]. The same approximation ratio (in a more general setting) was also

obtained in [92]. In the correlated setting, we are not aware of any prior work on limited

rounds of adaptivity (when the number of rounds r < log s) . Some aspects of our analysis

(e.g., good/okay/bad outcomes) are similar to [92], but additional work is needed as we have

to bound the r-round-adaptivity gap.

The framework of “adaptive submodularity”, introduced by [56], models correlations

in stochastic submodular cover in a different way. Adaptive submodularity is a combined

condition on the goal function f (that needs to be covered) and the distribution D on items.

While stochastic submodular cover with independent items satisfies adaptive-submodularity,

scenario submodular cover does not. Although scenario submodular cover is not a special case

of AdSubCov, [58] showed that scenario submodular cover can be re-formulated as AdSubCov

with a different goal function that is adaptive-submodular. However, this new goal function

has a larger “Q value” of Q
pmin

. So, when the algorithm from [44] is applied to this new

goal function, it only implies an O(log(mQ cmax

pmin
))-approximation in O(logm log(Qm cmax

pmin
))

rounds (this can be compared to Corollary 3.1.2). To the best of our knowledge, there are

no algorithms for AdSubCov using fewer than squared-logarithmic rounds of adaptivity.

3.3 Definitions

In the scenario submodular cover problem, the input is a collection of m random variables

(or items) X = {X1, . . . ,Xm}. Each item Xi has a cost ci ∈ R+, and realizes to a random

element of groundset U . Let the joint distribution of X be denoted by D (this captures

correlations). The realization of item Xi is denoted by Xi ∈ U ; this realization is only known

when Xi is probed at a cost of ci. Extending this notation, given a subset of items S ⊆ X ,

its realization is denoted S = {Xi : Xi ∈ S} ⊆ U .

In addition, we are given an integer-valued monotone submodular function f : 2U → Z+

with f(U) = Q. A realization S of items S ⊆ X is feasible if and only if f(S) = Q the

maximal value; in this case, we also say that S covers f . The goal is to probe (possibly

adaptively) a subset S ⊆ X of items that gets realized to a feasible set. We use the shorthand

c(S) :=
∑

i:Xi∈S ci to denote the total cost of items in S ⊆ X . The objective is to minimize

44

the expected cost of probed items, where the expectation is taken over the randomness in

X . We consider the following types of solutions.

Definition 3.3.1. For an integer r ≥ 1, an r-round-adaptive solution in the set-based

model proceeds as follows. For each round k = 1, . . . , r, it specifies a subset Sk of items

that is probed in parallel. The cost incurred in round k is c(Sk) the total cost of all probed

items in that round. The subset Sk in round k can depend on realizations seen in all previous

rounds 1, . . . , k − 1.

In the set-based model, we allow solutions to be infeasible (i.e., fail to cover f) with some

small probability η > 0. As shown in Appendix 2.8, such a relaxed solution is necessary. In

designing algorithms, we will work with the “permutation” model, as defined next.

Definition 3.3.2. For an integer r ≥ 1, an r-round-adaptive solution in the permuta-

tion model proceeds in r rounds of adaptivity. In each round k ∈ {1, . . . , r}, the solution

specifies an ordering of all remaining items and probes them in this order until some stopping

rule. The decisions in round k can depend on the realizations seen in rounds 1, . . . , k − 1.

In the permutation model, solutions must be feasible with probability one. As shown in

Appendix 2.8, our algorithms in the permutation model can be converted into algorithms

in the set-based (with similar approximation ratios). Henceforth, an r-round adaptive algo-

rithm refers to an an r-round adaptive algorithm in the permutation model (unless specified

otherwise).

Setting r = 1 in Definition 3.3.2 gives us a non-adaptive solution as studied in [54,

2]. Setting r = m gives us a (fully) adaptive solution. Having more rounds leads to a

smaller objective value, so adaptive solutions have the least objective value. Our performance

guarantees are relative to an optimal fully adaptive solution; let OPT denote this solution and

its cost. The r-round-adaptivity gap is defined as follows:

sup
instance I

E[cost of best r-round adaptive solution on I]

E[cost of best adaptive solution on I]

Setting r = 1 gives the adaptivity gap.

45

3.4 Scenario Submodular Cover

In this section, we describe an r-round adaptive algorithm for the scenario submodular cover

problem. As before, we have a collection of m stochastic items X = {X1, ...,Xm} with costs

ci. In contrast to the independent case, the stochastic items here are correlated, and their

joint distribution D is given as input. The goal is to minimize the expected cost of a solution

S ⊆ X that realizes to a feasible set (i.e., f(S) = Q).

The joint distribution D specifies the (joint) probability that X realizes to any outcome

X ∈ Um. We refer to the realizations X ∈ Um that have a non-zero probability of occurrence

as scenarios. Let s = |D| denote the number of scenarios in D. The set of scenarios is

denoted M = {1, · · · , s} and pω denotes the probability of each scenario ω ∈ M . Note

that
∑s

ω=1 pω = 1. For each scenario ω ∈ M and item Xe, we denote by Xe(ω) ∈ U

the realization of Xe in scenario ω. The distribution D can be viewed as selecting a random

realized scenario ω∗ ∈M according to the probabilities {pω}, after which the item realizations

are deterministically set to ⟨X1(ω
∗), · · · , Xm(ω

∗)⟩. However, an algorithm does not know the

realized scenario ω∗: it only knows the realizations of the probed items (using which it can

infer a posterior distribution for ω∗). As stated in §4.2, our performance guarantee in this

case depends on the support-size s. We will also show that such a dependence is necessary

(even when Q is small).

For any subset S ⊆ X of items, we denote by S(ω), the realizations for items in S under

scenario ω. We say that scenario ω is compatible with a realization of S ⊆ X if and only if,

Xe realizes to Xe(ω) for all items Xe ∈ S.

3.4.1 The Algorithm

Similar to the algorithm for the independent case, it is convenient to solve a partial cover

version of the scenario submodular cover problem. However, the notion of partial progress is

different: we will use the number of compatible scenarios instead of function value. Formally,

in the partial version, we are given a parameter δ ∈ [0, 1] and the goal is to probe some items

R that realize to a set R such that either (i) the number of compatible scenarios is less than

δs or (ii) the function f is fully covered. Clearly, if δ = 1/s then case (i) cannot happen (it

46

corresponds to zero compatible scenarios), so the function f must be fully covered. We will

use this algorithm with different parameters δ to solve the r-round version of the problem.

The main result of this section is:

Theorem 3.4.1. There is a non-adaptive algorithm for the partial cover version of scenario

submodular cover with cost O
(
1
δ
(ln 1

δ
+ logQ)

)
times the optimal adaptive cost for the (full)

submodular cover.

The algorithm first creates an ordering/list L of the items non-adaptively; that is, without

knowing the realizations of the items. To do so, at each step we pick a new item that

maximizes a carefully-defined score function (Equation (3.1)). The score of an item depends

on an estimate of progress towards (i) eliminating scenarios and (ii) covering function f .

Before we state this score formally, we need some definitions.

Definition 3.4.1. For any S ⊆ X let H(S) denote the partition {Y1, · · · , Yℓ} of the scenarios

M where all scenarios in a part have the same realization for items in S. Let Z := {Y ∈

H(S) : |Y | ≥ δs} be the set of “large” parts having size at least δs.

In other words, scenarios ω and σ lie in the same part of H(S) if and only if S(ω) = S(σ).

Note that partition H(S) does not depend on the realization of S. Moreover, after probing

and realizing items S, the set of compatible scenarios must be one of the parts in H(S).

Also, the number of “large” parts |Z| ≤ s
δs

= 1
δ
as the number of scenarios |M | = s. See

Figure 3.1a for an example.

Definition 3.4.2. For any Xe ∈ X and subset Z ⊆ M of scenarios, consider the partition

of Z based on the realization of Xe. Let Be(Z) ⊆ Z be the largest cardinality part, and define

Le(Z) := Z \Be(Z).

Note that Le(Z) is comprised of several parts of the above partition of Z. If the realized

scenario ω∗ ∈ Le(Z) and Xe is selected then, at least half the scenarios in Z will be eliminated

(as being incompatible with Xe). Figure 3.1b illustrates these definitions.

For any Z ∈ H(S), note that the realizations S(ω) are identical for all ω ∈ Z: we use

S(Z) ⊆ U to denote the realization of S under each scenario in Z.

47

(a) We have S = {Xe1 ,Xe2}, and we par-
tition the set of scenarios M based on out-
comes of S to get H(S) = {Y1, Y2, Y3}.

(b) We further partition scenarios Y2 based
on realizations of Xe3 .The part of Y2 compat-
ible with outcome Xe3 = 2 is the largest car-
dinality part, that is, Be3(Y2). The shaded
region represents Le3(Y2).

Figure 3.1: Illustrations of Key Definitions

If S denotes the previously added items in list L, the score (3.1) involves a term for each

part Z ∈ Z, which itself comes from two sources:

• Information gain
∑

ω∈Le(Z) pω, the total probability of scenarios in Le(Z).

• Relative function gain
∑

ω∈Z pω ·
f(S(Z)∪Xe(ω))−f(S(Z))

Q−f(S(Z))
, the expected relative gain ob-

tained by including element Xe, where the expectation is over the scenarios in part

Z.

The overall score of item Xe is the sum of these terms (over all parts in Z) normalized by

the cost ce of item Xe. In defining the score, we only focus on the “large” parts Z. If

the realization of S corresponds to any other part then the number of compatible scenarios

would be less than δs (and the partial-cover algorithm would have terminated).

Once the list L is specified, the algorithm starts probing and realizing the items in this

order, and does so until either (i) the number of compatible scenarios drops below δs, or (ii)

the realized function value equals Q. Note that in case (ii), the function is fully covered. See

Algorithm 4 for a formal description of the non-adaptive partial-cover algorithm.

Given this partial covering algorithm we immediately get an algorithm for the r-round

version of the problem, where we are allowed to make r rounds of adaptive decisions. Indeed,

we can first set δ = s−1/r and solve the partial covering problem. Suppose we probe the items

48

Algorithm 4 Scenario PARtial Covering Algorithm SParCA(X ,M, f,Q, δ)

1: S ← ∅ and list L← ⟨⟩.
2: while S ≠ X do ▷ Building the list non-adaptively
3: define Z and Le(Z) as in Definitions 3.4.1 and 3.4.2.
4: select an item Xe ∈ X \ S that maximizes:

score(Xe) =
1

ce
·
∑
Z∈Z

(∑
ω∈Le(Z)

pω +
∑
ω∈Z

pω ·
f(S(Z) ∪Xe(ω))− f(S(Z))

Q− f(S(Z))

)
(3.1)

5: S ← S ∪ {Xe} and list L← L ◦ Xe

6: R ← ∅, R← ∅, H ←M .
7: while |H| ≥ δ|M | and f(R) < Q do ▷ Probing items on the list
8: Xe ← first r.v. in list L not in R
9: Xe = v ∈ U be the realization of Xe.
10: R← R ∪ {v},R ← R∪ {Xe}
11: H ← {ω ∈ H : Xe(ω) = v}
12: return probed items R, realizations R and compatible scenarios H.

R (with realizations R ⊆ U) and are left with compatible scenarios H ⊆ M . Then we can

condition on scenarios H and the marginal value function fR (which is submodular), and

inductively get an r− 1-round solution for this problem. The following algorithm and result

formalizes this.

Algorithm 5 r-round adaptive algorithm for scenario submodular cover NSC(r,X ,M, f)

1: run SParCA(X ,M, f,Q, |M |−1/r) for round one. Let R denote the probed items, R
their realizations, and H ⊆M the compatible scenarios returned by SParCA.

2: define residual submodular function f̂ := fR.
3: recursively solve NSC(r − 1,X \ R, H, f̂).

Theorem 3.4.2. Algorithm 5 is an r-round adaptive algorithm for scenario submodular

cover with cost O
(
s1/r(log s+ r logQ)

)
times the optimal adaptive cost, where s is the num-

ber of scenarios.

Proof. We proceed by induction on the number of rounds r. Let OPT denote the cost of an

optimal fully adaptive solution. The base case is r = 1, in which case δ = s−1/r = 1
s
. By

Theorem 3.4.1, the partial cover algorithm SParCA(X ,M, f,Q, s−1/r) obtains a realization

R and compatible scenarios H ⊆M where either (i) |H| < δs = 1 or (ii) f(R) = Q. Clearly,

49

we cannot have case (i) as there is always at least one compatible scenario. So f is fully

covered. Moreover, the algorithm’s expected cost is O(s(log s+ logQ)) · OPT, as claimed.

We now consider r > 1 and assume (inductively) that Algorithm 5 finds an r − 1-round

O
(
s1/r(log s+ r logQ)

)
-approximation algorithm for any instance of scenario submodular

cover. Let δ = s−1/r. By Theorem 3.4.1, the expected cost in round 1 (step 1 in Algorithm 5)

is O(s1/r(1
r
log s + logQ)) · OPT. Let ŝ = |H| denote the number of scenarios in the residual

instance. Let Q̂ := Q− f(R) = f̂(U) denote the maximal value of the residual submodular

function f̂ = fR. By definition of the partial covering problem, we have either ŝ < δs or

Q̂ = 0. If Q̂ = 0 then our algorithm incurs no further cost and the inductive statement

follows. We now assume ŝ < δs = s
r−1
r . The optimal solution OPT conditioned on the

scenarios H gives a feasible adaptive solution to the residual instance of covering f̂ ; we

denote this conditional solution by ÔPT. We inductively get that the cost of our r− 1-round

solution on f̂ is at most

O(ŝ
1

r−1 (log ŝ+ (r − 1) log Q̂)) · ÔPT ≤ O

(
s1/r

(
r − 1

r
log s+ (r − 1) logQ

))
· ÔPT,

where we used ŝ < s(r−1)/r and Q̂ ≤ Q. As this holds for every subset of scenarios H, we

can take expectations over H to get that the (unconditional) expected cost of the last r− 1

rounds is O
(
s1/r

(
r−1
r

log s+ (r − 1) logQ
))
· OPT. Adding to this the cost of the first round,

which is O(s1/r(1
r
log s+ logQ)) · OPT, completes the proof.

3.4.2 Analysis for the partial covering algorithm

We now prove Theorem 3.4.1. Consider any call to SParCA. Let s = |M | denote the

number of scenarios in the instance. Recall that the goal is to probe items R ⊆ X with some

realization R and compatible scenarios H ⊆ M such that (i) |H| < δs or (ii) f(R) = Q.

We denote by OPT an optimal fully adaptive solution for the covering problem on f . Now

we analyze the cost incurred by our algorithm’s non-adaptive strategy (which we call NA).

Note that NA probes items in the order given by the list L (generated by SParCA) and

stops when either condition (i) or (ii) above occurs. We consider the expected cost of this

strategy, and relate it to the cost of OPT. The high-level approach is similar to that for the

50

independent case: but the details are quite different.

We refer to the cumulative cost incurred until any point in a solution as time. We say

that OPT is in phase i in the time interval [2i, 2i+1) for i ≥ 0. We say that NA is in phase i

in the time interval [β · 2i−1, β · 2i) for i ≥ 1. We use phase 0 to refer to the interval [1, β).

We set β := 16
δ
log(Q/δ); this choice will become clear in the proof of Lemma 3.4.3. The

following notation is associated with any phase i ≥ 0:

• ui: probability that NA goes beyond phase i, i.e., costs at least β · 2i.

• u∗i : probability that OPT goes beyond phase i− 1, i.e., costs at least 2i.

Since all costs are integers, u∗0 = 1. For ease of notation, we also use OPT and NA to denote

the random cost incurred by OPT and NA respectively. The main result here is that E[NA] ≤

O(β) · E[OPT]. As in the independent case, it suffices to show:

Lemma 3.4.3. For any phase i ≥ 1, we have ui ≤ ui−1

4
+ 2u∗i .

Using this lemma, we can immediately prove Theorem 3.4.1. This part of the analysis is

identical to the one presented in §2.4 for Theorem 2.4.1.

3.5 Proof of the key lemma for Scenario Submodular

Cover

We now prove Lemma 3.4.3. Let L be the list returned by SParCA. Recall that NA is the

cost incurred by non-adaptively realizing items in the order of L until (i) the number of

compatible scenarios |H| < δs or (ii) f gets fully covered. For each time t ≥ 0, let Xe(t)

denote the item that would be selected at time t. In other words, this is the item which

causes the cumulative cost of L to exceed t for the first time. We define the total gain as the

random variable

G :=

β2i∑
t=β2i−1

score(Xe(t)),

which corresponds to the sum of scores over the time interval [β · 2i−1, β · 2i). The proof will

be completed by upper and lower bounding G, which we do next. The lower bound views G

as a sum over time steps, whereas the upper bound views G as a sum over decision paths.

51

3.5.1 Lower bounding G

For the analysis, it will be convenient to view OPT as a decision tree where nodes correspond to

probed items and branches correspond to item realizations. Fix some time t ∈ [β ·2i−1, β ·2i)

in phase i. Let S denote the items that have already been added to the list L: so X \ S

are the available items. The partition H(S) of scenarios M and the large parts Z are as in

Definition 3.4.1. For any Z ∈ Z, we define:

• S(Z) ⊆ U is the realization from items S compatible with all scenarios in Z.

• QZ := Q− f(S(Z)) is the residual target (after selecting S) under scenarios Z.

• residual submodular function fZ := fS(Z) under scenarios Z.

• for any item Xe ∈ X \ S, scenarios Le(Z) ⊆ Z are as in Definition 3.4.2. This is the

complement of the largest part of Z (based on the realization of Xe).

• OPTZ is the subtree of OPT until time 2i, restricted to paths traced by scenarios in Z;

this only includes items that are completely selected by time 2i.

• StemZ is the path in OPTZ that at each node Xe follows the branch corresponding to

the realization compatible with scenarios Be(Z) = Z \ Le(Z). We use StemZ to also

denote the set of items on this path.

See Figure 3.2 for an illustration of OPTZ and StemZ .

For each Z ∈ Z, we partition scenarios Z based on the realizations on StemZ :

• Zgood = {ω ∈ Z : ω compatible at the end of StemZ and f covered},

• Zbad = {ω ∈ Z : ω compatible at the end of StemZ and f uncovered},

• Zok = {ω ∈ Z : ω ∈ Le(Z) for some Xe ∈ StemZ}; these are the scenarios that diverge

from StemZ at some item Xe.

See Figure 3.2 for an illustration.

Definition 3.5.1. We define part Z ∈ Z as good if p(Zgood) ≥ p(Z)/2, bad if p(Zbad) ≥

p(Z)/2, or okay if p(Zokay) ≥ p(Z)/2.

52

Figure 3.2: The tree on the left represents the decision tree OPT for scenarios {s1, ..., s8}.
Each node represents the element chosen at the node, and the set of scenarios compatible
until the node (before element at node is chosen). We redraw the decision tree for Z =
{s1, s2, s3, s5, s7} and restrict attention to scenarios in Z. The decision tree on the right
represents OPTZ . Note that both trees are restricted to time 2i. Furthermore, we add StemZ
(using dotted lines) in OPTZ . Note that scenario s5 is a good scenario since it is covered by
the end of StemZ , and scenarios s1, s2, s3, s7 are all okay scenarios. Thus Zgood = {s5} and
Zokay = {s1, s2, s3, s7}. If s5 was not covered by time 2i, it would be a bad scenario.

53

If there are ties, they can be broken arbitrarily.

Lemma 3.5.1. Each Z ∈ Z is either good, bad or okay.

Proof. Observe that one of Zgood or Zbad is always empty and the other equals all scenarios

compatible at the end of StemZ . Moreover, Zokay consists of all scenarios that diverge from

StemZ . So Zgood∪Zbad∪Zokay = Z. It follows that max{p(Zgood), p(Zbad), p(Zokay)} ≥ p(Z)/2,

which proves the lemma.

For each Z ∈ Z, let TZ = StemZ \S ⊆ X \S denote the available items on StemZ . In the

next two lemmas, we lower bound the total score from items in TZ . We consider separately

the terms corresponding to function gain and information gain. For any scenario ω ∈ Z, we

use StemZ(ω) ⊆ U denotes the realization of items StemZ under scenario ω.

Lemma 3.5.2. If Z is good, then
∑

ω∈Z pω ·
fZ(TZ(ω))

QZ
≥ p(Z)

2
.

Proof. Consider any scenario ω ∈ Zgood. If ω is realized then f is covered by the realization

StemZ(ω) of StemZ . Thus, f(StemZ(ω)) = Q. We have

fZ(TZ(ω)) = f(TZ(ω)∪S(Z))−f(S(Z)) = f(StemZ(ω)∪S(Z))−f(S(Z)) = Q−f(S(Z)) = QZ ,

where the second equality uses that TZ(ω) = StemZ(ω) \ S(Z). As Z is good, p(Zgood) ≥

p(Z)/2, and the lemma follows by summing over ω ∈ Zgood.

Lemma 3.5.3. If Z is okay, then p
(⋃

Xe∈TZ Le(Z)
)
≥ p(Z)

2
.

Proof. Note that Zokay =
⋃

Xe∈StemZ Le(Z). As Z is okay, we have p(Zokay) ≥ p(Z)/2. Recall

that Z is a part in H(S), which implies that realizations S(ω) of S are identical under all

scenarios ω ∈ Z. Hence, Be(Z) = Z for each Xe ∈ S, i.e., ∪Xe∈SLe(Z) = ∅. So,

⋃
Xe∈TZ

Le(Z) ⊇

(⋃
Xe∈StemZ

Le(Z)

)
\

(⋃
Xe∈S

Le(Z)

)
=

⋃
Xe∈StemZ

Le(Z) = Zokay.

Hence, p
(⋃

Xe∈TZ Le(Z)
)
≥ p(Z)

2
, which completes the proof.

We now prove a bound on the overall probability of parts that are either good or okay.

54

Lemma 3.5.4. We have
∑

Z:okay or good p(Z) ≥ (ui − 2u∗i).

Proof. We first show that
∑

Z: bad p(Z) ≤ 2 · u∗i . For any Z ∈ Z, if scenario ω ∈ Zbad is

realized then we know that OPT does not cover f at the end of StemZ , which implies that

OPT costs at least 2i. Thus u∗i ≥
∑

Z∈Z
∑

ω∈Zbad
pω. Moreover, p(Zbad) ≥ p(Z)/2 if Z is bad.

So,

u∗i ≥
∑
Z∈Z

∑
ω∈Zbad

pω ≥
∑
Z:bad

∑
ω∈Zbad

pω ≥
∑
Z: bad

p(Z)/2. (3.2)

Thus,
∑

Z:bad p(Z) ≤ 2u∗i as claimed.

Consider any part Y ∈ H(S) \ Z; recall Definition 3.4.1. Note that |Y | < δs. So, if S

realizes to the set S(Y) then NA would terminate by time t ≤ β2i, which implies that NA

does not go beyond phase i. Thus,

∑
Y ∈H(S)\Z

p(Y) ≤ Pr[NA terminates by phase i] = 1− ui. (3.3)

Finally, we have

∑
Z:okay or good

p(Z) = 1−
∑

Z: bad

p(Z)−
∑

Y ∈H(S)\Z

p(Y) ≥ 1− 2u∗i − (1− ui) = ui − 2u∗i ,

where we used (3.2) and (3.3). This completes the proof.

We are now ready to prove the lower bound on score(Xe(t)).

Lemma 3.5.5. For any time t in phase i, we have score(Xe(t)) ≥ δ · 1
2i+1 · (ui − 2u∗i).

Proof. Recall the subsets TZ ⊆ X \S for Z ∈ Z. Let T =
⊔

Z∈Z TZ denote the multiset that

contains each item as many times as it occurs. By definition of StemZ , the cost c(TZ) ≤ 2i

for each Z. So, c(T) =
∑

Z∈Z c(TZ) ≤ |Z| · 2i ≤
1
δ
· 2i. Moreover, T ⊆ X \ S: so each item

in T is available to be added to L at time t. We can lower bound score(Xe(t)) by averaging

55

over the multiset T :

score(Xe(t)) ≥ max
Xe∈T

score(Xe) ≥
1

c(T)
·
∑
Z∈Z

∑
Xe∈TZ

∑
Y ∈Z

(
p(Le(Y)) +

∑
ω∈Y

pω ·
fY (Xe(ω))

QY

)

≥ 1

c(T)
·
∑
Z∈Z

∑
Xe∈TZ

(
p(Le(Z)) +

∑
ω∈Z

pω ·
fZ(Xe(ω))

QZ

)
. (3.4)

We now consider the two terms above (information and function gain) separately.

Bounding the information gain. We only consider okay sets Z.

∑
Z∈Z

∑
Xe∈TZ

p(Le(Z)) ≥
∑
Z∈Z

p

(⋃
Xe∈TZ

Le(Z)

)
≥
∑

Z: okay

p(Z)

2
,

where the first inequality is by submodularity of the p-weighted coverage function and the

second inequality is by Lemma 3.5.3.

Bounding the function gain. Consider any good set Z.

∑
Xe∈TZ

∑
ω∈Z

pω ·
fZ(Xe(ω))

QZ

=
∑
ω∈Z

pω ·
∑

Xe∈TZ fZ(Xe(ω))

QZ

≥
∑
ω∈Z

pω ·
fZ(TZ(ω))

QZ

≥ p(Z)

2
,

where the first inequality is by submodularity of fZ and the second inequality is by Lemma 3.5.2.

Adding over all good sets Z,

∑
Z∈Z

∑
Xe∈TZ

∑
ω∈Z

pω ·
fZ(Xe(ω))

QZ

≥
∑

Z: good

p(Z)

2
.

Combining the two bounds above,

∑
Z∈Z

∑
Xe∈TZ

(
p(Le(Z)) +

∑
ω∈Z

pω ·
fZ(Xe(ω))

QZ

)
≥

∑
Z:okay or good

p(Z)

2
≥ ui − 2u∗i

2
,

where the last inequality is by Lemma 3.5.4. Combined with (3.4) and c(T) ≤ 1
δ
· 2i, this

completes the proof.

56

As Lemma 3.5.5 holds for each time t in phase i,

G =

β2i∑
t=β2i−1

score(Xe(t)) ≥ β2i−1 · δ · 1

2i+1
· (ui − 2u∗i) ≥

βδ

4
· (ui − 2u∗i) (3.5)

3.5.2 Upper bounding G

We now consider the implementation of the non-adaptive list L and calculate G as a sum of

contributions over the decision path in the non-adaptive solution NA. Let ω ∈M denote the

realized scenario, and consider the decision path under scenario ω. Let ⟨X1, X2, . . .⟩ be the

sequence of realizations (each in U) of items in L under scenario ω. So item Xj is selected

between time
∑j−1

ℓ=1 cℓ and
∑j

ℓ=1 cℓ. Let h (resp. p) index the first (resp. last) item (if any)

that is selected (even partially) during phase i, i.e., between time β2i−1 and β2i. For each

index h ≤ j ≤ p, let tj denote the duration of time that item Xj is selected during in phase

i; so tj is the width of interval [
∑j−1

ℓ=1 cℓ,
∑j

ℓ=1 cℓ]
⋂
[β · 2i−1, β · 2i]. Furthermore, for each

index j, let Zj ⊆M be the set of scenarios compatible with outcomes ⟨X1, · · · , Xj−1⟩. Note

that M = Z1 ⊇ Z2 ⊇ · · · ⊇ Zp ⊇ Zp+1. Define G(ω) := 0 if index h is undefined (i.e., NA

ends before phase i under scenario ω) and otherwise:

G(ω) :=

p∑
j=h

tj
cj
·

(
1[ω ∈ Lj(Zj)] +

f({X1, ..., Xj})− f({X1, ..., Xj−1})
Q− f({X1, ..., Xj−1})

)

≤
p∑

j=h

(
1[ω ∈ Lj(Zj)] +

f({X1, ..., Xj})− f({X1, ..., Xj−1})
Q− f({X1, ..., Xj−1})

)
(3.6)

By the stopping criterion for L, before the end of NA we must have (i) the number of com-

patible scenarios remains at least δs and (ii) the f value remains less than Q. In particular,

we must have |Zp| ≥ δs.

We analyze the two quantities in the above expression separately. We begin by analyzing∑p
j=h 1[ω ∈ Lj(Zj)]. Fix any h ≤ j ≤ p. If the realized scenario ω ∈ Lj(Zj), then the

number of compatible scenarios drops by a factor of at least 2 upon observing Xj; that is,

57

|Zj+1| ≤ 1
2
|Zj|. Using the fact that |Z1| = |M | = s and |Zp| ≥ δs, it follows that

p∑
j=h

1[ω ∈ Lj(Zj)] ≤ log2
s

δs
= log2(1/δ).

Next, we analyze the second term in (3.6). Using the fact that f is integral, monotone

and takes values in the range [0, Q], we have:

p∑
j=h

f({X1, ..., Xj})− f({X1, ..., Xj−1})
Q− f({X1, ..., Xj−1})

≤
Q∑
ℓ=1

1

ℓ
≤ lnQ.

Thus, we have G(ω) ≤ log 1
δ
+ lnQ ≤ log(Q/δ).

Note that G = Eω∼M [G(ω)]. It now follows that

G ≤ log(Q/δ) ·P(NA doesn’t terminate before phase i) = log(Q/δ) · ui−1. (3.7)

3.5.3 Completing proof of Lemma 3.4.3

Using (3.5), (3.7) and setting β = 16
δ
log(Q/δ), we get

16 log(Q/δ)

4
· (ui − 2u∗i) ≤ log(Q/δ) · ui−1

which on rearranging gives ui ≤ ui−1

4
+ 2u∗i , as desired. This completes the proof of

Theorem 3.1.1.

3.5.4 Tight approximation using more rounds

We now show that a better (and tight) approximation is achievable if we use 2r (instead

of r) adaptive rounds. The main idea is to use the following variant of the partial covering

problem, called scenario submodular partial cover (SSPC). The input is the same as scenario

submodular cover: items X , scenarios M with |M | = s and submodular function f with

maximal value Q. Given parameters δ, ε ∈ [0, 1], the goal in SSPC is to probe some items R

that realize to set R ⊆ U such that either (i) the number of compatible scenarios is less than

58

δs or (ii) the function value f(R) > Q(1− ε). Unlike the partial version studied previously,

we do not require f to be fully covered in case (ii). Note that setting ε = 1
Q
, we recover the

previous partial covering problem; so SSPC is more general.

Corollary 3.5.6. There is a non-adaptive algorithm for SSPC with cost O
(
1
δ
(ln 1

δ
+ ln 1

ε
)
)

times the optimal adaptive cost for the (full) submodular cover.

Proof. The algorithm is nearly identical to SParCA (Algorithm 4). In Definition 3.4.1, we

change

Z := {Y ∈ H(S) : |Y | ≥ δs and f(S(Y)) ≤ Q(1− ε)}.

In other words Z contains parts having size at least δs and for which the realized function

value is at most the target Q(1 − ε). Note that scenarios in Z correspond to those under

which the SSPC stopping rule does not already apply. After this, we use the same steps to

produce list L in Algorithm 4. The only difference is in the stopping rule (when probing

items from L) which reflects the definition of SSPC. In particular, the condition in the

while-loop (step 7 of Algorithm 4) is now replaced by:

While |H| ≥ δ|M | and f(R) ≤ Q(1− ε).

The analysis is also nearly identical: we prove Lemma 3.4.3 by lower/upper bounding the

total gain G. The lower bound (3.5) remains the same. For the upper bound, the analysis

for the first term in (3.6) remains the same, but its second term is now bounded as:

p∑
j=h

Vj − Vj−1

Q− Vj−1

≤ 1 +

p−1∑
j=h

Vj − Vj−1

Q− Vj−1

≤ 1 +

Q∑
ℓ=εQ

1

ℓ
≤ 1 + ln

1

ε
,

where Vj := f({X1, ..., Xj}). The second inequality uses V1 ≤ V2 ≤ · · ·Vp−1 ≤ Q(1 − ε).

This implies (just as before) that

G ≤
(
1 + log

1

δ
+ log

1

ε

)
· ui−1.

Finally, choosing β = 16
δ

(
1 + log 1

δ
+ log 1

ε

)
and simplifying, we get ui ≤ ui−1

4
+ 2u∗i

(Lemma 3.4.3). This completes the proof.

59

Next, we show how SSPC can be used iteratively to obtain a 2r-round algorithm.

Theorem 3.5.7. There is a 2r-round adaptive algorithm for scenario submodular cover with

cost O
(
s1/r log(sQ)

)
times the optimal adaptive cost, where s is the number of scenarios.

Proof. We use SSPC with δ = s−1/r and ε = Q−1/r repeatedly for 2r adaptive rounds.

Let ρ = O(1
r
s1/r log(sQ)) denote the approximation ratio from Corollary 3.5.6 for these δ, ε

values.

The state at any round consists of previously probed items and their realizations. For the

analysis, we view the iterative algorithm as a 2r depth tree, where the nodes at depth i are

the states in round i and the branches out of each node represent the observed realizations

in that round. For any i ∈ [2r], let Ωi denote all the states in round i: note that these form

a partition of the outcome space.

For any state ω ∈ Ωi, let OPT(ω) denote the expected cost of the optimal adaptive policy

conditioned on the realizations in ω. By Corollary 3.5.6, conditioned on ω, the expected cost

in round i is at most ρ · OPT(ω). Hence, the (unconditional) expected cost in round i is at

most ρ
∑

ω∈Ωi
Pr[ω] · OPT(ω) = ρ · OPT where we used that Ωi is a partition of all outcomes.

So the expected cost of the 2r-round algorithm is at most 2r · ρ · OPT as claimed.

It remains to show that f is fully covered after 2r rounds. Note that after each round,

we have one of the following (i) the number of compatible scenarios drops by factor s1/r, or

(ii) the residual target drops by factor Q1/r. Clearly, case (i) can happen at most r times (as

there is always some compatible scenario). So case (ii) occurs at least r times, which implies

that the residual target is less than 1, i.e., f is fully covered.

Setting r = log s, we achieve a tight O(log(sQ)) approximation in O(log s) rounds. Com-

bined with the conversion to set-based rounds (Theorem 2.8.2), this proves Corollary 3.1.2.

3.6 Lower Bound for Scenario Submodular Cover

Recall that we obtained an r-round O(s1/r · (log s + r logQ))-approximation algorithm for

scenario submodular cover. It is natural to ask if the dependence on the support-size s is

necessary, given that the bound for the independent case only depends on Q. The main

60

Y0,Y1, ...,Y`−1

Z0 Z1 ZB ZN−1

(a) Set-up of the 1-round instance.

b0, b1, ..., b`−1

⊥ ⊥ ? ⊥
(b) We have Yi = bi; pointing to item ZB.

Figure 3.3: The 1-round instance

result of this section is Theorem 3.1.3, which is a nearly matching lower bound on the r-

round-adaptivity gap. In particular, it shows that the s1/r dependence is necessary even

when Q = 1.

3.6.1 Hard Instances for Scenario Submodular Cover

1-round adaptivity gap. As a warm-up we first consider the case when r = 1. We design

an instance to prove a 1-round adaptivity gap of Ω(s). The instances that we use to prove

the adaptivity gap for r > 1 will build on this. The instance has groundset U = {0, 1, ⋆,⊥}

and function f(S) = |S ∩{⋆}| for S ⊆ U . Clearly, f is a 0− 1 valued monotone submodular

function; and Q = 1. Let ℓ be an integer parameter and N = 2ℓ. We have two types of items:

Y0, ...,Yℓ−1 each of which realizes to either 0 or 1 and costs 1, and N items Z0, ...,ZN−1 each

costing ℓ and realizing to symbol ⋆ or ⊥. The joint distribution D of these items has s = N

scenarios, each of uniform probability. For each B ∈ {0, 1, · · · , N − 1}, scenario B has the

following realizations (below, b0b1 · · · bℓ−1 is the binary representation of B).

Yi(B) = bi, ∀i = 0, · · · , ℓ−1 and Zj(B) =⊥, ∀j ∈ {0, · · · , N−1}\{B} and ZB(B) = ⋆.

We say that item Zk is active if, and only if, Zk realizes to ⋆. Note that there is a unique

active item in each scenario, and this item needs to be probed to cover f . See Figure 3.3 for

a pictorial representation.

An adaptive solution is as follows. First, probe items Y0, ...,Yℓ−1, and based on their

realizations calculate the number B represented by Y0, · · · , Yℓ−1. Then, probe item ZB

(the active one) to cover f . This policy has cost 2ℓ. On the other hand, since each Zk is

61

Y0,Y1, ...,Y`−1

Y(u0) Y(u1) Y(uN−1)

Y(vB)

Z0 Z1 ZN−1

Level 0

Level 1

Level r-1

Level r

Figure 3.4: The r-round instance

equally likely to be active, any non-adaptive policy needs to pick 1
2
· 2ℓ = Ω(2ℓ) Z-items,

in expectation, to cover f . This proves an Ω(2ℓℓ/ℓ) = Ω(s) lower bound on the 1-round

adaptivity gap for scenario submodular cover.

The r-round instance Ir. Henceforth, we use Ir to denote the r-round instance. Ir is

defined recursively by applying the above instance structure. Recall that ℓ is some parameter

and N = 2ℓ. Moreover, the realizations of Y-items above point to the unique Z-item that is

active. To extend this idea, we consider an N -ary tree T of depth r. Note that all leaves in

T are at depth r. For each internal node, we index its N children by {0, · · · , N − 1} in an

arbitrary order. We define a collection of items using T as follows.

• For each depth i = 0, · · · , r − 1 and node v ∈ T at depth i, there are ℓ items

Y0(v), · · · ,Yℓ−1(v), each of unit cost and which realizes to 0 or 1.

• For each leaf node w of T (i.e., at depth r), there is an item Zw of cost ℓ which realizes

to one of the symbols ⋆ or ⊥.

For any non-leaf node v, we use the shorthand Y(v) = ⟨Y0(v), · · · ,Yℓ−1(v)⟩ to denote all its

Y-items. We illustrate the structure of Ir in Figure 3.4. The function f is as defined earlier:

f(S) = |S ∩ {⋆}|. So f(S) = 1 if ⋆ ∈ S (else f(S) = 0). The distribution D involves s = 2rℓ

scenarios with uniform probability. Each scenario is associated with a unique leaf node (i.e.

Z-item); note that the number of leaves is exactly s.

62

For each leaf w, we define its corresponding scenario as follows. Let v0, · · · , vr−1, vr = w

denote the path from the root of T to w. For each depth i = 0, · · · , r − 1, let node vi+1 be

the Bth
i child of node vi. Then, scenario w’s realizations are:

• The realization Y0(vi), · · · , Yℓ−1(vi) of Y(vi) equals the binary representation of Bi, for

each depth 0 ≤ i ≤ r − 1. The realization of all other Y-items is 0.

• The realization Zw = ⋆ and Zu =⊥ for all leaf u ̸= w.

In this way, the realizations at the depth i node vi point to the “correct” depth i + 1 node

vi+1 that should be probed next. This completes the description of the instance.

Adaptive solution. We now describe a good (r + 1)-round adaptive solution OPT of cost

(r+1)ℓ. It is a natural top-down strategy. It starts by probing the ℓ items Y(v0) at the root v0,

and based on their realization calculates the number B0 represented by Y0(v0), · · · , Yℓ−1(v0);

then it probes the Y-items at the Bth
0 child of v0; and so on. After r rounds, it is able to

discern the unique active item Zw and probes it at cost ℓ (in the final round) to cover f .

3.6.2 Lower bound proof

In proving the lower bound, it is convenient to work with the set-based model of adaptiv-

ity. Recall that a set-based solution may fail (to cover function f) with some probability.

Specifically, we will show that any set-based r-round solution for Ir which covers f with

probability δ must cost at least δ · ℓ · 2ℓ. Then, using the contrapositive of Theorem 2.8.1 we

obtain the desired lower bound in the permutation-based model.

We further restrict our attention to batched (set based) r-round solutions defined as

follows.

Definition 3.6.1. An r-round solution for Ir is a batched solution if in every round k =

1, ..., r, it has the property that for each node v ∈ T , either all, or none, of the items at v

are probed.

A lower bound for batched r-round solutions implies a lower bound for all r-round solu-

tions at a loss of a factor of ℓ (as each node contains at most ℓ items). The main result of

this section is:

63

Lemma 3.6.1. The expected cost of any batched r-round solution for Ir that covers f with

probability δ > 0 is at least δ · ℓ · 2ℓ.

This implies that the expected cost of any (unbatched) r-round solution for the given

instance is at least δ · 2ℓ. Setting δ = 1
2
and using Theorem 2.8.1, it follows that any

permutation-based r-round solution must cost Ω
(

2ℓ

r

)
. Combined with the fact that there is

an adaptive solution of cost at most 2rℓ, this implies an adaptivity gap of Ω
(

2ℓ

r2ℓ

)
= Ω

(
s1/r

r log s

)
as s = 2rℓ. This completes the proof of Theorem 3.1.3. Note that the above instance can

also be viewed as one for optimal decision tree: by just ignoring the Z-items, and with the

goal of identifying the realized scenario.

Proof. Proof of Lemma 3.6.1 By Yao’s minimax principle, it suffices to prove Lemma 3.6.1

for deterministic solutions. Let A be an arbitrary deterministic batched r-round solution

for Ir that succeeds (i.e., covers f) with probability δ, and let NA denote its (random) cost.

We denote by random variables S1, ...,Sr, the sets probed by A in each of its r rounds. We

use ⊓0, · · · ,⊓r to denote the (random) nodes of T on the path from the root to the realized

scenario w∗ = ⊓r. We further assume that A satisfies the following properties:

1. At the beginning of each round k, A knows the identity of ⊓k−1.

2. In each round k, A probes ⊓k−1 for free and some subset of children of node ⊓k−1.

3. A is allowed to stop and claim “success” if it discerns ⊓k+1 at the end of any round k;

note that this occurs exactly when A probes node ⊓k in round k.

We formalize and justify these assumptions in Lemma 3.6.2, where we argue that the afore-

mentioned assumptions can be ensured while neither increasing the cost of A nor decreasing

A’s success probability. We first complete the proof of Lemma 3.6.1 assuming properties

1-3.

We proceed by induction on r. When r = 1, any solution with success probability δ must

probe at least δN leaf nodes, which implies its cost is at least δ · ℓN (recall every leaf-item

costs ℓ).

Now, suppose that r > 1. Note that since A is deterministic and has no information in

the first round, S1 is a fixed subset, irrespective of the realized scenario. By property (2),

64

S1 only contains items from levels 0 and 1. Recall that N = 2ℓ. Let ϵ1N denote the number

of depth-1 nodes in S1. Since ⊓1 is equally likely to be any of the 2ℓ children of ⊓0, we have

the following two cases:

• Suppose ⊓1 is in S1, i.e., it is probed in round 1. Then, A discerns ⊓2 and hence it

claims “success” and stops. Note that the conditional success probability in this case

is 1.

• Suppose ⊓1 is not in S1. Then, conditional on the realizations of S1, A discerns ⊓1
(but not ⊓2). In this case, the remaining r − 1 rounds of A correspond to a solution

for instance Ir−1. Let γ be the (conditional) success probability in this case.

The first case above occurs w.p. ϵ1 and the second case occurs w.p. 1 − ϵ1. So, the overall

success probability of A is ϵ1+(1− ϵ1) ·γ = δ. It follows that γ = δ−ϵ1
1−ϵ1

. We are now ready to

lower-bound the expected cost of A. The cost of A in round 1 is ℓ · |S1| = ϵ1ℓN as the total

cost at each node is ℓ. For the remaining r − 1 rounds, the cost is 0 in the first case above.

In the second case, using induction, the expected cost from the remaining r− 1 rounds is at

least γ · ℓN . So, the expected cost of A is at least

ϵ1 · ℓN + (1− ϵ1) · γ · ℓN = δ · ℓN,

which proves the desired result. Note that we assumed δ ≥ ϵ1 above; otherwise, the inductive

statement trivially holds.

Lemma 3.6.2. Given a batched r-round solution A for Ir that covers f with probability δ,

there exists a batched r-round solution A′ that succeeds with probability at least δ, has lower

expected cost than A, and has the following properties:

1. At the beginning of each round k, A′ knows the identity of ⊓k−1.

2. In each round k, A′ probes ⊓k−1 for free and some subset of children of node ⊓k−1.

3. A′ stops and claims “success” if it discerns ⊓k+1 at the end of any round k; note that

this occurs exactly when A probes node ⊓k in round k.

65

Proof. Proof of Lemma 3.6.2 Let A be an arbitrary batched solution. Recall the setting

from the proof of Lemma 3.6.1. We denote by random variables S1, ...,Sr, the sets probed

by A in each of its r rounds. We use ⊓0, · · · ,⊓r to denote the (random) nodes of T on the

path from the root to the realized scenario w∗ = ⊓r. For any node v, we use Πk(v) to denote

the depth-k ancestor of node v; if v is at depth k, then Πk(v) = v. We convert A to A′

inductively as follows.

Suppose that we have ensured A′ satisfies the three properties for the first k− 1 rounds.

So, at the start of round k, A′ knows the identity of ⊓k−1. The nodes probed by A′ in round

k are S ′
k = {⊓k−1}∪{Πk(v) : v ∈ Sk}. Clearly, A′ is a batched r-round solution that satisfies

the three properties for round k + 1. Also, allowing A′ to probe ⊓k−1 for free in round k

only reduces the cost of A′ compared to the cost of A.

To complete the proof, we now argue that whenever A covers function f , solution A′

claims success and stops. Suppose that A covers f is some round k ∈ [r]. Then, it must be

the case that A probes ⊓r in Sk. Accordingly, A′ would probe Πk(⊓r) = ⊓k, after which it

discerns ⊓k+1. So A′ succeeds after round k as well. Thus, A′ succeeds with probability at

least δ.

3.7 Applications

3.7.1 Optimal Decision Tree

The optimal decision tree problem captures problems from a variety of fields such as learning

theory, medical diagnosis, pattern recognition, and boolean logic; see the surveys [89] and

[91]. In an instance of optimal decision tree (ODT) we are given s hypotheses with probabilities

{pi}si=1. An unknown random hypothesis y∗ ∈ [s] is drawn from this distribution. There is

a collection of m tests, where test e costs ce ∈ R+ and returns a positive result if y∗ lies in

some subset Te ⊆ [s] and a negative result if y∗ ̸∈ Te. The goal is to identify y∗ using tests

of minimum expected cost.

We can transform any ODT instance into an instance of scenario submodular cover. We

associate scenarios with hypotheses and the distribution D is given by probabilities {pi}si=1.

66

For each test e, we have an item Xe of cost ce. The groundset U = {e+, e− : e test} which

corresponds to all possible (individual) test results. Item Xe realizes to e+ (resp. e−) if

test e is positive (resp. negative). If y∗ is the realized scenario then the item realizations

correspond to the test outcomes for hypothesis y∗. For each test e, define subsets T (e−) = Te

and T (e+) = [s] \ Te. The submodular function is f(S) = min
{
|
⋃

v∈S T (v)| , s− 1
}

for

S ⊆ U . Note that f(S) is the number of incompatible hypotheses given the tests results S.

Moreover, Q = s−1. Applying Theorem 3.1.1, for any r ≥ 1, we obtain an r-round adaptive

algorithm that costs at most O(rs1/r log s) times the fully adaptive optimum. Our lower

bound for scenario submodualar cover (Theorem 3.1.3) also implies an Ω(1
r log s

s1/r) bound

on the r-round-adaptivity gap for ODT. So, for any constant r ≥ 1, our r-round-adaptivity

gap is tight up to an O(log2 s) factor. Moreover, using Corollary 3.1.2, we obtain an O(log s)

round algorithm of cost O(log s) times the adaptive optimum. As shown in [27], O(log s) is

the best possible approximation ratio, even for fully adaptive algorithms.

Application to Medical Diagnosis. Recall our motivating application in medical diag-

nosis where we know s possible conditions a patient may suffer from (along with the priors of

their occurrence), and our goal is to adaptively perform tests to identify the correct condition

as quickly (and cheaply) as possible. This problem, known as automated diagnosis, can be

directly cast as the optimal decision tree problem. See, e.g. [10] for applications of decision

tree methods to diagnostic problems. See also [21] for an application of ODT in emergency

response. Here, a first responder observes the symptoms of a victim of chemical exposure in

order to identify the toxic chemical.

Application to Active Learning. In a typical (binary) classification problem, there is a

X set of data points, each of which is associated with a + or − label. There is also a set H of

hypotheses, where each hypothesis provides a +/− labeling of the data points. It is assumed

that the true classifier/hypothesis h∗ belongs to H. In the average-case setting that we

consider, there is also a Bayesian prior pH(·) for the true hypothesis, i.e., Pr[h∗ = h] = pH(h)

for all h ∈ H. The learner needs to identify the true hypothesis h∗. In active learning, the

learner can query the label of any point e ∈ X by incurring some cost ce (which corresponds

67

to some expert labeling e). The goal is to identify h∗ by querying points (possibly adaptively)

at the minimum expected cost. See, e.g. [37, 60, 35] for more details on this approach. This

is exactly an instance of optimal decision tree, where the data points correspond to tests.

Applying Theorem 3.1.1, for any r ≥ 1, we obtain an r-round adaptive algorithm that costs

at most O(r|H|1/r log(|H|)) times the fully adaptive optimum.

3.7.2 Correlated Knapsack Cover

There are n items, each of cost ci and random (integer) reward Xi. The rewards may be

correlated and are given by a joint distribution D with s scenarios. The exact reward of an

item is only known when it is probed. Given a target Q, the goal is to probe some items

so that the total realized reward is at least Q and we minimize the expected cost. This is a

special case of scenario submodular cover. The groundset U = {(i, v) : i ∈ [n], 0 ≤ v ≤ Q}

where element (i, v) represents item Xi realizing to v. Any realization of value at least Q is

treated as equal to Q: this is because the target is itself Q. For each element e = (i, v) ∈ U

let ae = v denote its value. Then, the submodular function is f(S) = min{
∑

e∈S ae , Q}

for S ⊆ U . By Theorem 3.1.1, we obtain an r-round adaptive algorithm with cost at most

O(s1/r(log s+ r logQ)) times the optimal adaptive cost.

3.8 Computational Results

We provide a summary of computational results of our r-round adaptive algorithms for the

stochastic set cover and optimal decision tree problems. We conducted all experiments using

Python 3.8 and Gurobi 8.1 with a 2.3 Ghz Intel Core i5 processor and 16 GB 2133 MHz

LPDDR3 memory.

3.8.1 Optimal Decision Tree

Instances. We use a real-world dataset called WISER (http://wiser.nlm.nih.gov/) for

our experiments. The WISER dataset describes symptoms that one may suffer from after

being exposed to certain chemicals. It contains data corresponding to 415 chemicals (scenar-

68

http://wiser.nlm.nih.gov/

ios for ODT) and 79 symptoms (elements with binary outcomes). Given a patient exhibiting

certain symptoms, the goal is to identify the chemical that the patient has been exposed to

(by testing as few symptoms as possible). This dataset has been used for evaluating algo-

rithms for similar problems in other papers [24, 20, 21, 92]. For each symptom-chemical pair,

the data specifies whether or not someone exposed to the chemical exhibits the given symp-

tom. However, the WISER data has ‘unknown’ entries for some pairs. In order to obtain

instances for ODT from this, we generate 10 different datasets by assigning random binary

values to the ‘unknown’ entries. Then we remove all identical scenarios: to ensure that the

ODT instance is feasible. We use the uniform probability distribution for the scenarios. Given

these 10 datasets, we consider two cases. The first case (called WISER− U) has all tests with

unit costs. In the second case, we generate costs randomly for each test from {1, 4, 7, 10}

according to the probabilities [0.1, 0.2, 0.4, 0.3]; for example, with probability 0.4, a test is

assigned cost 7. Varying cost captures the setting where tests may have different costs, and

we may not want to schedule an expensive test without sufficient information. We refer to

this case as WISER− R.

We also test our algorithm on synthetic data which we generate as follows. We set

s = 10, 000 and m = 100. For each y ∈ [s], we randomly generate a binary sequence of

outcomes which corresponds to how y reacts to the tests. We do this in two ways: for test

e, we set y ∈ Te with probability p ∈ {0.2, 0.5}. If a sequence of outcomes is repeated, we

discard the scenario to ensure feasibility of the ODT instance. We assign equal probability to

each scenario. We generate instances using (i) unit costs or (ii) random costs from {1, 4, 7, 10}

with respective probabilities [0.1, 0.2, 0.4, 0.3]. Thus, we generate 4 types of instances with

synthetic data. We refer to the instance generated with p = 0.2 and unit costs as SYN−U−0.2.

Other instances are named similarly.

Results. We test our r-round adaptive algorithm on all of the above mentioned datasets.

We vary r over integers in the interval [1, log s]. Again, we compare to our fully-adaptive

algorithm which adapts after every probe: in each step, this algorithm probes the item that

maximizes the score (3.1) where S = ∅ and Z consists of a single part with all scenarios.

We also implemented the fully-adaptive “generalized binary search” algorithm due to [37]

69

1 2 3 4 5 6 7 8 9
Rounds of adaptivity

8.75

9.00

9.25

9.50

9.75

10.00

10.25

C
os

t

Our Algorithm
Fully Adaptive
Information-theoretic lower bound

(a) WISER− U

1 2 3 4 5 6 7 8 9
Rounds of adaptivity

18

20

22

24

26

28

30

Co
st

Information-theoretic Lower Bound: 10.25

Our Algorithm
Fully Adaptive

(b) WISER− R

Figure 3.5: Computational results for ODT on WISER dataset

as an algorithmic benchmark: on the instances considered, this algorithm performed nearly

identically to our fully-adaptive algorithm; so, we exclude it from the plots.

We also compare to information-theoretic lower bounds obtained as follows. For instances

with unit costs (WISER− U, SYN− U− 0.2 and SYN− U− 0.5) this lower bound corresponds

to the entropy which is log2(s), where s is the number of scenarios. Recall that all instances

have uniform probabilities across scenarios. For instances with non-uniform costs (WISER−R,

SYN− R− 0.2 and SYN− R− 0.5) , the entropy is no longer a valid lower bound. Instead, we

use an integer programming (IP) formulation to compute the optimal cost to identify a given

scenario (see §3.9 for details) and then average over all scenarios. We note that there are

instances where this information-theoretic lower bound is smaller than the optimal adaptive

cost by an O(s) factor.

For the WISER datasets, we compute averages using all scenarios. Figure 3.5a plots our

algorithm’s expected cost as a function of r for WISER − U. We observe that our algorithm

gets very close to the information-theoretic lower bound in only 3 rounds of adaptivity.

Figure 3.5b plots our algorithm’s costs for WISER− R. Here, we observe a sharp decrease in

costs within 4 rounds of adaptivity, after which our algorithm’s cost is within ≈ 50% of the

information-theoretic lower bound. Note that we only plot results on our first dataset for

WISER− U and WISER− R. We include plots for all 10 WISER datasets in Appendix 3.10.

For the synthetic data, we compute averages by sampling scenarios over 100 trials (since

s = 10000, computing expectation over all s would be very slow). We plot the results in

70

1 2 3 4 5 6 7 8 9
Rounds of adaptivity

13

14

15

16

17

18

19
C

os
t

Our Algorithm
Fully Adaptive
Information-theoretic lower bound

(a) SYN− U− 0.2

1 2 3 4 5 6 7 8 9
Rounds of adaptivity

13.0

13.2

13.4

13.6

13.8

14.0

14.2

14.4

C
os

t

Our Algorithm
Fully Adaptive
Information-theoretic lower bound

(b) SYN− U− 0.5

Figure 3.6: Computational results for ODT on synthetic data with unit costs

Figures 3.6 and 3.7. We observe that with 6 rounds of adaptivity, our algorithm’s cost nearly

matches that of the fully-adaptive algorithm.

0 1 2 3 4 5 6 7 8
Rounds of adaptivity

37.5

40.0

42.5

45.0

47.5

50.0

52.5

55.0

Co
st

Information-theoretic Lower Bound: 16.59

Our Algorithm
Fully Adaptive

(a) SYN− R− 0.2

0 1 2 3 4 5 6 7 8
Rounds of adaptivity

13.6

13.7

13.8

13.9

14.0

14.1

14.2

14.3

Co
st

Information-theoretic Lower Bound: 10.98

Our Algorithm
Fully Adaptive

(b) SYN− R− 0.5

Figure 3.7: Computational results for ODT on synthetic data with non-uniform costs

3.9 An Information-Theoretic Lower Bound for ODT

In this section, we present an information theoretic lower bound for ODT instances. In

an instance of the ODT problem, we are given s hypotheses with probabilities {pi}si=1. An

unknown random hypothesis y∗ ∈ [s] is drawn from this distribution (known as the true

realization). Additionally, there is a collection of m tests where each test e costs ce ∈ R+

and returns a positive result if y∗ ∈ Te ⊆ [s], and a negative result otherwise. The goal is to

71

identify y∗ with minimum expected cost.

Let Y be a random variable denoting the true realization. We define set Sy∗(y) as the set

of tests that distinguish y from y∗. Formally, Sy∗(y) = {e : Re(y) ̸= Re(y
∗)}. where Re(y)

denotes the result returned by test e under hypothesis y. Observe that to identify y∗, we

must perform at least one test from Sy∗(y) for all y ̸= y∗. The following integer program

(IP) computes the minimum cost needed to conclude that Y = y∗.

LB(y∗) = minimize
m∑
e=1

ce · xe

subject to
∑

e∈Sy∗ (y)

xe ≥ 1, for all y ̸= y∗, (3.8)

xe ∈ {0, 1}, e ∈ [m],

where xe, for e ∈ [m], is a binary variable denoting whether test e is performed. The

constraints denoted by (3.8) ensure that the selected tests simultaneously eliminate all hy-

potheses y ̸= y∗.

Note that LB(y∗) denotes the minimum cost needed to identify hypothesis y∗. Then,

LB = E[LB(Y)] =
∑

y∗ LB(y
∗) · Py∗ is an information-theoretic lower bound for the given

instance of ODT. We note that the above IP only provides a lower bound on the cost for

identifying a fixed hypothesis; it is not a formulation for the given ODT problem itself. Also

note that this gives us an information-theoretic lower bound for ODT instances with both

non-uniform costs and non-uniform probabilities.

For the special case of uniform costs, we use log2(s) as a lower bound. This lower bound

follows from Shannon’s source coding theorem (see, e.g., [101] or, [36], Chapter 5), and holds

even when we have tests that allow us to distinguish between any partition of the hypotheses.

In this case, the IP formulation will incur a cost of 1 to identify y∗ (by performing the test

that distinguishes y∗ from the rest) leading to a trivial lower bound.

72

3.10 Additional Plots

In the main body of the paper, we only include plots related to the first dataset for the

WISER− U and WISER− R cases. The trends observed in the other datasets are similar. We

include plots for all 10 datasets here for completeness.

73

1 2 3 4 5 6 7 8 9
Rounds of adaptivity

8.75

9.00

9.25

9.50

9.75

10.00

10.25

C
os

t

Our Algorithm
Fully Adaptive
Information-theoretic lower bound

1 2 3 4 5 6 7 8 9
Rounds of adaptivity

8.75

9.00

9.25

9.50

9.75

10.00

10.25

C
os

t

Our Algorithm
Fully Adaptive
Information-theoretic lower bound

1 2 3 4 5 6 7 8 9
Rounds of adaptivity

8.6

8.8

9.0

9.2

9.4

9.6

9.8

10.0

10.2

C
os

t

Our Algorithm
Fully Adaptive
Information-theoretic lower bound

1 2 3 4 5 6 7 8 9
Rounds of adaptivity

8.6

8.8

9.0

9.2

9.4

9.6

9.8

10.0

10.2

C
os

t

Our Algorithm
Fully Adaptive
Information-theoretic lower bound

1 2 3 4 5 6 7 8 9
Rounds of adaptivity

8.6

8.8

9.0

9.2

9.4

9.6

9.8

10.0

10.2

C
os

t

Our Algorithm
Fully Adaptive
Information-theoretic lower bound

1 2 3 4 5 6 7 8 9
Rounds of adaptivity

8.75

9.00

9.25

9.50

9.75

10.00

10.25

C
os

t

Our Algorithm
Fully Adaptive
Information-theoretic lower bound

1 2 3 4 5 6 7 8 9
Rounds of adaptivity

8.75

9.00

9.25

9.50

9.75

10.00

10.25

C
os

t

Our Algorithm
Fully Adaptive
Information-theoretic lower bound

1 2 3 4 5 6 7 8 9
Rounds of adaptivity

8.75

9.00

9.25

9.50

9.75

10.00

10.25

10.50

C
os

t

Our Algorithm
Fully Adaptive
Information-theoretic lower bound

1 2 3 4 5 6 7 8 9
Rounds of adaptivity

8.6

8.8

9.0

9.2

9.4

9.6

9.8

10.0

C
os

t

Our Algorithm
Fully Adaptive
Information-theoretic lower bound

1 2 3 4 5 6 7 8 9
Rounds of adaptivity

8.75

9.00

9.25

9.50

9.75

10.00

10.25

C
os

t

Our Algorithm
Fully Adaptive
Information-theoretic lower bound

Figure 3.8: Computational results for ODT on WISER− U

74

1 2 3 4 5 6 7 8 9
Rounds of adaptivity

18

20

22

24

26

28

C
os

t

Our Algorithm
Fully Adaptive

1 2 3 4 5 6 7 8 9
Rounds of adaptivity

18

20

22

24

26

28

C
os

t

Our Algorithm
Fully Adaptive

1 2 3 4 5 6 7 8 9
Rounds of adaptivity

18

20

22

24

26

C
os

t

Our Algorithm
Fully Adaptive

1 2 3 4 5 6 7 8 9
Rounds of adaptivity

22

24

26

28

30

32

C
os

t

Our Algorithm
Fully Adaptive

1 2 3 4 5 6 7 8 9
Rounds of adaptivity

16

18

20

22

24

26

28

C
os

t

Our Algorithm
Fully Adaptive

1 2 3 4 5 6 7 8 9
Rounds of adaptivity

18

20

22

24

26

C
os

t

Our Algorithm
Fully Adaptive

1 2 3 4 5 6 7 8 9
Rounds of adaptivity

26

28

30

32

34

36

C
os

t

Our Algorithm
Fully Adaptive

1 2 3 4 5 6 7 8 9
Rounds of adaptivity

18

20

22

24

26

C
os

t

Our Algorithm
Fully Adaptive

1 2 3 4 5 6 7 8 9
Rounds of adaptivity

22

24

26

28

30

32

34

C
os

t

Our Algorithm
Fully Adaptive

1 2 3 4 5 6 7 8 9
Rounds of adaptivity

18

20

22

24

26

28

30

C
os

t

Our Algorithm
Fully Adaptive

Figure 3.9: Computational results for ODT on WISER− R

75

Chapter 4

Stochastic Score Classification

4.1 Introduction

The problem of diagnosing complex systems often involves running a large number of tests

for each component of such a system. One option to diagnose such systems is to perform

tests on all components, which can be prohibitively expensive and slow. Therefore, we are

interested in a policy that tests components one by one, and minimizes the average cost of

testing. (See [107] for a survey.) Concretely, we consider a setting where the goal is to test

various components, in order to assign a risk class to the system (e.g., whether the system

has low/medium/high risk).

The stochastic score classification (SSClass) problem introduced by [53] models such

situations. There are n components in a system, where each component i is “working”

with independent probability pi. While the probabilities pi are known a priori, the random

outcomes Xi ∈ {0, 1} are initially unknown. The outcome Xi of each component i can be

determined by performing a test of cost ci: Xi = 1 if i is working and Xi = 0 otherwise.

The overall status of the system is determined by a linear score r(X) :=
∑n

i=1 aiXi, where

the coefficients ai ∈ Z are input parameters. We are also given a collection of intervals

I1, I2, . . . , Ik that partition the real line (i.e., all possible scores). The goal is to determine

the interval Ij (also called the class) that contains r(X), while incurring minimum expected

cost. A well-studied special case is when there are just two classes, which corresponds to

evaluating a halfspace or linear-threshold-function [40].

76

Example: consider a system which must be assigned a risk class of low, medium, or high.

Suppose there are five components in the system, each of which is working with probability

1
2
. The score for the entire system is the number of working components. A score of 5

corresponds to the “Low” risk class, scores between 2 and 4 correspond to “Medium” risk,

and a score of at most 1 signifies “High” risk. Suppose that after testing components {1, 2, 3},

the system has score 2 (which occurs with probability 3
8
) then it will be classified as medium

risk irrespective of the remaining two components: so testing can be stopped. Instead, if

the system has score 3 after testing components {1, 2, 3} (which occurs with probability 1
8
)

then the class of the system cannot be determined with certainty (it may be either medium

or low), and so further testing is needed.

A related problem is the d-dimensional stochastic score classification problem (d-SSClass),

which models the situation when a system has d different functions, each with an associ-

ated linear score (as above). We must now perform tests on the underlying components to

simultaneously assign a class to each of the d functions.

In another related problem, a system again has d different functions. Here, the status

(working or failed) of each function is determined by some halfspace, and the overall system

is considered operational if all d functions are working. The goal of a diagnosing policy is

to decide whether the system is operational, and if not, to return at least one function that

has failed (and therefore needs maintenance). This is a special case of a problem we call

explainable stochastic halfspace evaluation (EX-SFE).

Solutions for all these problems (SSClass, d-SSClass, and EX-SFE) are sequential decision

processes. At each step, a component is tested and its outcome (working or failed) is observed.

The information from all previously tested components can then be used to decide on the

next component to test; this makes the process adaptive. This process continues until the

risk class can be determined with certainty from the tested components. One simple class

of solutions are non-adaptive solutions, which are simply described by a priority list: we

then test components in this fixed order until the class can be uniquely determined. Such

solutions are simpler and faster to implement, compared to their adaptive counterparts: the

non-adaptive testing sequence needs to be constructed just once, after which it can be used

for all input realizations. However, non-adaptive solutions are weaker than adaptive ones,

77

and our goal is to bound the adaptivity gap, the multiplicative ratio between the performance

of the non-adaptive solution to that of the optimal adaptive one. Our main result shows that

SSClass has a constant adaptivity gap, thereby answering an open question posed by [53].

Additionally, we show an adaptivity gap of O(d2 log d) for both the d-SSClass and EX-SFE

problems.

4.1.1 Problem Definitions

Before we present the results and techniques, let us formally define the problems. For any

integer m, we use [m] := {1, 2, . . . ,m}.

Stochastic Score Classification. An instance of SSClass consists of n independent {0, 1}

random variables X = X1, . . . , Xn, where variable Xi has Pr[Xi = 1] = E[Xi] = pi. The cost

to probe/query Xi is ci ∈ R+; both pi, ci are known to us. We are also given non-negative

weights ai ∈ Z+, and the score of the outcome X = (X1, . . . , Xn) is r(X) =
∑n

i=1 aiXi. In

addition, we are given B+1 integers α1, . . . , αB+1 such that class j corresponds to the interval

Ij := {αj, . . . , αj+1 − 1}. The score classification function h : {0, 1}n → {1, . . . , B} assigns

h(X) = j precisely when r(X) ∈ Ij. The goal is to determine h(X) at minimum expected

cost. We assume non-negative weights only for simplicity: any instance with positive and

negative weights can be reduced to an equivalent instance with all positive weights (see

Appendix 4.7). Let W :=
∑n

i=1 ai denote the total weight. In our algorithm, we associate

two numbers (β0
j , β

1
j) ∈ Z2

+ with each class j, where β0
j = W − αj+1 + 1 and β1

j = αj.

d-Dimensional Stochastic Score Classification. This is a natural generalization of

SSClass to d ≥ 2 score functions. An instance of d-SSClass is the same as that for SSClass

but where the weights are given by vectors ai ∈ Zd
+. This results in a d-dimensional score

function r(X) =
∑n

i=1 aiXi; let rk(X) denote the kth component of r(X). The input also

specifies intervals {I(k)j }j for each of these dimensions k ∈ [d], which in turn define score

classification functions {hk}k∈[d], such that hk(X) = j if rk(X) ∈ I(k)j . The goal is to design

a strategy to simultaneously evaluate h1, . . . , hd with minimum expected cost.

78

Explainable Stochastic Halfspace Evaluation. Finally, an instance of EX-SFE is similar

to that of d-SSClass, but where each dimension has only two intervals I
(k)
0 , I

(k)
1 specified by

a single threshold (i.e., I
(k)
0 = {y < αk} and I(k)1 = {y ≥ αk}). This means that the score

classification functions hk : {0, 1}n → {0, 1} are Boolean-valued. Note that hk corresponds

to evaluating the halfspace
∑n

i=1 akiXi ≥ αk. Moreover, we are also given an aggregation

function f : {0, 1}d → {0, 1}, and we want to evaluate f(h1(X), . . . , hd(X)). In other words,

if we define the composite score classification function h(X) := (h1(X), h2(X), . . . , hd(X)),

we want to evaluate (f ◦ h)(X).

Moreover, the problem asks for an “explanation”, or a witness of this evaluation. To

define a witness, consider a tuple (X ′, v(X ′), T), where X ′ ⊆ X is the subset of probed

variables, v(X ′) are the realizations for these variables, and T ⊆ [d] is a subset of the

dimensions. This tuple (X ′, v(X ′), T) is a witness for f ◦ h if the following conditions are

satisfied:

• The realizations v(X ′) of the probed variables X ′ determine hk(X) for all dimensions

k ∈ T . In other words, we can evaluate all the halfspaces corresponding to subset

T ⊆ [d].

• The values of {hk(X)}k∈T completely determine (f ◦ h)(X); i.e., all realizations of the

remaining variables X \X ′ give the same value for f ◦ h.

In other words, a witness is a proof of the function value that only makes use of probed

variables. The goal is to design a probing strategy of minimum expected cost that determines

f ◦ h along with a witness (as defined above). We assume that checking whether a given

tuple is a witness can be done efficiently; see §4.5 for a discussion.

For example, when f(y1, · · · yd) =
∧d

k=1 yk, EX-SFE corresponds to evaluating the intersec-

tion of d halfspaces; the witness either confirms that all halfspaces are satisfied or identifies

some violated halfspace. EX-SFE also captures more general cases: given a target d̄ ≤ d, we

can check whether at least d̄ out of d halfspaces are satisfied (using an appropriate f).

4.1.2 Results and Techniques

Our main result is the following algorithm (and adaptivity gap).

79

Theorem 4.1.1. There is a polynomial-time non-adaptive algorithm (called NaCl) for

stochastic score classification with expected cost at most a constant factor times that of the

optimal adaptive policy.

This result improves on the prior work from [53, 40] in several ways. Firstly, we get

a constant-factor approximation, improving upon the previous O(logW) and O(B) ratios,

whereW is the sum of weights, and B the number of classes. Secondly, our algorithm is non-

adaptive in contrast to the previous adaptive ones. Finally, our algorithm has nearly-linear

runtime, which is faster than the previous algorithms.

An added benefit of our approach is that we obtain a “universal” solution that is simulta-

neously O(1)-approximate for all class-partitions. Indeed, the non-adaptive list produced by

NaCl only depends on the probabilities, costs, and weights, and not on the class boundaries

{αj}; these αj values are only needed in the stopping condition for probing.

Algorithm overview. To motivate our algorithm, suppose that we have probed a subset

S ⊆ [n] of variables, and there is a class j such that
∑

i∈S aiXi ≥ αj and
∑

i∈S ai(1−Xi) ≥

W −αj+1+1. The latter condition can be rewritten as
∑

i∈S aiXi+
∑

i ̸∈S ai ≤ αj+1− 1. So,

we can conclude that the final score lies in {αj, . . . , αj+1− 1} irrespective of the outcomes of

variables in [n] \ S. This means that h(X) = j. On the other hand, if the above condition

is not satisfied for any class j, we must continue probing. Towards this end, we define

two types of rewards for each variable i ∈ [n]: R0(i) = ai · (1 − Xi) and R1(i) = ai · Xi.

(See Figure 4.1.) The total R0-reward and R1-reward from the probed variables correspond

to upper and lower bounds on the score, respectively. Our non-adaptive algorithm NaCl

probes the variables in a predetermined order until
∑

i∈S R0(i) ≥ β0
j = W − αj+1 + 1 and∑

i∈S R1(i) ≥ β1
j = αj for some class j (at which point it determines h(X) = j).

To get this ordering we first build two separate lists: list Lb for the Rb-rewards (for

b = 0, 1) minimizes the cost required to cover some target amount of Rb-reward. Finally,

interleaving lists L0 and L1 gives the final list. The idea behind list L0 is as follows: if we

only care about a single class j, we can set a target of β0
j and use the non-adaptive algorithm

for stochastic knapsack cover [70]. Since the class j is unknown, so is the target β0
j on the

R0-reward. Interestingly, we show how to construct a “universal” non-adaptive list L0 that

80

(a) In this case, theR0 reward (upper bound)
and R1 reward (lower bound) lie in class j
and hence probing can be stopped.

(b) Here f(X) could be j or j+1, so probing
must continue.

Figure 4.1: Illustration of non-adaptive approach

works for all targets simultaneously. The construction proceeds in phases: in each phase

ℓ ≥ 0, the algorithm adds a subset of variables with cost O(2ℓ) that (roughly) maximizes the

expected R0 reward. Naıvely using the expected rewards can lead to poor performance, so a

natural idea is to use rewards truncated at logarithmically-many scales (corresponding to the

residual target); see for example, [42]. Moreover, to get a constant-factor approximation, we

use the critical scaling idea from [70]. Roughly speaking, this identifies a single scale κ such

that with constant probability (1) the algorithm obtains large reward (truncated at scale κ),

and (2) any subset of cost 2ℓ has small reward.

Analysis overview. The analysis of Theorem 4.1.1 relates the “non-completion” proba-

bilities of our algorithm after cost γ ·2ℓ to that of the optimal adaptive algorithm after cost 2ℓ,

for each phase ℓ ≥ 0. The factor γ corresponds to the approximation ratio of the algorithm.

In order to relate these non-completion probabilities, we consider the R0 and R1-rewards ob-

tained by an optimal adaptive algorithm, and argue that the non-adaptive algorithm obtains

a higher R0 as well as R1 reward (with constant probability). Thus, if the optimal adaptive

algorithm decides h(X), so does the non-adaptive algorithm. Our algorithm/analysis also

use various properties of the fractional knapsack problem.

Extensions. Next, we consider the d-dimensional score classification problem (d-SSClass)

and obtain the following result:

Theorem 4.1.2. There is a non-adaptive O(d2 log d)-approximation algorithm for d-dimensional

stochastic score classification.

81

We achieve this by extending the above approach (for d = 1). We now define two

rewards (corresponding to R0 and R1) for each dimension d. Then, we apply the list building

algorithm for each of these rewards, resulting in 2d separate lists. Finally, we interleave these

lists to obtain the non-adaptive probing sequence. The analysis is also an extension of the

d = 1 case. The main differences are as follows. Just accounting for the 2d lists results in an

extra O(d) factor in the approximation. Furthermore, we need to ensure (for each phase ℓ)

that with constant probability, our non-adaptive algorithm achieves more reward than the

optimum for all the 2d rewards. We incur another O(d log d) factor in the approximation in

order to achieve this stronger property.

In a similar vein, our main result for EX-SFE is the following:

Theorem 4.1.3. There is a non-adaptive O(d2 log d)-approximation algorithm for explain-

able stochastic halfspace evaluation.

The non-adaptive list for EX-SFE is constructed in the same manner as for d-SSClass,

but the stopping rule relies on the oracle for verifying witnesses of f ◦ h. As a special case,

we obtain:

Corollary 4.1.4. There is a non-adaptive O(d2 log d)-approximation algorithm for the ex-

plainable stochastic intersection of half-spaces problem.

The stochastic intersection of halfspaces problem (in a slightly different model) was stud-

ied previously by [25], where an O(
√
n log d)-approximation algorithm was obtained assuming

all probabilities pi =
1
2
. The main difference from our model is that [25] do not require a

witness at the end. So their policy can stop if it concludes that there exists a violated

halfspace (even without knowing which one), whereas our policy can only stop after it iden-

tifies a violated halfspace (or determines that all halfspaces are satisfied). We note that

our approximation ratio is independent of the number of variables n and holds for arbitrary

probabilities.

Computational Results. Finally, we evaluate the empirical performance of our algorithm

for score classification. In these experiments, our non-adaptive algorithm performs nearly

as well as the previous-best adaptive algorithms, while being an order of magnitude faster.

82

In fact, on many instances, our algorithm provides an improvement in both the cost as well

as the running time. On most instances, the cost of our algorithm is within 50% of an

information-theoretic lower bound on the optimal value.

4.1.3 Related Work

The special case of SSClass with B = 2 classes is the well-studied stochastic Boolean

function evaluation for linear threshold functions (SBFT). Here, the goal is to identify

whether a single halfspace is satisfied (i.e., the score is above or below a threshold). [40] gave

an elegant 3-approximation algorithm for SBFT using an adaptive dual greedy approach.

Prior to their work, only an O(logW)-approximation was known, based on the more general

stochastic submodular cover problem [67, 56].

The general SSClass problem was introduced by [53], who showed that it can be for-

mulated as an instance of stochastic submodular cover. Then, using general results such

as [67, 56], they obtained an adaptive O(logW)-approximation algorithm. Furthermore,

[53] obtained an adaptive 3(B − 1)-approximation algorithm for SSClass by extending the

approach of [40] for SBFT ; recall that B is the number of classes. [53] also studied the

unweighted special case of SSClass (where all weights ai = 1) and gave a slightly better

(B − 1)-approximation algorithm. For the further special case with unit weights and costs,

they obtained a non-adaptive 4-approximation algorithm. A main open question from this

work was the possibility of a constant approximation for the general SSClass problem. We

answer this in the affirmative. Moreover, our algorithm is non-adaptive: so we also bound

the adaptivity gap.

The stochastic knapsack cover problem (SKC) is closely related to SBFT . Given a set

of items with random rewards and a target k, the goal is to (adaptively) select a subset

of items having total reward at least k. The objective is to minimize the expected cost of

selected items. [40] gave an adaptive 3-approximation algorithm for SKC. Later, [70] gave

a non-adaptive O(1)-approximation algorithm for SKC. In fact, the result in [70] applied to

the more general stochastic k-TSP problem [42]. Our algorithm and analysis use some ideas

from [70, 42]. We use the notion of a “critical scale” from [70] to identify the correct reward

truncation threshold. The approach of using non-completion probabilities in the analysis is

83

similar to [42]. There are also a number of differences: we exploit additional structure in the

(fractional) knapsack problem and obtain a simpler and nearly-linear time algorithm.

More generally, non-adaptive solutions (and adaptivity gaps) have been used in solving

various other stochastic optimization problems such as max-knapsack [38, 23], matching [15,

19], probing [62, 64] and orienteering [59, 61, 16]. Our result shows that this approach is

also useful for SSClass.

SSClass and EX-SFE also fall under the umbrella of designing query strategies for “priced

information”, where one wants to evaluate a function by sequentially querying variables (that

have costs). There are two lines of work here: comparing to an optimal strategy (as in our

model) [73, 7, 53, 25], and comparing to the min-cost solution in hindsight (i.e., competitive

analysis) [29, 33, 34]. We note that the “explainable” requirement in the EX-SFE problem

(that we solve) is similar to the requirement in [73].

Organization. The rest of the paper is organized as follows. We state some preliminaries

necessary for our proofs in §4.2. In §4.3, we formally state our non-adaptive algorithm for

stochastic score classification and prove Theorem 4.1.1. In §4.4 and §4.5, we consider the

d-SSClass and EX-SFE problems. We present our computational results in §4.6.

4.2 Preliminaries

We first state some basic results for the deterministic knapsack problem. In an instance of

the knapsack problem, we are given a set T of items with non-negative costs {ci : i ∈ T}

and rewards {ri : i ∈ T}, and a budget D on the total cost. The goal is to select a subset

of items of total cost at most D that maximizes the total reward. The LP relaxation is the

following:

g(D) = max
{∑

i∈T ri · xi
∣∣ ∑

i∈T ci · xi ≤ D, x ∈ [0, 1]T
}
, ∀D ≥ 0.

The following algorithm AKS solves the fractional knapsack problem and also obtains an

approximate integral solution. Assume that the items are ordered so that r1
c1
≥ r2

c2
≥ · · · .

Let t index the first item (if any) so that
∑t

i=1 ci ≥ D. Let ψ := 1
ct
(D −

∑t−1
i=1 ci) which lies

84

in (0, 1]. Define

xi =


1 if i ≤ t− 1

ψ if i = t

0 if i ≥ t+ 1

.

Return x as the optimal fractional solution and Q = {1, · · · , t} as an integer solution. We

prove the following fact in the appendix for completeness.

Theorem 4.2.1. Consider algorithm AKS on any instance of the knapsack problem with

budget D.

1. ⟨r, x⟩ =
∑t−1

i=1 ri + ψ · rt = g(D) and so x is an optimal LP solution.

2. The derivative g′(D) = rt
ct
.

3. Solution Q has cost c(Q) ≤ D + cmax and reward r(Q) ≥ g(D).

4. g(D) is a concave function of D.

4.3 The Stochastic Score Classification Algorithm

Our non-adaptive algorithm creates two lists L0 and L1 separately. These lists are based

on the R0 and R1 rewards of the variables, where R0(i) = ai(1 −Xi) and R1(i) = aiXi. It

interleaves lists L0 and L1 together (by power-of-2 costs) and then probes the variables in

this non-adaptive order until the class is identified.

4.3.1 The Algorithm

We first explain how to build the lists L0 and L1. We only consider list L0 below (the

algorithm/analysis for L1 are identical). The list building algorithm operates in phases. For

each phase ℓ ≥ 0 it gets a budget of O(2ℓ), and it solves several instances of the deterministic

knapsack problem, where rewards are truncated expectations of R0. We will use the following

truncation values, also called scales.

G :=
{
θℓ : 0 ≤ ℓ ≤ 1 + logθW

}
, where θ > 1 is a constant.

85

For each scale τ ∈ G, we find a deterministic knapsack solution with reward E[min{R0/τ, 1}]

(see Equation 4.1 for the formal definition) and budget ≈ C2ℓ (where C > 1 is a constant).

Including solutions for each scale would lead to an O(logW) loss in the approximation

factor. Instead, as in [70], we identify a “critical scale” and only include solutions based

on the critical scale. To this end, each scale τ is classified as either rich or poor. Roughly,

in a rich scale, the knapsack solution after budget C2ℓ still has large “incremental” reward

(formalized by the derivative of g being at least some constant δ). The critical scale is the

smallest scale κ that is poor, and so represents a transition from rich to poor. For our

analysis, we will choose constant parameters C, δ and θ so that Cδ
θ
> 1. We note however,

that our algorithm achieves a constant approximation ratio for any constant values C > 1,

δ ∈ (0, 1) and θ > 0.

Algorithm 6 PickReps(ℓ, τ, r)

1: let T ⊆ [n] denote the variables with non-zero reward and cost at most 2ℓ

2: run algorithm AKS (Theorem 4.2.1) on the knapsack instance with items T and budget
D = C2ℓ

3: let f = g′(D) be the derivative of the LP value and Q ⊆ T the integral solution from
AKS

4: if f > δ2−ℓ then
5: scale τ is rich
6: else
7: scale τ is poor

8: return Q

Subroutine PickReps (Algorithm 6) computes the knapsack solution for each scale τ ,

and classifies the scale as rich/poor. The subroutine BuildList(R) (Algorithm 7) builds

the list for any set of random rewards {R(i) : i ∈ [n]}. List Lb (for b = 0, 1) is obtained by

running BuildList(Rb). Finally, the non-adaptive algorithm NaCl involves interleaving

the variables in lists L0 and L1; this is described in Algorithm 8. The resulting policy probes

variables in the order given by NaCl until the observed upper and lower bounds on the

score lie within the same class. Note that there are O(log(ncmax)) phases and O(logW)

scales: so the total number of deterministic knapsack instances solved is poly-logarithmic.

Moreover, the knapsack algorithm AKS runs in O(n log n) time. So the overall runtime of

our algorithm is nearly linear.

86

Algorithm 7 BuildList({R(i) : i ∈ [n]})
1: list Π← ∅
2: for phase ℓ = 0, 1, . . . do
3: for each scale τ ∈ G do
4: define truncated rewards

rτi =

{
E
[
min

{
R(i)
τ
, 1
}]

, if i /∈ Π

0, otherwise
(4.1)

5: Sℓ,τ ← PickReps(ℓ, τ, rτ)

6: let κ be the smallest poor scale in G (this is called the critical scale)
7: Πℓ ← Sℓ,κ and Π← Π ◦ Πℓ

8: return list Π

Algorithm 8 NaCl (Non-Adaptive Classifier)

1: list Lb ← BuildList({Rb(i) : i ∈ [n]}) for b = 0, 1
2: let Lℓ

b denote the variables in phase ℓ for list Lb

3: for each phase ℓ, set Sℓ ← Lℓ
0 ∪ Lℓ

1

4: return list S0, S1, · · · , Sℓ · · ·

4.3.2 The Analysis

Lemma 4.3.1. The critical scale κ in Step 6 of Algorithm 7 is always well defined.

Proof. To prove that there is a smallest poor scale, it suffices to show that not all scales can

be rich. We claim that the last scale τ ≥ W cannot be rich. Suppose (for a contradiction)

that scale τ is rich. Then, by concavity of g (see property 4 in Theorem 4.2.1), we have

g(D) ≥ D · g′(D) > D · δ2−ℓ = Cδ ≥ 1. On the other hand, the total deterministic reward

at this scale,
∑n

i=1 r
τ
i ≤ W

τ
≤ 1. Thus, g(D) ≤ 1, a contradiction.

Lemma 4.3.2. The cost c(Sℓ,τ) ≤ (C + 1)2ℓ for any phase ℓ. Hence, the cost incurred in

phase ℓ of NaCl is at most (C + 1)2ℓ+1.

Proof. Consider any call to PickReps in phase ℓ. We have Sℓ,τ = Q where Q is the integer

solution from Theorem 4.2.1. It follows that c(Sℓ,τ) = c(Q) ≤ C2ℓ +maxi∈T ci ≤ (C + 1)2ℓ;

note that we only consider variables of cost at most 2ℓ (see Step 1 of Algorithm 6). Finally,

the variables Sℓ in phase ℓ of NaCl consist of the phase-ℓ variables of both L0 and L1. So

the total cost of these variables is at most (C + 1)2ℓ+1.

87

We now analyze the cost incurred by our non-adaptive strategy NaCl. We denote by OPT

an optimal adaptive solution for SSClass. To analyze the algorithm, we use the following

notation.

• uℓ: probability that NaCl is not complete by end of phase ℓ.

• u∗ℓ : probability that OPT costs at least 2ℓ.

We can assume by scaling that the minimum cost is 1. So u∗0 = 1. For ease of notation, we

use OPT and NA to denote the random cost incurred by OPT and NaCl respectively. We also

divide OPT into phases: phase ℓ corresponds to variables in OPT after which the cumulative

cost is between 2ℓ−1 and 2ℓ. The following lemma forms the crux of the analysis.

Lemma 4.3.3. For any phase ℓ ≥ 1, we have uℓ ≤ q · uℓ−1 + u∗ℓ where q ≤ 0.3.

Before we prove this lemma, we use it to prove Theorem 4.1.1.

Proof of Theorem 4.1.1. This proof is fairly standard, see e.g., [42]. By the description

of the non-adaptive algorithm, the cost until end of phase ℓ (in NaCl) is at most (C +

1)
∑ℓ

j=0 2
j+1 ≤ 4(C +1) · 2ℓ. Let γ = 4(C +1) below. Moreover, NaCl ends in phase ℓ with

probability (uℓ−1 − uℓ). As a consequence of this, we have

E[NA] ≤ γ · (1− u0) +
∑
ℓ≥1

γ · 2ℓ · (uℓ−1 − uℓ) = γ + γ ·
∑
ℓ≥0

2ℓuℓ. (4.2)

Similarly, we can bound the cost of the optimal adaptive algorithm as

E[OPT] ≥
∑
ℓ≥0

2ℓ(u∗ℓ − u∗ℓ+1) ≥ u∗0 +
1

2
·
∑
ℓ≥1

2ℓu∗ℓ = 1 +
1

2
·
∑
ℓ≥1

2ℓu∗ℓ , (4.3)

88

where the final equality uses the fact that u∗0 = 1. Define Γ :=
∑

ℓ≥0 2
ℓuℓ. We have

Γ =
∑
ℓ≥0

2ℓuℓ ≤ u0 + q ·
∑
ℓ≥1

2ℓ · uℓ−1 +
∑
ℓ≥1

2ℓ · u∗ℓ

≤ u0 + q ·
∑
ℓ≥1

2ℓuℓ−1 + 2 · (E[OPT]− 1)

= u0 + 2q ·
(∑

ℓ≥0

2ℓuℓ

)
+ 2 · (E[OPT]− 1)

≤ 2q · Γ + 2E[OPT]− 1,

where the first inequality follows from Lemma 4.3.3, the second inequality from (4.3), and

the last inequality from the fact that u0 ≤ 1. Thus, Γ ≤ 2
1−2q
· E[OPT] − 1. From (4.2), we

conclude E[NA] ≤ 2γ
1−2q
· E[OPT]. Setting C = O(1) and q = 0.3 completes the proof.

4.3.3 Proof of Lemma 4.3.3

Recall that NaCl denotes the non-adaptive algorithm, and NA its random cost. Fix any

phase ℓ ≥ 1, and let σ denote the realization of the variables probed in the first ℓ− 1 phases

of NaCl. We further define the following conditioned on σ:

• uℓ(σ): probability that NaCl is not complete by end of phase ℓ.

• u∗ℓ(σ): probability that OPT costs at least 2ℓ, i.e., OPT is not complete by end of phase

ℓ.

If NaCl does not complete before phase ℓ then uℓ−1(σ) = 1, and we will prove

uℓ(σ) ≤ u∗ℓ(σ) + 0.3. (4.4)

We can complete the proof using this. Note that uℓ−1(σ) is either 0 or 1. If uℓ−1(σ) = 0

then uℓ(σ) = 0 as well. So, Equation (4.4) implies that uℓ(σ) ≤ u∗ℓ(σ) + 0.3uℓ−1(σ) for all σ.

Taking expectation over σ gives Lemma 4.3.3. It remains to prove Equation (4.4).

We denote by R0 and R∗
0 the total R0 reward obtained in the first ℓ phases by NaCl

and OPT respectively. We similarly define R1 and R∗
1. To prove Equation (4.4), we will

89

show that the probabilities (conditioned on σ) P(R∗
0 > R0) and P(R∗

1 > R1) are small.

Intuitively, this implies that with high probability, if OPT finishes in phase ℓ, then so does

NaCl. Formally, we prove the following key lemma.

Lemma 4.3.4 (Key Lemma). For b ∈ {0, 1}, we have P(Rb < R∗
b | σ) ≤ 0.15.

Using these lemmas, we prove Equation (4.4).

Proof of Equation (4.4). Recall that we associate a pair (β0
j , β

1
j) with every class j. If OPT

finishes in phase ℓ, then there exists some j such that R∗
0 ≥ β0

j and R∗
1 ≥ β1

j . Thus,

P(OPT finishes in phase ℓ | σ) = 1− u∗ℓ(σ) = P(∃j : R∗
0 ≥ β0

j and R∗
1 ≥ β1

j | σ).

From Lemma 4.3.4 and union bound, we have P(R0 < R∗
0 or R1 < R∗

1 | σ) ≤ 0.3. Then,

we have

1− uℓ(σ) = P(NA finishes in phase ℓ | σ)

≥ P
(
(OPT finishes in phase ℓ)

∧
R0 ≥ R∗

0

∧
R1 ≥ R∗

1

∣∣σ)
≥ P(OPT finishes in phase ℓ | σ)−P(R0 < R∗

0 or R1 < R∗
1 | σ)

≥ (1− u∗ℓ(σ))− 0.3

Upon rearranging, this gives uℓ(σ) ≤ u∗ℓ(σ) + 0.3 as desired.

4.3.4 Proof of the Key Lemma

We now present the proof of Lemma 4.3.4 with b = 0 (the case b = 1 is identical). Henceforth,

reward will only refer to R0. For ease of notation, let σ also represent the set of variables

probed in the first ℓ − 1 phases. Observe that in phase ℓ of Algorithm 7, the previously

probed variables Π ⊆ σ. (Note that Π only includes variables in L0 whereas σ includes

variables in both L0 and L1.)

Overview of proof. Recall that Sℓ is the set of variables probed by NaCl in phase ℓ. Let

Oℓ be the variables probed by OPT in phase ℓ; so the total cost of Oℓ is at most 2ℓ. Note that

90

Oℓ is a random subset as OPT is adaptive. On the other hand, Sℓ is a deterministic subset as

NaCl is a non-adaptive list. We will show that (conditioned on σ) the probability that Oℓ

has more reward than Sℓ is small. The key idea is to use the critical scale κ (in phase ℓ) to

argue that the following hold with constant probability (1) reward of Oℓ \ (Sℓ∪σ) is at most

κ, and (2) reward of Sℓ \ Oℓ is at least κ. This would imply that with constant probability,

NaCl gets at least as much reward as OPT by the end of phase ℓ.

We note here that the probabilities and expectations in this proof are conditioned on σ.

For ease of notation, we will drop this conditioning henceforth. For any subset S ⊆ [n] of

variables, we use R0(S) :=
∑

i∈S R0(i) to denote the total observed reward in S. We also use

κ− to be the scale immediately preceding the critical scale κ. (If κ = 1 then κ− is undefined,

and all steps involving κ− can be ignored.)

Upper bounding reward of Oℓ \ (Sℓ ∪ σ). Define new rewards:

Ui =

min
{

R0(i)
κ

, 1
}
, if i /∈ σ ∪ Sℓ

0, otherwise

(4.5)

Note that E[Ui] = rκi for all i ̸∈ σ∪Sℓ. Basically, we use the truncated rewards and ignore the

variables probed up to phase ℓ. We now show that any adaptive policy that selects variables

of cost 2ℓ (outside Sℓ ∪ σ) cannot get too much reward.

Lemma 4.3.5. If A is any adaptive policy of selecting variables from [n]\ (Sℓ∪σ) with total

cost ≤ 2ℓ then P [R0(A) < κ] ≥ 1− δ. Hence, P [R0(Oℓ \ (Sℓ ∪ σ)) ≥ κ] ≤ δ.

Proof. Consider Algorithm 6 for scale κ; see also Theorem 4.2.1 for solving the knapsack

problem. Subset T ⊆ [n] \ σ consists of variables i with reward rκi > 0 and cost ci ≤ 2ℓ. The

variables in T are ordered in non-increasing reward-to-cost ratio. SubsetQ = {1, 2, · · · t} ⊆ T

is the minimal prefix of T with total cost ≥ D = C2ℓ. As κ is a poor scale, the derivative

g′(D) =
rκt
ct
≤ δ2−ℓ. We now claim:

Any subset O ⊆ [n] \ (Q ∪ σ) with cost c(O) ≤ 2ℓ has reward rκ(O) ≤ δ. (4.6)

91

Clearly, every variable in O has cost at most 2ℓ: so O ⊆ T \ Q. Using the fact that Q is a

prefix of T in decreasing reward-to-cost order, we have

rκ(O)

c(O)
≤ min

i∈Q

rκi
ci

=
rκt
ct
≤ δ2−ℓ.

Using c(O) ≤ 2ℓ, it now follows that rκ(O) ≤ δ, proving (4.6).

Now consider adaptive policy A. We also use A to denote the (random) subset selected.

Note that A ⊆ [n] \ (Sℓ ∪ σ) ⊆ [n] \ (Q ∪ σ) as Sℓ ⊇ Sℓ,κ = Q. The expected U -reward is:

A∗ = EA,X

[∑
i∈A

Ui

]
= EA,X

[
n∑

i=1

1i∈A · Ui

]
=

n∑
i=1

PA(i ∈ A) · EX [Ui] = EA

[∑
i∈A

EX [Ui]

]
.

The third equality above uses the fact that Ui are independent: so Ui is independent of

i ∈ A. Note that every outcome of A has total cost at most 2ℓ. So, for all outcomes of A,

the total expected U -reward
∑

i∈A EX [Ui] = rκ(A) ≤ δ by (4.6). Combined with the above,

we get A∗ ≤ δ. By Markov’s inequality, P
[∑

i∈A Ui ≥ 1
]
≤ δ, which implies

P

[∑
i∈A

Ui < 1

]
≥ 1− δ. (4.7)

Now, observe that
∑

i∈A Ui < 1 implies
∑

i∈Amin(R0(i), κ) < κ. Hence,
∑

i∈AR0(Xi) < κ.

Combined with (4.7) this proves the first part of the lemma.

For the second part, consider Oℓ \ (Sℓ ∪ σ) as the adaptive policy A. It follows that

P [R0(Oℓ \ (Sℓ ∪ σ)) ≥ κ] ≤ δ,

as claimed.

Lower bounding reward of Sℓ \Oℓ. We first lower bound the expected reward.

Lemma 4.3.6. If κ > 1 then rκ(Sℓ \Oℓ) ≥ δ(C−1)
θ

.

Proof. As κ > 1, the rich scale κ− exists. To reduce notation let r−i = rκ
−

i be the reward at

scale κ−. Recall that the budget D = C2ℓ. Also, let h(D) and g(D) denote the optimal LP

92

values of the knapsack instances considered in scale κ− and κ respectively. For any variable

i, we have r−i ≥ rκi ≥ κ−

κ
· r−i = 1

θ
· r−i . Order the variables T according to κ−, i.e., in

decreasing order of
r−i
ci
. Let t index the variable so that the derivative h′(D) =

r−t
ct
. Note that

we have:
rκi
ci
≥ 1

θ
· r

−
i

ci
≥ 1

θ
· r

−
t

ct
for all 1 ≤ i ≤ t, and

t∑
i=1

ci ≥ D.

This implies that the derivative g′(D) ≥ 1
θ
· r

−
t

ct
= h′(D)

θ
. Combined with the fact that κ−

is rich, we have g′(D) ≥ 1
θ
δ2−ℓ. Now, using the concavity of g (see Theorem 4.2.1) and

D = C2ℓ,

g(D) ≥ g(2ℓ) + g′(D) · (D − 2ℓ) ≥ g(2ℓ) +
1

θ
δ2−ℓ(C − 1)2ℓ = g(2ℓ) +

(C − 1)δ

θ
. (4.8)

Note that the variables in this phase are Sℓ ⊇ Q where Q is obtained from Theorem 4.2.1

(for the knapsack instance at scale κ). Hence, rκ(Sℓ) ≥ rκ(Q) ≥ g(D).

Now consider any outcome of Oℓ (the variables up to cost 2ℓ in OPT). The total cost

c(Oℓ) ≤ 2ℓ. So, Oℓ is always a feasible solution to the knapsack instance with budget 2ℓ.

This implies rκ(Oℓ) ≤ g(2ℓ); recall that g(2ℓ) is the optimal LP value. Therefore,

rκ(Sℓ \Oℓ) ≥ rκ(Sℓ)− rκ(Oℓ) ≥ g(D)− g(2ℓ) ≥ (C − 1)δ

θ
.

The last inequality uses (4.8).

Let µ := (C−1)δ/θ. We will ensure that µ > 1. The following is a Chernoff-type bound.

Lemma 4.3.7. We have P (R0(Sℓ \Oℓ) < κ) ≤ e−(µ−lnµ−1).

Proof. Let Ui := min
{

R0(i)
κ
, 1
}

for i ∈ Sℓ \ Oℓ. Below, we drop the range i ∈ Sℓ \ Oℓ to

reduce clutter. By Lemma 4.3.6,
∑

i E[Ui] = rκ(Sℓ \ Oℓ) ≥ µ. Note that R0(Sℓ \ Oℓ) < κ

implies
∑

i Ui < 1. So it suffices to upper bound P(
∑

i Ui < 1).

Let t > 0 be some parameter. We have:

P(
∑
i

Ui < 1) = P
(
e−t

∑
i Ui > e−t

)
≤ E

[
e−t

∑
i Ui
]
· et = et

∏
i

E
[
e−tUi

]
.

93

By convexity of g(u) = e−tu we have e−tu ≤ 1−(1−e−t)·u for all u ∈ [0, 1]. Taking expectation

over Ui ∈ [0, 1], it follows that E[e−tUi] ≤ 1 − (1 − e−t) · E[Ui] ≤ exp (−(1− e−t) · E[Ui]).

Combined with the above,

P(
∑
i

Ui < 1) ≤ et
∏
i

e−(1−e−t)·E[Ui] = et−(1−e−t)·µ.

Setting t = lnµ > 0, the right-hand-side above is e−µ+1+lnµ which completes the proof.

We are now ready to finish the proof.

Lemma 4.3.8. Consider any parameters δ > 0, C > 1 and θ > 1 with µ = (C − 1)δ/θ > 1.

Then, P (R0(Sℓ \Oℓ) ≥ R0(Oℓ \ (Sℓ ∪ σ))) ≥ 1− δ − e−µ+1+lnµ.

Proof. By Lemma 4.3.5, P [R0(Oℓ \ (Sℓ ∪ σ)) ≥ κ] ≤ δ. By Lemma 4.3.7, P (R0(Sℓ \Oℓ) < κ) ≤

e−(µ−lnµ−1). The lemma now follows by union bound.

Setting δ = 0.1, C = 70 and θ = 1.1, and using Lemma 4.3.8, we get

P [R0(Sℓ ∪ σ) ≥ R0(Oℓ)] = P [R0(Sℓ \Oℓ) ≥ R0(Oℓ \ (Sℓ ∪ σ))] ≥ 0.85.

This completes the proof of Lemma 4.3.4.

4.4 d-Dimensional Stochastic Score Classification

In this section, we consider d-SSClass and prove Theorem 4.1.2. Recall that d-SSClass

is a generalization of SSClass to d “dimensions” where d ≥ 2. An instance of d-SSClass

consists of n binary variables X = X1, . . . , Xn, and a d-dimensional score function r(X) =∑n
i=1 aiXi; ai ∈ Zd

+. We denote the kth component of r(X) by rk(X). The input also

specifies intervals {I(k)j }j for each of these dimensions k ∈ [d], which in turn define score

classification functions {hk}k∈[d], such that hk(X) = j if rk(X) ∈ I(k)j . The goal is to design

a strategy to simultaneously evaluate h1, . . . , hd with minimum expected cost. We let the

pair (α
(k)
j , α

(k)
j+1 − 1) denote the lower and upper bound for interval I

(k)
j . For each dimension

k and class j, define β0
k,j =

∑n
i=1 aik −α

(k)
j+1 +1 and β1

k,j = α
(k)
j . If S ⊆ [n] denotes the set of

94

variables selected at some point then, in order to conclude that the class in dimension k is

j, we need
∑

i∈S aik(1−Xi) ≥ β0
k,j and

∑
i∈S aikXi ≥ β1

k,j.

We now give an overview of our algorithm (see Algorithm 9 for a formal description). It

is easy to state and follows the same overall idea as the algorithm for SSClass (see §4.3 for

details).

1. The algorithm creates two lists Lk,0 and Lk,1 for each dimension k ∈ [d]. These lists

are based on the rewards Rk,0(i) := aik(1−Xi) and Rk,1(i) := aikXi.

2. These 2d lists are interleaved together by power-of-2 costs, and then probed non-

adaptively until the algorithm can determine the correct class with respect to every

dimension.

Algorithm 9 d-NaCl

list Lk,b ← BuildList(Rk,b) for k ∈ [d], b = 0, 1
Let Lℓ

k,b denote the variables in phase ℓ for list Lk,b

For each phase ℓ, set Sℓ ←
⋃

k∈[d](L
ℓ
k,0 ∪ Lℓ

k,1)
return list S0, S1, . . . , Sℓ, . . .

Recall that the list building algorithm (BuildList) uses parameters C, δ and θ. For

d-SSClass, we use δ ≈ 1
d
, C ≈ d log d and θ = 2. This algorithm operates in phases: in

phase ℓ ≥ 0, the algorithm gets a budget ≈ C2ℓ to select variables to add to the list. From

Lemma 4.3.2, the cost of the phase-ℓ variables for any list Lk,b is at most (C + 1)2ℓ. Then,

the cost of the variables in Sℓ is at most 2d · (C + 1)2ℓ. We formalize this in the following

lemma.

Lemma 4.4.1. The cost incurred in phase ℓ of d-NaCl is at most 2d · (C + 1)2ℓ.

4.4.1 The Analysis

The overall analysis is similar to the analysis of NaCl in §4.3. We denote by OPT an opti-

mal adaptive solution for d-SSClass. The analysis relies on comparing the non-completion

probabilities of OPT and d-NaCl. Towards this end, we define:

• uℓ: probability that d-NaCl is not complete by end of phase ℓ.

95

• u∗ℓ : probability that OPT costs at least 2ℓ.

We can assume by scaling that the minimum cost is 1. So u∗0 = 1. For ease of notation,

we use OPT and NA to denote the random cost incurred by OPT and d-NaCl respectively.

We also divide OPT into phases: phase ℓ corresponds to variables in OPT after which the

cumulative cost is between 2ℓ−1 and 2ℓ. We set C = O(d log d), δ = 0.05
d

and θ = 2. Recall

that C, δ and θ are parameters of BuildList (Algorithm 7). The following lemma forms

the crux of the analysis.

Lemma 4.4.2. For any phase ℓ ≥ 1, we have uℓ ≤ q · uℓ−1 + u∗ℓ where q ≤ 0.3

Before we prove this lemma, we use it to prove Theorem 4.1.2.

Proof of Theorem 4.1.2. By the description of the non-adaptive algorithm, the cost until end

of phase ℓ (in d-NaCl) is at most 2d · (C +1)
∑ℓ

j=0 2
j ≤ 4d · (C +1) · 2ℓ. Let γ = 4d(C +1)

below. Following the proof of Theorem 4.1.1, we conclude E[NA] ≤ 2γ
1−2q
·E[OPT]. The proof

follows since C = O(d log d) and q ≤ 0.3.

4.4.2 Proof of Lemma 4.4.2

Recall that d-NaCl denotes the non-adaptive algorithm, and NA its random cost. Fix any

phase ℓ ≥ 1, and let σ denote the realization of the variables probed in the first ℓ− 1 phases

of d-NaCl. We further define the following conditioned on σ:

• uℓ(σ): probability that d-NaCl is not complete by end of phase ℓ.

• u∗ℓ(σ): probability that OPT costs at least 2ℓ, i.e., OPT is not complete by end of phase

ℓ.

If d-NaCl does not complete before phase ℓ then uℓ−1(σ) = 1, and we will prove

uℓ(σ) ≤ u∗ℓ(σ) + 0.3. (4.9)

We can complete the proof using this. Note that uℓ−1(σ) is either 0 or 1. If uℓ−1(σ) = 0

then uℓ(σ) = 0 as well. So, Equation (4.9) implies that uℓ(σ) ≤ u∗ℓ(σ) + 0.3uℓ−1(σ) for all σ.

Taking expectation over σ gives Lemma 4.4.2. It remains to prove Equation (4.9).

96

We denote by Rk,0 and R∗
k,0 the Rk,0 rewards obtained in dimension k in the first ℓ phases

by d-NaCl and OPT respectively. We similarly defineRk,1 andR∗
k,1. To prove Equation (4.9),

we will show that the probabilities (conditioned on σ) P(R∗
k,0 > Rk,0) and P(R∗

k,1 > Rk,1)

over all dimensions k are small. This implies that with good probability, if OPT finishes in

phase ℓ, then so does d-NaCl. Formally,

Lemma 4.4.3 (Key Lemma). For k ∈ [d], and b ∈ {0, 1} we have P(Rk,b < R∗
k,b | σ) ≤ 0.15

d
.

Proof of Equation (4.9). If OPT finishes in phase ℓ, then there exists some jk for every di-

mension k such that R∗
k,0 ≥ β0

k,jk
and R∗

k,1 ≥ β1
k,jk

. Thus,

P(OPT finishes in phase ℓ | σ) = 1−u∗ℓ(σ) = P(∃(jk)k∈[d] : R∗
k,0 ≥ β0

k,jk
and R∗

k,1 ≥ β1
k,jk
∀k | σ).

From Lemma 4.4.3 and union bound, we have P(∃k, b : Rk,b < R∗
k,b | σ) ≤ 0.3. Then, we

have

1− uℓ(σ) = P(NA finishes in phase ℓ | σ) ≥ P
(
(OPT finishes in phase ℓ)

∧
∧k,b(Rk,b ≥ R∗

k,b)
∣∣σ)

≥ P(OPT finishes in phase ℓ | σ)−P(∃k, b : Rk,b < R∗
k,b | σ)

≥ (1− u∗ℓ(σ))− 0.3

Upon rearranging, this gives uℓ(σ) ≤ u∗ℓ(σ) + 0.3 as desired.

We now prove Lemma 4.4.3. Using Lemma 4.3.8,

Lemma 4.4.4. We have P(Rk,b < R∗
k,b | σ) = δ + e−µ+1+lnµ where µ := (C−1)δ

θ
.

We set C = 400d ln d + 1 = O(d log d), δ = 0.05
d
, and θ = 2. Then, we have µ = 10 ln d,

and from Lemma 4.4.4, we have

P(Rk,b < R∗
k,b | σ) = δ + e−µ+1+lnµ =

0.05

d
+ exp (−10 ln d+ 1 + ln 10 ln d)

=
0.05

d
+

1

d10
· exp(1 + ln 10 + ln ln d) ≤ 0.15

d
,

where the last inequality uses d ≥ 2.

97

4.5 Explainable Stochastic Halfspace Evaluation

We consider EX-SFE and prove Theorem 4.1.3 in this section. Recall that an instance of EX-SFE

is similar to that of d-SSClass, but where each dimension k has only two intervals I
(k)
0 , I

(k)
1 ,

specified by a single threshold αk. So, the score classification functions hk : {0, 1}n → {0, 1}

are halfspaces. Additionally, there is an aggregation function f : {0, 1}d → {0, 1}, and we

want to evaluate f(h1(X), . . . , hd(X)). Letting h(X) := (h1(X), h2(X), . . . , hd(X)), we want

to evaluate (f ◦ h)(X).

Moreover, the problem asks for a witness of this evaluation. Recall that a witness is a tuple

(X ′, v(X ′), T), where X ′ ⊆ X is the subset of probed variables, v(X ′) are the realizations for

these variables, and T ⊆ [d] is a subset of the dimensions, satisfying the following conditions:

• The realizations v(X ′) of the probed variables X ′ determine hk(X) for all dimensions

k ∈ T . In other words, we can evaluate all the halfspaces corresponding to subset

T ⊆ [d].

• The values of {hk(X)}k∈T completely determine (f ◦ h)(X); i.e., all realizations of the

remaining variables X \X ′ give the same value for f ◦ h.

The goal is to design a probing strategy of minimum expected cost that determines f ◦ h

along with a witness. Before describing our algorithm, we highlight the role of a witness

in stochastic halfspace evaluation (by comparing to a model without witnesses). We also

discuss the complexity of verifying witnesses for f ◦ h.

Solutions with/without witness. Solutions that are not required to provide a witness

for their evaluation stop when they can infer that the function f ◦ h remains constant irre-

spective of the realizations of the remaining variables. For example, consider the stochastic

intersection of halfspaces problem (as studied in [25]). A feasible solution without a wit-

ness can stop probing when it determines that, with probability one, either halfspace h1

or halfspace h2 is violated (though the solution does not know precisely which halfspace is

violated). Such a “stopping rule” may not be useful in situations where one also wants to

know the identity of a violated halfspace (say, in order to take some corrective action). In

contrast, a solution with a witness (as required in our model) would provide one specific

violated halfspace or conclude that all halfspaces are satisfied.

98

Verifying witnesses. We now address the issue of verifying whether a tuple (X ′, v(X ′), T)

is a witness for f ◦ h. Note that it is easy to check whether v(X ′) determines {hk(X)}k∈T ,

and the challenge in verifying witnesses lies in confirming whether the values of {hk(X)}k∈T
completely determine (f ◦ h)(X). For certain special functions, such as intersection of half-

spaces or p-of-d functions (where we require at least p of the d halfspaces to be satisfied),

this can be done efficiently. However, for a general aggregation function f (without any

structure to exploit), verifying a witness may require the evaluation of f at 2d points (cor-

responding to all outcomes of the halfspaces [d] \ T). While our algorithm works for any

aggregation function f , for a polynomial running time, we need to assume an efficient oracle

O for verifying witnesses.

Our algorithm for EX-SFE is the same as for d-SSClass (Algorithm 9). However, there

is a different stopping condition for probing variables on the non-adaptive list. We use Ex-

NaCl to denote the non-adaptive algorithm for EX-SFE: this continues probing variables

until the observed realizations form a witness for f ◦ h (which is verfied using the oracle O).

The analysis is also essentially the same as in §4.4, except for the difference in the stopping

rule.

Recall that the list building algorithm (BuildList) uses parameters C, δ and θ. As in

d-SSClass, we use δ ≈ 1
d
, C ≈ d log d and θ = 2. Recall that Algorithm 9 operates in phases.

By Lemma 4.4.1, the cost of variables in any phase ℓ is at most 2d · (C + 1)2ℓ.

We denote by OPT an optimal adaptive solution for EX-SFE. As before, we define :

• uℓ: probability that Ex-NaCl is not complete by end of phase ℓ.

• u∗ℓ : probability that OPT costs at least 2ℓ.

We will show that Lemma 4.4.2 continues to hold for Ex-NaCl, which would imply Theo-

rem 4.1.3.

In order to prove Lemma 4.4.2 for Ex-NaCl, fix any phase ℓ ≥ 1 and let σ denote the

realization of the variables probed in the first i−1 phases of Ex-NaCl. Define the following

conditioned on σ:

• uℓ(σ): probability that Ex-NaCl is not complete by end of phase ℓ.

99

• u∗ℓ(σ): probability that OPT costs at least 2ℓ, i.e., OPT is not complete by end of phase

ℓ.

If Ex-NaCl does not complete before phase ℓ then uℓ−1(σ) = 1, and we will prove

uℓ(σ) ≤ u∗ℓ(σ) + 0.3. (4.10)

This would imply Lemma 4.4.2 (as shown in §4.4).

It just remains to prove Equation (4.10). We denote by Rk,0 and R∗
k,0 the Rk,0 rewards

obtained in the first ℓ phases by Ex-NaCl and OPT respectively. We similarly define Rk,1

and R∗
k,1. We note that Lemma 4.4.3 continues to hold here.

Proof of Equation (4.10). If OPT finishes in phase ℓ, then there exists some witness (X⋆, v(X⋆), T ⋆)

such that (i) the realizations v(X⋆) of the variables X⋆ probed by OPT determine hk(X) for

all dimensions k ∈ T ⋆, and (ii) the values {hk(X)}k∈T ⋆ completely determine f ◦ h. We

further partition T ⋆ into T ⋆
0 = {k ∈ T ⋆ : hk(X) = 0} and T ⋆

1 = {k ∈ T ⋆ : hk(X) = 1}. Using

the definition of the thresholds β0
k,j and β

1
k,j (see §4.4), we have:

C1. R∗
k,0 ≥ β0

k,0 and R∗
k,1 ≥ β1

k,0 for each k ∈ T ⋆
0 , and

C2. R∗
k,0 ≥ β0

k,1 and R∗
k,1 ≥ β1

k,1 for each k ∈ T ⋆
1 .

Let T denote the set of 3-way-partitions (T0, T1, [d]\T0\T1) where f is completely determined

by setting the coordinates in T0 (resp. T1) to 0 (resp. 1). Note that for any witness as above,

we have (T ⋆
0 , T

⋆
1 , [d] \ T ⋆

0 \ T ⋆
1) ∈ T . Thus,

1− u∗ℓ(σ) = P(OPT finishes in phase ℓ | σ)

= P(∃(T ⋆
0 , T

⋆
1 , [d] \ T ⋆

0 \ T ⋆
1) ∈ T : conditions C1 and C2 hold | σ).

Note that if OPT finishes in phase ℓ and Rk,b ≥ R∗
k,b for all k and b, then we can conclude

that Ex-NaCl also finishes in phase ℓ (with the same witness as OPT). From Lemma 4.4.3

100

and union bound, we have P(∃k, b : Rk,b < R∗
k,b | σ) ≤ 0.3. Hence,

1− uℓ(σ) = P(Ex-NaCl finishes in phase ℓ | σ) ≥ P
(
(OPT finishes in phase ℓ)

∧
∧k,b(Rk,b ≥ R∗

k,b)
∣∣σ)

≥ P(OPT finishes in phase ℓ | σ)−P(∃k, b : Rk,b < R∗
k,b | σ)

≥ (1− u∗ℓ(σ))− 0.3

Upon rearranging, this gives uℓ(σ) ≤ u∗ℓ(σ) + 0.3 as desired.

4.6 Computational Results

We provide a summary of computational results of our non-adaptive algorithm for the

stochastic score classification problem. We conducted all of our computational experiments

using Python 3.8 with a 2.3 GHz Intel Core i5 processor and 16 GB 2133MHz LPDDR3

memory. We use synthetic data to generate instances of SSClass for our experiments.

Instance Generation. We test our algorithm on synthetic data generated as follows. We

first set n ∈ {100, 200, . . . , 1000}. Given n, we generate n Bernoulli variables, each with

probability chosen uniformly from (0, 1). We set the costs of each variable to be an integer

in [10, 100]. To select cutoffs (when B ̸= 2), we first select B ∈ {5, 10, 15} and then select the

cutoffs (based on the value of B) uniformly at random in the score interval. We provide more

details and plots in the full version of the paper. For each n we generate 10 instances. For

each instance, we sample 50 realizations in order to calculate the average cost and average

runtime.

Algorithms. We compare our non-adaptive SSClass algorithm (Theorem 4.1.1) against a

number of prior algorithms. For SBFT instances, we compare to the adaptive 3-approximation

algorithm from [40]. For unweighted SSClass instances, we compare to the non-adaptive

2(B − 1)-approximation algorithm from [53]. For general SSClass instances, we compare to

the adaptive O(logW)-approximation algorithm from [53]. As a benchmark, we also compare

to a naive non-adaptive algorithm that probes variables in a random order. We also compare

to an information-theoretic lower bound (no adaptive policy can do better than this lower

101

bound). We obtain this lower bound by using an integer linear program to compute the

(offline) optimal probing cost for a given realization (see §4.6.1 for details), and then taking

an average over 50 realizations.

Parameters C, δ, and θ. As noted in §4.3, our algorithm achieves a constant factor

approximation guarantee for any constant C > 1, δ ∈ (0, 1) and θ > 1. For our final

computations, we (arbitrarily) choose values C = 2, δ = 0.01, and θ = 2.

Reported quantities. For every instance, we compute the cost and runtime of each al-

gorithm by taking an average over 50 independent realizations. For the non-adaptive algo-

rithms, note that we only need one probing sequence for each instance. On the other hand,

adaptive algorithms need to find the probing sequence afresh for each realization. As seen

in all the runtime plots, the non-adaptive algorithms are significantly faster.

For each instance type (SBFT, Unweighted SSClass and SSClass), the plots in Figures 4.2-

4.5 show the averages (for both cost and runtime) against the number of variables n. Note

that each point in these plots corresponds to an average over (i) the 10 instances of its type

and (ii) the 50 sampled realizations for each instance.

In Table 4.1, we report the average performance ratio (cost of the algorithm divided

by the information-theoretic lower bound) of the various algorithms. For each instance type

(SBFT, Unweighted SSClass and SSClass), we report the performance ratio averaged over all

values of n (10 choices) and all instances (10 each). Note that values closer to 1 demonstrate

better performance.

Stochastic Boolean Function Evaluation for Linear Threshold Functions. To gen-

erate an instance of SBFT from synthetic data, we set ai ∈ [10] uniformly for all i ∈ [n] and

select a cutoff value uniformly in the score interval. We plot the results in Figure 4.2. Our

cost is about 20% more than that of [40], but our runtime is over 100× faster for large

instances.

Unweighted Stochastic Score Classification. To generate instances of unweighted

SSClass from synthetic data, we set ai = 1 for all i ∈ [n]. We choose B ∈ {5, 10, 15},

102

Instance Type Our Alg. GGHK Alg. Random List

Unweighted SSClass, B = 5 1.50 1.48 1.80

Unweighted SSClass, B = 10 1.25 1.24 1.33

Unweighted SSClass, B = 15 1.13 1.13 1.19

SSClass, B = 5 1.59 1.94 2.43

SSClass, B = 10 1.34 1.45 1.73

SSClass, B = 15 1.22 1.39 1.47

Instance Type Our Alg. DHK Alg. Random List

SBFT 2.18 1.74 5.63

Table 4.1: Average performance ratios relative to the lower bound.

200 400 600 800 1000
Number of variables

0

5000

10000

15000

20000

25000

30000

35000

Av
er

ag
e

co
st

Comparision of average cost for Linear Threshold Functions
Our Alg
DHK Alg
Random List
LB

200 400 600 800 1000
Number of variables

0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e

tim
e

(in
 se

co
nd

s)

Comparision of average time for Linear Threshold Functions
Our Alg
DHK Alg
Random List

Figure 4.2: Results for SBFT (Cost and Runtime)

and then select the cutoffs (based on the value of B) uniformly at random in the score in-

terval. We test our non-adaptive algorithm against the non-adaptive algorithm of [53] and

a random query order. Since, all the algorithms are non-adaptive, there is no difference in

their running time. So, we focus on the average cost comparison among the algorithms.

We observe that the average cost incurred by our non-adaptive algorithm is comparable to

that of the non-adaptive algorithm of [53], and both algorithms outperform a random query

order. We plot the results in Figure 4.3

(Weighted) Stochastic Score Classification. We test on synthetic SSClass instances

with B ∈ {5, 10, 15}. The cutoff values αj are selected uniformly at random in the score

interval. We plot results in Figures 4.4 and 4.5. In all cases, we observe that our non-

adaptive algorithm beats the adaptive algorithm in both query cost and runtime; for e.g.,

when B = 10 and n = 900 our cost is 10% less and our runtime is about 100× faster.

103

200 400 600 800 1000
Number of variables

5000

10000

15000

20000

25000

30000

35000

40000

45000
Av

er
ag

e
co

st
Comparision of average non-adaptive cost when B=5

Our Alg
GGHK Alg
Random List
LB

200 400 600 800 1000
Number of variables

10000

20000

30000

40000

50000

Av
er

ag
e

co
st

Comparision of average non-adaptive cost when B=10
Our Alg
GGHK Alg
Random List
LB

200 400 600 800 1000
Number of variables

10000

20000

30000

40000

50000

Av
er

ag
e

co
st

Comparision of average non-adaptive cost when B=15
Our Alg
GGHK Alg
Random List
LB

Figure 4.3: Results for Unweighted SSClass (Cost)

200 400 600 800 1000
Number of variables

0

20000

40000

60000

80000

Av
er

ag
e

co
st

Comparision of average cost when B=5
Our Alg
GGHK Alg
Random List
LB

200 400 600 800 1000
Number of variables

10000

20000

30000

40000

50000

Av
er

ag
e

co
st

Comparision of average cost when B=10
Our Alg
GGHK Alg
Random List
LB

200 400 600 800 1000
Number of variables

10000

20000

30000

40000

50000

Av
er

ag
e

co
st

Comparision of average cost when B=15
Our Alg
GGHK Alg
Random List
LB

Figure 4.4: Results for SSClass (Cost)

4.6.1 An Information-Theoretic Lower Bound for SSClass

Here, we present an information theoretic lower bound for SSClass. Recall that an instance

of SSClass consists of n independent Bernoulli random variables X = X1, . . . , Xn, where

variable Xi is 1 with probability pi, and its realization can be probed at cost ci ∈ R+.

The score of the outcome X = (X1, . . . , Xn) is r(X) =
∑n

i=1 aiXi where ai ∈ Z+ for all

i ∈ [n]. Additionally, we are given B + 1 thresholds α1, . . . , αB+1 which define intervals

I1, . . . , IB where Ij = {αj, . . . , αj+1−1}. These intervals define a score classification function

h : {0, 1}n → {1, . . . , B}; h(X) = j precisely when r(X) ∈ Ij. The goal is to determine

h(X) at minimum expected cost.

Let X̂ = (X̂1, . . . , X̂n) correspond to a realization of the variables X. Furthermore,

suppose that h(X̂) = j; that is, under realization X̂, the score h(X̂) lies in Ij. Let S ⊆ [n]

correspond to the set of probed variables. Recall that S is a feasible solution for SSClass

under realization X̂ when the following conditions on the R0 and R1 rewards of S hold:∑
i∈S R0(i) =

∑
i∈S ai · (1 − X̂i) ≥ β0

j and
∑

i∈S R1(i) =
∑

i∈S ai · X̂i ≥ β1
j where β0

j =

W −αj+1 +1 and β1
j = αj. Thus, the following integer program computes a lower bound on

104

200 400 600 800 1000
Number of variables

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Av

er
ag

e
tim

e
(in

 se
co

nd
s)

Comparision of average time when B=5
Our Alg
GGHK Alg
Random List

200 400 600 800 1000
Number of variables

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
er

ag
e

tim
e

(in
 se

co
nd

s)

Comparision of average time when B=10
Our Alg
GGHK Alg
Random List

200 400 600 800 1000
Number of variables

0

1

2

3

4

5

Av
er

ag
e

tim
e

(in
 se

co
nd

s)

Comparision of average time when B=15
Our Alg
GGHK Alg
Random List

Figure 4.5: Results for SSClass (Runtime)

the probing cost needed to conclude that h(X̂) = j.

minimize
n∑

i=1

ci · zi

subject to
n∑

i=1

aiX̂i · zi ≥ β1
j (4.11)

n∑
i=1

ai(1− X̂i) · zi ≥ β0
j

zi ∈ {0, 1} i ∈ [n]

where zi, for i ∈ [n], is a binary variable denoting whether Xi is probed. Let L̂B denote

the optimal value of (4.11). Then, LB = E[L̂B] is an information-theoretic lower bound for

the given SSClass instance. We note that (4.11) only provides a lower bound on the probing

cost for realization X̂, and is not a formulation for the given SSClass instance.

4.7 Handling Negative Weights

We now show how our results can be extended to the case where the weights ai may be

positive or negative. For the stochastic score classification problem (SSClass), we provide a

reduction from any instance (with aribtrary weights) to one with positive weights. Let I be

any instance of SSClass, and let P ⊆ [n] (resp. N ⊆ [n]) denote the variables with positive

(resp. negative) weight. Note that we can re-write the score as follows:

r(X) =
n∑

i=1

aiXi =
∑
i∈P

aiXi −
∑
i∈N

|ai|Xi = −
∑
i∈N

|ai| +
∑
i∈P

aiXi +
∑
i∈N

|ai|(1−Xi). (4.12)

105

Consider now a new SSClass instance with the n variables X ′
i = Xi for i ∈ P and X ′

i =

1 − Xi for i ∈ N . The probabilities are p′i = pi for i ∈ P and p′i = 1 − pi for i ∈ N .

The weights are a′i = ai for i ∈ P and a′i = −ai for i ∈ N ; note that all weights are now

positive. The costs remain the same as before. For any realization X, the new score is∑n
i=1 a

′
iX

′
i =

∑
i∈N |ai|+r(X), using (4.12). Finally the class boundaries for the new instance

are α′
j = αj +

∑
i∈N |ai|. It is easy to check that a realization X ′ in the new instance has

class j if and only if the corresponding realization X has class j in the original instance I.

d-Dimensional score classification and explainable stochastic halfspace evalua-

tion. To handle negative weights in d-SSClass (and EX-SFE), we need to apply the above

idea within the algorithm (it is not a black-box reduction to positive weights). At a high level,

we use the fact that the algorithm simply interleaves the separate lists for each dimension.

As above, we introduce a new score for each dimension k that only has positive weights:

r′k(X) =
∑
i∈Pk

aikXi +
∑
i∈Nk

|aik|(1−Xi), where rk(X) = r′k(X)−
∑
i∈Nk

|aik|. (4.13)

Correspondingly, we redefine the two rewards as follows.

Rk,0(i) =

aik(1−Xi) if i ∈ Pk

−aikXi if i ∈ Nk

, Rk,1(i) =

aikXi if i ∈ Pk

−aik(1−Xi) if i ∈ Nk

Note that after probing a subset S ⊆ [n], the total Rk,0 (resp. Rk,1) reward corresponds to

a lower (resp. upper) bound on the score r′k(X). This also implies lower/upper bounds on

the original score rk(X) by a linear shift. The rest of the algorithm remains the same as

Algorithm 9. The analysis also remains the same.

4.8 Proof of Theorem 4.2.1

Recall the setting of Theorem 4.2.1. We are given a set T of items with non-negative costs

{ck} and rewards {rk}, along with a budget D. The goal is to select a subset of items of total

cost at most D that maximizes the total reward. The following is a natural LP relaxation

106

of the knapsack problem where the objective is expressed as a function of the budget D.

g(D) = max

{∑
k∈T

rk · xk
∣∣ ∑

k∈T

ck · xk ≤ D, x ∈ [0, 1]T

}
, ∀D ≥ 0.

The following algorithm AKS solves the fractional knapsack problem and also obtains an

approximate integral solution. Assume that the items are ordered so that r1
c1
≥ r2

c2
≥ · · · .

Let t index the first item (if any) so that
∑t

k=1 ck ≥ D. Let ψ := 1
ct
(D−

∑t−1
k=1 ck) which lies

in (0, 1]. Define

xk =

 1 if k ≤ t− 1

ψ if k = t
.

Return x as the optimal fractional solution and Q = {1, · · · , t} as an integer solution. We

restate Theorem 4.2.1 for completeness.

Theorem 4.8.1. Consider algorithm AKS on any instance of the knapsack problem with

budget D.

1. g(D) =
∑t−1

k=1 rk + ψ · rt = ⟨r, x⟩ and so x is an optimal LP solution.

2. The derivative g′(D) = rt
ct
.

3. Solution Q has cost c(Q) ≤ D + cmax and reward r(Q) ≥ g(D).

4. g(D) is a concave function of D.

Proof. Let x∗ be an optimal LP solution. If x∗ = x, we are done. Suppose that x∗ ̸= x, and

assume without loss of generality that
∑n

k=1 ck ·x∗k = D; else we can obtain a greater reward

by raising x∗. Let j be the smallest index such that x∗j < xj: note that j ≤ t is well defined

by the definition of x. Let h be the largest index with x∗h > xh: note that such an index

must exist as
∑n

k=1 ck · x∗k =
∑n

k=1 ck · xk. Moreover, h ≥ t by definition of our solution x.

As j ̸= h, we have j < h from above. Define a new solution

x′k =


x∗k if k ̸= j, h

x∗j + δ if k = j

x∗h −
cj
ch
δ if k = h

.

107

Above, δ = min{1 − x∗j ,
ch
cj
x∗h} > 0. Intuitively, we are redistributing cost from item h to

j. Note that the cost of the new solution
∑n

k=1 ck · x′k =
∑n

k=1 ck · x∗k = D. Moreover, the

reward
n∑

k=1

rk · x′k =
n∑

k=1

rk · x∗k + δrj − δ
cj
ch
rh ≥

n∑
k=1

rk · x∗k,

where we used
rj
cj
≥ rh

ch
which follows from j < h and the ordering of items. Finally, by choice

of δ, either x′j = 1 or x′h = 0. It follows that x′ is also an optimal LP solution. Repeating

this process, we obtain that x is also an optimal LP solution. This completes the proof of

property (1).

For property (2), observe that

g′(D) = lim
ϵ→0

g(D + ϵ)− g(D)

ϵ
= lim

ϵ→0

g(D) + ϵ · rt
ct
− g(D)

ϵ
=
rt
ct
,

as desired.

Since ψ ∈ (0, 1], we have c(Q) = D+(1−ψ)·ct ≤ D+cmax and r(Q) = (1−ψ)·rt+g(D) ≥

g(D), proving property (3).

Finally, using property (2) and the non-increasing rk
ck

order of the items, it follows that

g(D) is a concave function. This proves property (4).

108

Chapter 5

Introduction to Batched Dueling

Bandits

5.1 Motivation

The K-armed dueling bandits problem has been widely studied in machine learning due to

its applications in search ranking, recommendation systems, sports ranking, etc. [114, 112,

108, 6, 117, 115, 116, 41, 68, 76, 77, 97, 31]. It is a variation of the traditional stochastic

bandit problem in which feedback is obtained in the form of pairwise preferences. This

problem falls under the umbrella of preference learning [109], where the goal is to learn

from relative feedback (in our case, given two alternatives, which of the two is preferred).

Designing learning algorithms for such relative feedback becomes crucial in domains where

qualitative feedback is easily obtained, but real-valued feedback would be arbitrary or not

interpretable. We illustrate this using the web-search ranking application.

Web-search ranking is an example of a complex information retrieval system, where the

goal is to provide a list (usually ranked) of candidate documents to the user of the system

in response to a query [96, 71, 113, 65]. Modern day search engines comprise hundreds of

parameters which are used to output a ranked list in response to a query. However, manually

tuning these parameters can sometimes be infeasible, and online learning frameworks (based

on user feedback) have been invaluable in automatically tuning these parameters [84]. These

methods do not affect user experience, enable the system to continuously learn about user

109

preferences, and thus continuously adapt to user behavior. For example, given two rankings

ℓ1 and ℓ2, they can be interleaved and presented to the user in such a way that clicks

indicate which of the two rankings is more preferable to the user [96]. The availability of

such pairwise comparison data motivates the study of learning algorithms that exploit such

relative feedback.

Previous learning algorithms have focused on a fully adaptive setting; in the web-ranking

application this corresponds to the learning algorithm updating its parameters after each

query. Such updates might be impractical in large systems for the following reasons. If the

parameters are fine-tuned for each user and users make multiple queries in a short time, such

continuous updates require a lot of computational power. Even if users are assigned to a

small number of classes (and parameters are fine-tuned for each user-class), multiple users

from the same class may simultaneously query the system, making it impractical to adapt

after each interaction.

Motivated by this, we introduce the batched K-armed dueling bandits problem (or, batched

dueling bandits), where the learning algorithm is only allowed to adapt a limited number of

times. Specifically, the algorithm uses at most B adaptive rounds and in each round it

commits to a fixed batch of pairwise comparisons. The feedback for a batch is received

simultaneously, and the algorithm chooses the next batch based on this (and previous)

feedback.

5.2 Preliminaries

The K-armed dueling bandits problem [112] is an online optimization problem, where the

goal is to find the best among K bandits B = {b1, . . . , bK} using noisy pairwise comparisons

with low regret. In the traditional multi-armed bandit problem [9], an arm (or equivalently,

bandit) bj can be pulled at each time-step t, which generates a random reward from an

unknown stationary distribution with expected value µj. However, in the K-armed dueling

bandits problem, each iteration comprises a noisy comparison between two bandits (possibly

the same), say (bi, bj). The outcome of the comparison is an independent random variable,

and the probability of picking bi over bj is a constant denoted Pi,j =
1
2
+ ∆i,j where ∆i,j ∈

110

(−1
2
, 1
2
). Here ∆i,j can be thought of as a measure of distinguishability between the two

bandits, and we use bi ≻ bj when ∆i,j > 0. We also refer to ∆i,j as the gap between bi and

bj.

Throughout the paper, we let b1 refer to the best bandit. To further simplify notation,

we define ∆j = ∆1,j; that is, the gap between b1 and bj. We define the regret per time-

step as follows: suppose bandits bt1 and bt2 are chosen in iteration t, then the regret r(t) =

∆t1+∆t2

2
. The cumulative regret up to time T is R(T) =

∑T
t=1 r(t), where T is the time

horizon, and it’s assumed that K ≤ T . The cumulative regret can be equivalently stated

as R(T) = 1
2

∑K
j=1 Tj∆j, where Tj denotes the number comparisons involving bj. We define

∆min = minj:∆j>0∆j to be the smallest non-zero gap of any bandit with b1. We say that

bandit bi is a Condorcet winner if, and only if, Pi,j ≥ 1
2
for all j ∈ B \ {i}. Furthermore,

we say that the probabilistic comparisons exhibit strong stochastic transitivity (SST) if there

exists an ordering, denoted by ⪰, over arms such that for every triple bi ⪰ bj ⪰ bk, we have

∆i,k ≥ max{∆i,j,∆j,k}, and exhibits stochastic triangle inequality (STI) if for every triple

bi ⪰ bj ⪰ bk, ∆i,k ≤ ∆i,j +∆j,k.

5.2.1 Batch Policies

In traditional bandit settings, actions are performed sequentially, utilizing the results of all

prior actions in determining the next action. In the batched setting, the algorithm must

commit to a round (or batch) of actions to be performed in parallel, and can only observe

the results after all actions in the batch have been performed. More formally, in round

r = 1, 2, . . ., the algorithm must decide the comparisons to be performed; afterwards all

outcomes of the comparisons in batch r are received. The algorithm can then, adaptively,

select the next batch of comparisons. However, it can use at most a given number, B, of

batches.

The batch sizes can be chosen non-adaptively (fixed upfront) or adaptively. In an adaptive

policy the batch sizes may even depend on previous observations of the algorithm. An

adaptive policy is more powerful than a non-adaptive policy, and may suffer a smaller regret.

In this paper, we focus on such adaptive policies. Furthermore, note that the total number

of comparisons (across all batches) must sum to T . We assume that the values of T and B

111

are known. Observe that when T = B, we recover the fully sequential setting.

5.3 Overview of Results

We now provide a summary of our results. Our first result is as follows.

Theorem 5.3.1. For any integer B ≥ 1, there is an algorithm for batched dueling bandits

that uses at most B rounds, and if the instance admits a Condorcet winner, the expected

regret is bounded by

E[R(T)] ≤ 3KT 1/B log
(
2wTK2B

) ∑
j:∆j>0

1

∆j

.

The above bound is an instance-dependent bound. To obtain an instance-independent

bound, recall that ∆min = minj:∆j>0∆j. We get that the expected worst-case regret is

bounded by

E[R(T)] ≤ 3K2T 1/B log (2TK2B))

∆min

.

In the sequential setting, [117, 76] achieve a bound of O
(
K log T

∆min

)
+ O

(
K2

∆min

)
on the

expected regret in the worst-case. When B = log(T), our worst-case regret is at most

E[R(T)] ≤ 3K2 log(6TK2B)/∆min = O(K2 log(T)/∆min),

which nearly matches the best-known bound in the sequential setting. Our algorithm in

Theorem 5.3.1 proceeds by performing all pairwise comparisons in an active set of bandits,

and gradually eliminating sub-optimal bandits. This algorithm is straightforward, and its

analysis follows that of [43] for batched stochastic multi-armed bandits (see §5.5). Although

this is a simple result, it is an important step for the next set of results which apply when

the instance satisfies the SST and STI conditions. These conditions impose a structure on

the pairwise preference probabilities, and we are able to exploit this additional structure to

obtain improved bounds. We only state the results here: refer to Chapter 6 for details and

proofs.

112

Theorem 5.3.2. For any integer B ≥ 1, there is an algorithm for batched dueling bandits

that uses at most B + 1 rounds, and if the instance satisfies the SST and STI assumptions,

the expected regret is bounded by

E[R(T)] =
∑

j:∆j>0

O

(√
KT 1/B log(T)

∆j

)
.

Using additional rounds of adaptivity, we get the following improved guarantee.

Theorem 5.3.3. For any integer B ≥ 1, there is an algorithm for batched dueling bandits

that uses at most 2B+1 rounds, and if the instance satisfies the SST and STI assumptions,

the expected worst-case regret is bounded by

E[R(T)] = O

(
KBT 1/B log(T)

∆min

)
.

Thus, in B = log(T) rounds, our expected worst-case regret is bounded by E[R(T)] ≤

O
(

K log2(T)
∆min

)
matching the best known result in the sequential setting up to an additional

logarithmic factor.

We also improve the instance-dependent regret bound in Theorem 5.3.2 by using a few

additional rounds. In particular, using the approach in Theorem 5.3.2 along with recursion,

we obtain:

Theorem 5.3.4. For integers B ≥ 1, m ≥ 0 and parameter η ∈ (0, 1), there is an algorithm

for batched dueling bandits that uses at most B +m rounds, and if the instance satisfies the

SST and STI assumptions, the expected regret is bounded by

E[R(T)] = O
(
m ·Kη +K(1−η)m

)
· T 1/B log(KTB)

∑
j:∆j>0

1

∆j

.

Thus, for any constant η ∈ (0, 1), setting m = 1
η
log
(

1
η

)
, we obtain expected regret

bounded by

E[R(T)] = O
(
Kη T 1/B log(T)

) ∑
j:∆j>0

1

∆j

113

Rounds B +m Regret

B + 2 K0.39 T 1/B log(T) E

B + 3 K0.32 T 1/B log(T) E

B + 5 K0.25 T 1/B log(T) E

B + 10 K0.17 T 1/B log(T) E

Table 5.1: Instance-dependent regret bounds vs. rounds in Theorem 5.3.4; here, E =∑
j:∆j>0

1
∆j

.

in at most B+ 1
η
log
(

1
η

)
rounds. Conversely, given a value of m, we can appropriately select

η to minimize the regret. Table 5.1 lists our instance-dependent regret bounds for some

values of m.

Finally, we complement our upper bound results with a lower bound for the batched

K-armed dueling bandits problem, even under the SST and STI assumptions.

Theorem 5.3.5. Given an integer B ≥ 1, and any algorithm that uses at most B batches,

there exists an instance of the K-armed batched dueling bandit problem that satisfies the SST

and STI condition such that the expected regret

E[R(T)] = Ω

(
KT 1/B

B2∆min

)
.

The proofs of Theorems 5.3.2, 5.3.3, 5.3.4, and 5.3.5 appear in Chapter 6.

Lastly, we are able to obtained improved regret bounds for instances that satisfy the

Condorcet condition using a novel technique that identifies the best arm in a small expected

number of rounds, after which it uses this arm as an “anchor” to eliminate sub-optimal arms

while incurring low regret. Formally, we show the following.

Theorem 5.3.6. For any integer B ≥ 1, there is an algorithm for the K-armed dueling

bandit problem that uses at most B rounds with the following guarantee. For any δ > 0, with

114

probability at least 1− δ − 1
T
, its regret under the Condorcet condition is at most

R(T) ≤ O

(
T 1/B · K

2 log(K)

∆2
min

· log
(
logK

∆min

))
+O

(
T 2/B ·K2 ·

√
1

δ

)
+
∑
j ̸=a∗

O

(
T 1/B · log(KT)

∆j

)
.

We can convert the preceding high-probability bound to obtain an upper bound on ex-

pected regret as follows.

Theorem 5.3.7. For any integer B ≥ 1, there is an algorithm for the K-armed dueling

bandit problem that uses at most B rounds, with expected regret under the Condorcet condition

at most

E[R(T)] = O

(
T 1/B · K

2 log(K)

∆2
min

· log
(
logK

∆min

))
+O

(
T 2/B ·K2

)
+
∑
j ̸=a∗

O

(
T 1/B · log(KT)

∆j

)
.

When the number of rounds B = log(T), we obtain a batched algorithm that achieves

the asymptotic optimality (in terms of T), even for sequential algorithms. We formalize this

observation in the following corollary.

Corollary 5.3.8. There is an algorithm for the K-armed dueling bandit problem that uses

at most log(T) rounds, with expected regret under the Condorcet condition at most

E[R(T)] = O

(
K2 log(K)

∆2
min

· log
(
logK

∆min

))
+
∑
j ̸=a∗

O

(
log(KT)

∆j

)
.

As a consequence of Theorem 5.3.5, it follows that no algorithm can achieve O(K
∆min

·

poly(log T)) regret using o(log T
log log T

) rounds. So, the O(log T) rounds required to achieve

asymptotic optimality in Corollary 5.3.8 is nearly the best possible. The proofs of Theo-

rems 5.3.6 and 5.3.7 appear in Chapter 7.

5.4 Related Work

The K-armed dueling bandit problem has been widely studied in recent years (we refer the

reader to [105] for a comprehensive survey). Here, we survey the works that are most closely

related to our setting. This problem was first studied in [112] under the SST and STI setting.

115

The authors obtained a worst-case regret upper bound of Õ(K log T/∆min) and provided a

matching lower bound. [114] considered a slightly more general version of the SST and STI

setting and achieved an instance-wise optimal regret upper bound of
∑

j:∆j>0O (log(T)/∆j).

Since, the SST+STI condition imposes a total order over the arms and might not hold for

real-world datasets, [108] initiated the study of dueling bandits under the Condorcet winner

condition. [108] proved a O(K2 log T/∆min) regret upper bound under the Condorcet con-

dition, which was improved by [117] to O(K2/∆2
min) +

∑
j:∆j>0O(log T/∆

2
j). [76] achieved a

similar but tighter KL divergence-based bound, which is shown to be asymptotically instance-

wise optimal (even in terms constant factors). There are also other works that improve the

dependence on K in the upper bound, but suffer a worse dependence on ∆j’s [116]. This

problem has also been studied under other noise models such as utility based models [6]

and other notions of regret [31]. Alternate notions of winners such as Borda winner [68],

Copeland winner [115, 77, 111], and von Neumann winner [41] have also been considered.

There are also several works on extensions of dueling bandits that allow multiple arms to be

compared at once [104, 5, 100].

All of the aforementioned works on the dueling bandits problem are limited to the se-

quential setting. To the best of our knowledge, ours is the first work that considers the

batched setting for dueling bandits. However, batched processing for the stochastic multi-

armed bandit problem has been investigated in the past few years. A special case when

there are two bandits was studied by [93]. They obtain a worst-case regret bound of

O

((
T

log(T)

)1/B
log(T)
∆min

)
. [48] studied the general problem and obtained a worst-case regret

bound of O
(

K log(K)T 1/B log(T)
∆min

)
, which was later improved by [43] to O

(
KT 1/B log(T)

∆min

)
. Fur-

thermore, [43] obtained an instance-dependent regret bound of
∑

j:∆j>0 T
1/BO

(
log(T)
∆j

)
. Our

results for batched dueling bandits are of a similar flavor; that is, we get a similar dependence

on T and B. [43] also give batched algorithms for stochastic linear bandits and adversarial

multi-armed bandits.

Recently, [99] designed a fully adaptive algorithm achieving an optimal regret of
∑

j:∆j>0
O(log T)

∆j

for dueling bandits under the Condorcet setting. This algorithm is based on the idea of duel-

ing two classical bandit (MAB) algorithms against each other in a repeated zero-sum game

with carefully designed rewards. The reward for one algorithm depends on the actions of

116

the other; hence, these algorithms need to achieve best-of-both-worlds guarantee for both

stochastic and adversarial settings. However, the approach of [99] is not directly applicable

to the batched setting that we consider. This is because, as shown by [43], any B-round

algorithm for batched MAB in the adversarial setting has regret Ω(T/B).

Adaptivity and batch processing has been recently studied for stochastic submodular

cover [56, 2, 44, 51], and for various stochastic “maximization” problems such as knapsack [38,

23], matching [15, 19], probing [62] and orienteering [59, 61, 16]. Recently, there have

also been several results examining the role of adaptivity in (deterministic) submodular

optimization; e.g. [13, 11, 14, 12, 30].

5.5 All Pairs Comparison Algorithm

In this section, we present a first algorithm, namely PCOMP, for the K-armed batched dueling

bandits problem. Recall that given a set of K bandits (or arms) B = {b1, . . . , bK}, and a

positive integer B ≤ T , we wish to find a sequence of B batches of noisy comparisons with

low regret. Given bandits bi and bj, Pi,j =
1
2
+∆i,j denotes the probability of bi winning over

bj. Our pairwise comparison algorithm, PCOMP, proceeds by performing all-pairs comparisons

amongst bandits in an active set, and gradually eliminating sub-optimal bandits.

Before describing our algorithm in detail we will set up some basic notation. We will

denote by A the set of active arms, i.e. arms that have not been eliminated. We will use

index r for rounds or batches. At the end of each round r, our algorithms compute a fresh

estimate of the pairwise probabilities based on the feedback from comparisons in round r as:

P̂i,j =
#bi wins against bj in round r

#comparisons of bi and bj in round r
. (5.1)

If a pair (bi, bj) is compared in round r, it is compared cr = ⌊qr⌋ times. In round r, the

parameter γr =
√
log
(
1
δ

)
/2cr is used to eliminate bandits from the active set (the specific

elimination criteria depends on the algorithm).

117

Algorithm 10 PCOMP(All Pairs Comparisons Algorithm)

1: Input: Bandits B, time-horizon T , rounds B, comparison parameters q and τ
2: K ← |B|, δ ← 1

2TK2B
, active bandits A ← B, cr ← ⌊qr+τ−1⌋, γr ←

√
log(1/δ)/2cr, r ← 1

3: while number of comparisons ≤ T do
4: for all (bi, bj) ∈ A2, perform cr comparisons and compute P̂i,j using Eq(5.1).

5: if ∃ bi, bj such that P̂i,j >
1
2
+ γr then

6: A ← A \ {bj} ▷ delete bj from A
7: r ← r + 1

5.5.1 The Algorithm

We are now ready to describe the PCOMP algorithm. This algorithm takes as input the set

of bandits B, time-horizon T , rounds B and comparison parameters q and τ . We will set

the parameters q = T 1/B and τ = 1, unless otherwise specified.1 In round r ∈ [B], this

algorithm compares each pair (bi, bj) ∈ A2 for cr times. It then computes fresh estimates of

the pairwise probabilities P̂i,j for all (bi, bj) ∈ A2. If, for some bandit bj, there exists bandit

bi such that P̂i,j >
1
2
+ γr, then bandit bj is eliminated from A. We provide the pseudo-code

in Algorithm 10.

The following theorem (proved in §5.5.2) describes the regret bound obtained by PCOMP

under the Condorcet assumption, and formalizes Theorem 5.3.1.

Theorem 5.5.1. Given any set B of K bandits, time-horizon T , rounds B, parameters

q = T 1/B and τ = 1, the expected regret of PCOMP for the batched K-armed dueling bandits

problem under the Condorcet assumption is at most

E[R(T)] ≤ 3KT 1/B log
(
2TK2B

) ∑
j:∆j>0

1

∆j

.

Setting ∆min := minj:∆j>0∆j, we get

E[R(T)] ≤ 3K2T 1/B log (2TK2B)

∆min

.

1We allow general parameters q and τ in order to allow PCOMP to be used in conjunction with other
policies.

118

5.5.2 Regret Analysis

We present the regret analysis for PCOMP in this section. We first prove the following lemma

which denotes a “good” event under which we will analyze the regret of the algorithm.

Lemma 5.5.2. For any batch r ∈ [B], and for any pair bi, bj that are compared cr times, we

have

P
(
|Pi,j − P̂i,j| > γr

)
≤ 2δ,

where γr =
√

log(1
δ
)/2cr.

Proof. Note that E[P̂i,j] = Pi,j, and applying Hoeffding’s inequality gives

P
(
|P̂i,j − Pi,j| > γr

)
≤ 2 exp

(
−2cr · γ2r

)
= 2δ.

We analyze the regret of our algorithm under a good event, G. We show that the G

occurs with high probability; in the event that G does not occur (denoted G), we incur a

regret of T . Towards defining G, we say that an estimate P̂i,j at the end of batch r is correct

if |P̂i,j − Pi,j| ≤ γr. We say that G occurs if every estimate in every batch is correct.

Lemma 5.5.3. The probability that every estimate in every batch of PCOMP is correct is at

least 1− 1/T .

Proof. Applying Lemma 5.5.2 and taking a union bound over all pairs and batches, we get

that the probability that some estimate is incorrect is at most K2 × B × 2δ = 1
T

where

δ = 1/2K2BT . Thus, P(G) ≤ 1
T
.

Using Lemma 5.5.3, the expected regret (of any algorithm) can be written as follows:

E[R(T)] = E[R(T) | G] ·P(G) + E[R(T) | G] ·P(G)

≤ E[R(T) | G] + T · 1
T

= E[R(T) | G] + 1 (5.2)

119

Proof of Theorem 5.5.1. First, recall that in each batch of PCOMP every pair of active arms

is compared cr times where cr = ⌊qr⌋ with q = T 1/B. Since, qB = T , PCOMP uses at most B

batches.

Following Lemma 5.5.3 and (5.2), we only need to bound E[R(T) | G]. Given G, whenever

Pi,j >
1
2
+ 2γr (that is ∆i,j > 2γr), we have P̂i,j >

1
2
+ γr: so bandit bj will be eliminated by

bi. Furthermore, given bandits bi and bj such that bi ⪰ bj, bi will never be eliminated by bj

under event G. This implies that b1 is never eliminated: this is crucial as we use b1 as an

anchor to eliminate sub-optimal bandits. Recall that the regret can be written as follows:

R(T) =
1

2

K∑
j=1

Tj∆1,j

where Tj is the number of comparisons that bj partakes in. We proceed by bounding Tj. To-

wards this end, let T1,j be a random variable denoting the number of comparisons performed

between b1 and bj. As b1 is never eliminated, Tj ≤ K · T1,j. Let r denote the last round

such that bj survives round r, i.e., bj ∈ A at the end of round r. We can then conclude that

∆j := ∆1,j ≤ 2γr (else b1 would eliminate bj in round r). We get

∆j ≤ 2 ·

√
log(1

δ
)

2cr

which on squaring and re-arranging gives:

cr ≤
2 log

(
1
δ

)
∆2

j

(5.3)

Now, note that bj could have been played for at most one more round. Thus, we have

T1,j =
r+1∑
τ=1

cτ ≤ q
r∑

τ=0

cτ ≤ 2q · cr

where the final inequality follows from summing up
∑r−1

τ=1 cτ , and using B ≤ log(T). Then,

120

we have Tj ≤ 2Kq · cr. Using 5.3, and plugging in q = T 1/B and δ = 1/6TK2B we have

E[R(T) | G] ≤ 1

2

∑
j

(
2KT 1/B · 2 log (6TK

2B)

∆2
j

)
·∆j

=
∑

j:∆j>0

KT 1/B log (6TK2B)

∆j

= 2KT 1/B log
(
6TK2B

) ∑
j:∆j>0

1

∆j

.

Note that when ∆j = 0 for bj ∈ B, we exclude the corresponding term in the regret bound.

Combining this with (5.2) gives the first bound of Theorem 5.5.1. Plugging in ∆min =

minj:∆j>0∆j completes the proof.

121

Chapter 6

Algorithms using Seeded Comparisons

for Batched Dueling Bandits

6.1 Overview

In this chapter we provide detailed proofs, and formalize Theorems 5.3.2,5.3.3, 5.3.4 and

5.3.5. The algorithms for the first three theorems are based on a seeded comparisons idea, and

provide improved regret bounds when the dueling bandit instance satisfies strong stochastic

transitivity and stochastic triangle inequality. The lower bound instance of Theorem 5.3.5

applies even under the SST and STI assumptions.

6.1.1 Results and Techniques

We restate the main theorems proved in this chapter, and provide the high-level ideas used

in proving them.

Theorem 5.3.2. For any integer B ≥ 1, there is an algorithm for batched dueling bandits

that uses at most B + 1 rounds, and if the instance satisfies the SST and STI assumptions,

the expected regret is bounded by

E[R(T)] =
∑

j:∆j>0

O

(√
KT 1/B log(T)

∆j

)
.

122

The idea behind this algorithm is to first sample a “sufficiently small” seed set, and then

to perform all pairwise comparisons between the seed set and the active set to eliminate

sub-optimal arms. The idea is to exploit the structure of pairwise probabilities so that we

do not need to perform all pairwise comparisons. Additionally, if the seed set is found to

be sub-optimal, we can construct a much smaller active set; thus allowing us to switch to

the pairwise comparison policy. In the sequential setting, [112] obtain instance-dependent

regret bounded by
∑

j:∆j>0O
(

log(T)
∆j

)
. Our result nearly matches this sequential bound

(with an extra multiplicative factor of
√
K) when B = log(T). Observe that the worst-

case regret of [114] in the sequential setting is bounded by O
(

K log(T)
∆min

)
, while we obtain

E[R(T)] ≤ O
(

K
√
KT 1/B log(T)

∆min

)
.

Next, we improve the worst-case regret by reducing the comparisons performed as follows.

We first perform pairwise comparisons amongst bandits in the seed set, and pick a candidate

bandit. This candidate bandit is used to eliminate sub-optimal arms from the active set.

Although selecting a candidate bandit each time requires additional adaptivity, we get a

better bound on the worst-case expected regret by exploiting the fact that there can be at

most B candidate bandits.

Theorem 5.3.3. For any integer B ≥ 1, there is an algorithm for batched dueling bandits

that uses at most 2B+1 rounds, and if the instance satisfies the SST and STI assumptions,

the expected worst-case regret is bounded by

E[R(T)] = O

(
KBT 1/B log(T)

∆min

)
.

Thus, in B = log(T) rounds, our expected worst-case regret is bounded by E[R(T)] ≤

O
(

K log2(T)
∆min

)
matching the best known result in the sequential setting up to an additional

logarithmic factor.

We also improve the instance-dependent regret bound in Theorem 5.3.2 by using a few

additional rounds. In particular, using the approach in Theorem 5.3.2 along with recursion,

we obtain:

Theorem 5.3.4. For integers B ≥ 1, m ≥ 0 and parameter η ∈ (0, 1), there is an algorithm

for batched dueling bandits that uses at most B +m rounds, and if the instance satisfies the

123

SST and STI assumptions, the expected regret is bounded by

E[R(T)] = O
(
m ·Kη +K(1−η)m

)
· T 1/B log(KTB)

∑
j:∆j>0

1

∆j

.

Thus, for any constant η ∈ (0, 1), setting m = 1
η
log
(

1
η

)
, we obtain expected regret

bounded by

E[R(T)] = O
(
Kη T 1/B log(T)

) ∑
j:∆j>0

1

∆j

in at most B+ 1
η
log
(

1
η

)
rounds. Conversely, given a value of m, we can appropriately select

η to minimize the regret.

The idea behind this algorithm is to use a seed-set of size Kη, and to recurse when the

seed-set is found to be sub-optimal. We bound the number of recursive calls by m (which

ensures that there are at most B + m rounds) and show that the active set shrinks by a

shrinks by a power of (1− η) in each recursive call (which is used to bound regret).

Finally, we complement our upper bound results with a lower bound for the batched

K-armed dueling bandits problem, even under the SST and STI assumptions.

Theorem 5.3.5. Given an integer B ≥ 1, and any algorithm that uses at most B batches,

there exists an instance of the K-armed batched dueling bandit problem that satisfies the SST

and STI condition such that the expected regret

E[R(T)] = Ω

(
KT 1/B

B2∆min

)
.

The above lower bound shows that the T 1/B dependence in our upper bounds is necessary.

Note that the above lower bound also applies to the more general Condorcet winner setting.

The proof is similar to the lower bound proof in [48] for batched multi-armed bandits. The

main novelty in our proof is the design of a family of hard instances with different values of

∆min’s that satisfy the SST and STI conditions.

Organization of the Chapter. The rest of the chapter is organized as follows. In §6.2

we provide details about two seeded comparisons algorithms that proves Theorems 5.3.2

124

and 5.3.3. In §6.3, we extend these ideas to prove a recursive algorithm that achieves the

guarantees of Theorem 5.3.4. In §6.4, we provide computational results, and we conclude in

§6.5 with a lower bound, proving Theorem 5.3.5.

6.2 The Algorithms

In this section, we present two algorithms, namely SCOMP and SCOMP2, for the K-armed

batched dueling bandits problem. Recall that given a set of K bandits (or arms) B =

{b1, . . . , bK}, and a positive integer B ≤ T , we wish to find a sequence of B batches of noisy

comparisons with low regret. Given bandits bi and bj, Pi,j =
1
2
+∆i,j denotes the probability

of bi winning over bj. At a high0-level, both SCOMP and SCOMP2, first select a (sufficiently

small) seed set S ⊆ B, and eliminate bandits in an active set by successively comparing them

to (all or few) bandits in S. If the seed set S is itself found to be sub-optimal in a subsequent

round, then these algorithms call the all-pairs algorithm PCOMP(see §5.5 for details) over the

remaining active arms.

Before describing our algorithms, we recall some relevant notation. We denote by A the

set of active arms, i.e. arms that have not been eliminated. We use index r for rounds or

batches. At the end of each round r, our algorithms compute a fresh estimate of the pairwise

probabilities based on the feedback from comparisons in round r as:

P̂i,j =
#bi wins against bj in round r

#comparisons of bi and bj in round r
. (6.1)

If a pair (bi, bj) is compared in round r, it is compared cr = ⌊qr⌋ times. In round r, the

parameter γr =
√
log
(
1
δ

)
/2cr is used to eliminate bandits from the active set (the specific

elimination criteria depends on the algorithm).

6.2.1 Seeded Comparisons Algorithms

In this section, we present two algorithms for the batched dueling bandits problem, namely

SCOMP and SCOMP2. The algorithms work in two phases :

• In the first phase, the algorithms sample a seed set S by including each bandit from B

125

independently with probability 1/
√
K. This seed set is used to eliminate bandits from

the active set A.

• Under certain switching criteria, the algorithms enter the second phase which involves

running algorithm PCOMP on some of the remaining bandits.

The algorithms differ in how the candidate set is used to eliminate active bandits in the first

phase.

In SCOMP, all pairwise comparisons between S (seed set) and A (active bandits) are

performed. Specifically, in round r, every active bandit is compared with every bandit in S

for cr times. If, for some bandit bj, there exists bandit bi such that P̂i,j >
1
2
+3γr, then bandit

bj is eliminated (from A as well as S); note that the elimination criteria here is stricter than

in PCOMP. If, in some round r, there exists bandit bj such that bj eliminates all bandits

bi ∈ S, then the algorithm constructs a set A∗ = {bj ∈ A | P̂j,i >
1
2
+ γr for all bi ∈ S}, and

invokes PCOMP on bandits A∗ with starting batch r. This marks the beginning of the second

phase, which continues until time T . We provide the pseudocode in Algorithm 11.

Algorithm 11 SCOMP(Seeded Comparisons Algorithm)

1: Input: Bandits B, time-horizon T , rounds B
2: q ← T 1/B, δ ← 1

6TK2B
, active bandits A ← B, cr ← ⌊qr⌋, γr ←

√
log(1/δ)/2cr, r ← 1

3: S ← add elements from B into S w.p. 1/
√
K

4: while number of comparisons ≤ T do ▷ phase I
5: for all (bi, bj) ∈ S ×A, compare bi and bj for cr times and compute P̂i,j

6: if ∃bi ∈ S, bj ∈ A, P̂i,j >
1
2
+ 3γr then ▷ elimination

7: A ← A \ {bj}, S ← S \ {bj}
8: if ∃bj such that P̂j,i >

1
2
+ 3γr for all bi ∈ S then ▷ switching

9: construct set A∗ = {bj ∈ A | P̂j,i >
1
2
+ γr for all bi ∈ S}

10: r∗ ← r, T ∗ ← # comparisons until round r∗, break

11: r ← r + 1

12: run PCOMP(A∗, T − T ∗, q, r∗) ▷ phase II

We obtain the following result (proved in §6.2.2) when the given instance satisfies SST

and STI. This formalizes Theorem 5.3.2.

Theorem 6.2.1. Given any set B of K bandits, time-horizon T , parameter B, SCOMP uses

126

at most B + 1 batches, and has expected regret bounded by

E[R(T)] =
∑

j:∆j>0

O

(√
KT 1/B log(T)

∆j

)

under the strong stochastic transitivity and stochastic triangle inequality assumptions.

Observe that this gives a worst-case regret bound of O
(

K
√
KT 1/B log(T)

∆min

)
for SCOMP under

SST and STI. We can improve this by sampling each bandit from B independently into the

seed set with probability K−2/3: this gives a worst-case regret bound of O
(

K4/3T 1/B log(T)
∆min

)
in

B + 1 rounds. To further improve this worst-case bound, we add more rounds of adaptivity

in SCOMP to obtain SCOMP2. Specifically, each round r in the first phase is divided into two

rounds of adaptivity.

• In the first round r(1), pairwise comparisons among the bandits in S are performed, and

an undefeated bi∗r is selected as a candidate. We say that bi defeats bj if P̂i,j >
1
2
+ γr

• In the second round r(2), the candidate bi∗r is used to eliminate active bandits. A bandit

bj is eliminated if P̂i∗r ,j >
1
2
+ 5γr.

The switching criterion in SCOMP2 is different from that of SCOMP. Here, if in some round

r, there is a bandit bj such that bj eliminates bi∗r , then the algorithm constructs set A∗ =

{bj ∈ A | P̂j,i∗r >
1
2
+ 3γr}, and invokes PCOMP on bandits A∗ with starting batch r. See

Algorithm 12 for a formal description.

In §6.2.2, we prove that SCOMP2 obtains an improved worst-case regret bound (at the cost

of additional adaptivity) over SCOMP when the given instance satisfies SST and STI, thus

proving Theorem 5.3.3 (formalized in Theorem 6.2.2).

Theorem 6.2.2. Given any set B of K bandits, time-horizon T and parameter B, SCOMP2

uses at most 2B + 1 batches, and has worst-case expected regret bounded by

E[R(T)] = O

(
KBT 1/B log(T)

∆min

)

under strong stochastic transitivity and stochastic triangle inequality, where ∆min := minj:∆j>0∆j.

127

Algorithm 12 SCOMP2 (Seeded Comparisons Algorithm 2)

1: Input: Bandits B, time-horizon T , rounds B
2: q ← T 1/B, δ ← 1

6TK2B
, active bandits A ← B, cr ← ⌊qr⌋, γr ←

√
log(1/δ)/2cr, r ← 1

3: S ← add elements from B into S with probability 1/
√
K

4: while number of comparisons ≤ T do ▷ phase I
5: r(1): compare all pairs in S for cr times and compute P̂i,j.

6: candidate bi∗r ← any bandit i ∈ S with maxj∈S P̂j,i ≤ 1
2
+ γr. ▷ extra batch

7: r(2): for all bj ∈ A, compare bi∗r and bj for cr times and compute P̂i∗r ,j.

8: if ∃bj ∈ A, P̂i∗r ,j >
1
2
+ 5γr then ▷ elimination

9: A ← A \ {bj}, S ← S \ {bj}
10: if ∃bj such that P̂j,i∗r >

1
2
+ 5γr then ▷ switching

11: construct set A∗ = {bj ∈ A | P̂j,i∗r >
1
2
+ 3γr}

12: r∗ ← r, T ∗ ← # comparisons until round r∗, break

13: r ← r + 1

14: run PCOMP(A∗, T − T ∗, q, r∗) ▷ phase II

6.2.2 Regret Analysis

We present the regret analysis for the algorithms described in §6.2 in this section. We first

prove the following lemma which will be used in the analysis of both algorithms.

Lemma 6.2.3. For any batch r ∈ [B], and for any pair bi, bj that are compared cr times, we

have

P
(
|Pi,j − P̂i,j| > γr

)
≤ 2δ,

where γr =
√

log(1
δ
)/2cr.

Proof. Note that E[P̂i,j] = Pi,j, and applying Hoeffding’s inequality gives

P
(
|P̂i,j − Pi,j| > γr

)
≤ 2 exp

(
−2cr · γ2r

)
= 2δ.

We analyze the regret of our algorithms under a good event, G. We show that the G

occurs with high probability; in the event that G does not occur (denoted G), we incur a

regret of T . Towards defining G, we say that an estimate P̂i,j at the end of batch r is correct

if |P̂i,j − Pi,j| ≤ γr. We say that G occurs if every estimate in every batch is correct.

128

Lemma 6.2.4. The probability that every estimate in every batch of SCOMP and SCOMP2 is

correct is at least 1− 1/T .

Proof. Applying Lemma 6.2.3 and taking a union bound over all pairs and batches (note

SCOMP2 has at most 2B + 1 ≤ 3B batches), we get that the probability that some estimate

is incorrect is at most K2 × 3B × 2δ = 1
T
where δ = 1/6K2BT . Thus, P(G) ≤ 1

T
.

Using Lemma 6.2.4, the expected regret (of any algorithm) can be written as follows:

E[R(T)] = E[R(T) | G] ·P(G) + E[R(T) | G] ·P(G)

≤ E[R(T) | G] + T · 1
T

= E[R(T) | G] + 1 (6.2)

6.2.3 Proofs of Theorems 6.2.1 and 6.2.2

In this section, we provide the proofs of Theorem 6.2.1 and Theorem 6.2.2. Henceforth, we

assume the SST and STI properties. We need the following definition. For a bandit bj,

let Ej = {bi ∈ B : ∆i,j > 0}; that is, the set of bandits superior to bandit bj. We define

rank(bj) = |Ej|. 1

As before, we analyze the regret of SCOMP and SCOMP2 under event G. By Lemma 6.2.4

and (6.2), we only need to bound the expected regret under G; that is, we need to bound

E[R(T) | G]. Conditioned on event G, the following Lemmas 6.2.5,6.2.6 and 6.2.7 hold for

both SCOMP and SCOMP2.

Lemma 6.2.5. The best bandit b1 is never deleted from A in the elimination step of phase

I.

Proof. In SCOMP, bi deletes bj in batch r if P̂i,j >
1
2
+ 3γr, and in SCOMP2 if P̂i,j >

1
2
+ 5γr. If

b1 is deleted due to some bandit bj, then by applying Lemma 6.2.3 (in either case), we get

Pj,1 >
1
2
+ 2γr, a contradiction.

Lemma 6.2.6. When the algorithm switches to PCOMP on set A∗, we have b1 ∈ A∗ and

|A∗| ≤ rank(bi∗S) where bi∗S is the best bandit in S.
1 Note that SST and STI imposes a linear ordering on the bandits. So, we can assume b1 ⪰ b2 ⪰ · · · ⪰ bK .

Thus, rank(bj) < j; that is, it is at most the number of bandits strictly preferred over bj .

129

Proof. We first consider algorithm SCOMP. Here, the switching occurs when, in some batch

r, there exists bj∗ ∈ A such that P̂j∗,i >
1
2
+ 3γr for all bi ∈ S, Moreover, A∗ = {bj ∈

A | P̂j,i >
1
2
+ γr for all bi ∈ S}. Consider any bi ∈ S. Given G, P̂j∗,i >

1
2
+ 3γr implies

that Pj∗,i >
1
2
+ 2γr. By SST, P1,i ≥ Pj∗,i, and again using event G, P̂1,i >

1
2
+ γr. Thus,

b1 ∈ A∗. We now bound |A∗|. Let bi∗S be the best bandit in S, i.e., the bandit of smallest

rank. Consider any bandit bj ∈ A∗. We have P̂j,i∗S
> 1

2
+ γr, which implies (by event G) that

Pj,i∗S
> 1

2
. So, we must have bj ≻ bi∗S . Consequently, A

∗ ⊆ {bj ∈ B : bj ≻ bi∗S}, which implies

|A∗| ≤ rank(bi∗S).

We now consider SCOMP2. Here, we select an undefeated candidate bandit bi∗r in batch

r, and the algorithm switches if there exists bj∗ ∈ A such that P̂j∗,i∗r >
1
2
+ 5γr. Moreover,

A∗ = {bj ∈ A | P̂j,i∗r >
1
2
+ 3γr}. Given G, we have Pj∗,i∗r >

1
2
+ 4γr. By SST and again

applying G, we obtain P̂1,i∗r >
1
2
+ 3γr. So, b1 ∈ A∗. We now argue that |A∗| ≤ rank(bi∗S).

Again, let bi∗S be the best bandit in S. As bi∗r is undefeated after round r(1), we have

P̂i∗S ,i
∗
r
≤ 1

2
+ γr, which implies Pi∗S ,i

∗
r
≤ 1

2
+ 2γr (by event G). Now, consider any bandit

bj ∈ A∗. We have P̂j,i∗S
> 1

2
+3γr, which implies (by event G) that Pj,i∗S

> 1
2
+2γr. It follows

that bj ≻ bi∗S for all bj ∈ A∗. Hence, |A∗| ≤ rank(bi∗S).

Lemma 6.2.7. We have E[rank(bi∗S)] ≤
√
K and E[rank(bi∗S)

2] ≤ 2K.

Proof. Let R be a random variable denoting rank(bi∗S). Note that R = k if, and only if, the

first k− 1 bandits are not sampled into S, and the kth bandit is sampled into S. Thus, R is

a geometric random variable with success probability p := 1√
K
.2 Recall that the mean and

variance of a geometric random variable are 1
p
and 1

p2
− 1

p
respectively. So, E[R] ≤ 1

p
=
√
K.

Moreover, E[R2] ≤ 2
p2

= 2K.

Using Lemmas 6.2.5, 6.2.6 and 6.2.7, we complete the proofs of Theorems 6.2.1 and 6.2.2.

Proof of Theorem 6.2.1. We bound the expected regret of SCOMP conditioned on G. Let R1

and R2 denote the regret incurred in phase I and II respectively.

2Strictly speaking, R is truncated at K.

130

Bounding R1. Fix a bandit bj. Let r denote the last round such that bj ∈ A and switching

does not occur (at the end of round r). Let bi∗S be the best bandit in S. As bj is not

eliminated by bi∗S , we have P̂i∗S ,j
≤ 1

2
+ 3γr, which implies (by event G) Pi∗S ,j

≤ 1
2
+ 4γr.

Moreover, as switching doesn’t occur, we have mini∈S P̂1,i ≤ 1
2
+ 3γr (by Lemma 6.2.5, b1

is never deleted from A). We now claim that P1,i∗S
≤ 1

2
+ 4γr. Otherwise, by SST we

have mini∈S P1,i = P1,i∗S
> 1

2
+ 4γr, which (by event G) implies mini∈S P̂1,i >

1
2
+ 3γr, a

contradiction! It now follows that ∆i∗S ,j
≤ 4γr and ∆1,i∗S

≤ 4γr. Consider now two cases:

1. b1 ⪰ bi∗S ⪰ bj. Then, by STI, ∆1,j ≤ 8γr, and

2. b1 ⪰ bj ⪰ bi∗S . Then, by SST ∆1,j ≤ ∆i∗S ,j
≤ 4γr.

In either case, we have ∆j = ∆1,j ≤ 8γr, which implies cr ≤ log(1/δ)
2γ2

r
≤ 32 log(1/δ)

∆2
j

.

Now, let Tj be a random variable denoting the number of comparisons of bj with other

bandits before switching. By definition of round r, bandit bj will participate in at most one

round after r (in phase I). So, we have

Tj ≤

 |S| ·
∑r+1

τ=1 cτ if bj ̸∈ S

K ·
∑r+1

τ=1 cτ if bj ∈ S

Taking expectation over S, we get

E [Tj] ≤ E

[
K

r+1∑
τ=1

cτ | bj ∈ S

]
·P(bj ∈ S) + E

[
|S|

r+1∑
τ=1

cτ | bj ̸∈ S

]
·P(bj /∈ S)

≤

(
K

r+1∑
τ=1

cτ

)
· 1√

K
+ E[|S| | bj ̸∈ S] ·

r+1∑
τ=1

cτ ≤ 2
√
K

r+1∑
τ=1

cτ ,

where the third inequality uses E[|S| | bj ̸∈ S] ≤
√
K. Moreover,

r+1∑
τ=1

cτ ≤ 2T 1/B · cr = O

(
T 1/B log(1/δ)

∆2
j

)
.

Thus,

E[R1] =
∑
j

E [Tj] ·∆j =
∑

j:∆j>0

O

(
T 1/B

√
K log(6K2TB)

∆j

)
(6.3)

131

Bounding R2. We now bound the regret after switching. From Lemmas 6.2.5 and 6.2.6,

we know that b1 is never deleted, b1 ∈ A∗, and |A∗| ≤ rank(bi∗S). For any A∗, applying

Theorem 5.5.1 we get,

R2 ≤ 3|A∗|T 1/B log(6T |A∗|2B)
∑

j∈A∗:∆j>0

1

∆j

≤ 3|A∗|T 1/B log(6TK2B)
∑

j∈B:∆j>0

1

∆j

By Lemma 6.2.7, E[|A∗|] ≤
√
K, hence

E[R2] ≤ 3
√
KT 1/B log(6TK2B)

∑
j:∆j>0

1

∆j

(6.4)

Combining (6.3) and (6.4), we get

E[R(T)|G] =
∑

j:∆j>0

O

(
T 1/B

√
K log(6K2TB)

∆j

)
,

and by (6.2), this concludes the proof.

Proof of Theorem 6.2.2. We bound the expected regret conditioned on G. Let R1 and R2

denote the regret incurred in phase I and II respectively.

Bounding R1. Fix a bandit bj. Let r denote any round such that bj ∈ A and switching

does not occur (at the end of round r). As in the proof of Theorem 6.2.1, we first show that

cr = O
(

log(1/δ)

∆2
j

)
. Recall that bi∗r is the candidate in round r. As bj is not eliminated by bi∗r ,

we have P̂i∗r ,j ≤
1
2
+ 5γr, which implies (by event G) Pi∗S ,j

≤ 1
2
+ 6γr. Moreover, as switching

doesn’t occur, we have P̂1,i∗r ≤
1
2
+ 5γr (by Lemma 6.2.5, b1 is never deleted from A). By

event G, we get P1,i∗r ≤
1
2
+ 6γr. It now follows that ∆i∗r ,j ≤ 6γr and ∆1,i∗r ≤ 6γr. Consider

now two cases:

1. b1 ⪰ bi∗r ⪰ bj. Then, by STI, ∆1,j ≤ 12γr, and

2. b1 ⪰ bj ⪰ bi∗S . Then, by SST ∆1,j ≤ ∆i∗r ,j ≤ 6γr.

In either case, we have ∆j = ∆1,j ≤ 12γr, which implies cr ≤ log(1/δ)
2γ2

r
= O

(
log(1/δ)

∆2
j

)
.

132

We further divide R1 into two kinds of regret: R
(c)
1 and R

(n)
1 where R

(c)
1 refers to the

regret incurred by candidate arms and R
(n)
1 is the regret incurred by non-candidate arms.

Bounding R
(n)
1 . For any bandit bj, let Tj be a random variable denoting the number of

comparisons of bj (in phase I) when bj is not a candidate. Also, let r be the last round such

that bj ∈ A and switching doesn’t occur. So, bj will participate in at most one round after

r, and

Tj ≤


∑r+1

τ=1 cτ if bj ̸∈ S

|S| ·
∑r+1

τ=1 cτ if bj ∈ S

Taking expectation over S, we get

E [Tj] ≤ E

[
|S|

r+1∑
τ=1

cτ | bj ∈ S

]
·P(bj ∈ S) + E

[
r+1∑
τ=1

cτ | bj ̸∈ S

]
·P(bj /∈ S)

≤
r+1∑
τ=1

cτ ·
(

1√
K
· E[|S| | bj ∈ S] + 1

)
≤ (2 +

1√
K

) ·
r+1∑
τ=1

cτ ,

where the third inequality uses E[|S| | bj ∈ S] ≤ 1 +
√
K.

Moreover, using cr = O
(

log(1/δ)

∆2
j

)
, we have

∑r+1
τ=1 cτ = O

(
T 1/B log(1/δ)

∆2
j

)
. Thus,

E[R(n)
1] =

∑
j

E [Tj] ·∆j ≤
∑

j:∆j>0

O

(
T 1/B log

(
1
δ

)
∆1,j

)
≤ O

(
T 1/BK log

(
1
δ

)
∆min

)
(6.5)

Bounding R
(c)
1 . Observe that if bj is a candidate in round r, then the regret incurred by

bj in round r is at most Kcr ·∆1,j. Also, cr−1 ≤ O

(
log(1

δ)
∆2

j

)
because bj ∈ A and switching

hasn’t occurred at end of round r − 1. Thus, we have cr = T 1/Bcr−1 ≤ O

(
T 1/B log(1

δ)
∆2

j

)
. We

can thus write

R
(c)
1 =

B∑
r=1

∑
j

Kcr ·∆j · I [i∗r = j] ,

133

where I [i∗r = j] is an indicator random variable denoting whether bj was the candidate bandit

in round r. Observe that there is exactly one candidate bandit, bi∗r , in each round. So,

R
(c)
1 = K

B∑
r=1

cr∆i∗r ≤ K
B∑

r=1

O

(
T 1/B log

(
1
δ

)
∆2

i∗r

)
·∆i∗r

= K
B∑

r=1

O

(
T 1/B log

(
1
δ

)
∆i∗r

)
≤ O

(
T 1/BKB log

(
1
δ

)
∆min

)
(6.6)

Combining (6.5) and (6.6), we get

E[R1] ≤ O

(
T 1/BKB log

(
1
δ

)
∆min

)
(6.7)

Bounding R2. Finally, we bound the regret in phase II where we only have bandits A∗.

From Lemmas 6.2.5 and 6.2.6, we know that b1 ∈ A∗, and |A∗| ≤ rank(bi∗S). For any A∗,

applying Theorem 5.5.1 we get,

R2 ≤ 3|A∗|T 1/B log(6T |A∗|2B)
∑

j∈A∗:∆j>0

1

∆j

≤ 3|A∗|2 · T 1/B log(6TK2B) · 1

∆min

By Lemma 6.2.7, E[|A∗|2] ≤ 2K, and so:

E[R2] ≤
6T 1/BK log(6TK2B)

∆min

(6.8)

Finally, combining (6.7) and (6.8) completes the proof.

6.3 A Recursive Algorithm for Batched Dueling Ban-

dits

In this section, we describe a recursive algorithm, termed R-SCOMP for batched dueling

bandits. The prior algorithms (SCOMP and SCOMP2) rely both on the seed set eliminating

sub-optimal arms and on the fact that if the seed set is found to be sub-optimal, we can

substantially shrink the active set and switch to the pairwise comparisons policy. we gener-

134

alize SCOMP to R-SCOMP by requiring an input m ≥ 1 and η ∈ (0, 1). At a high level, R-SCOMP

recurses m times before switching to PCOMP. We maintain the property that each time it

recurses, the active set shrinks by a factor of Kη. Note that when m = 1 and η = 1/2, we

recover SCOMP.

The algorithm takes as input the set of bandits B, time-horizon T , comparison parameters

q and τ , integers B and m, and an accuracy parameter η ∈ (0, 1). Initially, we set q = T 1/B,

τ = 1 and δ = 1
2TK2(B+m)

. If m = 0, the algorithm executes PCOMP; else, the algorithm works

in two phases:

• In the first phase, the algorithm samples a seed set S by including each bandit from

B independently with probability 1/K1−η. This seed set is used to eliminate bandits

from the active set A (like in SCOMP).

• Under a certain switching criteria, the algorithm recurses on the active set A with

m = m− 1.

If m ≥ 1, R-SCOMP performs all pairwise comparisons between S (seed set) and A (active

bandits). Specifically, in round r, every active bandit is compared with every bandit in S for

cr times. If, for some bandit bj, there exists bandit bi such that P̂i,j >
1
2
+ 3γr, then bandit

bj is eliminated (from A as well as S). If, in some round r, there exists bandit bj such that

bj eliminates all bandits bi ∈ S, then the algorithm constructs a set A∗ = {bj ∈ A | P̂j,i >

1
2
+ γr for all bi ∈ S}, and recurses R-SCOMP on bandits A∗ with parameter τ = r, and q and

δ as set before. Additionally, the number of recursive calls is set to m− 1. Observe that the

elimination and the switching criteria are the same as in SCOMP. Note that comparisons at

round r are repeated when a recursive call is invoked, and since there are at most m recursive

calls, R-SCOMP uses at most B +m adaptive rounds. We describe the algorithm formally in

Algorithm 13.

The following theorem, which formalizes Theorem 5.3.4, is the main result of this section.

Theorem 6.3.1. Given any set B of K bandits, time-horizon T , integers B and m, param-

eters q = T 1/B, r = 1 and δ = 1
2TK2(B+m)

, and an accuracy parameter η > 0, R-SCOMP uses

135

Algorithm 13 R-SCOMP(Recursive Seeded Comparisons Algorithm)

1: Input: Bandits B, time-horizon T , comparison parameters q, τ , and δ, #recursive calls
m, accuracy η

2: active bandits A ← B, cr ← ⌊qr⌋, γr ←
√

log(1/δ)/2cr, r ← τ
3: if m = 0 then ▷ base case
4: run PCOMP(B, T, q, τ)
5: S ← add elements from B into S w.p. 1/K1−η

6: while number of comparisons ≤ T do
7: for all (bi, bj) ∈ S ×A, compare bi and bj for cr times and compute P̂i,j

8: if ∃bi ∈ S, bj ∈ A, P̂i,j >
1
2
+ 3γr then ▷ elimination

9: A ← A \ {bj}, S ← S \ {bj}
10: if ∃bj such that P̂j,i >

1
2
+ 3γr for all bi ∈ S then ▷ switching

11: construct set A∗ = {bj ∈ A | P̂j,i >
1
2
+ γr for all bi ∈ S}

12: r∗ ← r, T ∗ ← # comparisons until round r∗, break

13: r ← r + 1

14: run R-SCOMP(A∗, T − T ∗, q, r∗, δ,m− 1, η) ▷ recursive call

at most B +m batches, and has expected regret bounded by

E[R(T)] =
∑

j:∆j>0

O

((
m ·Kη +K(1−η)m

)
· T

1/B log(6K2TB)

∆j

)

under strong stochastic transitivity and stochastic triangle inequality.

6.3.1 The Analysis

We now provide the regret analysis of R-SCOMP, and prove Theorem 6.3.1. To keep the

exposition in this section self-contained, we restate Lemma 6.2.3 which will be used to define

a good event for R-SCOMP.

Lemma 6.3.2. For any r ∈ [B], and for any pair bi, bj that are compared cr times, we have

P
(
|Pi,j − P̂i,j| > γr

)
≤ 2δ,

where γr =
√

log(1
δ
)/2cr.

As before, we analyze the regret of R-SCOMP under event a good event, G. We show that

G occurs with high probability; in the event that G does not occur (denoted G), we incur a

136

regret of T . Towards defining G, we say that an estimate P̂i,j at the end of batch r is correct

if |P̂i,j − Pi,j| ≤ γr. We say that G occurs if every estimate in every batch is correct.

Lemma 6.3.3. The probability that every estimate in the execution of R-SCOMP is correct is

at least 1− 1/T .

Proof. Applying Lemma 6.3.2 and taking a union bound over all pairs and batches (note

R-SCOMP has at most B + m batches), we get that the probability that some estimate is

incorrect is at most K2 × (B +m)× 2δ = 1
T
where δ = 1

2K2T (B+m)
. Thus, P(G) ≤ 1

T
.

Using Lemma 6.3.3, the expected regret R-SCOMP can be written as follows:

E[R(T)] = E[R(T) | G] ·P(G) + E[R(T) | G] ·P(G)

≤ E[R(T) | G] + T · 1
T

= E[R(T) | G] + 1 (6.9)

By Lemma 6.3.3 and (6.9), we only need to bound the expected regret under G; that is,

we need to bound E[R(T) | G]. Henceforth, we assume the SST and STI properties. Recall

that for a bandit bj, we define Ej = {bi ∈ B : ∆i,j > 0}; that is, the set of bandits superior to

bandit bj, and rank(bj) = |Ej|. Conditioned on event G, the following Lemmas 6.3.4,6.3.5

and 6.3.6 hold for R-SCOMP.

Lemma 6.3.4. The best bandit b1 is never deleted.

Proof. In R-SCOMP, bi deletes bj in batch r if P̂i,j >
1
2
+ 3γr. If b1 is deleted due to some

bandit bj, then by applying Lemma 6.3.2, we get Pj,1 >
1
2
+ 2γr, a contradiction.

Lemma 6.3.5. When the algorithm invokes a recursive call on A∗, we have b1 ∈ A∗ and

|A∗| ≤ rank(bi∗S) where bi∗S is the best bandit in S.

Proof. Let A denote the set of active bandits in the some execution of R-SCOMP. Note that a

recursive call is invoked when, in some batch r, there exists bj∗ ∈ A such that P̂j∗,i >
1
2
+3γr

for all bi ∈ S, Moreover, A∗ = {bj ∈ A | P̂j,i >
1
2
+ γr for all bi ∈ S}. Consider any bi ∈ S.

Given G, P̂j∗,i >
1
2
+ 3γr implies that Pj∗,i >

1
2
+ 2γr. By SST, P1,i ≥ Pj∗,i, and again using

event G, P̂1,i >
1
2
+ γr. Thus, b1 ∈ A∗. We now bound |A∗|. Let bi∗S be the best bandit in

S, i.e., the bandit of smallest rank. Consider any bandit bj ∈ A∗. We have P̂j,i∗S
> 1

2
+ γr,

137

which implies (by event G) that Pj,i∗S
> 1

2
. So, we must have bj ≻ bi∗S . Consequently,

A∗ ⊆ {bj ∈ B : bj ≻ bi∗S}, which implies |A∗| ≤ rank(bi∗S).

Lemma 6.3.6. We have E[rank(bi∗S)] ≤ K(1−η).

Proof. The R be a random variable denoting rank(bi∗S). Note that R = k if, and only if, the

first k−1 bandits are not sampled into S, and the kth bandit is sampled into S. Thus, R is a

geometric random variable with success probability p := 1
K1−η . Thus, E[R] = 1

p
= K(1−η).

Using Lemmas 6.3.4, 6.3.5 and 6.3.6, we complete the proof of Theorem 6.3.1.

Proof of Theorem 6.3.1. The proof proceeds by induction on m. When m = 0, R-SCOMP runs

PCOMP and the result follows by Theorem 5.5.1 (proving the base case). Now, suppose that

m ≥ 1. We bound the expected regret of R-SCOMP conditioned on G. Let R1 and R2 denote

the regret incurred before and after the first recursive call.

Bounding R1. Fix a bandit bj. Let r denote the last round such that bj ∈ A and we do

not recurse at the end of round r. Let bi∗S be the best bandit in S. As bj is not eliminated

by bi∗S , we have P̂i∗S ,j
≤ 1

2
+ 3γr, which implies (by event G) Pi∗S ,j

≤ 1
2
+ 4γr. Moreover, as

switching doesn’t occur, we have mini∈S P̂1,i ≤ 1
2
+ 3γr (by Lemma 6.3.4, b1 is never deleted

from A). By SST, we conclude that P1,i∗S
≤ 1

2
+ 4γr. It now follows that ∆i∗S ,j

≤ 4γr and

∆1,i∗S
≤ 4γr. Consider now two cases:

1. b1 ⪰ bi∗S ⪰ bj. Then, by STI, ∆1,j ≤ 8γr, and

2. b1 ⪰ bj ⪰ bi∗S . Then, by SST ∆1,j ≤ ∆i∗S ,j
≤ 4γr.

In either case, we have ∆j = ∆1,j ≤ 8γr, which implies cr ≤ log(1/δ)
2γ2

r
≤ 32 log(1/δ)

∆2
j

.

Now, let Tj be a random variable denoting the number of comparisons of bj with other

bandits before the recursive call. By definition of round r, bandit bj will participate in at

most one round after r (before recursing). So, we have

Tj ≤

 |S| ·
∑r+1

τ=1 cτ if bj ̸∈ S

K ·
∑r+1

τ=1 cτ if bj ∈ S

138

Taking expectation over S, we get

E [Tj] ≤ E

[
K

r+1∑
τ=1

cτ | bj ∈ S

]
·P(bj ∈ S) + E

[
|S|

r+1∑
τ=1

cτ | bj ̸∈ S

]
·P(bj /∈ S)

≤

(
K

r+1∑
τ=1

cτ

)
· 1

K1−η
+ E[|S| | bj ̸∈ S] ·

r+1∑
τ=1

cτ ≤ 2Kη

r+1∑
τ=1

cτ ,

where the third inequality uses E[|S| | bj ̸∈ S] ≤ Kη. Moreover,

r+1∑
τ=1

cτ ≤ 2T 1/B · cr = O

(
T 1/B log(1/δ)

∆2
j

)
.

Thus,

E[R1] =
∑
j

E [Tj] ·∆j =
∑

j:∆j>0

O

(
KηT 1/B log(6K2TB)

∆j

)
(6.10)

Bounding R2. We now bound the regret after a recursive call is invoked. From Lem-

mas 6.3.4 and 6.3.5, we know that b1 is never deleted, b1 ∈ A∗, and |A∗| ≤ rank(bi∗S). For

any A∗, on applying the inductive hypothesis with m− 1 recursive calls, we get

E[R2 | A∗] ≤
∑

j:∆j>0

O

((
(m− 1) · |A∗|η + |A∗|(1−η)m−1

)
· T

1/B log(6|A∗|2TB)

∆j

)

≤
∑

j:∆j>0

O

((
(m− 1) ·Kη + |A∗|(1−η)m−1

)
· T

1/B log(6K2TB)

∆j

)

since |A∗| ≤ K. Taking an expectation over A∗, we obtain

E[R2] ≤
∑

j:∆j>0

O

((
(m− 1) ·Kη + E

[
|A∗|(1−η)m−1

])
· T

1/B log(6K2TB)

∆j

)

Finally, observe that by Jensen’s inequality, we have E
[
|A∗|(1−η)m−1

]
≤ E[|A∗|](1−η)m−1

, and

by Lemma 6.3.6 E[|A∗|] ≤ K1−η. Combining these observations, we get E
[
|A∗|(1−η)m−1

]
≤

K(1−η)m . Thus, we obtain

E[R2] ≤
∑

j:∆j>0

O

((
(m− 1) ·Kη +K(1−η)m

)
· T

1/B log(6K2TB)

∆j

)
(6.11)

139

Finally, combining (6.10) and (6.11) completes the induction.

6.4 Experimental Results

We provide a summary of computational results of our algorithms for the batched dueling

bandits problem. We conducted our computations using C++ and Python 2.7 with a 2.3

Ghz Intel Core i5 processor and 16 GB 2133 MHz LPDDR3 memory.

Experimental Setup. We compare all our algorithms, namely PCOMP, SCOMP, and

SCOMP2 to a representative set of sequential algorithms for dueling bandits. Specifically,

we use the dueling bandit library due to [76], and compare our algorithms to RUCB [117],

RMED1 [76], and Beat-the-Mean [114]. Henceforth, we refer to Beat-the-Mean as

BTM. We plot the cumulative regret R(t) incurred by the algorithms against time t. Fur-

thermore, to illustrate the dependence on B, we run another set of experiments on SCOMP2

and plot the cumulative regret R(t) incurred by SCOMP2 against time t for varying values of

B.3 We perform these experiments using both real-world and synthetic data. We use the

following datasets:

Six rankers. This real-world dataset is based on the 6 retrieval functions used in the

engine of ArXiv.org.

Sushi. The Sushi dataset is based on the Sushi preference dataset [72] that contains the

preference data regarding 100 types of Sushi. A preference dataset using the top-16 most

popular types of sushi is obtained.

BTL-Uniform. We generate synthetic data using the Bradley-Terry-Luce (BTL) model.

Under this model, each arm bi ∈ B is associated with a weight wi > 0 (sampled uniformly

in the interval (0, 1]), and we set Pi,j = wi/(wi + wj). We set the number of arms K = 100.

Note that the data generated in this way satisfies SST and STI [112]. We refer to this data

as SYN-BTL.

Hard-Instance. The last dataset is a synthetic dataset inspired by the hard instances

that we construct for proving our lower bound (see Theorem 5.3.5). Again, we set K = 100,

and pick ℓ ∈ [K] uniformly at random as the Condorcet winner. We select ∆ uniformly in

3We also conducted these experiment for PCOMP and SCOMP and the conclusions were similar.

140

0 20000 40000 60000 80000 100000
t

0

1000

2000

3000

4000

Re
gr

et
 R

(t)
PCOMP
SCOMP
SCOMP2
RMED
RUCB
BTM

(a) Six rankers

0 20000 40000 60000 80000 100000
t

0

2000

4000

6000

8000

Re
gr

et
 R

(t)

PCOMP
SCOMP
SCOMP2
RMED
RUCB
BTM

(b) Sushi

0 20000 40000 60000 80000 100000
t

0

2500

5000

7500

10000

12500

15000

17500

Re
gr

et
 R

(t)

PCOMP
SCOMP
SCOMP2
RMED
RUCB
BTM

(c) SYN-BTL

0 20000 40000 60000 80000 100000
t

0

5000

10000

15000

20000

25000

Re
gr

et
 R

(t)

PCOMP
SCOMP
SCOMP2
RMED
RUCB
BTM

(d) SYN-CD

Figure 6.1: Regret v/s t plots of algorithms

(0, 0.5), and set Pℓ,i =
1
2
+∆ for i ̸= ℓ. Furthermore, for all i, j ̸= ℓ, we set Pi,j = 1/2. We

refer to this data as SYN-CD.

Note that there exists a Condorcet winner in all datasets. Moreover, the SYN-BTL dataset

satisfies SST and STI. We repeat each experiment 10 times and report the average regret.

In our algorithms, we use the KL-divergence based confidence bound (as in RMED1) for

elimination as it performs much better empirically (and our theoretical bounds continue to

hold). In particular, we replace lines 5, 6 and 8 in PCOMP, SCOMP and SCOMP2, respectively,

with KL-divergence based elimination criterion that eliminates an arm i if there exists an-

other arm j if P̂ij <
1
2
and Nij ·DKL(P̂ij,

1
2
) > log(Tδ) where Nij is the number of times arm

i and j are played together. We report the average cumulative regret at each time step.

Comparison with sequential dueling bandit algorithms. As mentioned earlier, we

141

compare our algorithms against a representative set of sequential dueling bandits algorithms

(RUCB [117], RMED1 [76], and BTM [114]). Note that the purpose of these experiments

is to perform a sanity check to ensure that our batched algorithms, using a small number

of batches, perform well when compared with sequential algorithms. We set α = 0.51 for

RUCB, and f(K) = 0.3K1.01 for RMED1, and γ = 1.3 for BTM. We chose these parameters

as they are known to perform well both theoretically and empirically [76]. We set T = 105,

δ = 1/TK2 and B = ⌊log(T)⌋ = 16. We plot the results in Figure 6.1. We observe that

SCOMP2 performs comparably to RMED1 in all datasets, even outperforms RUCB in 3 out

of the 4 datasets, and always beats BTM. Notice that both PCOMP and SCOMP considerably

outperform BTM on the six rankers and sushi data; however their performance degrades on

the synthetic data demonstrating the dependence on K.

Trade-off with number of batches B. We study the trade-off of cumulative regret

against the number of batches using SCOMP2. We set T = 105, and vary B ∈ {2, 8, 16}.

We also plot the regret incurred by RMED1 as it performs the best amongst all sequential

algorithms (and thus serves as a good benchmark). We plot the results in Figure 6.2.

We observe that as we increase the number of batches, the (expected) cumulative regret

decreases. Furthermore, we observe that on the synthetic datasets (where K = 100), the

regret of SCOMP2 approaches that of RMED1; in fact, the regret incurred is almost identical

for the SYN-BTL dataset.

6.5 Lower Bound

In this section, we present a lower bound for the batched dueling bandits problem under the

SST and STI setting. Note that this lower bound also applies to the more general Condorcet

winner setting. The main result of this section is the following:

Theorem 6.5.1. Given an integer B > 1, and any algorithm that uses at most B batches,

there exists an instance of the K-armed batched dueling bandit problem that satisfies the SST

and STI conditions such that the expected regret

E[RT] = Ω

(
KT 1/B

B2∆min

)
,

142

0 20000 40000 60000 80000 100000
t

0

200

400

600

800

1000

1200

1400

1600
Re

gr
et

 R
(t)

RMED
B=2
B=8
B=16

(a) Six rankers

0 20000 40000 60000 80000 100000
t

0

500

1000

1500

2000

2500

Re
gr

et
 R

(t)

RMED
B=2
B=8
B=16

(b) Sushi

0 20000 40000 60000 80000 100000
t

0

1000

2000

3000

4000

5000

6000

7000

8000

Re
gr

et
 R

(t)

RMED
B=2
B=8
B=16

(c) SYN-BTL

0 20000 40000 60000 80000 100000
t

0

2000

4000

6000

8000

10000

12000

14000

Re
gr

et
 R

(t)

RMED
B=2
B=8
B=16

(d) SYN-CD

Figure 6.2: Regret v/s B for SCOMP2.

where ∆min is defined with respect to the particular instance.

In order to prove this theorem, we will construct a family of instances such that any

algorithm for batched dueling bandits cannot simultaneously beat the above regret lower

bound over all instances in the family. We exploit the fact that the algorithm is unaware of

the particular instance chosen from the family at run-time, and hence, is unaware of the gap

∆min under that instance.

143

Family of Instances I:

• Let F be an instance where Pi,j =
1
2
for all i, j ∈ B.

• For j ∈ [B], let ∆j =
√
K

24B
·T (j−1)/2B. For j ∈ [B] and k ∈ [K], let Ej,k be an instance

where bandit bk is the Condorcet winner such that Pk,l =
1
2
+∆j for all l ∈ [K] \ {k}

and Pl,m = 1
2
for all l,m ∈ [K] \ {k}.

• The family of instances I := {Ej,k}j∈[B],k∈[K] ∪ {F}.

6.5.1 Proof of Theorem 6.5.1

Let us fix an algorithm A for this problem. Let Tj = T j/B for j ∈ [B]. Let tj be the total

(random) number of comparisons until the end of batch j during the execution of A. We will

overload notation and denote by I t the distribution of observations seen by the algorithm

when the underlying instance is I. We will sometimes use Pi,j(I) for the probability of i

beating j under an instance I to emphasize the dependence on I. We will also write ∆min(I)

to emphasize the dependence on the underlying instance I.

We define event Aj as follows:

Aj = {tj′ < Tj′ ,∀j′ < j and tj ≥ Tj},

and denote by Ej,k(Aj) the event that Aj occurs given that the instance selected is Ej,k.

Similarly, F (Aj) denotes the event that Aj occurs when the instance selected is F . Now,

define

pj =
1

K

K∑
l=1

P(Ej,l(Aj)).

Observe that pj is the average probability of event Aj conditional on the instance having

gap ∆j.

Lemma 6.5.2.
∑B

j=1 pj ≥
1
2
.

Proof. Note that the event Aj is determined by observations until Tj−1. This is because

144

tj−1 < Tj−1, and once the observations until tj−1 are seen: the next batch j determines

whether or not Aj occurs. Hence, in order to bound the probability of Aj under two different

instances F and Ej,l we use the Pinsker’s inequality as

|P(F (Aj))−P(Ej,l(Aj))| ≤
√

1

2
DKL(F Tj−1 ||ETj−1

j,l)

for l ∈ [K]. Let τl be the random variable for the number of times arm l is played until Tj−1.

We first bound DKL(F
Tj−1||ETj−1

j,l) as

DKL(F
Tj−1||ETj−1

j,l)
(a)
=

Tj−1∑
t=1

DKL

(
Pt1,t2(F) || Pt1,t2(Ej,l)

)
(b)

≤
Tj−1∑
t=1

Pr
F
(arm l is played in trial t) ·DKL

(
1

2
|| 1
2
+ ∆j

)
(c)

≤ EF [τl] · 4∆2
j , (6.12)

where (a) follows from the fact that, given F , the outcome of comparisons are indepen-

dent across trials, (b) follows from the fact that the KL-divergence between Pt1,t2(F) and

Pt1,t2(Ej,k) is non-zero only when arm l is played in trial t, and (c) follows from the fact that

DKL(p||q) ≤ (p−q)2

q·(1−q)
. Using the above bounds, we have that

1

K

K∑
l=1

|P(F (Aj))−P(Ej,l(Aj))| ≤
1

K

K∑
l=1

√
1

2
DKL(F Tj−1||ETj−1

j,l)

≤ 1

K

K∑
l=1

√
1

2
· 4∆2

jEF [τl] =
1

K

K∑
l=1

√
2∆2

jEF [τl]

(a)

≤

√
2∆2

jEF [
∑K

l=1 τl]

K

(b)

≤

√
2∆2

j · 2Tj−1

K
=

1

2B
,

where (a) follows from the concavity of
√
x and Jensen’s inequality, and (b) follows from the

145

fact that
∑K

l=1 τl ≤ Tj−1. We thus have

|P(F (Aj))− pj| = |P(F (Aj))−
1

K

K∑
l=1

P(Ej,l(Aj))|

≤ 1

K

K∑
l=1

|P(F (Aj))−P(Ej,l(Aj))| ≤
1

2B
.

Finally, we can write

B∑
j=1

pj ≥
B∑
j=1

(P(F (Aj))−
1

2B
) ≥

B∑
j=1

P(F (Aj))−
1

2
≥ 1

2
.

As a consequence of this lemma, we can conclude that there exists some j ∈ [B] such

that pj ≥ 1
2B

. We focus on the event where gap is ∆j, and prove that when pj ≥ 1
2B

, A must

suffer a high regret leading to a contradiction. The next lemma formalizes this.

Lemma 6.5.3. If, for some j, pj ≥ 1
2B

, then

sup
I:∆min(I)=∆j

E[RT (I)] ≥ Ω

(
KT 1/B

B2∆j

)

Proof. Fix k ∈ [K]. We will construct a family of instances {Qj,k,l}l ̸=k where Qj,k,l is defined

as:

Instance Qj,k,l: Arm l is the Condorcet winner and the pairwise preferences are defined

as:

Plm =
1

2
+ 2∆j,∀m ∈ [K] \ {l}; Pkm =

1

2
+ ∆j,∀m ∈ [K] \ {l, k};

and Pmm′ = 1
2
for remaining pairs (m,m′).

We also let Qj,k,k := Ej,k. Note that the regret is ≥ ∆j if the underlying instance is Qj,k,l

146

and the pair played is not (bl, bl). We have that

sup
I:∆min(I)=∆j

E[RT (I)] ≥ ∆j

T∑
t=1

1

K

∑
l ̸=k

Qt
j,k,l ((bt1 , bt2) ̸= (bl, bl)) ,

where Qt
j,k,l denotes the distribution of observations available at time t under instance Qj,k,l

and Qt
j,k,l ((bt1 , bt2) ̸= (bl, bl)) is the probability that the algorithm does not play arm (bl, bl)

at time t under Qt
j,k,l. In order to bound the above quantity we will need the following lemma

from [48].

Lemma 6.5.4 (Lemma 3 of [48]). Let Q1, · · ·QK be probability measures on some common

probability space (Ω,F), and ψ : Ω→ [K] be any measurable function (i.e., test). Then, for

any tree T = ([K], E) with vertex set [K] and edge set E,

1

K

K∑
i=1

Qi(ψ ̸= i) ≥ 1

K

∑
(l,l′)∈E

∫
min{dQl, dQl′} .

Using the above lemma for the star graph centered at k, we have that

sup
I:∆min(I)=∆j

E[RT (I)] ≥ ∆j

T∑
t=1

1

K

∑
l ̸=k

∫
min{dQt

j,k,k, dQ
t
j,k,l}

(a)

≥ ∆j

Tj∑
t=1

1

K

∑
l ̸=k

∫
min{dQt

j,k,k, dQ
t
j,k,l}

(b)

≥ ∆j

Tj∑
t=1

1

K

∑
l ̸=k

∫
min{dQTj

j,k,k, dQ
Tj

j,k,l}

≥∆j

Tj∑
t=1

1

K

∑
l ̸=k

∫
Aj

min{dQTj

j,k,k, dQ
Tj

j,k,l}

(c)

≥ ∆j

Tj∑
t=1

1

K

∑
l ̸=k

∫
Aj

min{dQTj−1

j,k,k , dQ
Tj−1

j,k,l } , (6.13)

where (a) follows because Tj ≤ T , (b) follows due to the fact that
∫
min{dP, dQ} = 1 −

DTV(P,Q) and the fact that DTV(Q
Tj

j,k,k, Q
Tj

j,k,l) is at least DTV(Q
t
j,k,k, Q

t
j,k,l) as the sigma

algebra FQt
j,k,k

of Qt
j,k,k is a subset of the sigma algebra F

Q
Tj
j,k,k

of Q
Tj

j,k,k, (c) follow from the

147

fact that the event Aj is determined by observations until Tj−1 as explained in the proof of

Lemma 6.5.2. We then have that

∫
Aj

min{dQTj−1

j,k,k , dQ
Tj−1

j,k,l } =
∫
Aj

dQ
Tj−1

j,k,k + dQ
Tj−1

j,k,l − |dQ
Tj−1

j,k,k − dQ
Tj−1

j,k,l |
2

=
Q

Tj−1

j,k,k (Aj) +Q
Tj−1

j,k,l (Aj)

2
−
∫
Aj

|dQTj−1

j,k,k − dQ
Tj−1

j,k,l |
2

(a)

≥ Q
Tj−1

j,k,k (Aj)−
1

2
DTV

(
Q

Tj−1

j,k,k , Q
Tj−1

j,k,l

)
−DTV

(
Q

Tj−1

j,k,k , Q
Tj−1

j,k,l

)
= Q

Tj−1

j,k,k (Aj)−
3

2
DTV

(
Q

Tj−1

j,k,k , Q
Tj−1

j,k,l

)
, (6.14)

where (a) follows from the fact that DTV(P,Q) = supA |P (A) − Q(A)|. Let us define τl to

be the random variable for the number of times arm l is played until Tj−1 We also have that

1

K

∑
l ̸=k

DTV

(
Q

Tj−1

j,k,k , Q
Tj−1

j,k,l

)
≤ 1

K

∑
l ̸=k

√
1

2
DKL(Q

Tj−1

j,k,k ||Q
Tj−1

j,k,l)

(a)

≤ 1

K

∑
l ̸=k

√
1

2
· 16∆2

jEEj,k
[τl] =

1

K

∑
l ̸=k

√
8∆2

jEEj,k
[τl]

(b)

≤

√
8∆2

jEEj,k
[
∑

l ̸=k τl]

K

(c)

≤

√
8∆2

j

K
2Tj−1 =

1

6B
, (6.15)

where (a) follows from a similar calculation as eq. (6.12) in the proof of Lemma 6.5.2, (b)

follows from the concavity of
√
x and Jensen’s inequality, and (c) follows from the fact that∑K

l=1 τl ≤ Tj−1.

Combining eqs. (6.13) to (6.15) we have that

sup
I:∆min(I)=∆j

E[RT (I)] ≥ ∆jTj

(
P(Ej,k(Aj))−

1

4B

)
.

148

Since the above inequality holds for all k ∈ [K], by averaging we get

sup
I:∆min(I)=∆j

E[RT (I)] ≥ ∆jTj

(
1

K

K∑
k=1

P(Ej,k(Aj))−
1

4B

)

= ∆jTj

(
pj −

1

4B

)
≥ ∆jTj

1

4B
.

Substituting the value of ∆jTj we get

sup
I:∆min(I)=∆j

E[RT (I)] ≥ ∆jTj
1

4B
=

√
K

24B
T−(j−1)/2BT j/B 1

4B

=

√
K

24B
T (j−1)/2BT 1/B 1

4B
= Ω

(
KT 1/B

B2∆j

)
.

Finally,
∑B

j=1 pj ≥
1
2
implies that there exists j ∈ [B] with pj ≥ 1/2B. Combining

the two lemmas above, we get that there exists j ∈ [B] with pj ≥ 1/2B such that the

algorithm incurs a regret of Ω
(

KT 1/B

B2∆j

)
. In this case, there must exist an instance Ej,k with

gap ∆min(Ej,k) = ∆j such that the regret of the algorithm under Ej,k is Ω
(

KT 1/B

B2∆j

)
. This

completes the proof of our lower bound.

149

Chapter 7

An Improved Algorithm for Batched

Dueling Bandits under Condorcet

Condition

7.1 Overview

In this chapter we provide detailed proofs, and formalize Theorems 5.3.6 and 5.3.7. The

main contributions presented in this chapter are as follows.

7.1.1 Contributions

• We design an algorithm, denoted C2B, for the batched dueling bandit problem, and

analyze its regret under the Condorcet condition. This algorithm achieves a smooth

trade-off between the expected regret and the number of batches, B.

• Crucially, when B = log(T), our regret bounds nearly match the best regret bounds

[76, 117] known in the fully sequential setting. Hence, our results show that O(log T)

rounds are sufficient to achieve asymptotically optimal regret as a function of T .

• Our results rely on new ideas for showing that the Condorcet winner arm can be

‘trapped’ using few adaptive rounds with high (constant) probability while incurring a

150

reasonable amount of regret. We can then integrate over this space of probabilities to

obtain a bound on the expected regret (in the same vein as [117]). Once the Condorcet

arm is ‘trapped’, we can quickly eliminate all other ‘sub-optimal’ arms and minimize

regret in the process.

• Finally, we run computational experiments to validate our theoretical results. We

show that C2B, using O(log T) batches, achieves almost the same performance as fully

sequential algorithms (which effectively use T batches) over a variety of real datasets.

7.1.2 Results and Techniques

We provide both high-probability and expected regret bounds as mentioned in Chapter 5.

We restate the theorems for completeness.

Theorem 5.3.6. For any integer B ≥ 1, there is an algorithm for the K-armed dueling

bandit problem that uses at most B rounds with the following guarantee. For any δ > 0, with

probability at least 1− δ − 1
T
, its regret under the Condorcet condition is at most

R(T) ≤ O

(
T 1/B · K

2 log(K)

∆2
min

· log
(
logK

∆min

))
+O

(
T 2/B ·K2 ·

√
1

δ

)
+
∑
j ̸=a∗

O

(
T 1/B · log(KT)

∆j

)
.

Theorem 5.3.7. For any integer B ≥ 1, there is an algorithm for the K-armed dueling

bandit problem that uses at most B rounds, with expected regret under the Condorcet condition

at most

E[R(T)] = O

(
T 1/B · K

2 log(K)

∆2
min

· log
(
logK

∆min

))
+O

(
T 2/B ·K2

)
+
∑
j ̸=a∗

O

(
T 1/B · log(KT)

∆j

)
.

When the number of rounds B = log(T), we obtain a batched algorithm that achieves

the asymptotic optimality (in terms of T), even for sequential algorithms. We formalize this

observation in Corollary 5.3.8.

Technical Challenges. The only other approach for batched dueling bandits (under the

Condorcet condition) is the algorithm PCOMP (see Chapter 5), which performs all-pairs

151

comparisons among arms in an active set. Such an approach cannot achieve regret better

than O(K2 log T) because the active set may remain large throughout. In order to achieve

better regret bounds, we focused on the stronger SST+STI condition (see Chapter 6). In

this setting, our main idea is to first sample a seed set, and use this seed set to eliminate

sub-optimal arms. Their algorithm proceeds by performing all pairwise comparisons between

the seed set and the set of active arms. However, the analysis of these ‘seeded comparison’

algorithms crucially rely on the total-ordering imposed by the SST and STI assumptions.

Unfortunately, there is no such structure to exploit in the Condorcet setting: if the seed set

does not contain the Condorcet winner, we immediately incur high regret.

The existing fully sequential algorithms such as RUCB [117] and RMED [76] are highly

adaptive in nature. For instance, RUCB plays each candidate arm against an optimistic

competitor arm using upper confidence bounds (UCB) on pairwise probabilities. This allows

RUCB to quickly filter out candidates and uncover the Condorcet arm. Similarly, RMED

plays each arm against a carefully selected competitor arm that is likely to beat this arm.

However, such competitors can change frequently over trials in both RUCB and RMED.

Since the batched setting requires comparisons to be predetermined, we do not have the

flexibility to adapt to such changes in competitors. Hence, these existing fully sequential

algorithms cannot be easily implemented in our setting.

Furthermore, we might also be tempted to consider an explore-then-exploit strategy where

we first explore to find the Condorcet arm and exploit by playing this arm for remaining trials.

However, this strategy is likely to fail because identifying the Condorcet arm with high prob-

ability might involve performing many comparisons, directly leading to high (Ω(K2 log T))

regret; on the other hand, if the Condorcet winner is not identified with high probability,

the exploit phase becomes expensive. This motivated us to consider algorithms that allow

some form of recourse; that is, unless an arm is found to be sub-optimal, it must be given

the opportunity to participate in the comparisons (as it could be the Condorcet winner).

The idea behind our new algorithm is to identify the Condorcet winner i∗ in a small

expected number of rounds, after which it uses this arm as an “anchor” to eliminate sub-

optimal arms while incurring low regret. To identify the best arm, in each round we define

a candidate arm and compare it against arms that it “defeats”. Arms that are not defeated

152

by the candidate arm are compared to all active arms: this step ensures that the Condorcet

winner is eventually discovered. We show that i∗ becomes the candidate, and defeats all

other arms within a small number of rounds (though the algorithm may not know if this

has occurred). Additionally, once this condition is established, it remains invariant in future

rounds. This allows us to eliminate sub-optimal arms and achieve low regret.

Comparison to RUCB. Initially, RUCB puts all arms in a pool of potential champions, and

“optimistically” (using a upper confidence bound) performs all pairwise comparisons. Using

these, it constructs a set of candidates C. If |C| = 1, then that arm is the hypothesised

Condorcet winner and placed in a set B. Then, a randomized strategy is employed to choose

a champion arm ac (from sets C and B) which is compared to arm ad which is most likely

to beat it. The pair (ac, ad) is compared, the probabilities are updated and the algorithm

continues. Although our algorithm also seeks to identify the best arm, we do not employ

the UCB approach nor do we use any randomness. In their analysis, [117] show that the

best arm eventually enters the set B, and remains in B: we also show a similar property

for our algorithm in the analysis. Finally, similar to the analysis of [117], we first give a

high-probability regret bound for our algorithm which we then convert to a bound on the

expected regret.

7.2 The Batched Algorithm

In this section, we describe a B-round algorithm for the K-armed dueling bandit problem

under the Condorcet condition. Recall that given a set of K arms, B = {1, . . . , K}, and a

positive integer B ≤ log(T), we wish to find a sequence of B batches of noisy comparisons

with low regret. Given arms i and j, recall that pi,j = 1
2
+ ∆i,j denotes the probability

of i winning over j where ∆i,j ∈ (−1/2, 1/2). We use i∗ to denote the Condorcet winner;

recall that i∗ is a Condorcet winner if pi∗,j ≥ 1/2 for all j ∈ B. To simplify notation, we

use ∆j = ∆i∗,j. Before describing our algorithm, we first define some notation. We use A

to denote the current set of active arms; i.e., the arms that have not been eliminated. We

will use index r for rounds or batches. If pair (i, j) is compared in round r, it is compared

153

qr = ⌊qr⌋ times where q = T 1/B. We define the following quantities at the end of each round

r:

• Ni,j(r) is the total number of times the pair (i, j) has been compared.

• p̂i,j(r) is the frequentist estimate of pi,j, i.e.,

p̂i,j(r) =
i wins against j until end of round r

Ni,j(r)
. (7.1)

• Two confidence-interval radii for each (i, j) pair:

ci,j(r) =

√
2 log(2K2qr)

Ni,j(r)
and γi,j(r) =

√
log(K2BT)

2Ni,j(r)
(7.2)

We now describe our B-round algorithm, called Catching the Condorcet winner

in Batches (or, C2B). At a high-level, the algorithm identifies the best arm i∗ in a small

expected number of rounds, after which it uses this arm as an “anchor” to eliminate sub-

optimal arms while incurring low regret. In every round r, we do the following:

1. We define a defeated set Dr(i) for every active arm i; this set comprises arms that are

defeated with confidence by i. Specifically, j ∈ Dr(i) if p̂i,j(r − 1) > 1/2 + ci,j(r − 1).

2. Then, we define a candidate ir as the arm that defeats the most number of arms; that

is, ir = argmaxi∈A |Dr(i)|.

3. For every arm i ̸= ir:

• If i ∈ Dr(ir), then we compare i to ir for qr times. The idea here is to use ir as an

anchor against i. We will show that i∗ becomes the candidate ir in a small number

of rounds. Then, this step ensures that we eliminate arms efficiently using i∗ as

an anchor.

• If i /∈ Dr(ir), then i is compared to all arms in A for qr times. This step crucially

protects the algorithm against cases where a sub-optimal arm becomes the can-

didate (and continues to become the candidate). For example, suppose K = [5]

154

and the arms are linearly ordered as 1 ≻ 2 ≻ · · · ≻ 5. Furthermore suppose that

in some round r, we have that (a) 2 defeats 3, 4, 5 and (b) 1 (best arm) defeats

2 but not the others. So, 2 is the candidate in round r; if 1 is not compared to

3, 4, 5, then 2 would continue to be the candidate (leading to high regret).

4. If, for any arm j, there is arm i such that p̂i,j(r) >
1
2
+ γi,j(r), then j is eliminated

from A.

This continues until T total comparisons are performed. See Algorithm 14 for a formal

description. The main result of this section is to show that C2B achieves the guarantees

stated in Theorems 5.3.6 and 5.3.7.

Algorithm 14 C2B (Catching the Condorcet winner in Batches)

1: Input: Arms B, time-horizon T , integer B ≥ 1
2: active arms A ← B, r ← 1, emprical probabilities p̂i,j(0) =

1
2
for all i, j ∈ B2

3: while number of comparisons ≤ T do
4: if A = {i} for some i then play (i, i) for remaining trials
5: Dr(i)← {j ∈ A : p̂i,j(r − 1) > 1

2
+ ci,j(r − 1)}

6: ir ← argmaxi∈A |Dr(i)|
7: for i ∈ A \ {ir} do
8: if i ∈ Dr(ir) then
9: compare (ir, i) for qr times
10: else
11: for each j ∈ A, compare (i, j) for qr times

12: compute p̂i,j(r) values
13: if ∃i, j : p̂i,j(r) >

1
2
+ γi,j(r) then

14: A ← A \ {j}
15: r ← r + 1

Overview of the Analysis. We provide a brief outline of the proofs of our main results.

Let δ > 0 be any value. Towards proving Theorem 5.3.6, we first define two events:

• The first event, denoted G, ensures that i∗ is not eliminated during the execution of

C2B. We show that P(G) ≥ 1− 1/T .

• The second event, denoted E(δ), says that there exists a round C(δ) (defined later)

such that for all r > C(δ), the estimate p̂i,j(r − 1) satisfies the confidence interval of

ci,j(r − 1). Moreover, P(E(δ)) ≥ 1− δ.

155

By union bound, P(G ∩ E(δ)) ≥ 1− δ − 1/T . Together, we use G and E(δ) to argue that:

• the best arm, i∗, is not defeated by any arm i in any round r > C(δ),

• and that there exists a round r(δ) ≥ C(δ) such that for every round after r(δ), arm i∗

defeats every other arm.

Under the event G∩E(δ), we analyze the regret in two parts: (i) regret incurred up to round

r(δ), which is upper bounded by K2
∑

r≤r(δ) q
r and (ii) regret after r(δ), which is the regret

incurred in eliminating sub-optimal arms using i∗ as an anchor. Finally, we can use the high-

probability bound to also obtain a bound on the expected regret, proving Theorem 5.3.7.

7.2.1 The Analysis

In this section, we prove high-probability and expected regret bounds for C2B. Recall that

q = T 1/B, and that q ≥ 2. We first prove the following lemma which will be used to prove

that i∗ is never eliminated.

Lemma 7.2.1. For any batch r ∈ [B], and for any pair (i, j), we have

P (|p̂i,j(r)− pi,j| > γi,j(r)) ≤ 2η,

where η = 1/K2BT .

Proof. Note that E[p̂i,j(r)] = pi,j, and applying Hoeffding’s inequality gives

P (|p̂i,j(r)− pi,j| > γi,j(r)) ≤ 2 exp
(
−2Ni,j(r) · γi,j(r)2

)
≤ 2η.

We first define the good event G as follows.

Definition 7.2.1 (Event G). An estimate p̂i,j(r) at the end of batch r is strongly-correct

if |p̂i,j(r)−pi,j| ≤ γi,j(r). We say that event G occurs if every estimate in every batch r ∈ [B]

is strongly-correct.

156

The following two lemmas show that G occurs with high probability and that i∗ is not

eliminated under G.

Lemma 7.2.2. The probability that every estimate in every batch of C2B is strongly-correct

is at least 1− 1/T .

Proof. Applying Lemma 7.2.1 and taking a union bound over all pairs and batches, we get

that the probability that some estimate is not strongly-correct is at most
(
K
2

)
×B × 2η ≤ 1

T

where η = 1/K2BT . Thus, P(G) ≤ 1
T
.

We now show that, under event G, the best arm i∗ is never eliminated.

Lemma 7.2.3. Conditioned on G, the best arm i∗ is never eliminated from A in the elimi-

nation step of C2B.

Proof. In C2B, an arm j is deleted in batch r iff there is an arm i ∈ A with p̂i,j(r) >

1
2
+ γi,j(r). If i∗ is eliminated due to some arm j, then by definition of event G, we get

pj,i∗ ≥ p̂i,j(r)− γi,j(r) > 1
2
, a contradiction.

High-probability Regret Bound

We now prove Theorem 5.3.6. Fix any δ > 0. We first define another good event as follows.

Definition 7.2.2 (Event E(δ)). An estimate p̂i,j(r) in batch r is weakly-correct if |p̂i,j(r)−

pi,j| ≤ ci,j(r). Let C(δ) := ⌈1
2
logq(1/δ)⌉. We say that event E(δ) occurs if for each batch

r ≥ C(δ), every estimate is weakly-correct.

The next lemma shows that E(δ) occurs with probability at least 1− δ.

Lemma 7.2.4. For all δ > 0, we have

P(¬E(δ)) = P (∃r ≥ C(δ), i, j : |p̂i,j(r)− pi,j| > ci,j(r)) ≤ δ.

Proof. For any pair i, j of arms and round r, let Bi,j(r) denote the event that |p̂i,j(r)−pi,j| >

ci,j(r). Note that Nij(r) ≤
∑r

s=1 qs ≤ 2qr. For any integer n, let sij(n) denote the sample

157

average of n independent Bernoulli r.v.s with probability pij. By Hoeffding’s bound,

P[|sij(n)− pij| > c] ≤ 2e−2nc2 , for any c ∈ [0, 1].

We now bound

P[Bij(r)] ≤
2qr∑
n=0

P[Bij(r) ∧ Nij(r) = n]

≤
2qr∑
n=0

P

[
|sij(n)− pij| >

√
2 log(2K2qr)

n

]
≤

2qr∑
n=0

2 exp

(
−2n · 2 log(2K

2qr)

n

)
≤ 4qr ·

1

(2K2qr)4
≤ 1

4K2 · q2r

The second inequality uses the definition of cij(r) when Nij(r) = n. The last inequality

uses K ≥ 2. Next, by a union bound over arms and rounds, we can write the desired

probability as

P(∃r ≥ C(δ), i, j : Bi,j(r)) ≤
∑

r≥C(δ)

∑
i<j

P(Bi,j(r))

≤
∑

r≥C(δ)

(
K

2

)
· 1

4K2 · q2r
≤
∑

r≥C(δ)

1

8q2r

≤
∑

r≥C(δ)

1

2q2r
=

1

2q2C(δ)
·
(
1 +

1

q2
+

1

q4
+ · · ·

)
≤ 1

q2C(δ)
≤ δ

(7.3)

The second inequality above uses the bound on P[Bij(r)]. The first inequality in (7.3) uses

qr = ⌊qr⌋ ≥ qr − 1 ≥ qr

2
as q ≥ 2. The last inequality in (7.3) uses the definition of C(δ).

The lemma now follows by the definition of event ¬E(δ) as ∃r ≥ C(δ), i, j : Bi,j(r).

We will analyze our algorithm under both events G and E(δ). Conditioned on these, we

next show:

• The best arm, i∗, is not defeated by any arm i in any round r > C(δ) (Lemma 7.2.5).

• Furthermore, there exists a round r(δ) ≥ C(δ) such that arm i∗ defeats every other

arm, in every round after r(δ) (Lemma 7.2.7).

158

Intuitively, these observations imply that our algorithm identifies the best arm after r(δ)

rounds. Thus, beyond round r(δ), we only perform pairwise comparisons of the form (i∗, i)

for i ̸= i∗: thus, i∗ is used as an anchor to eliminate sub-optimal arms. Note that event G

is required to ensure that i∗ is not eliminated (especially in rounds before C(δ) where the

Lemma 7.2.4 does not apply). We now prove the aforementioned observations.

Lemma 7.2.5. Conditioned on G and E(δ), for any round r > C(δ), arm i∗ is not defeated

by any other arm, i.e., i∗ /∈ ∪i ̸=i∗Dr(i).

Proof. Fix any round r ≥ C(δ) + 1. Suppose that i∗ ∈ Dr(i) for some other arm i. This

implies that p̂i,i∗(r−1) > 1
2
+ci,i∗(r−1). But under event E(δ), we have |p̂i,i∗(r−1)−pi,i∗| ≤

ci,i∗(r − 1) because r − 1 ≥ C(δ). Combined, these two observations imply pi,i∗ > 1
2
, a

contradiction.

To proceed, we need the following definitions.

Definition 7.2.3. The candidate ir of round r is called the champion if |Dr(ir)| = |A|−1;

that is, if ir defeats every other active arm.

Definition 7.2.4. Let r(δ) ≥ C(δ) + 1 be the smallest integer such that

qr(δ) ≥ 2A logA, where A :=
32

∆2
min

· log(2K2).

We use the following inequality based on this choice of r(δ).

Lemma 7.2.6. The above choice of r(δ) satisfies

qr >
8

∆2
min

· log
(
2K2qr

)
, ∀r ≥ r(δ).

Proof. Using the fact that qr ≤ qr, it suffices to show qr ≥ 8
∆2

min
· (log(2K2) + log qr). More-

over,

log(2K2) + log qr ≤
(
1 + log(2K2)

)
· (1 + log qr) ≤ 4 · log(2K2) · log qr,

159

where the last inequality uses K ≥ 2, r ≥ r(δ) ≥ 1 and q ≥ 2. So, it suffices to show:

qr > A · log(qr), ∀r ≥ r(δ), where A =
32

∆2
min

· log(2K2) (7.4)

Below, let x = qr, R := 2A logA and function f(x) := x − A log x. We will show that

f(x) > 0 for all x ≥ R, which would imply (7.4) because qr(δ) ≥ R. As R ≥ A, and f is

increasing for x ≥ A, it suffices to show that f(R) ≥ 0. Indeed,

f(R)

A
= 2 logA− log(2A logA) = logA− log(2 logA) > 0,

where the inequality uses A ≥ 8.

Then, we have the following.

Lemma 7.2.7. Conditioned on G and E(δ), the best arm i∗ is the champion in every round

r > r(δ).

Proof. We first argue that i∗ is compared to all active arms in each round r ≥ r(δ). By

Lemma 7.2.3, we know i∗ ∈ A. By Lemma 7.2.5, we have i∗ /∈ Dr(j) for all j ̸= i∗ because

r ≥ r(δ) ≥ 1 + C(δ). If candidate ir ̸= i∗, then i∗ will be compared to all j ∈ A (since

i∗ /∈ Dr(ir)). On the other hand, if ir = i∗, then (1) for any j ∈ Dr(i
∗), arm j is only

compared to i∗, and (2) for any j ∈ A \ Dr(i
∗), arm j is compared to all active arms

including i∗.

Next, we show that for any round r ≥ r(δ) + 1, arm i∗ defeats all other arms, i.e.,

|Dr(i
∗)| = |A| − 1. This would imply that ir = i∗ and i∗ is the champion. Consider any arm

j ∈ A \ i∗. Since i∗ is compared to all active arms in round r − 1 ≥ r(δ), we have

Ni∗,j(r − 1) ≥ qr−1 >
8

∆2
min

· log
(
2K2qr−1

)
,

where the second inequality is by Lemma 7.2.6 with r − 1 ≥ r(δ). Now, by definition, we

have

ci∗,j(r − 1) =

√
2 log (2K2qr−1)

Ni∗,j(r − 1)
<

√
2 log (2K2qr−1)
8

∆2
min

log (2K2qr−1)
=

∆min

2
.

160

Given this, it is easy to show that i∗ defeats arm j in round r. Conditioned on E(δ), we

know that |p̂i∗,j(r − 1)− pi∗,j| ≤ ci∗,j(r − 1) < ∆min

2
. Then, we have

p̂i∗,j(r − 1) > pi∗,j −
∆min

2
=

1

2
+ ∆j −

∆min

2
≥ 1

2
+

∆min

2
>

1

2
+ ci∗,j(r − 1).

Therefore, j ∈ Dr(i
∗). It now follows that for any round r ≥ r(δ) + 1, arm i∗ is the

champion.

We are now ready to prove Theorem 5.3.6.

Proof of Theorem 5.3.6. First, recall that in round r of C2B, any pair is compared qr = ⌊qr⌋

times where q = T 1/B. Since qB = T , C2B uses at most B rounds.

For the rest of proof, we fix δ > 0. We now analyze the regret incurred by C2B, conditioned

on events G and E(δ). Recall that P(G) ≥ 1 − 1/T (Lemma 7.2.2), and P(E(δ)) ≥ 1 − δ

(Lemma 7.2.4). Thus, P(G∩E(δ)) ≥ 1− δ−1/T . Let R1 and R2 denote the regret incurred

before and after round r(δ) (see Definition 7.2.4) respectively.

Bounding R1. This is the regret incurred up to (and including) round r(δ). We upper

bound the regret by considering all pairwise comparisons every round r ≤ r(δ).

R1 ≤ K2 ·
∑

r≤r(δ)

qr ≤ K2 ·
∑

r≤r(δ)

qr ≤ 2K2 · qr(δ)

≤ 2K2 ·max
{
q · 2A logA , qC(δ)+1

}
,

where the last inequality uses Definition 7.2.4; recall A = 32
∆2

min
· log(2K2). Plugging in the

value of C(δ) ≤ 1 + 1
2
logq(1/δ), we obtain

R1 ≤ O(K2) ·max

{
q · logK

∆2
min

· log
(
logK

∆min

)
, q2
√

1

δ

}
. (7.5)

Bounding R2. This is the regret in rounds r ≥ r(δ) + 1. By Lemma 7.2.7, arm i∗ is the

champion in all these rounds. So, the only comparisons in these rounds are of the form (i∗, j)

for j ∈ A.

161

Consider any arm j ̸= i∗. Let Tj be the total number of comparisons that j participates

in after round r(δ). Let r be the penultimate round that j is played in. We can assume that

r ≥ r(δ) (otherwise arm j will never participate in rounds after r(δ), i.e., Tj = 0). As arm j

is not eliminated after round r,

p̂i∗,j(r) ≤
1

2
+ γi∗,j(r).

Moreover, by E(δ), we have p̂i∗,j(r) ≥ pi∗,j − ci∗,j(r) because r ≥ r(δ) ≥ C(δ). So,

1

2
+ ∆j = pi∗,j ≤ p̂i∗,j(r) + ci∗,j(r) ≤

1

2
+ γi∗,j(r) + ci∗,j(r).

It follows that

∆j ≤ γi∗,j(r) + ci∗,j(r) ≤
3√
2

√
log(2K2BT)

Ni∗,j(r)

where the final inequality follows by definition of c and γ. On re-arranging, we get Ni∗,j(r) ≤
9 log(2K2BT)

2∆2
j

. As r + 1 is the last round that j is played in, and j is only compared to i∗ in

each round after r(δ),

Tj ≤ Ni∗,j(r + 1) ≤ Ni∗,j(r) + 2q ·Ni∗,j(r) ≤
15q · log(2K2BT)

∆2
j

.

The second inequality follows since j is compared to i∗ in rounds r and r+1, and the number

of comparisons in round r + 1 is ⌊qr+1⌋ ≤ q · (2qr) ≤ 2q · Ni∗,j(r). Adding over all arms j,

the total regret accumulated beyond round r(δ) is

R2 =
∑
j ̸=i∗

Tj∆j ≤
∑
j ̸=i∗

O

(
q · log(KT)

∆j

)
. (7.6)

Combining (7.5) and (7.6), and using q = T 1/B, we obtain

R(T) ≤ O

(
T 1/B · K

2 log(K)

∆2
min

· log
(
logK

∆min

))
+ O

(
T 2/B ·K2 ·

√
1

δ

)
+
∑
j ̸=i∗

O

(
T 1/B · log(KT)

∆j

)
.

This completes the proof Theorem 5.3.6.

162

Expected Regret Bound

In this section, we present the proof of Theorem 5.3.7. We first state the definitions needed

in the proof. Let FX(·) denote the cumulative density function (CDF) of a random variable

X; that is, FX(x) = P(X ≤ x). The inverse CDF of X, denoted F−1
X , is defined as F−1

X (z) =

inf{x : P(X ≤ x) ≥ z} where z ∈ [0, 1]. We will use the identity E[X] =
∫ 1

0
F−1
X (z)dz.

Proof of Theorem 5.3.7. First, note that in round r of C2B, any pair is compared qr = ⌊qr⌋

times where q = T 1/B. Since qB = T , C2B uses at most B rounds.

Let R(T) be the random variable denoting the regret incurred by C2B. By Theorem 5.3.6,

we know that with probability at least 1− δ − 1/T ,

R(T) ≤ O

(
T 1/B · K

2 log(K)

∆2
min

· log
(
logK

∆min

))
+ O

(
T 2/B ·K2 ·

√
1

δ

)
+
∑
j ̸=i∗

O

(
T 1/B · log(KT)

∆j

)
.

Thus, F−1
R(T)(1− δ − 1/T) ≤ G(δ) where

G(δ) := A+O

(
T 2/B ·K2 ·

√
1

δ

)
+B

where to simplify notation we setA = O
(
T 1/B · K

2 log(K)

∆2
min

· log
(

logK
∆min

))
andB =

∑
j ̸=i∗ O

(
T 1/B ·log(KT)

∆j

)
.

Using the identity for expectation of a random variable, we get

E[R(T)] =
∫ 1

0

F−1
R(T)(z)dz

=

∫ 1− 1
T

0

F−1
R(T)(z)dz +

∫ T

1− 1
T

F−1
R(T)(z)dz︸ ︷︷ ︸

≤T · 1
T
=1

≤
∫ 1− 1

T

0

F−1
R(T)(z)dz + 1

=

∫ 0

1− 1
T

F−1
R(T)

(
1− δ − 1

T

)
(−dδ) + 1

≤
∫ 1− 1

T

0

G(δ)dδ + 1

≤ A+O
(
T 2/B ·K2

)
+B + 1

163

where the fourth equality follows by setting 1− q− 1/T = δ and the final inequality follows

since
∫ 1

0

(
1
δ

)1/2 ≤ 2. Thus,

E[R(T)] ≤ O

(
T 1/B · K

2 log(K)

∆2
min

· log
(
logK

∆min

))
+ O

(
T 2/B ·K2

)
+
∑
j ̸=i∗

O

(
T 1/B · log(KT)

∆j

)
.

This completes the proof of Theorem 5.3.7.

7.3 Computational Results

In this section, we provide details of our computational experiments. The goal of our experi-

ments is to answer the following questions: (i) How does the regret of C2B using B = ⌊log(T)⌋

batches compare to that of existing fully sequential as well as batched algorithms? and (ii)

Can the regret of C2B match the regret of the best known sequential algorithms; if yes,

then how many rounds suffice to achieve this? Towards answering (i), we compare C2B to a

representative set of sequential algorithms for dueling bandits using the library due to [76].

We compare C2B to the sequential algorithms RUCB [117], RMED [76], and Beat-the-

Mean (BTM) [114]. We allow these algorithms to work as prescribed; that is, they work in

B = T batches. The reason that we chose these sequential algorithms is that our batched

algorithm (C2B) is based on a similar paradigm, and such a comparison demonstrates the

power of adaptivity in this context. We also compare C2B to the batched algorithm SCOMP2

[4]. We plot the cumulative regret R(t) incurred by the algorithms against time t. We set

B = ⌊log(T)⌋ for C2B and SCOMP2 in this experiment. For (ii), we increased B by a small

amount; we found that the performance of C2B improves noticeably when given a constant

number of additional rounds (we use B = ⌊log(T)⌋ + 6 in this experiment). We perform

these experiments using the following real-world datasets.

Six rankers. This dataset is based on the 6 retrieval functions used in the engine of

ArXiv.org.

Sushi. The Sushi dataset is based on the Sushi preference dataset [72] that contains the

preference data regarding 100 types of Sushi. A preference dataset using the top-16 most

popular types of sushi is obtained.

164

Irish election data. The Irish election data for Dublin and Meath is available at pre-

flib.org. It contains partial preference orders over candidates. As in [5], these are transformed

into preference matrices by selecting a subset of candiates to ensure that a Condorcet winner

exists. There are 12 candidates in the Irish-Meath dataset, and 8 in the Irish-Dublin

dataset.

MSLR and Yahoo! data. We also run experiments on two web search ranking datasets:

the Microsoft Learning to Rank (MSLR) dataset [94] and the Yahoo! Learning to Rank

Challenge Set 1 [28]. These datasets have been used in prior work on online ranker evaluation

[116, 81]. We use preference matrices generated using the “navigational” configuration (see

[81] for details). The MSLR dataset has 136 rankers and the Yahoo! dataset has 700 rankers.

We sample 30 rankers from each dataset while ensuring the existence of a Condorcet winner.

In this way, we obtain two datasets, denoted MSLR30 and Yahoo30.

Note that there exists a Condorcet winner in all datasets. We repeat each experiment

20 times and report the average regret. In our algorithm, we use the KL-divergence based

confidence bound due to [76] for elimination as it performs much better empirically, and

our theoretical bounds continue to hold (see §7.4). This KL-divergence based elimination

criterion eliminates an arm i in round r if Ii(r) − I∗(r) > log(T) + f(K) where Ii(r) =∑
j:p̂i,j(r)<

1
2
Ni,j(r) ·DKL(p̂i,j(r),

1
2
) and I∗(r) = minj∈[K] Ii(r).

Computational Results. As mentioned earlier, we compare our algorithms against a

representative set of sequential dueling bandits algorithms (RUCB, RMED, and BTM). We

set α = 0.51 for RUCB, and f(K) = 0.3K1.01 for RMED and C2B, and γ = 1.3 for BTM:

these parameters are known to perform well both theoretically and empirically [76]. We

set T = 106 for MSLR30 and Yahoo30 datasets (as they have larger number of arms), and

T = 105 for the remaining four. For the first set of experiments, we set B = ⌊log(T)⌋. We

observe that C2B always outperforms BTM and beats SCOMP2 on most of the datasets.

We observe that even when SCOMP2 beats C2B it has a slightly linear curve (implying that

its regret would keep increasing as T increases) while the regret curve of C2B is mostly flat.

Furthermore, C2B performs comparably to RUCB in all datasets except Yahoo30. We plot

the results in Figure 7.1. In the second set of experiments, we set B = ⌊log(T)⌋ + 6. We

observe that C2B always outperforms RUCB and, in fact, performs comparably to RMED

165

0.0 0.2 0.4 0.6 0.8 1.0
t 1e5

0

1

2

3

4

Re
gr

et
 R

(t)

1e3
C2B
RMED
SCOMP2
RUCB
BTM

(a) Six rankers

0.0 0.2 0.4 0.6 0.8 1.0
t 1e5

0

2

4

6

8

Re
gr

et
 R

(t)

1e3

C2B
RMED
SCOMP2
RUCB
BTM

(b) Sushi

0.0 0.2 0.4 0.6 0.8 1.0
t 1e5

0

1

2

3

4

Re
gr

et
 R

(t)

1e3

C2B
RMED
SCOMP2
RUCB
BTM

(c) Irish-Meath

0.0 0.2 0.4 0.6 0.8 1.0
t 1e5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Re
gr

et
 R

(t)
1e3

C2B
RMED
SCOMP2
RUCB
BTM

(d) Irish-Dublin

0.0 0.2 0.4 0.6 0.8 1.0
t 1e6

0

1

2

3

4

5

Re
gr

et
 R

(t)

1e4

C2B
RMED
SCOMP2
RUCB
BTM

(e) MSLR30

0.0 0.2 0.4 0.6 0.8 1.0
t 1e6

0

1

2

3

4

5

6

Re
gr

et
 R

(t)

1e4
C2B
RMED
SCOMP2
RUCB
BTM

(f) Yahoo30

Figure 7.1: Regret v/s t plots of algorithms when B = ⌊log(T)⌋

166

0.0 0.2 0.4 0.6 0.8 1.0
t 1e5

0

1

2

3

4

Re
gr

et
 R

(t)

1e3
C2B
RMED
SCOMP2
RUCB
BTM

(a) Six rankers

0.0 0.2 0.4 0.6 0.8 1.0
t 1e5

0

2

4

6

8

Re
gr

et
 R

(t)

1e3

C2B
RMED
SCOMP2
RUCB
BTM

(b) Sushi

0.0 0.2 0.4 0.6 0.8 1.0
t 1e5

0

1

2

3

4

Re
gr

et
 R

(t)

1e3

C2B
RMED
SCOMP2
RUCB
BTM

(c) Irish-Meath

0.0 0.2 0.4 0.6 0.8 1.0
t 1e5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Re

gr
et

 R
(t)

1e3

C2B
RMED
SCOMP2
RUCB
BTM

(d) Irish -Dublin

0.0 0.2 0.4 0.6 0.8 1.0
t 1e6

0

1

2

3

4

5

Re
gr

et
 R

(t)

1e4
C2B
RMED
SCOMP2
RUCB
BTM

(e) MSLR30

0.0 0.2 0.4 0.6 0.8 1.0
t 1e6

0

1

2

3

4

5

6

Re
gr

et
 R

(t)

1e4
C2B
RMED
SCOMP2
RUCB
BTM

(f) Yahoo30

Figure 7.2: Regret v/s t plots of algorithms when B = ⌊log(T)⌋+ 6

167

on all datasets except Yahoo30. We plot the results in Figure 7.2. Finally, we note that

SCOMP2 exhibits varying performance across runs (even on the same dataset) and we think

that this is due to the randomness involved in selecting the “seed set”.

7.4 The Batched Algorithm with KL-based Elimina-

tion Criterion

In this section, we modify C2B to use a Kullback-Leibler divergence based elimination crite-

rion. We provide a complete description of the algorithm, denoted C2B-KL, in Algorithm 15.

In what follows, we highlight the main differences of C2B-KL from C2B. Recall the following

notation. We use A to denote the current set of active arms; i.e., the arms that have not

been eliminated. We use index r for rounds or batches. If pair (i, j) is compared in round

r, it is compared qr = ⌊qr⌋ times where q = T 1/B. We define the following quantities at the

end of each round r:

• Ni,j(r) is the total number of times the pair (i, j) has been compared.

• p̂i,j(r) is the frequentist estimate of pi,j, i.e.,

p̂i,j(r) =
i wins against j until end of round r

Ni,j(r)
. (7.7)

• A confidence-interval radius for each (i, j) pair:

ci,j(r) =

√
2 log(2K2qr)

Ni,j(r)

• We define a term Ij(r) which, at a high-level, measures how unlikely it is for j to be

the Condorcet winner at the end of batch r:

Ij(r) =
∑

i:p̂i,j(r)≥ 1
2

DKL

(
p̂i,j(r),

1

2

)
·Ni,j(r),

168

where DKL(p, q) denotes the Kullback–Leibler divergence between two Bernoulli dis-

tributions: B(p) and B(q). We define I∗(r) = minj∈A Ij(r).

The B-round algorithm, C2B-KL, proceeds exactly as C2B. The only change is in the

elimination criterion, which we describe next.

Elimination Criterion. In round r, if, for any arm j, we have Ij(r) − I∗(r) > log(T) +

f(K), then j is eliminated from A. Here f(K) is a non-negative function of K, independent

of r.

The main result of this section is to show that C2B-KL achieves the following guarantee.

Theorem 7.4.1. For any integer B ≥ 1, there is an algorithm for the K-armed dueling

bandit problem that uses at most B rounds. Furthermore, for any δ > 0, with probability at

least 1− δ− 1
T
· eK log(C)−f(K), where C is some constant (see Lemma 7.4.2), its regret under

the Condorcet condition is at most

R(T) ≤ O

(
T 1/B · K

2 log(K)

∆2
min

· log
(
logK

∆min

))
+O

(
T 2/B ·K2 ·

√
1

δ

)
+
∑
j ̸=i∗

O

(
T 1/B · log(T)

∆j

)

+
∑
j ̸=i∗

O

(
T 1/B · f(K)

∆j

)

Remark. Setting f(K) > K log(C), we get the same asymptotic expected regret bound

as in Theorem 5.3.7. Following [76], we set f(K) = 0.3K1.01 in our experiments.

We require the following result in the proof of Theorem 7.4.1.

Fact 7.4.1. For any µ and µ2 satisfying 0 < µ2 < µ < 1. Let C1(µ, µ2) = (µ−µ2)
2/(2µ(1−

µ2)). Then, for any µ3 ≤ µ2,

DKL(µ3, µ)−DKL(µ3, µ2) ≥ C1(µ, µ2) > 0.

The high-level outline of the analysis is exactly the same as that of C2B. For completeness,

we provide the analysis in the following section; however, we skip the proofs of lemmas that

follow from the analysis of C2B.

169

Algorithm 15 C2B-KL

1: Input: Arms B, time-horizon T , integer B ≥ 1
2: active arms A ← B, r ← 1, emprical probabilities p̂i,j(0) =

1
2
for all i, j ∈ B2

3: while number of comparisons ≤ T do
4: if A = {i} for some i then play (i, i) for remaining trials
5: Dr(i)← {j ∈ A : p̂i,j(r − 1) > 1

2
+ ci,j(r − 1)}

6: ir ← argmaxi∈A |Dr(i)|
7: for i ∈ A \ {ir} do
8: if i ∈ Dr(ir) then
9: compare (ir, i) for qr times
10: else
11: for each j ∈ A, compare (i, j) for qr times

12: compute p̂i,j(r) values
13: if ∃j : Ij(r)− I∗(r) > log(T) + f(K) then
14: A ← A \ {j}
15: r ← r + 1

7.4.1 The Analysis

In this section, we prove the high-probability regret bound for C2B-KL. Recall that q = T 1/B,

and that q ≥ 2. We first show that, with high probability, i∗ is not eliminated during the

execution of the algorithm. The following lemma formalizes this.

Lemma 7.4.2. Let G denote the event that the best arm i∗ is not eliminated during the

execution of C2B-KL. We can bound the probability of G as follows.

P(G) ≤ 1

T
· eK log(C)−f(K),

where C = maxj C(j)+1, is a constant, with C(j) =

 1

e
DKL(pj,i∗ ,1/2)−1

+ e
C1(pi∗,j ,1/2)(

e
C1(pi∗,j ,1/2)−1

)2

.

Proof. Let nj denote the number of times i∗ and j are compared. Let p̂i∗,j(nj) denote the

frequentist estimate of pi∗,j when i∗ and j are compared nj times (we will abuse notation

and use p̂i∗,j when nj is clear from context). Let S ∈ 2[K]\{i∗} \ ∅, and consider vector

{nj ∈ N : j ∈ S}. We define A =
∑

j∈S DKL (p̂j,i∗ , 1/2) · nj. Let D(S; {nj : j ∈ S}) denote

the event that i∗ and j are compared nj times and p̂i∗,j ≤ 1/2 for all j ∈ S, and that

A > log(T) + f(K). The probability of this event upper bounds the probability that i∗

170

is eliminated (as per our elimination criterion) when i∗ and j are compared nj times, and

p̂i∗,j ≤ 1/2 for all j ∈ S. We will show that

P(D(S; {nj : j ∈ S})) ≤
e−f(K)

T

∏
j∈S

(
e−njDKL(pj,i∗ ,1/2) + nje

C1(pj,i∗ ,1/2)
)

(7.8)

where C1(µ1, µ2) = (µ1 − µ2)
2/(2µ1(1− µ2)). Using the above, we first show that by taking

a union bound over all S ∈ 2[K]\{i∗} \ ∅ and {nj : j ∈ S}, we obtain the final result. We have

P(G) ≤
∑

S∈2[K]\{i∗}\∅

∑
nj∈N|S|

P(D(S; {nj : j ∈ S}))

≤
∑

S∈2[K]\{i∗}\∅

∑
nj∈N|S|

e−f(K)

T

∏
j∈S

(
e−njDKL(pj,i∗ ,1/2) + nje

C1(pj,i∗ ,1/2)
)

=
e−f(K)

T

∑
S∈2[K]\{i∗}\∅

∏
j∈S

∑
nj∈N

(
e−njDKL(pj,i∗ ,1/2) + nje

C1(pj,i∗ ,1/2)
)

(7.9)

=
e−f(K)

T

∑
S∈2[K]\{i∗}\∅

∏
j∈S

 1

eDKL(pj,i∗ ,1/2) − 1
+

eC1(pj,i∗ ,1/2)(
eC1(pj,i∗ ,1/2) − 1

)2
 (7.10)

≤ e−f(K)

T

∑
S∈2[K]\{i∗}\∅

(C − 1)|S| ≤ e−f(K)

T
· CK (7.11)

=
1

T
· eK log(C)−f(K)

where (7.9) follows by swapping the order of summation and multiplication, (7.10) uses∑∞
n=1 e

−nx = 1/(ex − 1) and
∑∞

n=1 ne
−nx = ex/(ex − 1)2, and (7.11) follows by letting

C(j) =

 1

e
DKL(pj,i∗ ,1/2)−1

+ e
C1(pj,i∗ ,1/2)(

e
C1(pj,i∗ ,1/2)−1

)2

, C = maxj C(j)+1 and the binomial theorem.

To complete the proof, we need to prove (7.8).

For the remainder of this proof, we fix S ∈ 2[K]\{i∗} \ ∅, and vector {nj ∈ N : j ∈ S}.

Observe that

P(D(S; {nj : j ∈ S})) = P (A > log(T) + f(K)) = P
(
T < e−f(K) · eA

)

171

where we defined A =
∑

j∈S DKL (p̂j,i∗ , 1/2) · nj. By Markov’s inequality, we have

P
(
e−f(K) · eA > T

)
≤ E[e−f(K) · eA]

T
=
e−f(K)

T
· E[eA] (7.12)

where the last equality follows since f(K) is constant (with respect to {nj} values). So, it

suffices to bound E[eA]. Towards this end, we define the following term:

Pj(xj) = P

(
p̂j,i∗ ≥

1

2
and DKL

(
p̂j,i∗ ,

1

2

)
≥ xj

)
.

Then, we have

E[eA] =
∫
{xj}∈[0,log(2)]|S|

exp

(∑
j∈S

njxj

)∏
j∈S

d(−Pj(xj))

=
∏
j∈S

∫
xj∈[0,log 2]

enjxjd(−Pj(xj)) (7.13)

=
∏
j∈S

(
[−enjxjPj(xj)]

log(2)
0 +

∫
xj∈[0,log(2)]

nje
njxjPj(xj)dxj

)
(7.14)

=
∏
j∈S

(
Pj(0) +

∫
xj∈[0,log(2)]

nje
njxjPj(xj)dxj

)

≤
∏
j∈S

(
e−njDKL(pj,i∗ ,1/2) +

∫
xj∈[0,log(2)]

nje
njxje−nj(xj+C1(pj,i∗ ,1/2))dxj

)
(7.15)

=
∏
j∈S

(
e−njDKL(pj,i∗ ,1/2) +

∫
xj∈[0,log(2)]

nje
C1(pj,i∗ ,1/2)dxj

)

≤
∏
j∈S

(
e−njDKL(pj,i∗ ,1/2) + nje

C1(pj,i∗ ,1/2)
)

where (7.13) follows from the independence of the comparisons. We obtain (7.14) by ap-

plying integration by parts, (7.15) follows from the Chernoff bound and Fact 7.4.1; here

C1(µ1, µ2) = (µ1 − µ2)
2/(2µ1(1 − µ2)), and the final inequality follows by observing that∫

xj∈[0,log(2)] nje
C1(pj,i∗ ,1/2)dxj = nje

C1(pj,i∗ ,1/2) ·
∫
xj∈[0,log(2)] dxj = nje

C1(pj,i∗ ,1/2) log(2). Note

that log refers to the natural logarithm, so we have log(2) ≤ 1. Combined with (7.12), this

completes the proof of (7.8).

172

High-probability Regret Bound

We now prove Theorem 7.4.1. Fix any δ > 0. We first define event E(δ) as before.

Definition 7.4.1 (Event E(δ)). An estimate p̂i,j(r) in batch r is weakly-correct if |p̂i,j(r)−

pi,j| ≤ ci,j(r). Let C(δ) := ⌈1
2
logq(1/δ)⌉. We say that event E(δ) occurs if for each batch

r ≥ C(δ), every estimate is weakly-correct.

The next lemma shows that E(δ) occurs with probability at least 1− δ. Since E(δ) does

not depend on the elimination criterion, its proof follows from the analysis of C2B.

Lemma 7.4.3. For all δ > 0, we have

P(¬E(δ)) = P (∃r ≥ C(δ), i, j : |p̂i,j(r)− pi,j| > ci,j(r)) ≤ δ.

As before, we analyze our algorithm under both events G and E(δ). Recall that, under

event G, the best arm i∗ is not eliminated. Conditioned on these, we next show:

• The best arm, i∗, is not defeated by any arm i in any round r > C(δ) (Lemma 7.4.4).

• Furthermore, there exists a round r(δ) ≥ C(δ) such that arm i∗ defeats every other

arm, in every round after r(δ) (Lemma 7.4.6).

We re-state the formal lemmas next.

Lemma 7.4.4. Conditioned on G and E(δ), for any round r > C(δ), arm i∗ is not defeated

by any other arm, i.e., i∗ /∈ ∪i ̸=i∗Dr(i).

To proceed, we need the following definitions.

Definition 7.4.2. The candidate ir of round r is called the champion if |Dr(ir)| = |A|−1;

that is, if ir defeats every other active arm.

Definition 7.4.3. Let r(δ) ≥ C(δ) + 1 be the smallest integer such that

qr(δ) ≥ 2A logA, where A :=
32

∆2
min

· log(2K2).

We use the following inequality based on this choice of r(δ).

173

Lemma 7.4.5. The above choice of r(δ) satisfies

qr >
8

∆2
min

· log
(
2K2qr

)
, ∀r ≥ r(δ).

Then, we have the following.

Lemma 7.4.6. Conditioned on G and E(δ), the best arm i∗ is the champion in every round

r > r(δ).

We are now ready to prove Theorem 7.4.1.

Proof of Theorem 7.4.1. First, recall that in round r of C2B, any pair is compared qr = ⌊qr⌋

times where q = T 1/B. Since qB = T , C2B uses at most B rounds.

For the rest of proof, we fix δ > 0. We now analyze the regret incurred by C2B, conditioned

on eventsG and E(δ). Recall thatP(G) ≥ 1− 1
T
·eK log(C)−f(K) (Lemma 7.4.2), andP(E(δ)) ≥

1− δ (Lemma 7.4.3). Thus, P(G ∩E(δ)) ≥ 1− δ − 1
T
· eK log(C)−f(K). Let R1 and R2 denote

the regret incurred before and after round r(δ) (see Definition 7.4.3) respectively.

Bounding R1. We can bound R1 as in the proof of Theorem 5.3.6; so, we get

R1 ≤ O(K2) ·max

{
q · logK

∆2
min

· log
(
logK

∆min

)
, q2
√

1

δ

}
. (7.16)

Bounding R2. This is the regret in rounds r ≥ r(δ) + 1. By Lemma 7.4.6, arm i∗ is the

champion in all these rounds. So, the only comparisons in these rounds are of the form (i∗, j)

for j ∈ A.

Consider any arm j ̸= i∗. Let Tj be the total number of comparisons that j participates

in after round r(δ). Let r be the penultimate round that j is played in. We can assume that

r ≥ r(δ) (otherwise arm j will never participate in rounds after r(δ), i.e., Tj = 0). As arm j

is not eliminated after round r,

Ij(r)− I∗(r) ≤ log(T) + f(K).

174

By Lemma 7.4.6, I∗(r) = 0 (since i∗ is the champion, the summation is empty). So, we have

Ij(r) ≤ log(T) + f(K). Observe that

Ij(r) ≥ DKL

(
p̂i∗,j(r),

1

2

)
Ni∗,j(r) (7.17)

We can lower bound DKL

(
p̂i∗,j(r),

1
2

)
as follows.

DKL

(
p̂i∗,j(r),

1

2

)
≥
(
p̂i∗,j(r)−

1

2

)2

≥
(
pi∗,j − ci∗,j(r)−

1

2

)2

≥
(
∆j

2

)2

where the first inequality follows from Pinsker’s inequality, the second inequality uses Lemma 7.4.3

and the final inequality uses the fact that ci∗,j(r) ≤ ∆min

2
, which follows by the choice of r(δ).

Plugging this into (7.17), we get

∆2
j

4
·Ni∗,j(r) ≤ log(T) + f(K)

which on re-arranging gives

Ni∗,j(r) ≤
4(log(T) + f(K))

∆2
j

.

As r + 1 is the last round that j is played in, and j is only compared to i∗ in each round

after r(δ),

Tj ≤ Ni∗,j(r + 1) ≤ Ni∗,j(r) + 2q ·Ni∗,j(r) ≤
12q · (log(T) + f(K))

∆2
j

.

The second inequality follows since j is compared to i∗ in rounds r and r+1, and the number

of comparisons in round r + 1 is ⌊qr+1⌋ ≤ q · (2qr) ≤ 2q · Ni∗,j(r). Adding over all arms j,

the total regret accumulated beyond round r(δ) is

R2 =
∑
j ̸=i∗

Tj∆j ≤
∑
j ̸=i∗

O

(
q · (log(T) + f(K))

∆j

)
. (7.18)

175

Combining (7.16) and (7.18), and using q = T 1/B, we obtain

R(T) ≤ O

(
T 1/B · K

2 log(K)

∆2
min

· log
(
logK

∆min

))
+O

(
T 2/B ·K2 ·

√
1

δ

)
+
∑
j ̸=i∗

O

(
T 1/B · log(T)

∆j

)

+
∑
j ̸=i∗

O

(
T 1/B · f(K)

∆j

)

This completes the proof Theorem 7.4.1.

176

Chapter 8

Directions for Future Work

We conclude this thesis with a couple of directions for future work.

Batched Algorithms for Other Stochastic Optimization Problems. A generaliza-

tion of SSC and ScnSC asks for covering a submodular function when the costs of the stochas-

tic items are given by a metric; for example, items may correspond to physical locations and

‘selecting’ an item corresponds to moving to the selected location using a shortest path. We

can extend the approach from Chapter 2 to handle such costs and provide algorithms that

obtain good approximation guarantees under limited adaptivity. The deterministic problem

is well understood [67] but the stochastic variant has not yet been studied. The stochastic

variant can be used to model the Informative Path Planning (IPP) problem that has appli-

cations in UAV Search-and-Rescue and Equivalence Class Determination [82] and warrants

investigation. Furthermore, it would be interesting to investigate other models for the UAV

Search-and-Rescue problem and design practical algorithms with limited adaptivity for it;

for example, what if we have k UAVs that can communicate in some limited way? Can we

design algorithms that achieve good theoretical guarantees while being easy to implement in

practice?

The concept of adaptive submodularity generalizes SSC and captures certain problems that

are not captured by SSC, for example, the influence maximization problem. [56] show that

influence maximization under the independent cascade model and the full adoption model

are special cases of adaptive submodularity. Hence, guarantees for adaptive submodular-

177

ity (under full/limited adaptivity) imply guarantees for the influence maximization problem

under these models. However, as demonstrated by the results in Chapter 4, we can obtain

better guarantees for specific problems by exploiting the inherent structure in the problem;

for example, we obtain a constant factor non-adaptive solution for SSClass whereas taking

SSClass as a special case of SSC does not give us such strong guarantees. The influence

maximization problem captures diffusion dynamics (depending on the model) and has im-

portant applications in capturing spread of epidemics and viral marketing. A direction for

future research is to design algorithms with limited adaptivity for the influence maximization

problem.

Stochastic Optimization with Bandit Feedback. In many stochastic optimization

problems involving uncertainty in the input (for example, SSC, ScnSC and SSClass), a com-

mon assumption is that the distribution over input instances is known. While this assumption

holds in settings with readily available data (we can use historical data to approximate the

distribution), it may not be applicable in general. For example, consider a sensor deploy-

ment application where the sensors are newly manufactured, and information about their

failure rate is unavailable. Such settings pose a dual problem- we need to simultaneously

learn the input distributions while designing good algorithms for the problem. This poses

two crucial challenges: (i) what sort of feedback should we assume? and (ii) how do we

measure the performance of our learning algorithms? Consider the following special case of

diagnosing complex systems: we have a complex system comprising many components, each

of which fails with some known probability. We say that the system is working if there are

no failures, else system maintenance needs to be undertaken. In this case, the simple non-

adaptive policy that tests components in decreasing order of failure probabilities is optimal

(assuming uniform testing costs). Now, suppose that the failure probabilities are unknown.

It is unclear how to approach such a problem: a crucial challenge arises from the fact that

any suggested policy is followed only until a failure is observed. A “desirable” solution for

this problem should have low-regret with respect to the optimal non-adaptive policy when

failure probabilities are known. Towards this end, an open direction is to develop a frame-

work to incorporate learning using bandit feedback and design a general strategy to obtain

178

low-regret algorithms for such stochastic optimization problems. Some recent work in this

area is [46, 50] but much more remains open.

179

Bibliography

[1] M. Adler and B. Heeringa. Approximating optimal binary decision trees. Algorithmica,

62(3-4):1112–1121, 2012.

[2] A. Agarwal, S. Assadi, and S. Khanna. Stochastic submodular cover with limited

adaptivity. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete

Algorithms, page 323–342, 2019.

[3] A. Agarwal, R. Ghuge, and V. Nagarajan. An asymptotically optimal batched algo-

rithm for the dueling bandit problem. In Proceedings of the 36th Annual Conference

on Neural Information Processing Systems, 2022.

[4] A. Agarwal, R. Ghuge, and V. Nagarajan. Batched dueling bandits. In Proceedings of

the 39th International Conference on Machine Learning, pages 89–110, 2022.

[5] A. Agarwal, N. Johnson, and S. Agarwal. Choice bandits. In NeurIPS, 2020.

[6] N. Ailon, Z. Karnin, and T. Joachims. Reducing Dueling Bandits to Cardinal Bandits.

In Proceedings of the 31st International Conference on Machine Learning, 2014.

[7] S. Allen, L. Hellerstein, D. Kletenik, and T. Ünlüyurt. Evaluation of monotone dnf

formulas. Algorithmica, 77, 11 2015.

[8] A. Asadpour and H. Nazerzadeh. Maximizing stochastic monotone submodular func-

tions. Manag. Sci., 62(8):2374–2391, 2016.

[9] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed

bandit problem. Machine Learning, 47:235–256, 05 2002.

180

[10] A. T. Azar and S. M. El-Metwally. Decision tree classifiers for automated medical

diagnosis. Neural Computing and Applications, 23:2387–2403, 2013.

[11] E. Balkanski, A. Breuer, and Y. Singer. Non-monotone submodular maximization in

exponentially fewer iterations. In Advances in Neural Information Processing Systems,

pages 2359–2370, 2018.

[12] E. Balkanski, A. Rubinstein, and Y. Singer. An exponential speedup in parallel running

time for submodular maximization without loss in approximation. In Proceedings of

the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 283–302, 2019.

[13] E. Balkanski and Y. Singer. The adaptive complexity of maximizing a submodular

function. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of

Computing, pages 1138–1151, 2018.

[14] E. Balkanski and Y. Singer. Approximation guarantees for adaptive sampling. In

Proceedings of the 35th International Conference on Machine Learning, pages 393–

402, 2018.

[15] N. Bansal, A. Gupta, J. Li, J. Mestre, V. Nagarajan, and A. Rudra. When LP is the

cure for your matching woes: Improved bounds for stochastic matchings. Algorithmica,

63(4):733–762, 2012.

[16] N. Bansal and V. Nagarajan. On the adaptivity gap of stochastic orienteering. Math-

ematical Programming, 154(1-2):145–172, 2015.

[17] O. Barinova, V. Lempitsky, and P. Kholi. On detection of multiple object instances

using hough transforms. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 34(9):1773–1784, 2012.

[18] M. Bateni, H. Esfandiari, and V. S. Mirrokni. Optimal distributed submodular op-

timization via sketching. In Proceedings of the 24th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, pages 1138–1147, 2018.

181

[19] S. Behnezhad, M. Derakhshan, and M. Hajiaghayi. Stochastic matching with few

queries: (1-ϵ) approximation. In Proccedings of the 52nd Annual ACM SIGACT Sym-

posium on Theory of Computing, pages 1111–1124, 2020.

[20] G. Bellala, S. Bhavnani, and C. Scott. Active diagnosis under persistent noise with

unknown noise distribution: A rank-based approach. In Proceedings of the 14th Inter-

national Conference on Artificial Intelligence and Statistics, volume 15, pages 155–163,

2011.

[21] G. Bellala, S. K. Bhavnani, and C. Scott. Group-based active query selection for

rapid diagnosis in time-critical situations. IEEE Transactions on Information Theory,

58(1):459–478, 2012.

[22] V. Bengs, R. Busa-Fekete, A. E. Mesaoudi-Paul, and E. Hüllermeier. Preference-based

online learning with dueling bandits: A survey. Journal of Machine Learning Research,

22(7):1–108, 2021.

[23] A. Bhalgat, A. Goel, and S. Khanna. Improved approximation results for stochastic

knapsack problems. In Proceedings of the 22nd Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 1647–1665, 2011.

[24] S. K. Bhavnani, A. Abraham, C. Demeniuk, M. Gebrekristos, A. Gong, S. Nainwal,

G. K. Vallabha, and R. J. Richardson. Network analysis of toxic chemicals and symp-

toms: implications for designing first-responder systems. AMIA Annual Symposium

Proceedings, pages 51–55, 2007.

[25] G. Blanc, J. Lange, and L.-Y. Tan. Query strategies for priced information, revis-

ited. In Proceedings of the Thirty-second Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA 2021), page 1638–1650, 2021.

[26] D. Bradac, S. Singla, and G. Zuzic. (Near) Optimal Adaptivity Gaps for Stochastic

Multi-Value Probing. In Approximation, Randomization, and Combinatorial Optimiza-

tion, volume 145, pages 49:1–49:21, 2019.

182

[27] V. T. Chakaravarthy, V. Pandit, S. Roy, P. Awasthi, and M. K. Mohania. Decision

trees for entity identification: Approximation algorithms and hardness results. ACM

Transactions on Algorithms, 7(2):15, 2011.

[28] O. Chapelle and Y. Chang. Yahoo! learning to rank challenge overview. In Proceedings

of the 2010 International Conference on Yahoo! Learning to Rank Challenge - Volume

14, page 1–24. JMLR.org, 2010.

[29] M. Charikar, R. Fagin, V. Guruswami, J. Kleinberg, P. Raghavan, and A. Sahai. Query

strategies for priced information (extended abstract). pages 582–591, 01 2000.

[30] C. Chekuri and K. Quanrud. Parallelizing greedy for submodular set function maxi-

mization in matroids and beyond. In Proceedings of the 51st Annual ACM SIGACT

Symposium on Theory of Computing, pages 78–89, 2019.

[31] B. Chen and P. I. Frazier. Dueling Bandits with Weak Regret. In Proceedings of the

34th International Conference on Machine Learning, 2017.

[32] Y. Chen, H. Shio, C. A. F. Montesinos, L. P. Koh, S. Wich, and A. Krause. Ac-

tive detection via adaptive submodularity. In Proceedings of the 31st International

Conference on Machine Learning, page I–55–I–63, 2014.

[33] F. Cicalese and E. S. Laber. A new strategy for querying priced information. In

Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing,

STOC ’05, page 674–683, 2005.

[34] F. Cicalese and E. S. Laber. On the competitive ratio of evaluating priced functions.

J. ACM, 58(3), June 2011.

[35] F. Cicalese, E. S. Laber, and A. M. Saettler. Diagnosis determination: decision trees

optimizing simultaneously worst and expected testing cost. In Proceedings of the 31th

International Conference on Machine Learning, pages 414–422, 2014.

[36] T. M. Cover and J. A. Thomas. Elements of Information Theory (Wiley Series in

Telecommunications and Signal Processing). Wiley-Interscience, USA, 2006.

183

[37] S. Dasgupta. Analysis of a greedy active learning strategy. In Advances in Neural

Information Processing Systems, pages 337–344, 2004.

[38] B. C. Dean, M. X. Goemans, and J. Vondrák. Approximating the stochastic knapsack

problem: The benefit of adaptivity. Mathematics of Operations Research, 33(4):945–

964, 2008.

[39] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein, and W. Hong. Model-

driven data acquisition in sensor networks. In Proceedings of the Thirtieth International

Conference on Very Large Data Bases - Volume 30, page 588–599, 2004.

[40] A. Deshpande, L. Hellerstein, and D. Kletenik. Approximation algorithms for stochas-

tic submodular set cover with applications to boolean function evaluation and min-

knapsack. ACM Trans. Algorithms, 12(3), Apr. 2016.

[41] M. Dudik, K. Hofmann, R. E. Schapire, A. Slivkins, and M. Zoghi. Contextual Dueling

Bandits. In Proceedings of the 28th Conference on Learning Theory, 2015.

[42] A. Ene, V. Nagarajan, and R. Saket. Approximation algorithms for stochastic k-

tsp. In 37th IARCS Annual Conference on Foundations of Software Technology and

Theoretical Computer Science, pages 27:27–27:14, 2017.

[43] H. Esfandiari, A. Karbasi, A. Mehrabian, and V. Mirrokni. Regret bounds for batched

bandits. Proceedings of the AAAI Conference on Artificial Intelligence, 35(8):7340–

7348, 2021.

[44] H. Esfandiari, A. Karbasi, and V. Mirrokni. Adaptivity in adaptive submodularity.

In Proceedings of 34th Conference on Learning Theory, volume 134, pages 1823–1846.

PMLR, 2021.

[45] U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM,

45(4):634–652, 1998.

[46] V. Gabillon, B. Kveton, Z. Wen, B. Eriksson, and S. Muthukrishnan. Adaptive sub-

modular maximization in bandit setting. In Advances in Neural Information Processing

Systems, volume 26. Curran Associates, Inc., 2013.

184

[47] Z. Gao, Y. Han, Z. Ren, and Z. Zhou. Batched multi-armed bandits problem. In

Advances in Neural Information Processing Systems, volume 32. Curran Associates,

Inc., 2019.

[48] Z. Gao, Y. Han, Z. Ren, and Z. Zhou. Batched multi-armed bandits problem. In H. M.

Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett,

editors, Advances in Neural Information Processing Systems 32: Annual Conference

on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,

Vancouver, BC, Canada, pages 501–511, 2019.

[49] M. Garey and R. Graham. Performance bounds on the splitting algorithm for binary

testing. Acta Informatica, 3:347–355, 1974.

[50] E. Gergatsouli and C. Tzamos. Online learning for min sum set cover and pandora’s

box. In Proceedings of the 39th International Conference on Machine Learning, pages

7382–7403, 2022.

[51] R. Ghuge, A. Gupta, and V. Nagarajan. The power of adaptivity for stochastic sub-

modular cover. In M. Meila and T. Zhang, editors, Proceedings of the 38th International

Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Re-

search, pages 3702–3712. PMLR, 6 2021.

[52] R. Ghuge, A. Gupta, and V. Nagarajan. Non-adaptive stochastic score classification

and explainable halfspace evaluation. In K. Aardal and L. Sanità, editors, Integer

Programming and Combinatorial Optimization - 23rd International Conference, pages

277–290. Springer, 2022.

[53] D. Gkenosis, N. Grammel, L. Hellerstein, and D. Kletenik. The Stochastic Score

Classification Problem. In 26th Annual European Symposium on Algorithms, volume

112, pages 36:1–36:14. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018.

[54] M. Goemans and J. Vondrák. Stochastic covering and adaptivity. In LATIN 2006:

Theoretical Informatics, pages 532–543. Springer Berlin Heidelberg, 2006.

185

[55] D. Golovin and A. Krause. Adaptive submodularity: Theory and applications in active

learning and stochastic optimization. J. Artif. Intell. Res. (JAIR), 42:427–486, 2011.

[56] D. Golovin and A. Krause. Adaptive submodularity: A new approach to active learning

and stochastic optimization. CoRR, abs/1003.3967, 2017.

[57] H. González-Banos. A randomized art-gallery algorithm for sensor placement. In

Proceedings of the Seventeenth Annual Symposium on Computational Geometry, page

232–240, 2001.

[58] N. Grammel, L. Hellerstein, D. Kletenik, and P. Lin. Scenario submodular cover.

In International Workshop on Approximation and Online Algorithms, pages 116–128.

Springer, 2016.

[59] S. Guha and K. Munagala. Multi-armed bandits with metric switching costs. In Au-

tomata, Languages and Programming, 36th Internatilonal Colloquium (ICALP), pages

496–507, 2009.

[60] A. Guillory and J. A. Bilmes. Average-case active learning with costs. In Algorithmic

Learning Theory, 20th International Conference, ALT 2009, Porto, Portugal, October

3-5, 2009. Proceedings, pages 141–155. Springer, 2009.

[61] A. Gupta, R. Krishnaswamy, V. Nagarajan, and R. Ravi. Running errands in time:

Approximation algorithms for stochastic orienteering. Math. Oper. Res., 40(1):56–79,

2015.

[62] A. Gupta and V. Nagarajan. A stochastic probing problem with applications. In Integer

Programming and Combinatorial Optimization - 16th International Conference, pages

205–216, 2013.

[63] A. Gupta, V. Nagarajan, and R. Ravi. Approximation algorithms for optimal decision

trees and adaptive TSP problems. Math. Oper. Res., 42(3):876–896, 2017.

[64] A. Gupta, V. Nagarajan, and S. Singla. Adaptivity gaps for stochastic probing: Sub-

modular and XOS functions. In Proceedings of the 28th Annual ACM-SIAM Sympo-

sium on Discrete Algorithms, pages 1688–1702, 2017.

186

[65] K. Hofmann, S. Whiteson, and M. Rijke. Balancing exploration and exploitation

in listwise and pairwise online learning to rank for information retrieval. Inf. Retr.,

16(1):63–90, 2 2013.

[66] L. Hyafil and R. L. Rivest. Constructing optimal binary decision trees is NP -complete.

Information Processing Letters, 5(1):15–17, 1976.

[67] S. Im, V. Nagarajan, and R. van der Zwaan. Minimum latency submodular cover.

ACM Trans. Algorithms, 13(1):13:1–13:28, 2016.

[68] K. Jamieson, S. Katariya, A. Deshpande, and R. Nowak. Sparse Dueling Bandits. In

Proceedings of the 18th International Conference on Artificial Intelligence and Statis-

tics, 2015.

[69] S. Javdani, Y. Chen, A. Karbasi, A. Krause, D. Bagnell, and S. S. Srinivasa. Near

optimal bayesian active learning for decision making. In AISTATS, pages 430–438,

2014.

[70] H. Jiang, J. Li, D. Liu, and S. Singla. Algorithms and Adaptivity Gaps for Stochastic k-

TSP. In 11th Innovations in Theoretical Computer Science Conference (ITCS), volume

151, pages 45:1–45:25, 2020.

[71] T. Joachims. Optimizing search engines using clickthrough data. In Proceedings of the

Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD ’02, page 133–142, New York, NY, USA, 2002. Association for Comput-

ing Machinery.

[72] T. Kamishima. Nantonac collaborative filtering: recommendation based on order re-

sponses. In Proceedings of the Ninth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, Washington, DC, USA, August 24 - 27, 2003,

pages 583–588, 2003.

[73] H. Kaplan, E. Kushilevitz, and Y. Mansour. Learning with attribute costs. In Proceed-

ings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, STOC

’05, page 356–365, 2005.

187

[74] A. Karbasi, V. S. Mirrokni, and M. Shadravan. Parallelizing thompson sampling.

CoRR, abs/2106.01420, 2021.

[75] D. Kempe, J. M. Kleinberg, and É. Tardos. Maximizing the spread of influence through

a social network. Theory of Computing, 11:105–147, 2015.

[76] J. Komiyama, J. Honda, H. Kashima, and H. Nakagawa. Regret Lower Bound and

Optimal Algorithm in Dueling Bandit Problem. In Proceedings of the 28th Conference

on Learning Theory, 2015.

[77] J. Komiyama, J. Honda, and H. Nakagawa. Copeland Dueling Bandit Problem: Re-

gret Lower Bound, Optimal Algorithm, and Computationally Efficient Algorithm. In

Proceedings of the 33rd International Conference on Machine Learning, 2016.

[78] S. R. Kosaraju, T. M. Przytycka, and R. S. Borgstrom. On an Optimal Split Tree

Problem. In Proceedings of the 6th International Workshop on Algorithms and Data

Structures, pages 157–168, 1999.

[79] A. Krause and C. Guestrin. Near-optimal nonmyopic value of information in graphical

models. In Proceedings of the Twenty-First Conference on Uncertainty in Artificial

Intelligence, page 324–331, 2005.

[80] A. Krause and C. Guestrin. Near-optimal observation selection using submodular

functions. In Proceedings of the 22nd National Conference on Artificial Intelligence -

Volume 2, page 1650–1654. AAAI Press, 2007.

[81] C. Li, I. Markov, M. de Rijke, and M. Zoghi. Mergedts: A method for effective large-

scale online ranker evaluation. ACM Trans. Inf. Syst., 38(4):40:1–40:28, 2020.

[82] Z. W. Lim, D. Hsu, and W. S. Lee. Adaptive stochastic optimization: From sets to

paths. In Advances in Neural Information Processing Systems, volume 28. Curran

Associates, Inc., 2015.

[83] H. Lin and J. Bilmes. A class of submodular functions for document summarization.

In Proceedings of the 49th Annual Meeting of the Association for Computational Lin-

guistics: Human Language Technologies - Volume 1, page 510–520, 2011.

188

[84] T.-Y. Liu. Learning to rank for information retrieval. Found. Trends Inf. Retr.,

3(3):225–331, 3 2009.

[85] Z. Liu, S. Parthasarathy, A. Ranganathan, and H. Yang. Near-optimal algorithms for

shared filter evaluation in data stream systems. In Proceedings of the ACM SIGMOD

International Conference on Management of Data (SIGMOD), pages 133–146, 2008.

[86] D. W. Loveland. Performance bounds for binary testing with arbitrary weights. Acta

Inform., 22(1):101–114, 1985.

[87] S. Mini, S. K. Udgata, and S. L. Sabat. Sensor deployment and scheduling for target

coverage problem in wireless sensor networks. IEEE Sensors Journal, 14(3):636–644,

2014.

[88] B. Mirzasoleiman, A. Karbasi, A. Badanidiyuru, and A. Krause. Distributed submod-

ular cover: Succinctly summarizing massive data. In Advances in Neural Information

Processing Systems, pages 2881–2889, 2015.

[89] B. M. E. Moret. Decision trees and diagrams. ACM Comput. Surv., 14(4):593––623,

1982.

[90] K. Munagala, U. Srivastava, and J. Widom. Optimization of continuous queries with

shared expensive filters. In 27th ACM SIGMOD-SIGACT-SIGART Symposium on

Principles of Database Systems (PODS), pages 215–224, 2007.

[91] S. K. Murthy. Automatic construction of decision trees from data: A multi-disciplinary

survey. Data Mining and Knowledge Discovery, 2:345–389, 1997.

[92] F. Navidi, P. Kambadur, and V. Nagarajan. Adaptive submodular ranking and routing.

Oper. Res., 68(3):856–877, 2020.

[93] V. Perchet, P. Rigollet, S. Chassang, and E. Snowberg. Batched bandit problems. The

Annals of Statistics, 44(2):660–681, 2016.

[94] T. Qin and T.-Y. Liu. Introducing letor 4.0 datasets. ArXiv, abs/1306.2597, 2013.

189

[95] G. Radanovic, A. Singla, A. Krause, and B. Faltings. Information gathering with

peers: Submodular optimization with peer-prediction constraints. In Proc. Conference

on Artificial Intelligence (AAAI), 2 2018.

[96] F. Radlinski, M. Kurup, and T. Joachims. How does clickthrough data reflect retrieval

quality? In Proceedings of the 17th ACM Conference on Information and Knowledge

Management, CIKM ’08, page 43–52, New York, NY, USA, 2008. Association for

Computing Machinery.

[97] S. Ramamohan, A. Rajkumar, and S. Agarwal. Dueling Bandits : Beyond Condorcet

Winners to General Tournament Solutions. In Advances in Neural Information Pro-

cessing Systems 29, 2016.

[98] R. A. Rossi and N. K. Ahmed. The network data repository with interactive graph

analytics and visualization. In Proceedings of the 29th AAAI Conference on Artificial

Intelligence, 2015.

[99] A. Saha and P. Gaillard. Versatile dueling bandits: Best-of-both world analyses for

learning from relative preferences. In International Conference on Machine Learning,

pages 19011–19026. PMLR, 2022.

[100] A. Saha and A. Gopalan. Combinatorial bandits with relative feedback. In H. M.

Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett,

editors, Advances in Neural Information Processing Systems 32: Annual Conference

on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,

Vancouver, BC, Canada, pages 983–993, 2019.

[101] C. E. Shannon. A mathematical theory of communication. The Bell System Technical

Journal, 27(3):379–423, 1948.

[102] I. Simon, N. Snavely, and S. M. Seitz. Scene summarization for online image collections.

In 11th International Conference on Computer Vision, pages 1–8, 2007.

[103] R. Sipos, A. Swaminathan, P. Shivaswamy, and T. Joachims. Temporal corpus sum-

marization using submodular word coverage. In Proceedings of the 21st ACM Inter-

190

national Conference on Information and Knowledge Management, CIKM ’12, page

754–763, 2012.

[104] Y. Sui, V. Zhuang, J. W. Burdick, and Y. Yue. Multi-dueling Bandits with Dependent

Arms. In Proceedings of the 33rd Conference on Uncertainty in Artificial Intelligence,

2017.

[105] Y. Sui, M. Zoghi, K. Hofmann, and Y. Yue. Advancements in dueling bandits. In

J. Lang, editor, Proceedings of the Twenty-Seventh International Joint Conference on

Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pages 5502–

5510. ijcai.org, 2018.

[106] C. Sun, V. O. K. Li, J. C. K. Lam, and I. Leslie. Optimal citizen-centric sensor

placement for air quality monitoring: A case study of city of cambridge, the united

kingdom. IEEE Access, 7:47390–47400, 2019.

[107] T. Ünlüyurt. Sequential testing of complex systems: a review. Discrete Applied Math-

ematics, 142(1):189–205, 2004.

[108] T. Urvoy, F. Clerot, R. Feraud, and S. Naamane. Generic Exploration and K-armed

Voting Bandits. In Proceedings of the 30th International Conference on Machine Learn-

ing, 2013.

[109] C. Wirth, R. Akrour, G. Neumann, and J. Fürnkranz. A survey of preference-based

reinforcement learning methods. J. Mach. Learn. Res., 18(1):4945–4990, 1 2017.

[110] L. Wolsey. An analysis of the greedy algorithm for the submodular set covering prob-

lem. Combinatorica, 2(4):385–393, 1982.

[111] H. Wu and X. Liu. Double thompson sampling for dueling bandits. In Advances in

Neural Information Processing Systems 29: Annual Conference on Neural Information

Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 649–657, 2016.

[112] Y. Yue, J. Broder, R. Kleinberg, and T. Joachims. The k-armed dueling bandits

problem. Journal of Computer and System Sciences, 78(5):1538–1556, 2012. JCSS

Special Issue: Cloud Computing 2011.

191

[113] Y. Yue and T. Joachims. Interactively optimizing information retrieval systems as

a dueling bandits problem. In Proceedings of the 26th Annual International Confer-

ence on Machine Learning, ICML ’09, page 1201–1208, New York, NY, USA, 2009.

Association for Computing Machinery.

[114] Y. Yue and T. Joachims. Beat the mean bandit. In Proceedings of the 28th International

Conference on Machine Learning, 2011.

[115] M. Zoghi, Z. Karnin, S. Whiteson, and M. de Rijke. Copeland Dueling Bandits. In

Advances in Neural Information Processing Systems 28, 2015.

[116] M. Zoghi, S. Whiteson, and M. de Rijke. MergeRUCB: A method for large-scale online

ranker evaluation. In Proceedings of the 8th ACM International Conference on Web

Search and Data Mining, 2015.

[117] M. Zoghi, S. Whiteson, R. Munos, and M. de Rijke. Relative Upper Confidence Bound

for the K-Armed Dueling Bandit Problem. In Proceedings of the 31st International

Conference on Machine Learning, 2014.

192

	Dedication
	Acknowledgements
	List of Tables
	Abstract
	Overview
	Motivation
	Thesis Goal
	Thesis Contributions

	Stochastic Submodular Cover
	Introduction
	Results and Techniques

	Related Work
	Definitions
	Stochastic Submodular Cover
	Analysis for a Call to ParCA

	Proof of the Key Lemma (ssc-lem:key2)
	A Lower Bound for G
	An Upper Bound for G
	Wrapping Up

	Applications
	Stochastic Set Cover
	Sensor Placement with Unreliable Sensors
	Shared Filter Evaluation
	 Stochastic Score Classification

	Computational Results
	Stochastic Set Cover

	Set-based Model for Rounds
	Conversion Theorems

	Items realizing to subsets
	Estimating Scores in Algorithm ParCA

	Scenario Submodular Cover
	Introduction
	Results and Techniques

	Related Work
	Definitions
	Scenario Submodular Cover
	The Algorithm
	Analysis for the partial covering algorithm

	Proof of the key lemma for Scenario Submodular Cover
	Lower bounding G
	Upper bounding G
	Completing proof of lem:scn-submod-key
	Tight approximation using more rounds

	Lower Bound for Scenario Submodular Cover
	Hard Instances for Scenario Submodular Cover
	Lower bound proof

	Applications
	Optimal Decision Tree
	Correlated Knapsack Cover

	Computational Results
	Optimal Decision Tree

	An Information-Theoretic Lower Bound for ODT
	Additional Plots

	Stochastic Score Classification
	Introduction
	Problem Definitions
	Results and Techniques
	Related Work

	Preliminaries
	The Stochastic Score Classification Algorithm
	The Algorithm
	The Analysis
	Proof of Lemma 4.3.3
	Proof of the Key Lemma

	d-Dimensional Stochastic Score Classification
	The Analysis
	Proof of Lemma 4.4.2

	Explainable Stochastic Halfspace Evaluation
	Computational Results
	An Information-Theoretic Lower Bound for SSClass

	Handling Negative Weights
	Proof of Theorem 4.2.1

	Introduction to Batched Dueling Bandits
	Motivation
	Preliminaries
	Batch Policies

	Overview of Results
	Related Work
	All Pairs Comparison Algorithm
	The Algorithm
	Regret Analysis

	Algorithms using Seeded Comparisons for Batched Dueling Bandits
	Overview
	Results and Techniques

	The Algorithms
	Seeded Comparisons Algorithms
	Regret Analysis
	Proofs of Theorems 6.2.1 and 6.2.2

	A Recursive Algorithm for Batched Dueling Bandits
	The Analysis

	Experimental Results
	Lower Bound
	Proof of thm:lb

	An Improved Algorithm for Batched Dueling Bandits under Condorcet Condition
	Overview
	Contributions
	Results and Techniques

	The Batched Algorithm
	The Analysis

	Computational Results
	The Batched Algorithm with KL-based Elimination Criterion
	The Analysis

	Directions for Future Work
	Bibliography

