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ABSTRACT

As space missions become increasingly complex and autonomous, more advanced control
algorithms will be needed to handle the dynamical uncertainty facing these missions. These
future missions will experience unknown disturbances, unmodeled nonlinearities, time-varying
parameters such as changes in mass due to fuel usage, or unknown changes in the operating
environment.

In this dissertation, we explore the use of adaptive control to allow for spacecraft to adapt online
to reject unknown disturbances and maintain performance under dynamic uncertainty. Specifically,
we develop and apply the retrospective cost adaptive control (RCAC) and predictive cost adaptive
control (PCAC) algorithms for disturbance rejection of lightly damped systems such as space
telescopes and for sample gathering from small celestial bodies such as asteroids. For disturbance
rejection of lightly damped systems, RCAC requires several hundred impulse response coefficients
for its closed-loop target model. We introduce the idea of using a dereverberated transfer function
as the modeling information for RCAC to significantly reduce the order of the target model. The
resulting algorithm was successfully implemented on an acoustic disturbance rejection experiment.

Next, we consider the model reference adaptive control (MRAC) problem and develop the
retrospective cost model reference adaptive control (RC-MRAC) algorithm. MRAC methods allow
for robotic systems to adjust to changes while attempting to follow a desired reference trajectory
from a predetermined reference model. RC-MRAC enables reference model following of arbitrary
linear systems as long as the relative degree, leading numerator coefficient, system order, and
nonminimum-phase zeros are known.

We then focus on PCAC, which combines online model identification with model predictive
control (MPC). For online identification, PCAC relies on a variable-rate forgetting (VRF) factor
to track time-varying parameters. We develop a new VRF factor using the F-test that is more
robust to noise and provides faster parameter convergence after a system change compared to
the standard constant-rate forgetting factor used in practice. The F-test based VRF factor is a
variation of the standard VRF factor used in PCAC. We demonstrate the applicability of PCAC for
disturbance rejection of large truss structures representative of space telescopes subject to harmonic
and broadband disturbances under aliasing and modal folding.

Finally, we focus on the small celestial body surface sampling problem, where a spacecraft

xvi



with a robotic sampling arm descends onto the surface of an asteroid with unknown properties and
must maintain a desired contact force to gather a sample before leaving the surface. The contact
dynamics of this problem are nonlinear, nonsmooth, and unknown prior to contact. We demonstrate
that PCAC can be used to augment a nominal robust controller to improve the overall sampling
performance of the spacecraft for a wide variety of surface properties. We then show that the online
identification combined with the VRF factor in PCAC can allow the spacecraft to perform multiple
sampling maneuvers in regions with different surface properties without loss of performance.
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CHAPTER 1

Introduction

1.1 Background and Motivation

In recent years there has been renewed interest in space exploration with spacecraft and robotic
missions that push past the capabilities of past missions to accomplish greater scientific goals.
Future missions will need to account for increasing dynamical uncertainty due to unknown surface
properties of bodies such as the icy surface of Europa or unknown disturbances that can affect
the pointing accuracy of large space telescopes. There will also be unmodeled nonlinearities
from structural joints, time-varying parameters such as changing mass due to fuel usage, changing
environments, as well as sensor and actuator failures. Higher resolution images of the universe will
require larger and more complex telescopes, leading to structures that may need to be assembled in
orbit with many vibrational modes that cannot be experimentally modeled on Earth.

Vibration suppression for large flexible structures such as space telescopes is a longstanding
area of research spanning many decades [1, 2, 3, 4, 5, 6, 7]. For large space structures the launch
constraints on mass inevitably lead to low damping and thus high susceptibility to disturbances [8].
The infinite-dimensional nature of continuum bodies has motivated considerable research based on
partial differential equations [9]. From a practical perspective, finite-dimensional models obtained
from finite-element modeling are needed for computation; however, the use of lumped models
entails “spillover,” that is, the inadvertent excitation of truncated modes [8, 10].

The issue of modal truncation is exacerbated by uncertainty arising from model errors and sen-
sitivities. For example, modal properties are highly sensitive to boundary conditions, and the need
for 1-g testing of lightweight structures designed for a 0-g environment leads to further modeling
errors. This means that, at least to some extent, on-orbit system identification is unavoidable.

Although laboratory testing can be performed in a setting that is largely free of disturbances, a
realistic challenge of system identification in an operational scenario is the unavoidable presence
of disturbances. These disturbances may arise from onboard equipment that cannot be shut
down (for example, cryocoolers, control-moment gyros, or flywheels for energy storage), or due to
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environmental sources, such as solar pressure, magnetically induced torques, and thermal gradients.
For space robotics missions such as surface sampling missions, the objective is to bring a

spacecraft with a sampler in contact with the surface of a celestial body and maintain a desired
contact force in order to capture a sample from the surface [11, 12]. The resulting samples are used
to further scientific knowledge about the origins of the solar system and universe. Recent missions
such as OSIRIS-REx, Hayabusa, and Hayabusa2 have demonstrated the feasibility of such missions
and have laid the groundwork for more complex sample return missions as shown by sampling
mission concepts using shape memory alloy and harpoon sampling mechanisms [13, 14].

Despite recent successes, surface sampling remains a challenging problem. Before contact with
the surface, surface properties such as the compliance are uncertain. Additional challenges arise
due to unknown nonlinear contact dynamics such as hysteretic effects, and the inability to use the
spacecraft thrusters to augment the contact force. Therefore, the controller must be designed to be
robust to a wide variety of surface properties. Additionally, there is an inherent trade-off between
robustness and control performance, which may limit the possible scope of the mission to safer,
well known and modeled scenarios. If the true surface properties are outside expectations, mission
performance will be adversely affected. This was evidenced by the Philae lander, which attempted to
land on the comet 67P/Churyumov–Gerasimenko but, due to the surface being softer than expected,
instead bounced off of the surface and landed in the shadow of the comet, prematurely ending the
planned 10-year-long mission [15].

These difficulties cannot all be planned for, and necessitate a need for autonomy to allow the
spacecraft to adjust online without having to wait for commands from Earth or separate on-orbit
system identification. One possibility for alleviating these issues is to use controllers that can
learn online or adapt. These controllers, called adaptive controllers, can be divided into two
categories: direct adaptive control, and indirect adaptive control [16, 17, 18, 19]. In direct adaptive
control, the objective is to adjust a controller online without needing an accurate prior model
of the system. The parameters of the controller are directly updated based on incoming sensor
and performance measurements and the model of the system is not updated. For direct adaptive
control, nonminimum-phase (NMP) systems require special consideration. These systems contain
zeros outside the unit disk and limit the achievable controller performance [20]. NMP systems
also make development of direct adaptive control methods difficult, since these methods tend to
cancel unknown NMP zeros with a controller pole, leading to instability. Additionally, sampling a
minimum-phase continuous-time system with relative degree greater than 2 leads to NMP discrete-
time dynamics [21]. In indirect adaptive control, a model of the system being controlled is identified
online which is then used to update the controller coefficients. By identifying a model, indirect
adaptive control methods avoid the difficulties posed by NMP systems at the cost of needing to
choose a set of basis functions for the model and increased computational cost due to the model
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identification.
This dissertation focuses on two adaptive control techniques, retrospective cost adaptive control

(RCAC) and predictive cost adaptive control (PCAC). RCAC is a direct adaptive control algorithm
developed originally for active noise control experiments [22]. RCAC can perform disturbance
rejection and command following with minimal modeling information [23] given in a filter 𝐺f .
Being a direct adaptive control method, RCAC requires knowledge of the NMP zeros of the system
which must be incorporated in the filter𝐺f . The contribution of this dissertation is the development
of alternative methods for the creation of 𝐺f for disturbance rejection of lightweight, high-order,
lightly damped structures [24, 25]. RCAC is also extended to the model reference adaptive
control (MRAC) problem where a novel algorithm called retrospective cost model reference adaptive
control (RC-MRAC) is developed [26, 27]. In the MRAC problem, we wish to have the output of
an uncertain system follow the response of a given reference system. The MRAC problem has had
vast and varied applications and is one of the original uses of adaptive control [28, 29, 30, 31].

PCAC is an indirect adaptive control that combines concurrent online recursive least squares
(RLS) identification with model predictive control (MPC) developed in [32, 33]. MPC has been
widely developed for diverse applications [34, 35, 36, 37, 38] and, perhaps with the exception of
PID control, is the most widely used control methodology. PCAC employs an input-output model
structure whose coefficients are estimated online using recursive least squares. The identified model
is then recast as a state space model using a block observable canonical form (BOCF) whose state
is an explicit function of past inputs, past outputs, and the current estimated model coefficients.
Since the state of the BOCF model is known exactly at each time step, output-feedback MPC can
be implemented without the need for an observer.

A key aspect of PCAC is the use of a variable-rate forgetting (VRF) factor in the identification
portion of the algorithm. To track time-varying parameters, RLS can incorporate a forgetting factor
𝜆, which discounts past data. Choosing an appropriate 𝜆 is typically done through trial and error
or, when the identification is performed offline, maximum likelihood methods. Typical values of
𝜆 are between 0.98 and 1 [39, 40] When a parameter change occurs and forgetting is not enabled,
RLS converges slowly to the new parameter values. On the other hand, the use of forgetting when
parameters do not change and the data is not persistently exciting can lead to divergence of the
singular values of the RLS covariance matrix [41]. In the context of adaptive control, instability of
RLS leads to instability of the controller and catastrophic blow-up. In contrast with constant-rate
forgetting, VRF allows the forgetting factor to change during operation. VRF versions of RLS are
given in [42, 43, 44]. These formulations were extended in [45] to include criteria for setting the
level of forgetting at each step while maintaining convergence and consistency. Increasing interest
in VRF is reflected in [46, 47, 48]. The contribution of this work is the development of new VRF
factor based on a statistical test called the F-Test, that is more robust to noise and spurious forgetting
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compared to past VRF methods [49, 45, 50]. Additionally, the development of the new forgetting
factor enabled the use of PCAC for disturbance rejection of large, lightweight structures similar to
space telescopes as shown in [51]. For space robotics applications, PCAC was applied to a celestial
body surface sampling mission where the surface was unknown before contact. PCAC was used to
augment a previously developed robust controller to improve performance over a wide variety of
surface properties. The new VRF factor enabled the spacecraft to sample multiple regions of the
celestial body with different unknown surface properties without loss in performance [52, 53].

1.2 Dissertation Outline

This dissertation is organized as follows.

Chapter 2 Summary

Chapter 2 presents the framework and development of the main algorithms used in this disser-
tation. An overview of RLS, RCAC, and PCAC is presented.

Chapter 3 Summary

Chapter 3 focuses on adaptive feedback disturbance rejection for lightly damped structures
using RCAC. RCAC uses a target model of the closed-loop dynamics in order to enable controller
adaptation. The target model captures specific features of the dynamics of the structure; in the
single-input single-output (SISO) case, this information consists of the sign of the leading numerator
coefficient, relative degree, and nonminimum-phase zeros of the discretized dynamics. The chapter
investigates the feasibility of using a dereverberated transfer function (DTF) as the target model for
harmonic disturbance rejection with unknown disturbances. In particular, the dereverberated target
model (DTM) obtained by magnitude and phase averaging captures the magnitude and phase trend
of the structure but ignores resonances and anti-resonances, thus providing a low-order target model
for controller adaptation. The robustness of RCAC is investigated with the target model given by
a DTF based on a nominal model with erroneous damping ratio. The technique is implemented
experimentally on an acoustic noise control setup.

Chapter 4 Summary

Chapter 4 presents a novel approach to model reference adaptive control inspired by the adaptive
pole placement control (APPC) of Elliot and based on RC-MRAC. RC-MRAC is applicable to
NMP systems assuming that the NMP zeros are known. Under this assumption, the advantage of
RC-MRAC is a reduced need for persistency. The chapter compares APPC and RC-MRAC under
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various levels of persistency in the command for minimum-phase and NMP systems. It is shown
numerically that the model-following performance of RC-MRAC is less sensitive to the persistency
of the command compared to APPC at the cost of knowledge of the NMP zeros. RC-MRAC is also
shown to be applicable for disturbance rejection under unknown harmonic disturbances.

Chapter 5 Summary

Chapter 5 develops a variable-rate forgetting factor for recursive least squares for parameter
identification of time-varying systems. The variable-rate forgetting factor uses the F-test to compare
short- and long-term variances of the one-step prediction errors of RLS. If the short-term error
variance is statistically larger than the long-term error variance, then it is assumed that the underlying
parameters have changed and forgetting is required. The level of forgetting is proportional to how
far the ratio of the short-term and long-term error variances deviate from the expected ratio given by
the F-distribution. RLS with F-test variable-rate forgetting (RLS/FTVRF) is shown to generalize an
existing variable-rate forgetting factor that uses a ratio of the root-mean-square (RMS) performance
error and noise standard deviation. The approach is applied to a parameter identification task and is
compared to a constant-rate forgetting factor and the RMS performance error and noise standard-
deviation-based forgetting factor.

Chapter 6 Summary

Chapter 6 considers indirect adaptive control of flexible structures under harmonic and broad-
band disturbances. Limited prior modeling information is assumed, and system identification with
an input-output model structure is performed online in the presence of the exogenous disturbance.
By realizing the input-output model structure in block observable canonical form, the full state is
available, which facilitates output-feedback control without the need for an observer. The control
input is determined by MPC using quadratic programming for receding horizon optimization. The
resulting sampled-data controller is implemented at a fixed sample rate, where the frequencies
of some of the modes may lie above the Nyquist rate, thus emulating spillover. The approach is
applied to a truss structure with 16 lightly damped modes.

Chapter 7 Summary

Chapter 7 develops an adaptive force-control augmentation for small celestial body sampling
for a variety of surface properties. The control algorithm consists of a nominal robust controller
augmented with an adaptive controller combined with feedback linearization. When a spacecraft
makes contact with the surface, it must maintain a desired contact force in order to capture a sample.
The properties of the surface are unknown or uncertain before contact with the surface is made.

5



Since the nominal robust controller may have poor performance in some surface property regimes,
the goal is to improve performance using an adaptive controller. The adaptive controller performs
system identification online to create an input-output model of the feedback-linearized system.
From the input-output model, a block-observable canonical form is realized, and the control input
augmentation is determined by MPC. The resulting augmentation is added to the input of the robust
controller to improve the closed-loop performance and maintain a desired contact force despite the
unknown surface properties. The approach is applied to a variety of surface properties with linear
and nonlinear contact models and multiple surface sampling maneuvers.
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CHAPTER 2

Preliminaries

In this chapter we state the equations of RCAC and PCAC which will be used throughout the
dissertation. The algorithms will be presented with respect to a specific problem setup that is
applicable to the standard use of the algorithm. Additionally, the RLS algorithm is presented,
which is an important component in both RCAC and PCAC. A modification to RLS incorporating
a variable-rate forgetting factor is also presented.

2.1 Recursive Least Squares

RLS is widely used for parameter estimation and adaptive control [18, 16]. In many estimation
and control problems, we would like to find coefficients 𝜃 ∈ R𝑙𝜃 such that

𝑦𝑘 = 𝜙𝑘𝜃, (2.1)

where 𝑦𝑘 ∈ R𝑙𝑦 is some measurement or output, and 𝜙𝑘 ∈ R𝑙𝑦×𝑙𝜃 is a regressor containing some
function of past measurements and control inputs [54]. One method of solving this problem is
to collect a 𝑛 data points and solve a regularized batch least squares problem by finding 𝜃 that
minimizes

𝐽 (𝜃) =
𝑛∑︁
𝑖=1
(𝑦𝑖 − 𝜙𝑖𝜃)T(𝑦𝑖 − 𝜙𝑖𝜃) + 𝜃T𝑅𝜃𝜃

= (𝑌 −Φ𝜃)T(𝑌 −Φ𝜃) + 𝜃T𝑅𝜃 (2.2)

where

𝑌 = Φ𝜃, (2.3)
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𝑌
△
=


𝑦1

𝑦2
...

𝑦𝑛


, Φ

△
=


𝜙1

𝜙2
...

𝜙𝑛


, (2.4)

and 𝑅𝜃 ∈ R𝑙𝜃×𝑙𝜃 is a positive-definite matrix. The solution is given by

𝜃∗ = (ΦTΦ + 𝑅𝜃)−1ΦT𝑌, (2.5)

which requires an 𝑙𝜃 × 𝑙𝜃 inverse leading to a computational complexity of 𝑂 (𝑙3
𝜃
).

For real-time applications, we would like to use an algorithm with less computational complexity
and update our estimate of 𝜃 at each measurement step rather than in a batch formulation. This
can be accomplished using RLS. RLS attempts find 𝜃 to minimize the following cumulative cost
function at each step 𝑘

𝐽𝑘 (𝜃)
△
=

𝑘∑︁
𝑖=1

𝜆𝑘−𝑖 [𝑒𝑖 (𝜃)T𝑒𝑖 (𝜃)] + 𝜆𝑘 (𝜃 − 𝜃0)T𝑃−1
0 (𝜃 − 𝜃0), (2.6)

where

𝑒𝑖 (𝜃)
△
= 𝑦𝑖 − 𝜙𝑖𝜃, (2.7)

𝜃0 ∈ R𝑙𝜃 is an initial estimate of 𝜃, 𝑃0 ∈ R𝑙𝜃×𝑙𝜃 is a positive-definite covariance matrix representing
the initial uncertainty in the error 𝜃 − 𝜃0, and 𝜆 ∈ (0, 1] is a forgetting factor allowing for
discounting of past data in order to track time-varying parameters. The solution is given by the
following recursive update of 𝜃𝑘 and 𝑃𝑘

𝜃𝑘+1 = 𝜃𝑘 + 𝑃𝑘𝜙T
𝑘

(
𝜆𝐼𝑙𝑦 + 𝜙𝑘𝑃𝑘𝜙T

𝑘

)−1
𝑒𝑘 (𝜃𝑘 ), (2.8)

𝑃𝑘+1 =
1
𝜆
𝑃𝑘 −

1
𝜆
𝑃𝑘𝜙

T
𝑘

(
𝜆𝐼𝑙𝑦 + 𝜙𝑘𝑃𝑘𝜙T

𝑘

)−1
𝜙𝑘𝑃𝑘 . (2.9)

The resulting algorithm has a computational complexity of𝑂 (𝑙2
𝜃
) and the parameter estimate 𝜃 can

be updated as data is measured instead of in batch updates.

2.1.1 Variable-Rate Forgetting

To track time-varying parameters, RLS includes a forgetting factor 𝜆, which discounts past data.
Choosing an appropriate 𝜆 is typically done through trial and error or, when the identification
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is performed offline, maximum likelihood methods. Typical values of 𝜆 are between 0.98 and 1
[39, 40]. When a parameter change occurs and forgetting is not enabled, RLS converges slowly to
the new parameter values. On the other hand, the use of forgetting when parameters do not change
and the data is not persistently exciting can lead to divergence of the singular values of the RLS
covariance matrix 𝑃𝑘 [41]. In the context of adaptive control, instability of RLS leads to instability
of the controller and catastrophic blow-up.

In contrast with constant-rate forgetting, VRF allows the forgetting factor to change during
operation. VRF versions of RLS are given in [42, 43, 44], These formulations were extended in
[45] to include criteria for setting the level of forgetting at each step while maintaining convergence
and consistency.

To generalize (2.6) such that 𝜆 can vary as a function of 𝑘 , let 𝛽𝑘 > 0 and define

𝜌𝑘
△
=

𝑘∏
𝑖=0

𝛽𝑖 . (2.10)

As shown in [45], the unique global minimizer of the cost function

𝐽𝑘 (𝜃)
△
=

𝑘∑︁
𝑖=0

𝜌𝑖

𝜌𝑘
𝑒T
𝑖 (𝜃)𝑒𝑖 (𝜃) +

1
𝜌𝑘
(𝜃 − 𝜃0)T𝑃−1

0 (𝜃 − 𝜃0) (2.11)

is given by

𝜃𝑘+1 = 𝜃𝑘 + 𝑃𝑘+1𝜙T
𝑘 (𝑦𝑘 − 𝜙𝑘𝜃𝑘 ) (2.12)

where

𝑃𝑘+1 = 𝐿𝑘 − 𝐿𝑘𝜙T
𝑘 (𝐼𝑝 + 𝜙𝑘𝐿𝑘𝜙

T
𝑘 )
−1𝜙𝑘𝐿𝑘 (2.13)

𝐿𝑘
△
= 𝛽𝑘𝑃𝑘 (2.14)

The variable rate forgetting factor is then defined as 𝜆𝑘
△
= 𝛽−1

𝑘
. (2.12)-(2.14) are the recursive least

squares with variable-rate forgetting (RLS-VRF) equations.

2.2 Retrospective Cost Adaptive Control

In this section we present RCAC and the standard problem setup that RCAC attempts to solve.
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2.2.1 Problem Setup

Consider the discrete-time adaptive control problem given in Figure 2.1. RCAC attempts to
update the controller 𝐺c(q, 𝜃𝑘 ) in order to minimize the performance measurement 𝑧𝑘 , given the
sensor measurements 𝑦𝑘 , control inputs 𝑢𝑘 .

𝐺c(q, 𝜃𝑘 ) 𝑢𝑘

𝐺𝑧𝑢 (q)

𝐺𝑦𝑢 (q) 𝑦𝑘

𝑧𝑘

Figure 2.1: RCAC standard problem.

2.2.2 Retrospective Cost Adaptive Control Algorithm

For the current vector 𝜃𝑘 of controller coefficients, 𝐺c(q, 𝜃𝑘 ) is realized by the linear, time-
varying, input-output model

𝑢𝑘 =

𝑛c∑︁
𝑖=1

𝑃𝑖,𝑘𝑢𝑘−𝑖 +
𝑛c∑︁
𝑖=1

𝑄𝑖,𝑘 𝑦𝑘−𝑖, (2.15)

where 𝑃𝑖,𝑘 ∈ R𝑙𝑢×𝑙𝑢 , 𝑄𝑖,𝑘 ∈ R𝑙𝑢×𝑙𝑦 , and 𝑛c is the controller order. The startup protocol for (2.15) is
given by

𝑢𝑘 =


0, 𝑘 < 𝑘w,

Φ𝑘𝜃𝑘 , 𝑘 ≥ 𝑘w,
(2.16)

where the regressor matrix Φ𝑘 is defined as

Φ𝑘
△
=



𝑢𝑘−1
...

𝑢𝑘−𝑛c

𝑦𝑘−1
...

𝑦𝑘−𝑛c



T

⊗ 𝐼𝑙𝑢 ∈ R𝑙𝑢×𝑙𝜃 , (2.17)
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𝑘𝑤 ≥ 𝑛c is the number of steps to wait until Φ𝑘 is populated with data, 𝜃𝑘 is the controller coefficient
vector defined by

𝜃𝑘
△
= vec

[
𝑃1,𝑘 · · · 𝑃𝑛c,𝑘 𝑄1,𝑘 · · · 𝑄𝑛c,𝑘

]T
∈ R𝑙𝜃 , (2.18)

and 𝑙𝜃
△
= 𝑛c𝑙𝑢 (𝑙𝑢 + 𝑙𝑦).

The retrospective performance variable is defined by

𝑧𝑘 (𝜃)
△
= 𝑧𝑘 − 𝐺f (q) (𝑢𝑘 −Φ𝑘𝜃), (2.19)

where 𝜃 is the controller coefficient vector to be optimized, and 𝐺f (q) ∈ R𝑙𝑧×𝑙𝑢 is a filter. 𝐺f plays
the role of the target model for a closed-loop transfer function which contains the same leading
numerator coefficient sign, NMP zeros, and relative degree as the plant. Defining the filtered
quantities 𝑢f,𝑘

△
= 𝐺f (q)𝑢𝑘 and Φf,𝑘

△
= 𝐺f (q)Φ𝑘 , (2.19) can be written as

𝑧𝑘 (𝜃) = 𝑧𝑘 − (𝑢f,𝑘 −Φf,𝑘𝜃). (2.20)

The controller coefficient vector 𝜃 is updated by minimizing the cost function

𝐽𝑘 (𝜃)
△
=

𝑘∑︁
𝑖=1

𝜆𝑘−𝑖 [𝑧𝑖 (𝜃)T𝑅𝑧𝑧𝑖 (𝜃) + (Φ𝑖𝜃)T𝑅𝑢 (Φ𝑖𝜃)] + 𝜆𝑘 (𝜃 − 𝜃0)T𝑅𝜃 (𝜃 − 𝜃0) (2.21)

where 𝜆 ∈ (0, 1] is the forgetting factor, 𝑅𝜃 ∈ R𝑙𝜃×𝑙𝜃 and 𝑅𝑧 ∈ R𝑙𝑧×𝑙𝑧 are positive definite, and
𝑅𝑢 ∈ R𝑙𝑢×𝑙𝑢 is positive semidefinite. The cost (2.21) is minimized with respect to 𝜃 using RLS.

The update law for the controller coefficient vector is then given by

𝜃𝑘+1 = 𝜃𝑘 − 𝑃𝑘

[
Φf,𝑘

Φ𝑘

]T ©­«𝜆
[
𝑅𝑧 0
0 𝑅𝑢

]−1

+
[
Φf,𝑘

Φ𝑘

]
𝑃𝑘

[
Φf,𝑘

Φ𝑘

]Tª®¬
−1 ([

Φf,𝑘

Φ𝑘

]
𝜃𝑘 +

[
𝑧𝑘 − 𝑢f,𝑘

0

])
(2.22)

where

𝑃𝑘+1 =
1
𝜆
𝑃𝑘 −

1
𝜆
𝑃𝑘

[
Φf,𝑘

Φ𝑘

]T ©­«𝜆
[
𝑅𝑧 0
0 𝑅𝑢

]−1

+
[
Φf,𝑘

Φ𝑘

]
𝑃𝑘

[
Φf,𝑘

Φ𝑘

]Tª®¬
−1 [

Φf,𝑘

Φ𝑘

]
𝑃𝑘 (2.23)

and 𝑃0 = 𝑅−1
𝜃

[54]. The RLS update law has a computational complexity of 𝑂 (𝑙2
𝜃
).
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2.3 Predictive Cost Adaptive Control

In this section we present PCAC and the problem setup that PCAC attempts to solve.

2.3.1 Problem Setup

Consider the discrete-time adaptive control problem given in Figure 2.2. PCAC attempts to find
control inputs 𝑢𝑘 such that the sensor measurements 𝑦𝑘 follow a desired command 𝑟𝑘 . At each time
step, PCAC identifies a state space realization 𝐴̂𝑘 , 𝐵̂𝑘 , 𝐶̂, 𝑥𝑘 of𝐺𝑦𝑢 (q) using past control inputs and
measurements. This realization is then used in MPC to generate a control input.

RLS
Identification

MPC

𝑟𝑘

𝑢𝑘𝐴̂𝑘 , 𝐵̂𝑘 ,

𝐶̂, 𝑥𝑘

𝑦𝑘𝐺𝑦𝑢 (q)

Figure 2.2: PCAC standard problem.

2.3.2 Predictive Cost Adaptive Control Algorithm

PCAC combines online identification using RLS with output-feedback MPC. These operations
are described below.

2.3.2.1 RLS Identification

Consider the multi-input multi-output (MIMO) input-output model

𝑦̂𝑘 = −
𝑛̂∑︁
𝑖=1

𝐹̂𝑖𝑦𝑘−𝑖 +
𝑛̂∑︁
𝑖=1

𝐺̂𝑖𝑢𝑘−𝑖, (2.24)

where 𝑘 ≥ 0 is the time step, 𝑛̂ ≥ 1 is the data window for identification, 𝐹̂𝑖 ∈ R𝑝×𝑝 and 𝐺̂𝑖 ∈ R𝑝×𝑚

are the estimated model coefficients, and 𝑢𝑘 ∈ R𝑚×1, 𝑦𝑘 ∈ R𝑝×1, and 𝑦̂𝑘 ∈ R𝑝×1 are the inputs,
outputs and predicted outputs at step 𝑘 .

To estimate the coefficients 𝐹̂𝑖 and 𝐺̂𝑖 online, we use RLS with variable-rate forgetting [45].
RLS is used to minimize the cumulative cost

𝐽𝑘 (𝜃) =
𝑘∑︁
𝑖=0

𝜌𝑖

𝜌𝑘
𝑧T
𝑖 (𝜃)𝑧𝑖 (𝜃) +

1
𝜌𝑘
(𝜃 − 𝜃0)T𝑃−1

0 (𝜃 − 𝜃0), (2.25)
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where 𝜌𝑘
△
=

∏𝑘
𝑗=0 𝜆

−1
𝑗
∈ R, 𝜆𝑘 ∈ (0, 1] is the forgetting factor, 𝑃0 ∈ R[𝑛̂𝑝(𝑚+𝑝)]×[𝑛̂𝑝(𝑚+𝑝)] is positive

definite, and 𝜃0 ∈ R[𝑛̂𝑝(𝑚+𝑝)]×1 is the initial estimate of the coefficient vector. The performance
variable 𝑧𝑖 (𝜃) ∈ R𝑝×1 is defined as

𝑧𝑘 (𝜃)
△
= 𝑦𝑘 +

𝑛̂∑︁
𝑖=1

𝐹̂𝑖𝑦𝑘−𝑖 −
𝑛̂∑︁
𝑖=1

𝐺̂𝑖𝑢𝑘−𝑖, (2.26)

where the vector 𝜃 ∈ R[𝑛̂𝑝(𝑚+𝑝)]×1 of coefficients to be estimated is defined by

𝜃
△
= vec

[
𝐹̂1 · · · 𝐹̂𝑛̂ 𝐺̂1 · · · 𝐺̂ 𝑛̂

]
. (2.27)

Defining the regressor matrix 𝜙𝑘 ∈ R𝑝×[𝑛̂𝑝(𝑚+𝑝)] by

𝜙𝑘
△
=

[
−𝑦T

𝑘−1 · · · −𝑦
T
𝑘−𝑛̂ 𝑢T

𝑘−1 · · · 𝑢T
𝑘−𝑛̂

]
⊗ 𝐼𝑝, (2.28)

the performance variable can then be written as

𝑧𝑘 (𝜃) = 𝑦𝑘 − 𝜙𝑘𝜃. (2.29)

The global minimizer 𝜃𝑘+1
△
= argmin𝜃 𝐽𝑘 (𝜃) is computed by RLS as

𝐿𝑘 = 𝜆
−1
𝑘 𝑃𝑘 (2.30)

𝑃𝑘+1 = 𝐿𝑘 − 𝐿𝑘𝜙T
𝑘 (𝐼𝑝 + 𝜙𝑘𝐿𝑘𝜙

T
𝑘 )
−1𝜙𝑘𝐿𝑘 (2.31)

𝜃𝑘+1 = 𝜃𝑘 + 𝑃𝑘+1𝜙T
𝑘 (𝑦𝑘 − 𝜙𝑘𝜃), (2.32)

where 𝜃𝑘+1 = vec
[
𝐹̂1,𝑘+1 · · · 𝐹̂𝑛̂,𝑘+1 𝐺̂1,𝑘+1 · · · 𝐺̂ 𝑛̂,𝑘+1

]
.

The VRF factor 𝜆𝑘 used is developed in [49] and Chapter 5 and is given by

𝜆𝑘 =
1

1 + 𝜂𝑔(𝑧𝑘−𝜏d , . . . , 𝑧𝑘 )1[𝑔(𝑧𝑘−𝜏d , . . . , 𝑧𝑘 )]
(2.33)

where 1 : R→ {0, 1} is the unit step function, and

𝑔(𝑧𝑘−𝜏𝑑 , . . . , 𝑧𝑘 )
△
=√︄

𝜏n
𝜏d

tr
(
Σ𝜏n (𝑧𝑘−𝜏n , . . . , 𝑧𝑘 )Σ𝜏d (𝑧𝑘−𝜏d , . . . , 𝑧𝑘 )−1)

𝑐
−

√︁
𝑓 , (2.34)

where 𝜂 > 0 and 𝑝 ≤ 𝜏n < 𝜏d represent numerator and denominator window lengths, respectively.
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In (2.34), Σ𝜏n and Σ𝜏d ∈ R𝑝×𝑝 are the sample variances of the respective window lengths, 𝑐 is a
constant given by

𝑎
△
=
(𝜏n + 𝜏d − 𝑝 − 1) (𝜏d − 1)
(𝜏d − 𝑝 − 3) (𝜏d − 𝑝)

, 𝑏
△
= 4 + (𝑝𝜏n + 2)

(𝑎 − 1) ,

𝑐
△
=

𝑝𝜏n(𝑏 − 2)
𝑏(𝜏d − 𝑝 − 1) , (2.35)

with 𝑓
△
= 𝐹−1

𝑝𝜏n, 𝑏
(1 − 𝛼) being a thresholding constant, where 𝐹−1

𝑝𝜏n, 𝑏
(𝑥) is the inverse cumulative

distribution function of the 𝐹-distribution with degrees of freedom 𝑝𝜏n and 𝑏, and 𝛼 is the signifi-
cance level [55]. By choosing 𝜏d >> 𝜏n, Σ𝜏d approximates the long-term variance of 𝑧𝑘 while Σ𝜏n

approximates the short-term variance of 𝑧𝑘 . Therefore, when 𝑔(𝑧𝑘−𝜏𝑑 , . . . , 𝑧𝑘 ) > 0, the short-term
variance is statistically larger than the long-term variance. In particular, (2.33) suspends forgetting
when the short-term variance is statistically smaller than the long-term variance, preventing forget-
ting in RLS due to sensor noise, and enabling forgetting when the magnitude of the identification
error increases.

For receding-horizon control, the input-output model (2.24) is written as the block observable
canonical form state-space realization

𝑥1|𝑘
△
= 𝐴̂𝑘𝑥𝑘 + 𝐵̂𝑘𝑢𝑘 , (2.36)

𝑦𝑘 = 𝐶̂𝑥𝑘 , (2.37)

where 𝑥1|𝑘 ∈ R𝑛̂𝑝 is the one-step predicted state, 𝑥𝑘
△
=

[
𝑥T

1,𝑘 · · · 𝑥T
𝑛̂,𝑘

]T
∈ R𝑛̂𝑝 is the state estimate,
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and

𝑥1,𝑘
△
= 𝑦𝑘 , (2.38)

𝑥𝑖,𝑘
△
= −

𝑛̂−𝑖+1∑︁
𝑗=1

𝐹̂𝑖+ 𝑗−1,𝑘+1𝑦𝑘− 𝑗

+
𝑛̂−𝑖+1∑︁
𝑗=1

𝐺̂𝑖+ 𝑗−1,𝑘+1𝑢𝑘− 𝑗 , 𝑖 = 2, . . . , 𝑛̂ (2.39)

𝐴̂𝑘
△
=



−𝐹̂1,𝑘+1 𝐼𝑝 · · · · · · 0𝑝×𝑝
... 0𝑝×𝑝

. . .
...

...
...

. . .
. . . 0𝑝×𝑝

...
...

. . . 𝐼𝑝

−𝐹̂𝑛̂,𝑘+1 0𝑝×𝑝 · · · · · · 0𝑝×𝑝


, (2.40)

𝐵̂𝑘
△
=


𝐺̂1,𝑘+1

𝐺̂2,𝑘+1
...

𝐺̂ 𝑛̂,𝑘+1


, (2.41)

𝐶̂
△
=

[
𝐼𝑝 0𝑝×𝑝 · · · 0𝑝×𝑝

]
, (2.42)

2.3.2.2 Model Predictive Control

The ℓ-step predicted output of (2.37) for a sequence of ℓ future controls is given by

𝑌1|𝑘,𝑙 = Γ̂𝑘,ℓ𝑥1|𝑘 + 𝑇𝑘,ℓ𝑈1|𝑘,ℓ, (2.43)

where

𝑌1|𝑘,ℓ
△
=


𝑦1|𝑘
...

𝑦ℓ |𝑘

 ∈ R
ℓ𝑝, 𝑈1|𝑘,ℓ

△
=


𝑢1|𝑘
...

𝑢ℓ |𝑘

 ∈ R
ℓ𝑚, (2.44)
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and Γ̂𝑘,ℓ ∈ Rℓ𝑝×𝑛̂𝑝 and 𝑇𝑘,ℓ ∈ Rℓ𝑝×ℓ𝑚 are

Γ̂𝑘,ℓ
△
=


𝐶̂

𝐶̂ 𝐴̂𝑘
...

𝐶̂ 𝐴̂ℓ−1
𝑘


, (2.45)

𝑇𝑘,ℓ
△
=



0𝑝×𝑚 · · · · · · · · · · · · · · · 0𝑝×𝑚
𝐻̂𝑘,1 0𝑝×𝑚 · · · · · · · · · · · · 0𝑝×𝑚
𝐻̂𝑘,2 𝐻̂𝑘,1 0𝑝×𝑚 · · · · · · · · · 0𝑝×𝑚
𝐻̂𝑘,3 𝐻̂𝑘,2 𝐻̂𝑘,1 0𝑝×𝑚 · · · · · · 0𝑝×𝑚
𝐻̂𝑘,4 𝐻̂𝑘,3 𝐻̂𝑘,2

. . .
. . .

...
...

...
...

. . .
. . .

. . . 0𝑝×𝑚
𝐻̂𝑘,ℓ−1 𝐻̂𝑘,ℓ−2 𝐻̂𝑘,ℓ−3 · · · 𝐻̂𝑘,2 𝐻̂𝑘,1 0𝑝×𝑚


, (2.46)

where 𝐻̂𝑘,𝑖 ∈ R𝑝×𝑚 is defined by 𝐻̂𝑘,𝑖
△
= 𝐶̂ 𝐴̂𝑖−1

𝑘
𝐵̂𝑘 .

Let R𝑘,ℓ
△
=

[
𝑟T
𝑘+1 · · · 𝑟

T
𝑘+ℓ

]T
∈ Rℓ𝑝t be the vector of ℓ future commands, 𝐶t,ℓ

△
= 𝐼ℓ ⊗ 𝐶t ∈ Rℓ𝑝t×ℓ𝑝

where 𝐶t𝑦𝑖 |𝑘 creates the tracking outputs from 𝑦𝑖 |𝑘 , let 𝑌t,1|𝑘,ℓ
△
= 𝐶t,ℓ𝑌1|𝑘,ℓ be the ℓ-step predicted

tracking output, let Cℓ
△
= 𝐼ℓ ⊗ (C𝐶c) ∈ Rℓ𝑛c×ℓ𝑝 and Dℓ

△
= 1ℓ×1 ⊗ D ∈ Rℓ𝑛c×1 where 𝐶c𝑦𝑖 |𝑘 creates

the constrained outputs from 𝑦𝑖 |𝑘 , and define Δ𝑈1|𝑘,ℓ ∈ Rℓ𝑚×1 as

Δ𝑈1|𝑘,ℓ
△
=

[
(𝑢1|𝑘 − 𝑢𝑘 )T (𝑢2|𝑘 − 𝑢1|𝑘 )T · · · (𝑢ℓ |𝑘 − 𝑢ℓ−1|𝑘 )T

]T
. (2.47)

The receding horizon optimization problem is then given by

min
𝑈1 |𝑘,ℓ

(
𝑌t,1|𝑘,ℓ − R𝑘,ℓ

)T
𝑄

(
𝑌t,1|𝑘,ℓ − R𝑘,ℓ

)
+ Δ𝑈T

1|𝑘,ℓ𝑅Δ𝑈1|𝑘,ℓ (2.48)

subject to

Cℓ𝑌1|𝑘,ℓ + Dℓ ≤ 0ℓ𝑛c×1 (2.49)

𝑈min ≤ 𝑈1|𝑘,ℓ ≤ 𝑈max (2.50)

Δ𝑈min ≤ Δ𝑈1|𝑘,ℓ ≤ Δ𝑈max, (2.51)

where 𝑄 ∈ Rℓ𝑝t×ℓ𝑝t is the positive definite tracking weight, 𝑅 ∈ Rℓ𝑚×ℓ𝑚 is the positive definite
control move-size weight, 𝑈min

△
= 1ℓ×1 ⊗ 𝑢min ∈ Rℓ𝑚, 𝑈max

△
= 1ℓ×1 ⊗ 𝑢max ∈ Rℓ𝑚, Δ𝑈min

△
=

1ℓ×1 ⊗ Δ𝑢min ∈ Rℓ𝑚, and Δ𝑈max
△
= 1ℓ×1 ⊗ Δ𝑢max ∈ Rℓ𝑚.

In summary, at each time step, online identification is performed to find input-output model
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coefficients 𝜃𝑘+1, which are then used to create a state space realization
(
𝐴̂𝑘 , 𝐵̂𝑘 , 𝐶̂

)
. The state-space

realization is then used in a receding horizon optimization problem to solve for the ℓ-step controls
𝑈1|𝑘,ℓ. The control input for the next step is then given by 𝑢1|𝑘 and the rest of𝑈1|𝑘,ℓ is discarded.
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CHAPTER 3

Retrospective Cost Adaptive Control Using
Dereverberated Target Models

In this chapter, we apply RCAC to disturbance rejection of lightly damped systems using DTFs.
We first explain the sample-data control scenario which is the subject of the sampled-data adaptive
disturbance rejection problem. We then explain the concept of DTFs and their applicability and
use for disturbance rejection of lightly damped structures. Next, we develop two methods for
identification of DTFs. The first using a moving average of the structure’s frequency response and
the second through constrained optimization from experimental system identification data.

We then discuss the necessary modeling information needed in the target model 𝐺f and the
retrospective performance variable decomposition for RCAC. The modeling information required
by RCAC resides in the target model of the closed-loop dynamics; as shown in [23], construction
of this model depends on key features of the dynamics of the structure. In the SISO case, this
information includes knowledge of the sign of the leading numerator coefficient, relative degree,
and nonminimum-phase zeros of the discretized dynamics. In the MIMO case, the required
information is obtained through a collection of impulse-response matrices [56]. It is then shown
through numerical examples that a DTF with minor modifications can be used as the 𝐺f in RCAC
for disturbance rejection. For a SISO system we investigate the effect of the magnitude and phase
error between the DTF 𝐺f and the open-loop transfer function at the frequency of the harmonic
disturbance. For many structures, accurate values for the modal damping is unavailable, therefore
the target model used for control may not be created from a model with the true value for the
damping. We additionally investigate the robustness to mismatches in damping on disturbance
rejection for a multi-input single-output (MISO) system. The DTF is created using a nominal
model and disturbance rejection is attempted on a structure with varying values of the damping
ratio. The resulting asymptotic error is compared to the magnitude and phase error of the target
model at the disturbance frequency.

For experimental application, a gradient based RCAC is developed using an instantaneous
version of the RCAC cost. An approximate optimal step size is found that is more computationally
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efficient than the standard optimal step size for gradient descent. The resulting algorithm is then
implemented on a real-time MISO acoustic disturbance rejection experiment.

3.1 Sampled-Data Adaptive Disturbance Rejection

The disturbance rejection problem involves four signals, namely, the performance 𝑧, the dis-
turbance 𝑤, the output 𝑦, and the control 𝑢. These signals are related by the transfer functions
𝐺𝑧𝑢, 𝐺𝑧𝑤, 𝐺𝑦𝑢, and 𝐺𝑦𝑤, which define the continuous-time, input-output model

𝑧(𝑡) = 𝐺𝑧𝑤 (p)𝑤(𝑡) + 𝐺𝑧𝑢 (p)𝑢(𝑡), (3.1)

𝑦(𝑡) = 𝐺𝑦𝑤 (p)𝑤(𝑡) + 𝐺𝑦𝑢 (p)𝑢(𝑡), (3.2)

where p is the differentiation operator d/d𝑡. The signals 𝑦(𝑡) and 𝑧(𝑡) are sampled instantaneously
to obtain 𝑦𝑘

△
= 𝑦(𝑘𝑇s) ∈ R𝑙𝑦 and 𝑧𝑘

△
= 𝑧(𝑘𝑇s) ∈ R𝑙𝑧 , and the control 𝑢(𝑡) ≡ 𝑢𝑘 ∈ R𝑙𝑢 for

all 𝑡 ∈ [𝑘𝑇s, (𝑘 + 1)𝑇s) is reconstructed from 𝑢𝑘 using a zero-order-hold (ZOH). The feedback
controller 𝐺c(q, 𝜃), where q is the forward-shift operator and 𝜃 is a vector of controller coefficients
that is updated at each step, uses 𝑦𝑘 to determine 𝑢𝑘 , as shown in Figure 3.1. In order to suppress
the effect of the disturbance 𝑤(𝑡) on 𝑧𝑘 , the adaptive controller uses measurements of 𝑧𝑘 to update
𝐺c(q, 𝜃). The controller update is indicated by the diagonal line in Figure 3.1,

Figure 3.1: Block diagram of the sampled-data adaptive disturbance rejection architecture. The
controller 𝐺c,𝑘 is updated at each time step 𝑘.

It follows from (3.1) and (3.2) that 𝑧𝑘 and 𝑦𝑘 are given by

𝑧𝑘 = 𝑧𝑤,𝑘 + 𝐺𝑧𝑢,d(q)𝑢𝑘 , (3.3)

𝑦𝑘 = 𝑦𝑤,𝑘 + 𝐺𝑦𝑢,d(q)𝑢𝑘 , (3.4)
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where

𝑧𝑤,𝑘
△
= 𝐶𝑧𝑤

∫ 𝑘𝑇s

(𝑘−1)𝑇s

𝑒𝐴𝑧𝑤 (𝑘𝑇s−𝑡)𝐵𝑧𝑤𝑤(𝑡) d𝑡 + 𝐷𝑧𝑤

∫ 𝑘𝑇s

(𝑘−1)𝑇s

𝑤(𝑡) d𝑡, (3.5)

𝑦𝑤,𝑘
△
= 𝐶𝑦𝑤

∫ 𝑘𝑇s

(𝑘−1)𝑇s

𝑒𝐴𝑦𝑤 (𝑘𝑇s−𝑡)𝐵𝑦𝑤𝑤(𝑡) d𝑡 + 𝐷𝑦𝑤

∫ 𝑘𝑇s

(𝑘−1)𝑇s

𝑤(𝑡) d𝑡, (3.6)

where (𝐴𝑧𝑤, 𝐵𝑧𝑤, 𝐶𝑧𝑤, 𝐷𝑧𝑤) and (𝐴𝑦𝑤, 𝐵𝑦𝑤, 𝐶𝑦𝑤, 𝐷𝑦𝑤) are realizations of 𝐺𝑧𝑢 (p) and 𝐺𝑦𝑢 (p),
respectively, and 𝐺𝑧𝑢,d(q) and 𝐺𝑦𝑢,d(q) are the zero-order hold discretizations of 𝐺𝑧𝑢 (p) and
𝐺𝑦𝑢 (p), respectively. A block diagram of the discrete-time disturbance rejection problem is shown
in Figure 3.2. All simulation based examples in the chapter are conducted in a sample-data feedback
loop with integration between samples using ode45 in order to capture the intersample behavior.

Figure 3.2: Block diagram of the sampled-data adaptive disturbance rejection architecture in
discrete time.

3.1.1 Closed-Loop Dynamics with RCAC

From the development of RCAC in Section 2.2 we can write the resulting closed-loop dynamics
in the sampled-data adaptive control problem as shown below.

Defining

𝑢𝑘 (𝜃)
△
= Φ𝑘𝜃, (3.7)

𝑢̃𝑘 (𝜃)
△
= 𝑢𝑘 − 𝑢𝑘 (𝜃) = 𝑢𝑘 −Φ𝑘𝜃, (3.8)

(2.19) can be written as

𝑧𝑘 (𝜃) = 𝑧𝑘 − 𝐺f (q)𝑢̃𝑘 (𝜃). (3.9)
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Next, using (2.15) and (3.8), the controller 𝐺c(q, 𝜃) corresponding to 𝜃 is realized as

𝑢𝑘 (𝜃) =
𝑛c∑︁
𝑖=1

𝑃̂𝑖𝑢𝑘−𝑖 +
𝑛c∑︁
𝑖=1

𝑄̂𝑖𝑦𝑘−𝑖 (3.10)

=

𝑛c∑︁
𝑖=1

𝑃̂𝑖𝑢𝑘−𝑖 (𝜃) +
𝑛c∑︁
𝑖=1

𝑃̂𝑖𝑢̃𝑘−𝑖 (𝜃) +
𝑛c∑︁
𝑖=1

𝑄̂𝑖𝑦𝑘−𝑖, (3.11)

which implies that

𝑢𝑘 (𝜃) = 𝐷−1
c (q, 𝜃) [(q𝑛c 𝐼𝑙𝑢 − 𝐷c(q, 𝜃))𝑢̃𝑘 (𝜃) + 𝑁c(q, 𝜃)𝑦𝑘 ], (3.12)

where

𝑁c(q, 𝜃)
△
= q𝑛c−1𝑄̂1 + · · · + 𝑄̂𝑛c , (3.13)

𝐷c(q, 𝜃)
△
= q𝑛c 𝐼𝑙𝑢 − q𝑛c−1𝑃̂1 − · · · − 𝑃̂𝑛c . (3.14)

Next, defining

𝐺c(q, 𝜃)
△
= 𝐷−1

c (q, 𝜃)𝑁c(q, 𝜃) (3.15)

and substituting (3.8) and (3.12) into (3.3) and (3.4) yields

𝑧𝑘 = 𝑧𝑤,𝑘 + 𝐺𝑧𝑢,d(q)
(
𝐷−1

c (q, 𝜃) [(q𝑛c 𝐼𝑙𝑢 − 𝐷c(q, 𝜃))𝑢̃𝑘 (𝜃) + 𝑁c(q, 𝜃)𝑦𝑘 ] + 𝑢̃𝑘 (𝜃)
)
, (3.16)

𝑦𝑘 = 𝑦𝑤,𝑘 + 𝐺𝑦𝑢,d(q)
(
𝐷−1

c (q, 𝜃) [(q𝑛c 𝐼𝑙𝑢 − 𝐷c(q, 𝜃))𝑢̃𝑘 (𝜃) + 𝑁c(q, 𝜃)𝑦𝑘 ] + 𝑢̃𝑘 (𝜃)
)
, (3.17)

where 𝑧𝑤,𝑘 and 𝑦𝑤,𝑘 are defined by (3.5) and (3.6). Finally, solving (3.17) for 𝑦𝑘 and substituting
𝑦𝑘 into (3.16) yields

𝑧𝑘 = 𝜉𝑘 (𝜃) + 𝐺̃𝑧𝑢̃ (q, 𝜃)𝑢̃𝑘 (𝜃), (3.18)

where

𝜉𝑘 (𝜃)
△
= 𝑧𝑤,𝑘 + 𝐺𝑧𝑢,d(q)𝐺c(q, 𝜃) (𝐼𝑙𝑦 − 𝐺𝑦𝑢,d(q)𝐺c(q, 𝜃))−1𝑦𝑤,𝑘 , (3.19)

𝐺̃𝑧𝑢̃ (q, 𝜃)
△
= q𝑛𝑐𝐺𝑧𝑢,d(q)

(
𝐷−1

c (q, 𝜃) + 𝐺c(q, 𝜃) [𝐼𝑙𝑦 − 𝐺𝑦𝑢,d(q)𝐺c(q, 𝜃)]−1𝐺𝑦𝑢,d(q)𝐷−1
c (q, 𝜃)

)
.

(3.20)

Note that 𝜉𝑘 (𝜃) is the portion of the measurement 𝑧𝑘 due to𝑤(𝑡) when using the controller𝐺c(q, 𝜃).
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Finally, note that (3.7)–(3.20) are valid for all 𝜃 ∈ R𝑙𝜃 .

3.1.2 Optimal Controller and the Target Model

Now, assume that there exists 𝜃∗ that minimizes (2.21) for all 𝑘 , and define

𝑢̃∗𝑘
△
= 𝑢̃𝑘 (𝜃∗) = 𝑢𝑘 − 𝑢(𝜃∗) = 𝑢𝑘 −Φ𝑘𝜃

∗, (3.21)

𝑧∗𝑘
△
= 𝑧𝑘 (𝜃∗) = 𝑧𝑘 − 𝐺f (q)𝑢̃∗𝑘 , (3.22)

and

𝐺∗c (q)
△
= 𝐺c(q, 𝜃∗), (3.23)

𝐺̃∗𝑧𝑢̃ (q)
△
= 𝐺̃𝑧𝑢̃ (q, 𝜃∗). (3.24)

Since 𝜃∗ minimizes (2.21) for all 𝑘 , for negligible 𝑅𝑢 it follows that 𝑧∗
𝑘
≈ 0, and thus

𝑧𝑘 ≈ 𝐺f (q)𝑢̃∗𝑘 . (3.25)

Hence, (3.18) and (3.25) imply

𝜉∗𝑘
△
= 𝜉𝑘 (𝜃∗) ≈ [𝐺f (q) − 𝐺̃∗𝑧𝑢̃ (q)]𝑢̃∗𝑘 . (3.26)

It follows from (3.25) that 𝐺f (q) is approximately the transfer function from 𝑢̃∗
𝑘

to 𝑧𝑘 . On the other
hand, (3.18) with 𝜃 = 𝜃∗ shows that the transfer function from 𝑢̃∗

𝑘
to 𝑧𝑘 is 𝐺̃∗

𝑧𝑢̃
(q). The goal is thus

to construct 𝐺f (q) in order to facilitate its approximation by 𝐺̃∗
𝑧𝑢̃
(q).

To determine suitable properties of 𝐺f (q), we consider the case where disturbance rejection is
approximately achieved, that is, for all 𝑘 ≥ 0, 𝜉∗

𝑘
≈ 0. Under this assumption, it follows from (3.18)

that the transfer function from 𝑢̃∗
𝑘

to 𝑧𝑘 is 𝐺̃∗
𝑧𝑢̃
(q). Now, with 𝜃𝑘+1 given by (2.22), it follows that

(3.9) and (3.18) become

𝑧𝑘 (𝜃𝑘+1) = 𝑧𝑘 − 𝐺f (q)𝑢̃𝑘 (𝜃𝑘+1), (3.27)

𝑧𝑘 = 𝜉𝑘 (𝜃𝑘+1) + 𝐺̃𝑧𝑢̃ (q, 𝜃𝑘+1)𝑢̃𝑘 (𝜃𝑘+1). (3.28)

Now assuming that 𝑧𝑘 (𝜃𝑘+1) → 0 as 𝑘 →∞, (3.27) implies that, for all sufficiently large 𝑘,

𝑧𝑘 ≈ 𝐺f (q)𝑢̃𝑘 (𝜃𝑘+1), (3.29)

and thus𝐺f (q) is approximately the transfer function from 𝑢̃𝑘 (𝜃𝑘+1) to 𝑧𝑘 . Since 𝐺̃𝑧𝑢̃ (q, 𝜃𝑘+1) is the

22



actual transfer function from 𝑢̃𝑘 (𝜃𝑘+1) to 𝑧𝑘 , it follows that minimizing (2.21) drives 𝐺̃𝑧𝑢̃ (q, 𝜃𝑘+1)
to 𝐺f (q). Comparing (3.25) to (3.29) implies that

𝐺f (q)𝑢̃𝑘 (𝜃𝑘+1) ≈ 𝐺f (q)𝑢̃∗𝑘 , (3.30)

which, under sufficient persistence of excitation, implies that 𝜃𝑘+1 converges to 𝜃∗, and thus 𝐺̃∗
𝑧𝑢̃
(q)

approximates 𝐺f (q). Consequently, 𝐺f (q) serves as a target model for 𝐺̃∗
𝑧𝑢̃
(q).

In the case where 𝑦𝑘 , 𝑧𝑘 , and 𝑢𝑘 are scalar, 𝐺̃𝑧𝑢̃ (q, 𝜃𝑘+1) can be written as

𝐺̃𝑧𝑢̃ (q, 𝜃𝑘+1) =
q𝑛𝑐𝑁𝑧𝑢,d(q)

𝐷 (q)𝐷c(q, 𝜃𝑘+1) − 𝑁𝑦𝑢,d(q)𝑁c(q, 𝜃𝑘+1)
, (3.31)

where 𝐺𝑧𝑢,d(q) = 𝑁𝑧𝑢,d(q)/𝐷 (q) and 𝐺𝑦𝑢,d(q) = 𝑁𝑦𝑢,d(q)/𝐷 (q). Note that the zeros of
𝐺̃𝑧𝑢̃ (q, 𝜃𝑘+1) include the zeros of 𝐺𝑧𝑢,d(q). Although these zeros do not depend on 𝐺c(q, 𝜃𝑘+1),
they can be canceled by roots of the denominator of 𝐺̃𝑧𝑢̃ (q, 𝜃𝑘+1). In the case of NMP zeros, this
cancellation represents a hidden instability due to the cascade interconnection between the structure
and 𝐺c(q, 𝜃𝑘+1) [20]. As shown in [23], this cancellation can be prevented by ensuring that all
NMP zeros of 𝐺𝑧𝑢 (q) are also zeros of 𝐺f (q).

3.1.3 Retrospective Performance Variable Decomposition

Substituting (3.28) into (3.27) yields

𝑧𝑘 (𝜃𝑘+1) = 𝜉𝑘 (𝜃𝑘+1) + [𝐺̃𝑧𝑢̃ (q, 𝜃𝑘+1) − 𝐺f (q)]𝑢̃𝑘 (𝜃𝑘+1). (3.32)

By defining the one-step predicted performance

𝑧opp,𝑘 (𝜃𝑘+1)
△
= 𝜉𝑘 (𝜃𝑘+1) (3.33)

and the target-model matching performance

𝑧tmp,𝑘 (𝜃𝑘+1)
△
= [𝐺̃𝑧𝑢̃ (q, 𝜃𝑘+1) − 𝐺f (q)]𝑢̃𝑘 (𝜃𝑘+1), (3.34)

(3.32) can be written as

𝑧𝑘 (𝜃𝑘+1)
△
= 𝑧opp,𝑘 (𝜃𝑘+1) + 𝑧tmp,𝑘 (𝜃𝑘+1). (3.35)

The decomposition of the retrospective performance in (3.35) shows the interplay between the one-
step predicted performance and the target-model matching performance. The one-step predicted
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performance represents the closed-loop response of 𝑧𝑘 to the disturbance 𝑤(𝑡) when the controller
𝜃𝑘+1 is used, while the target-model matching performance represents the difference between
𝐺̃𝑧𝑢̃ (q, 𝜃𝑘+1) and 𝐺f (q) driven by 𝑢̃𝑘 (𝜃𝑘+1). Minimizing (2.21) with negligible 𝑅𝑢 yields

𝑧𝑘 (𝜃𝑘+1) ≈ 0 (3.36)

which, using (3.35) implies

𝑧opp,𝑘 (𝜃𝑘+1) + 𝑧tmp,𝑘 (𝜃𝑘+1) ≈ 0 (3.37)

that is,

𝑧opp,𝑘 (𝜃𝑘+1) ≈ −𝑧tmp,𝑘 (𝜃𝑘+1) (3.38)

3.1.4 Standard Construction of the Target Model

In the SISO case, note that the relative degree of 𝐺̃𝑧𝑢̃ (q, 𝜃𝑘+1) is equal to the relative degree of
𝐺𝑧𝑢,d(q). Therefore, in order to facilitate model matching between 𝐺̃𝑧𝑢̃ (q, 𝜃𝑘+1) and 𝐺f (q), we
choose the relative degree of 𝐺f (q) to be equal to the relative degree of 𝐺𝑧𝑢,d(q). For the same
reason, we also construct 𝐺f (q) to have the same leading numerator coefficient as 𝐺𝑧𝑢,d(q).

Furthermore, it can be seen that the numerator of 𝐺̃𝑧𝑢̃ (q, 𝜃𝑘+1) contains all of the zeros present
in 𝐺𝑧𝑢,d(q). Therefore, as the target-model matching performance is minimized, any NMP zeros
that are present in𝐺𝑧𝑢,d(q), but not in𝐺f (q) can lead to unstable pole-zero cancellation. Therefore,
𝐺f (q) must be constructed such that all of the NMP zeros of 𝐺𝑧𝑢,d(q) are present in 𝐺f (q).

A straightforward technique for constructing𝐺f (q) that satisfies these requirements in the SISO
case is given by

𝐺f (q) =
𝑛f∑︁
𝑖=0

𝐻𝑖

q𝑖
, (3.39)

where 𝐻𝑖 is the 𝑖th the Markov parameter of 𝐺𝑧𝑢,d(q) and 𝑛f is the order of 𝐺f (q). In the case
where the structure is minimum phase and asymptotically stable, only the first nonzero Markov
parameter is used in the summation. For NMP structures, the order of 𝑛f must be large enough
such that the NMP zeros of 𝐺f (q) approximate the NMP zeros of 𝐺𝑧𝑢,d(q).

Note that the FIR transfer function (3.39) is a truncated Laurent expansion of 𝐺𝑧𝑢,d(q) [56].
Therefore, by choosing a sufficiently large value of 𝑛f ,𝐺f (q) provides an approximation of𝐺𝑧𝑢,d(q)
that is useful in the MIMO case. Unfortunately, for lightly damped structures, several hundred
Markov parameters may be needed to approximate the NMP zeros; this number is prohibitively
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large in applications. To overcome this difficulty, we use a dereverberated transfer function as the
target model.

3.2 Dereverberated Transfer Functions

A dereverberated model of a lightly damped structure captures the magnitude and phase trend
but ignores resonances and anti-resonances [57, 58, 59, 60]. A DTF is thus an approximate, low-
order model of a lightly damped structure that can easily be obtained in practice and is insensitive
to details of lightly damped poles and zeros.

Various techniques have been developed for generating a DTF from an analytical or empirical
model of a structure [61, 62, 63, 64]. All of these techniques capture some aspect of the mean of
the frequency response, for example, by optimizing the logarithmic-average of the magnitude of
the frequency response. Along these lines, the developed methods extend the method used in [57]
by accounting for both the magnitude and phase of the frequency response.

3.2.1 Identification Using Complex Windowed Average

The dereverberated transfer function can be constructed by smoothing the frequency response of
𝐺d(𝑧) with a windowed average and using the resulting smoothed frequency response to identify the
dereverberated transfer function𝐺d(𝑧). Given a window size of 2Δ rad s−1, the complex windowed
average frequency response is given by

𝐺d(e 𝚥𝜃) =
1

𝜃min − 𝜃max

∫ 𝜃min

𝜃max

𝐺d(e 𝚥𝑣) d𝑣, (3.40)

where 𝜃min
△
= min(𝜋, 𝜃 +Δ) and 𝜃max

△
= max(0, 𝜃 −Δ). The dereverberated transfer function 𝐺d(𝑧)

is then constructed by fitting 𝐺d(e 𝚥𝜃) to 𝐺d(e 𝚥𝜃) and enforcing asymptotic stability of 𝐺d(𝑧). The
order is chosen to be as low as possible while still capturing the rolloff and phase characteristics of
𝐺d(e 𝚥𝜃), and Δ is chosen such that all the modes in 𝐺d(e 𝚥𝜃) are smoothed out while maintaining
the backbone of the response. The algorithm used to construct 𝐺d(𝑧) from 𝐺d(e 𝚥𝜃) is given by
Algorithm 1 of [65] except that the order of 𝐺d(𝑧) is fixed beforehand. For MIMO systems, the
method is performed channel by channel.
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3.2.1.1 Complex Windowed Averaging Dereverberated Target Model Example

Consider the second-order structure with natural frequency 𝜔n = 20𝜋 rad s−1 and damping ratio
𝜁 = 0.05 given by

𝐺 (𝑠) = (20𝜋)2
𝑠2 + 2𝜋𝑠 + (20𝜋)2

, (3.41)

where 𝑠 is the Laplace variable. Discretizing (3.41) with sample-rate 𝑇s = 0.01 s gives

𝐺d(𝑧) =
0.1871𝑧 + 0.1831

𝑧2 − 1.569𝑧 + 0.9391
. (3.42)

The resulting dereverberated transfer function when using complex windowed averaging with
Δ = 10𝜋 rad s−1 and 𝑛̂max = 2 is given by

𝐺d(𝑧) =
0.1842𝑧 + 0.181

𝑧2 − 1.333𝑧 + 0.6814
. (3.43)

From Figure 3.3, the complex windowed average frequency response does not capture the modes
of the system, but has two spurious modes beside the true mode at 20𝜋 rad s−1 due to the window
size of 10𝜋 rad s−1. Consequently, the dereverberated transfer function resulting from averaging
has complex poles, and the spectral radius is reduced compared to𝐺d with a damping ratio of 0.29.
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Figure 3.3: Complex windowed average dereverberated transfer function. a) Poles and zeros of the
discretized structural model and the dereverberated transfer function 𝐺d(𝑧) b) Frequency response
of 𝐺d, 𝐺d(𝑧) and 𝐺d(𝑧). Notice that the phase of 𝐺d(𝑧) follows the general trend of the phase of
𝐺d(𝑧).
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3.2.2 Identification Using Optimization

Let 𝐺d(𝑧) be a discrete-time transfer function of order 𝑛 with frequency response 𝐺d(ej𝜃),
where 𝜃 ∈ [0, 𝜋] . The goal is to determine a dereverberated transfer function 𝐺d(𝑧) of order
𝑛̂ << 𝑛 whose frequency response approximates the frequency response of 𝐺d(𝑧). We construct
𝐺d(𝑧) by minimizing the logarithmic-average of the error between 𝐺d(ej𝜃) and 𝐺d(ej𝜃) subject to
the constraint that all poles and zeros of 𝐺d(𝑧) are real and that 𝐺d(𝑧) is asymptotically stable.
By restricting the poles and zeros to be real, we can construct a transfer function that captures the
magnitude and phase trend of 𝐺d(ej𝜃) without resonances and anti-resonances. More formally, for
a specified value of the maximum order 𝑛̂max << 𝑛 of the dereverberated transfer function 𝐺d(𝑧),
the goal is to solve the optimization problem

min
𝑘,𝑎,𝑏,𝑛̂,𝑚̂

∫ 𝜋

0
|𝐺d(ej𝜃) − 𝐺d(ej𝜃) |2 d(log 𝜃) (3.44)

subject to

𝐺d(𝑧) =
𝑘
∏𝑚̂
𝑖=1(𝑧 + 𝑏𝑖)∏𝑛̂
𝑖=1(𝑧 + 𝑎𝑖)

, (3.45)

𝑚̂ ≤ 𝑛̂ ≤ 𝑛̂max, (3.46)

𝐺d(𝑧) is asymptotically stable, (3.47)

where 𝑚̂ ≥ 0 is the number of zeros, 𝑎 ∈ R𝑛̂ is the vector of poles, 𝑏 ∈ R𝑚̂ is the vector of
zeros, and 𝑘 ∈ R is a scaling factor. If 𝑚̂ = 0, then the numerator of 𝐺d(𝑧) is 𝑘 . In order to
simplify the optimization, 𝑚̂ can be fixed beforehand. For example, 𝑚̂ can be chosen such that the
relative degree of the dereverberated transfer function equals the relative degree of the structure.
The maximum order 𝑛̂max of 𝐺d(𝑧) is typically chosen to be much lower than the order of 𝐺d(𝑧) in
order to obtain a low-order model that efficiently captures the rolloff and phase characteristics of
𝐺d(𝑧). For MIMO systems, the DTF is formed by solving the above optimization problem channel
by channel.

3.2.2.1 Optimization Based Dereverberated Target Model Example

Consider the structure given by (3.41) and discretized at a sample-rate of 𝑇s = 0.01 s such that
the resulting discrete-time system is given by (3.42).

The resulting dereverberated transfer function using optimization with 𝑛̂max = 1 is given by

𝐺d(𝑧) =
0.5126

𝑧 − 0.5544
. (3.48)
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Figure 3.4 shows that the phase of𝐺d(𝑧) follows the trend of the phase of𝐺d(𝑧) without large phase
shifts. Note that for bode magnitude plots, dB is 20log( |𝑇 (j𝜔) |) for continuous transfer functions
and 20log( |𝑇 (ej𝜔𝑇s) |) for discrete transfer functions where 𝑇 is the respective transfer function.
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Figure 3.4: Optimization based dereverberated transfer function: Single-mode SISO Structure a)
Poles and zeros of the discretized structural model and the dereverberated transfer function 𝐺d(𝑧),
which has one real pole. b) Frequency response of 𝐺d(𝑧). Note that the phase of 𝐺d(𝑧) follows the
trend of the phase of 𝐺d(𝑧).

3.2.3 Construction of the Dereverberated Target Model

Directly using a dereverberated transfer function for the target model𝐺f leads to poor disturbance
rejection performance. This is due to the DTF being similar to the open loop system in magnitude.
However, only a simple adjustment to the DTF is needed to improve the disturbance rejection
performance. The adjusted DTF that is used as the target model 𝐺f is termed the DTM.

In particular we set,

𝐺f (𝑧) = 𝛽𝐺d(𝑧), (3.49)

where 𝛽 ∈ (0, 1]. With 𝛽 ∈ [0.5, 0.9] being the values typically used. The parameter 𝛽 is a tuning
parameter that provides a trade-off between disturbance rejection performance and robustness with
smaller values of 𝛽 providing better disturbance rejection performance.
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3.3 Numerical Examples

3.3.1 SISO Adaptive Disturbance Rejection

Let

𝐺 (𝑠) =
400𝜋2𝜔2

p

𝜔2
z

𝑠2 + 2𝜁𝜔z𝑠 + 𝜔2
z

(𝑠 + 10𝜋) (𝑠 + 40𝜋) (𝑠2 + 2𝜁𝜔p𝑠 + 𝜔2
p)

(3.50)

and consider the block diagram in Figure 3.1 with 𝐺 (𝑠) = 𝐺𝑧𝑢 (𝑠) = 𝐺𝑧𝑤 (𝑠) = 𝐺𝑦𝑢 (𝑠) = 𝐺𝑦𝑤 (𝑠),
𝑇s = 0.01 s, and 𝜔p = 20𝜋 rad s−1. The following subsections investigate the performance of
RCAC when using a DTM for harmonic disturbance rejection on (3.50) for various disturbance
frequencies and values of 𝜔z and 𝜁 . The simulations are conducted in a sample-data feedback
loop with integration between samples in order to capture the intersample behavior of the system.
For each case, the harmonic disturbance frequency 𝜔d is swept from 4𝜋 to 50𝜋 rad s−1, and the
asymptotic error at the sample times is plotted against the magnitude and phase error between
𝐺f (𝑒 𝚥𝜔d𝑇s) and 𝐺𝑧𝑢,d(𝑒 𝚥𝜔d𝑇s).

3.3.1.1 Complex Windowed Averaging

The complex windowed average method is used with 𝑛̂max = 2, Δ = 8𝜋 rad s−1, and a scaling of
𝛽 = 1, along with RCAC being initialized with 𝑛c = 20, 𝜃0 = 0𝑙𝜃 , 𝑘𝑤 = 5𝑛c, 𝛼 = 0.5, and 𝑅 = 0.
The resulting magnitude of the asymptotic closed-loop response at the sample times is plotted along
with the magnitude error versus the phase error between 𝐺f (𝑒 𝚥𝜔d𝑇s) and 𝐺𝑧𝑢,d(𝑒 𝚥𝜔d𝑇s) for various
values of 𝜔z and 𝜁 in Figure 3.5. For the specific case where 𝜔d = 21𝜋 rad s−1, 𝜔z = 22𝜋 rad s−1,
and 𝜁 = 0.01, the resulting closed-loop dereverberated target model is shown in Figure 3.6 with the
resulting closed-loop response in Figure 3.7.

3.3.1.2 Optimization

The optimization method is used with 𝑛̂max = 2, and a scaling of 𝛽 = 0.8, along with RCAC
being initialized with 𝑛c = 20, 𝜃0 = 0𝑙𝜃 , 𝑘𝑤 = 5𝑛c, 𝛼 = 0.5, and 𝑅 = 0. The resulting magnitude
of the asymptotic closed-loop response at the sample times is plotted along with the magnitude
error versus the phase error between 𝐺f (𝑒 𝚥𝜔d𝑇s) and 𝐺𝑧𝑢,d(𝑒 𝚥𝜔d𝑇s) for various values of 𝜔z and 𝜁
in Figure 3.8. For the specific case where 𝜔d = 21𝜋 rad s−1, 𝜔z = 22𝜋 rad s−1, and 𝜁 = 0.01,
the resulting closed-loop dereverberated target model is shown in Figure 3.9 with the resulting
closed-loop response in Figure 3.10.
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Figure 3.5: SISO example: complex windowed average dereverberated target model. Magnitude
of the asymptotic closed-loop response at the sample times along with the magnitude error versus
the phase error between 𝐺f (𝑒 𝚥𝜔d𝑇s) and 𝐺𝑧𝑢,d(𝑒 𝚥𝜔d𝑇s) as 𝜔d is swept from 4𝜋 to 50𝜋 rad s−1 for
various values of 𝜁 and 𝜔z. Here, “·” corresponds to the 4𝜋 rad s−1 disturbance, “*” for the 50𝜋
rad s−1 disturbance, “x” for the damped frequency of the pole, and “o” for the damped frequency
of the zero. a) 𝜁 = 0.01, 𝜔z = 22𝜋 rad s−1; b) 𝜁 = 0.01, 𝜔z = 18𝜋 rad s−1; c) 𝜁 = 0.1, 𝜔z = 22𝜋
rad s−1; d) 𝜁 = 0.1, 𝜔z = 18𝜋 rad s−1; e) 𝜁 = 0.01, 𝜔z = 28𝜋 rad s−1; f) 𝜁 = 0.01, 𝜔z = 12𝜋 rad s−1
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Figure 3.6: SISO example: complex windowed average dereverberated target model for 𝜔z =

22𝜋 rad s−1, and 𝜁 = 0.01. a) frequency response of the discretized 𝐺𝑧𝑢 and the closed-loop
dereverberated target model 𝐺f . The closed-loop dereverberated target model was constructed by
using the complex windowed average method with 𝑛̂max = 2, and Δ = 8𝜋 rad s−1. b) error between
the frequency response of the discretized 𝐺𝑧𝑢 and 𝐺f .
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Figure 3.7: SISO adaptive disturbance rejection using complex windowed average dereverberated
target model. Closed-loop response with 𝜔d = 21𝜋 rad s−1, 𝜔z = 22𝜋 rad s−1, and 𝜁 = 0.01. a)
open-loop and closed-loop response of the system subject to the harmonic disturbance. RCAC
starts at 1 s. b) RCAC’s control input. c) coefficients of RCAC as they converge. d) power spectral
density of both the open and closed-loop responses. Notice that the peak in the open-loop response
corresponding to the disturbance is suppressed in the closed-loop response.
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Figure 3.8: SISO example: optimization based dereverberated target model. Magnitude of the
asymptotic closed-loop response at the sample times along with the magnitude error versus the
phase error between 𝐺f (𝑒 𝚥𝜔d𝑇s) and 𝐺𝑧𝑢,d(𝑒 𝚥𝜔d𝑇s) as 𝜔d is swept from 4𝜋 to 50𝜋 rad s−1 for various
values of 𝜁 and 𝜔z. The labeling and symbols is the same as in Figure 3.5.
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Figure 3.9: SISO example: optimization based dereverberated target model for 𝜔z = 22𝜋 rad s−1,
and 𝜁 = 0.01. a) the frequency response of the discretized 𝐺𝑧𝑢 and the closed-loop dereverberated
target model 𝐺f . The closed-loop dereverberated target model was constructed by using the
optimization based method with 𝑛̂max = 2, and scaling the result by 𝛽 = 0.8. b) the error between
the frequency response of the discretized 𝐺𝑧𝑢 and 𝐺f .

3.3.2 MISO Adaptive Disturbance Rejection

Consider the 4-mode, 2-input, 1-output structure MISO in Figure 3.11 and the block diagram in
Figure 3.1 with 𝐺 (𝑠) = 𝐺𝑧𝑢 (𝑠) = 𝐺𝑧𝑤 (𝑠) = 𝐺𝑦𝑢 (𝑠) = 𝐺𝑦𝑤 (𝑠), and 𝑇s = 0.01 s. All poles and zeros
have the same damping ratio of 𝜁 = 0.1. The following subsections investigate the performance
of RCAC on a structure that has a different damping ratio than the model used to generate the
dereverberated target model. Specifically, RCAC is implemented in closed-loop for 50 different
values of the structural damping, 𝜁 from 0.01 to 0.5, with a dereverberated target model computed
from the nominal 𝜁 = 0.1 model. There are two harmonic disturbances at𝜔d1 = 22𝜋 and𝜔d2 = 34𝜋
rad s−1 with the first input receiving the 22𝜋 rad s−1 disturbance and the second input receiving the
34𝜋 rad s−1 disturbance.

3.3.2.1 Complex Windowed Averaging

The complex windowed average method is used with 𝑛̂ = 2, Δ = 8𝜋 rad s−1, and 𝛽 = 𝛾 = 1.
RCAC is initialized with 𝑛c = 20, 𝜃0 = 0𝑙𝜃 , 𝑘𝑤 = 5𝑛c, 𝛼 = 0.2, and 𝑅 = 0. Figure 3.12 shows
the resulting magnitude of the asymptotic closed-loop response at the sample times along with the
magnitude error versus the phase error between𝐺f (𝑒j𝜔d𝑇s) and𝐺𝑧𝑢,d(𝑒j𝜔d𝑇s) for 50 values of 𝜁 from
0.01 to 0.1. For 𝜁 = 0.01, Figure 3.13 compares the structure and the dereverberated target model
constructed from the 𝜁 = 0.1 model, with the resulting closed-loop response shown in Figure 3.14.
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Figure 3.10: SISO adaptive disturbance rejection using optimization based dereverberated target
model. Closed-loop response with 𝜔d = 21𝜋 rad s−1, 𝜔z = 22𝜋 rad s−1, and 𝜁 = 0.01. a) shows
the open-loop and closed-loop response of the system subject to the harmonic disturbance. RCAC
starts at 1 s. b) shows RCAC’s control input. c) shows the coefficients of RCAC as they converge.
d) shows the power spectral density of both the open and closed-loop responses. Notice that the
peak in the open-loop response corresponding to the disturbance is suppressed in the closed-loop
response.
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Figure 3.11: MISO structure: 4-mode, 2-input, 1-output structure. All poles and zeros have
damping ratio 𝜁 = 0.1. a) Pole-zero plot. b) Frequency response.
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Figure 3.12: MISO example: complex windowed average dereverberated target model. Magnitude
of the asymptotic closed-loop response at the sample instances along with the magnitude error
versus the phase error between 𝐺f (𝑒j𝜔d𝑇s) and 𝐺𝑧𝑢,d(𝑒j𝜔d𝑇s) at the disturbance frequency of the
respective channel as 𝜁 is swept between 0.01 to 0.5 when using 𝐺f computed from the 𝜁 = 0.1
model. Here, “·” corresponds to 𝜁 = 0.01, “*” for 𝜁 = 0.5, and “x” for 𝜁 = 0.1. a) Magnitude
error versus the phase error between 𝐺f (𝑒j𝜔d1𝑇s) and 𝐺𝑧𝑢,d(𝑒j𝜔d1𝑇s) for input 𝑢1. b) Magnitude error
versus the phase error between 𝐺f (𝑒j𝜔d2𝑇s) and 𝐺𝑧𝑢,d(𝑒j𝜔d2𝑇s) for input 𝑢2.
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Figure 3.13: MISO example: complex windowed average dereverberated target model. a) Fre-
quency response of the discretized 𝐺𝑧𝑢 with 𝜁 = 0.01 and the DTM 𝐺f constructed from 𝐺𝑧𝑢 with
𝜁 = 0.1. The DTM was constructed by using complex windowed averaging with 𝑛̂ = 2, Δ = 8𝜋 rad
s−1, and 𝛽 = 0.8. b) Error between the frequency response of the discretized 𝐺𝑧𝑢 and the DTM 𝐺f .
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Figure 3.14: MISO adaptive disturbance rejection using complex windowed average dereverberated
target model. a) Open-loop and closed-loop response of the structure subject to the harmonic
disturbance, where RCAC starts at 1 s. b) Control inputs. c) Controller coefficients. d) Power
spectral density of the open- and closed-loop responses. Notice that the 2 peaks in the open-loop
response corresponding to the disturbance are suppressed by 58 dB and 52 dB.
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3.3.2.2 Optimization

The optimization method is used with 𝑛̂max = 2, and 𝛽 = 0.8. RCAC is initialized with 𝑛c = 20,
𝜃0 = 0𝑙𝜃 , 𝑘𝑤 = 5𝑛c, 𝛼 = 0.2, and 𝑅 = 0. Figure 3.15 shows the resulting magnitude of the
asymptotic closed-loop response at the sample times along with the magnitude error versus the
phase error between 𝐺f (𝑒j𝜔d𝑇s) and 𝐺𝑧𝑢,d(𝑒j𝜔d𝑇s) for 50 values of 𝜁 from 0.01 to 0.5. For 𝜁 = 0.01,
Figure 3.16 compares the structure and the dereverberated target model constructed from the 𝜁 = 0.1
model, with the resulting closed-loop response shown in Figure 3.17.
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Figure 3.15: MISO example: optimization based dereverberated target model. Magnitude of the
asymptotic closed-loop response at the sample instances along with the magnitude error versus
the phase error between 𝐺f (𝑒j𝜔d𝑇s) and 𝐺𝑧𝑢,d(𝑒j𝜔d𝑇s) at the disturbance frequency of the respective
channel as 𝜁 is swept between 0.01 to 0.5 when using 𝐺f computed from the 𝜁 = 0.1 model. The
labeling and symbols is the same as in Figure 3.12

3.4 Retrospective Cost Adaptive Control With Instantaneous
Cost

Due to the high computational cost of RLS, it can sometimes be advantageous to implement a
modified version of RCAC with a lower computational cost for experimental applications using a
gradient based update. Specifically, the controller coefficients 𝜃 are now updated by minimizing
the cost function

𝐽𝑘 (𝜃)
△
=

1
2
(𝑧𝑘 (𝜃)T𝑧𝑘 (𝜃) + 𝜃T𝑅𝜃), (3.51)
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Figure 3.16: MISO example: optimization based dereverberated target model. a) Frequency
response of the discretized 𝐺𝑧𝑢 with 𝜁 = 0.01 and the DTM 𝐺f constructed from 𝐺𝑧𝑢 with 𝜁 = 0.1.
The DTM was constructed by using the optimization based method with 𝑛̂max = 2, and 𝛽 = 0.8. b)
Error between the frequency response of the discretized 𝐺𝑧𝑢 and the DTM 𝐺f .
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Figure 3.17: MISO adaptive disturbance rejection using optimization based dereverberated target
model. a) Open-loop and closed-loop response of the structure subject to the harmonic disturbance,
where RCAC starts at 1 s. b) Control inputs. c) Controller coefficients. d) Power spectral
density of the open- and closed-loop responses. Notice that the 2 peaks in the open-loop response
corresponding to the disturbance are suppressed by 59 dB and 52 dB.
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using gradient descent, where the positive-definite matrix 𝑅 ∈ R𝑙𝜃×𝑙𝜃 is a regularization term.
The gradient of (3.51) is given by

∇𝐽𝑘 (𝜃) = ΦT
f,𝑘 𝑧𝑘 (𝜃) + 𝑅𝜃. (3.52)

Let 𝜃𝑘 denote the current value of 𝜃, and let 𝜇𝑘 > 0 denote the step size used to update 𝜃𝑘 , that is,

𝜃𝑘+1 = 𝜃𝑘 − 𝜇𝑘∇𝐽𝑘 (𝜃𝑘 ), (3.53)

= 𝜃𝑘 − 𝜇𝑘 (ΦT
f,𝑘 𝑧𝑘 (𝜃𝑘 ) + 𝑅𝜃𝑘 ). (3.54)

Defining

𝑔(𝜇𝑘 )
△
= 𝐽𝑘 (𝜃𝑘 − 𝜇𝑘 (ΦT

f,𝑘 𝑧𝑘 (𝜃𝑘 ) + 𝑅𝜃𝑘 )),

= 1
2∇𝐽𝑘 (𝜃𝑘 )

T(ΦT
f,𝑘Φf,𝑘 + 𝑅)∇𝐽𝑘 (𝜃𝑘 )𝜇2

𝑘

− [∇𝐽𝑘 (𝜃𝑘 )T(ΦT
f,𝑘Φf,𝑘 + 𝑅)𝜃𝑘 + (𝑧𝑘 − 𝑢f)TΦf,𝑘∇𝐽𝑘 (𝜃𝑘 ))]𝜇𝑘

+ 1
2𝜃

T
𝑘Φ

T
f,𝑘Φf,𝑘𝜃𝑘 + (𝑧𝑘 − 𝑢f)TΦf,𝑘𝜃𝑘

+ 1
2 (𝑧𝑘 (𝜃𝑘 )

T𝑧𝑘 (𝜃𝑘 ) − 2𝑧𝑘 (𝜃𝑘 )T𝑢f,𝑘 + 𝑢T
f,𝑘𝑢f,𝑘 ) + 1

2𝜃
T
𝑘 𝑅𝜃𝑘 ,

= 1
2∇𝐽𝑘 (𝜃𝑘 )

T(ΦT
f,𝑘Φf,𝑘 + 𝑅)∇𝐽𝑘 (𝜃𝑘 )𝜇2

𝑘

− [∇𝐽𝑘 (𝜃𝑘 )TΦT
f,𝑘 𝑧𝑘 (𝜃𝑘 ) + ∇𝐽𝑘 (𝜃𝑘 )

T𝑅𝜃𝑘 ]𝜇𝑘 + 𝐽𝑘 (𝜃𝑘 ),

= 1
2 [(Φ

T
f,𝑘 𝑧𝑘 (𝜃𝑘 ) + 𝑅𝜃𝑘 )

T(ΦT
f,𝑘Φf,𝑘 + 𝑅) (ΦT

f,𝑘 𝑧𝑘 (𝜃𝑘 ) + 𝑅𝜃𝑘 )]𝜇
2
𝑘

− [(ΦT
f,𝑘 𝑧𝑘 (𝜃𝑘 ) + 𝑅𝜃𝑘 )

T(ΦT
f,𝑘 𝑧𝑘 (𝜃𝑘 ) + 𝑅𝜃𝑘 )]𝜇𝑘 + 𝐽𝑘 (𝜃𝑘 ), (3.55)

it follows that

𝑔′(𝜇𝑘 ) = [(ΦT
f,𝑘 𝑧𝑘 (𝜃𝑘 ) + 𝑅𝜃𝑘 )

T(ΦT
f,𝑘Φf,𝑘 + 𝑅) (ΦT

f,𝑘 𝑧𝑘 (𝜃𝑘 ) + 𝑅𝜃𝑘 )]𝜇𝑘 ,
− [(ΦT

f,𝑘 𝑧𝑘 (𝜃𝑘 ) + 𝑅𝜃𝑘 )
T(ΦT

f,𝑘 𝑧𝑘 (𝜃𝑘 ) + 𝑅𝜃𝑘 )] . (3.56)

An optimal adaptive steps size 𝜇opt,𝑘 is found by setting 𝑔′(𝜇𝑘 ) = 0 and assuming that (ΦT
f,𝑘 𝑧𝑘 (𝜃𝑘 ) +

𝑅𝜃𝑘 ) ≠ 0 yielding

𝜇opt,𝑘
△
=

(ΦT
f,𝑘 𝑧𝑘 (𝜃𝑘 ) + 𝑅𝜃𝑘 )

T(ΦT
f,𝑘 𝑧𝑘 (𝜃𝑘 ) + 𝑅𝜃𝑘 )

(ΦT
f,𝑘 𝑧𝑘 (𝜃𝑘 ) + 𝑅𝜃𝑘 )T(Φ

T
f,𝑘Φf,𝑘 + 𝑅) (ΦT

f,𝑘 𝑧𝑘 (𝜃𝑘 ) + 𝑅𝜃𝑘 )
. (3.57)

The corresponding update law for the controller coefficient vector using the optimal step size is
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then given by

𝜃𝑘+1 = 𝜃𝑘 − 𝜇opt,𝑘 (ΦT
f,𝑘 𝑧𝑘 (𝜃𝑘 ) + 𝑅𝜃𝑘 ), (3.58)

Additionally, we can derive a suboptimal step size using the inequality

(ΦT
f,𝑘 𝑧𝑘 (𝜃𝑘 ) + 𝑅𝜃𝑘 )

T(ΦT
f,𝑘Φf,𝑘 + 𝑅) (ΦT

f,𝑘 𝑧𝑘 (𝜃𝑘 ) + 𝑅𝜃𝑘 ),
≤ 𝜎max(ΦT

f,𝑘Φf,𝑘 + 𝑅)∥ΦT
f,𝑘 𝑧𝑘 (𝜃𝑘 ) + 𝑅𝜃𝑘 ∥

2, (3.59)

which leads to the suboptimal step size

𝜇𝜎,𝑘
△
=

1
𝜎max(ΦT

f,𝑘Φf,𝑘 + 𝑅)
≤ 𝜇opt,𝑘 . (3.60)

Additional computational savings are obtained by replacing the maximum singular value by the
Frobenius norm, that is,

𝜇F,𝑘
△
=

1
∥ΦT

f,𝑘Φf,𝑘 + 𝑅∥F
≤ 𝜇𝜎,𝑘 . (3.61)

Combining (3.60) and (3.61) yields

𝜇F,𝑘 ≤ 𝜇𝜎,𝑘 ≤ 𝜇opt,𝑘 . (3.62)

The above step sizes may be too aggressive during the initial steps of RCAC when limited data is
available, therefore we can multiply (3.57), (3.60), and (3.61) by a tunable parameter 𝛼 ∈ (0, 1]
to adjust the adaptation speed. Multiplying (3.61) by 𝛼 and setting 𝑅 = 0𝑙𝜃 results in the step size
used in Section 3.5

𝜇Exp,𝑘 =
𝛼

∥Φf,𝑘 ∥2F
. (3.63)

3.5 Lab Acoustic Experiment

RCAC with a dereverberated target model is now implemented in an acoustic experiment. The
experiment consists of an omnidirectional microphone with three mid-bass speakers in a 6 ft × 3
ft × 3 ft enclosed space shown in Figure 3.18. One speaker 𝑤1 is used to generate the harmonic
disturbance, with the other two speakers 𝑢1 and 𝑢2 being available for control. The RCAC algorithm
is implemented using a dSPACE SCALEXIO at a sample rate of 8 kHz. The SCALEXIO is also
used to generate the harmonic disturbance consisting of seven tones at 0.8, 0.9, 1.06, 1.3, 1.6, 2.2,
and 3 kHz. Note that the frequency, amplitude, and phase of the harmonic disturbance are assumed
to be unknown.
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The nature of the acoustic experiment leads to multi-sample delays. Once a frequency response
of the system is identified, the delays are characterized and removed to facilitate the optimization
procedure used to create the DTF. At 8 kHz, the delays from inputs 𝑢1 and 𝑢2 to the microphone
corresponded to 9 and 16 samples respectively. The resulting frequency response without delays is
used to generate the DTF. The 9 and 16 sample delays were then added to the appropriate inputs in
the DTF to create the target model.

Due to computational constraints, a modified version of RCAC was implemented for the exper-
iment. Specifically, the controller coefficients 𝜃 are now updated by minimizing the cost function
(3.51) with 𝑅 = 0𝑙𝜃 and using the update law (3.52) with 𝜇𝑘 = 𝜇Exp,𝑘 .

(a)

(b)

Figure 3.18: Experimental Setup. a) Simplified top-down drawing. b) Image of experimental
setup.

3.5.1 Complex Windowed Averaging

The complex windowed average method is used with 𝑛̂ = 6, Δ = 1000𝜋 rad s−1, and 𝛽 = 𝛾 = 1.
RCAC is initialized with 𝑛c = 50, 𝜃0 = 0𝑙𝜃 , 𝑘𝑤 = 11𝑛c, and 𝛼 = 0.05. Figure 3.19 compares
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the acoustic experiment model and the dereverberated target model. Figure 3.20 shows that the
disturbance is suppressed as the controller coefficients converge.
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Figure 3.19: Experiment: complex windowed average dereverberated target model. a) Frequency
response of the discretized 𝐺𝑧𝑢 and the DTM 𝐺f . The DTM was constructed by using the complex
windowed average method with 𝑛̂ = 6, Δ = 1000𝜋 rad s−1, and adding a 9 sample delay to input 𝑢1
and 16 sample delay to input 𝑢2. b) Error between the frequency response of the discretized 𝐺𝑧𝑢

and the DTM 𝐺f .

3.5.2 Optimization

The optimization based method is used with 𝑛̂max = 6, 𝛽 = 0.6, and 𝛾 = 1. RCAC is initialized
with 𝑛c = 40, 𝜃0 = 0𝑙𝜃 , 𝑘𝑤 = 14𝑛c, and 𝛼 = 0.05. Figure 3.21 compares the acoustic experiment
model and the dereverberated target model. Figure 3.22 shows that the disturbance is suppressed
as the controller coefficients converge. Large spikes in the control input occur until the controller
coefficients converge at 3 seconds and convergence is slower than in complex windowed average
method

3.6 Conclusions

In this chapter, two methods for identifying DTFs were formulated. For harmonic disturbance
rejection in a sampled-data feedback loop, RCAC was applied numerically to adaptive disturbance
rejection using a DTF as the target model. The frequency, amplitude, and phase of the harmonic
disturbance were assumed to be unknown. Using the limited modeling information provided by
the low-order dereverberated target model, RCAC was found to suppress the harmonic disturbance
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Figure 3.20: Experiment: adaptive disturbance rejection using complex windowed average derever-
berated target model. a) Open-loop response and closed-loop response of the acoustic experiment
subject to the harmonic disturbance, where RCAC starts at 1.05 s. b) Control inputs. c) Controller
coefficients. d) Power spectral density of the open- and closed-loop responses. Notice that the
7 largest peaks in the open-loop response corresponding to the disturbance are suppressed in the
closed-loop response to the noise floor. Tones from the laboratory environment are also present.
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Figure 3.21: Experiment: optimization based dereverberated target model. a) Frequency response
of the discretized 𝐺𝑧𝑢 and the DTM 𝐺f . The DTM was constructed by using logarithmic-average
error minimization with 𝑛̂max = 6, 𝛽 = 0.6, and adding a 9 sample delay to input 𝑢1 and 16 sample
delay to input 𝑢2. b) Error between the frequency response of the discretized𝐺𝑧𝑢 and the DTM 𝐺f .
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Figure 3.22: Experiment: adaptive disturbance rejection using optimization based dereverberated
target model. a) Open-loop response and closed-loop response of the acoustic experiment subject
to the harmonic disturbance, where RCAC starts at 1.05 s. b) Control inputs. c) Controller
coefficients. d) Power spectral density of the open- and closed-loop responses. Notice that the
7 largest peaks in the open-loop response corresponding to the disturbance are suppressed in the
closed-loop response to the noise floor. Tones from the laboratory environment are also present.
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over a range of disturbance frequencies. In addition, for a 2-input, 1-output structure, RCAC
was found to suppress the harmonic disturbance using a dereverberated target model constructed
from a model with an erroneous damping ratio. RCAC was then applied to a 2-input, 1-output
acoustic noise-suppression experiment. A gradient-based variation of RCAC was implemented
with a dereverberated target model with 8-kHz sample rate, with seven harmonic disturbances.
RCAC was found to suppress the disturbances as well as ambient disturbances present in the lab.
The results show that a dereverberated target model that captures the phase and magnitude trend
but not the detailed peaks and notches of the structure can be effective for disturbance rejection on
lightly damped structures.
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CHAPTER 4

Retrospective Cost Model Reference Adaptive
Control

In this chapter we investigate the MRAC problem for systems containing NMP zeros. A relevant
method for NMP systems is the APPC developed in [66, 67, 68], which can be applied to NMP
systems with unknown NMP zeros. This is accomplished by overparameterizing the 2𝑛 parameter
controller identification problem as a 4𝑛 parameter problem using a Bezout identity. The drawback
of this approach is the need for sufficient persistency in order to achieve model-following, even for
step commands. Although this requirement was alleviated in [69] through the use of DREM, the
need for persistency is nontrivial.

This chapter develops a novel MRAC technique based on RCAC and compares it with APPC.
For SISO discrete-time or sampled-data systems, RCAC requires knowledge of the sign of the
leading numerator coefficient, relative degree, and NMP zeros. RCAC minimizes a retrospective
performance measure based on the difference between filtered past control inputs and filtered,
re-optimized past control inputs. To further reduce the dependence on prior modeling, an indirect
adaptive control extension of RCAC was developed in [70].

An initial development of RC-MRAC was shown in [71] with stability analysis given in [72].
A related technique was developed in [73]. As in the case of RCAC, RC-MRAC is applicable to
discrete-time and sampled-data systems with known NMP zeros; minimum-phase zeros need not
be known. The goal and contribution of the present chapter is to develop RC-MRAC and assess its
performance from the perspective of both command following and adaptive pole placement in com-
parison to APPC. Additionally, we show that, with minor modifications, RC-MRAC can perform
disturbance rejection for harmonic disturbances with unknown spectra. Numerical examples show
that, in contrast to [69], RC-MRAC does not require persistency. The price paid for alleviating the
need for persistency is knowledge of the NMP zeros.

The structure of the chapter is as follows, Section 4.1 gives an overview of the MRAC problem,
Section 4.2 gives a derivation of APPC, Section 4.3 gives a derivation of RC-MRAC, Section 4.4
shows the connection between APPC and RC-MRAC, and Sections 4.5-4.7 provide examples and
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comparison of both algorithms for minimum- and NMP systems, as well as harmonic disturbance
rejection.

4.1 Model Reference Adaptive Control

Consider the discrete-time SISO system

𝑦𝑘 =
𝑁 (q−1)
𝐷 (q−1)

𝑢𝑘 , (4.1)

where

𝑁 (q−1) △=
𝑛∑︁
𝑖=𝑛r

𝑁𝑖q−𝑖, (4.2)

𝐷 (q−1) △= 1 +
𝑛∑︁
𝑖=1

𝐷𝑖q−𝑖, (4.3)

are coprime, 𝑁𝑛r ≠ 0, and 𝑛r is the relative degree of 𝑁 (q−1)
𝐷 (q−1) as a rational function of q. In the

MRAC problem, the goal is to find a controller 𝐺c(q−1) such that the output 𝑦𝑘 follows the desired
reference response 𝑦m,𝑘 to a command 𝑟𝑘 given by

𝑦m,𝑘 =
𝑁m(q−1)
𝐷m(q−1)

𝑟𝑘 , (4.4)

where

𝑁m(q−1) △=
𝑛∑︁
𝑖=𝑛r

𝑁m,𝑖q−𝑖, (4.5)

𝐷m(q−1) △= 1 +
𝑛∑︁
𝑖=1

𝐷m,𝑖q−𝑖 . (4.6)

As shown in Figure 4.1, the error 𝑒𝑘 between the actual plant response 𝑦𝑘 and the reference model
response 𝑦m,𝑘 is used to update the controller. The direct MRAC problem differs from the indirect
case in that the plant is not identified, but knowledge of the NMP zeros of (4.1) is typically needed
to prevent unstable pole-zero cancellation.

47



𝑁m(q−1)
𝐷m(q−1)

𝑁 (q−1)
𝐷(q−1)𝐺c

(
q−1) − 𝑒𝑘

𝑟𝑘
𝑢𝑘

𝑦m,𝑘

𝑦𝑘

Figure 4.1: Block diagram of the direct model reference adaptive control problem.

4.2 Adaptive Pole Placement Control

The APPC developed in [66, 67] addresses the MRAC problem in the case where 𝑁m(q−1) =
𝑁 (q−1). Through the use of a Bezout identity, no knowledge of the NMP zeros of the plant is
needed and only the plant order 𝑛 needs to be known. This comes at the cost of higher persistency
of excitation requirements which has been previously demonstrated [69]. For reference, APPC is
summarized below.

4.2.1 APPC Derivation

Defining

𝑥𝑘
△
=

1
𝐷 (q−1)

𝑢𝑘 , (4.7)

which satisfies
𝐷 (q−1)𝑥𝑘 = 𝑢𝑘 , (4.8)

it follows that (4.1) can be written as

𝑦𝑘 = 𝑁 (q−1)𝑥𝑘 . (4.9)

For the command 𝑟𝑘 , consider the controller

𝑢𝑘 = 𝑁c(q−1)𝑦𝑘 + 𝐷c(q−1)𝑢𝑘 + 𝐻 (q−1)𝑟𝑘 , (4.10)
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where

𝑁c(q−1) △=
𝑛∑︁
𝑖=1

𝑁c,𝑖q−𝑖, (4.11)

𝐷c(q−1) △=
𝑛∑︁
𝑖=1

𝐷c,𝑖q−𝑖, (4.12)

𝐻 (q−1) △= 1 +
𝑛∑︁
𝑖=1

𝐻𝑖q−𝑖, (4.13)

and 𝐻 (q−1) is an asymptotically stable monic polynomial as a function of q. Combining (4.8),
(4.9), and (4.10) yields

𝐷 (q−1)𝑥𝑘 = 𝑁c(q−1)𝑁 (q−1)𝑥𝑘 + 𝐷c(q−1)𝐷 (q−1)𝑥𝑘 + 𝐻 (q−1)𝑟𝑘 , (4.14)

which implies

𝑥𝑘 =
𝐻 (q−1)
𝐷̃ (q−1)

𝑟𝑘 , (4.15)

where
𝐷̃ (q−1) △= 𝐷 (q−1) − 𝑁c(q−1)𝑁 (q−1) − 𝐷c(q−1)𝐷 (q−1). (4.16)

Proposition 4.2.1. Let the desired closed-loop poles be the roots of

𝐷m(q−1) = 1 +
𝑛∑︁
𝑖=1

𝐷m,𝑖q−𝑖, (4.17)

and assume there exist 𝑁∗c (q−1) and 𝐷∗c (q−1) such that

𝐷m(q−1)𝐻 (q−1) = 𝐷̃∗(q−1), (4.18)

where

𝐷̃∗(q−1) △= 𝐷 (q−1) − 𝑁∗c (q−1)𝑁 (q−1) − 𝐷∗c (q−1)𝐷 (q−1). (4.19)

Then, the closed-loop dynamics are given by

𝑦𝑘 =
𝑁 (q−1)
𝐷m(q−1)

𝑟𝑘 . (4.20)
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Proof. Using (4.9), (4.15) with 𝐷̃ (q−1) = 𝐷̃∗(q−1), and (4.18),

𝑦𝑘 = 𝑁 (q−1)𝑥𝑘 =
𝑁 (q−1)𝐻 (q−1)
𝐷̃∗(q−1)

𝑟𝑘 =
𝑁 (q−1)𝐻 (q−1)
𝐷m(q−1)𝐻 (q−1)

𝑟𝑘 =
𝑁 (q−1)
𝐷m(q−1)

𝑟𝑘 . (4.21)

Note that, although the numerator of the closed loop dynamics (4.21) is 𝑁 (q−1), Proposition
4.2.1 does not require knowledge of 𝑁 (q−1).

Proposition 4.2.2. Let 𝐵∗(q−1) and 𝐶∗(q−1) satisfy the Bezout identity

1 = 𝐵∗(q−1)𝑁 (q−1) + 𝐶∗(q−1)𝐷 (q−1), (4.22)

where

𝐵∗(q−1) △=
𝑛∑︁
𝑖=1

𝐵∗𝑖 q
−𝑖, (4.23)

𝐶∗(q−1) △= 1 +
𝑛∑︁
𝑖=1

𝐶∗𝑖 q−𝑖 . (4.24)

Then,

𝐷m(q−1)𝐻 (q−1) [𝐵̃(q−1)𝑦𝑘 + 𝐶̃ (q−1)𝑢𝑘 ] + [𝑁̃c(q−1)𝑦𝑘 + 𝐷̃c(q−1)𝑢𝑘 ]
= 𝐷m(q−1)𝐻 (q−1) [𝐵̂(q−1)𝑦𝑘 + 𝐶̂ (q−1)𝑢𝑘 ] − [𝑢𝑘 − 𝑁̂c(q−1)𝑦𝑘 − 𝐷̂c(q−1)𝑢𝑘 ], (4.25)

where

𝐵̃(q−1) △= 𝐵̂(q−1) − 𝐵∗(q−1), (4.26)

𝐶̃ (q−1) △= 𝐶̂ (q−1) − 𝐶∗(q−1), (4.27)

𝑁̃c(q−1) △= 𝑁̂c(q−1) − 𝑁∗c (q−1), (4.28)

𝐷̃c(q−1) △= 𝐷̂c(q−1) − 𝐷∗c (q−1). (4.29)

Proof. Multiplying both sides of (4.19) by 𝑥𝑘 , and using (4.8), (4.9), and (4.18) yields

𝐷m(q−1)𝐻 (q−1)𝑥𝑘 = 𝑢𝑘 − 𝑁∗c (q−1)𝑦𝑘 − 𝐷∗c (q−1)𝑢𝑘 . (4.30)

Multiplying both sides of (4.22) by 𝑥𝑘 and using (4.8) and (4.9) yields

𝑥𝑘 = 𝐵
∗(q−1)𝑦𝑘 + 𝐶∗(q−1)𝑢𝑘 . (4.31)
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Substituting (4.31) into (4.30) yields

𝐷m(q−1)𝐻 (q−1) [𝐵∗(q−1)𝑦𝑘 + 𝐶∗(q−1)𝑢𝑘 ] = 𝑢𝑘 − 𝑁∗c (q−1)𝑦𝑘 − 𝐷∗c (q−1)𝑢𝑘 . (4.32)

Finally, substituting (4.26)-(4.29) into (4.32) yields (4.25).

Note that all the terms on the right-hand side of (4.25) are known, and thus the sum of terms
on the left-hand side is known despite the fact that 𝑁̃c(q−1), 𝐷̃c(q−1), 𝐵̃(q−1) and 𝐶̃ (q−1) are
individually unknown. Furthermore, if (4.26)-(4.29) are all zero, then both sides of (4.25) are zero.
We thus define the performance variable

𝑧𝑘
△
= 𝐷m(q−1)𝐻 (q−1) [𝐵̂(q−1)𝑦𝑘 + 𝐶̂ (q−1)𝑢𝑘 ] − [𝑢𝑘 − 𝑁̂c(q−1)𝑦𝑘 − 𝐷̂c(q−1)𝑢𝑘 ] (4.33)

= 𝐷m(q−1)𝐻 (q−1) [𝐵̃(q−1)𝑦𝑘 + 𝐶̃ (q−1)𝑢𝑘 ] + [𝑁̃c(q−1)𝑦𝑘 + 𝐷̃c(q−1)𝑢𝑘 ] . (4.34)

Note that, if 𝑁̃c(q−1), 𝐷̃c(q−1), 𝐵̃(q−1), and 𝐶̃ (q−1) are all zero, then 𝑧𝑘 is zero. We thus seek
estimates 𝑁̂c(q−1), 𝐷̂c(q−1), 𝐵̂(q−1) and 𝐶̂ (q−1) of 𝑁∗c (q−1), 𝐷∗c (q−1), 𝐵∗(q−1) and 𝐶∗(q−1),
respectively, that minimize the magnitude of 𝑧𝑘 .

4.2.2 APPC Algorithm

Proposition 4.2.3. Define

𝜃1
△
=

[
𝑁∗c,1 · · · 𝑁∗c,𝑛 𝐷∗c,1 · · · 𝐷∗c,𝑛

]T
, (4.35)

𝜃2
△
=

[
𝐵∗c,1 · · · 𝐵∗c,𝑛 𝐶∗c,1 · · · 𝐶

∗
c,𝑛

]T
. (4.36)

Then, [
Φ𝑘 Φf,𝑘

] [
𝜃1

𝜃2

]
+ 𝑢f,𝑘 = 0, (4.37)

where

Φ𝑘
△
=

[
𝑦𝑘−1 · · · 𝑦𝑘−𝑛 𝑢𝑘−1 · · · 𝑢𝑘−𝑛

]
, (4.38)

Φf,𝑘
△
= 𝐷m(q−1)𝐻 (q−1)Φ𝑘 , (4.39)

𝑢f,𝑘
△
= [𝐷m(q−1)𝐻 (q−1) − 1]𝑢𝑘 . (4.40)

Since 𝑁∗c (q−1), 𝐷∗c (q−1), 𝐵∗(q−1) and 𝐶∗(q−1) are unknown, the goal is to solve the regression
(4.37) at each step 𝑘 to obtain estimates 𝜃1,𝑘 and 𝜃2,𝑘 of the polynomial coefficients 𝜃1 and 𝜃2,
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respectively. The estimation error is thus given by

𝑧𝑘 (𝜃1,𝑘 , 𝜃2,𝑘 )
△
=

[
Φ𝑘 Φf,𝑘

] [
𝜃1,𝑘

𝜃2,𝑘

]
+ 𝑢f,𝑘 . (4.41)

For regression at each step, RLS is used to minimize the cost function

𝐽𝑘 (𝜃1,𝑘 , 𝜃2,𝑘 )
△
=

𝑘∑︁
𝑖=1

𝜆𝑘−𝑖 [𝑧𝑖 (𝜃1,𝑖, 𝜃2,𝑖)T𝑧𝑖 (𝜃1,𝑖, 𝜃2,𝑖)] + 𝜆𝑘 (
[
𝜃1,𝑘

𝜃2,𝑘

]
−

[
𝜃1,0

𝜃2,0

]
)T𝑅𝜃 (

[
𝜃1,𝑘

𝜃2,𝑘

]
−

[
𝜃1,0

𝜃2,0

]
),

(4.42)

where 𝜆 ∈ (0, 1] is the forgetting factor. Using the computed RLS solution and (4.10), the control
input at step 𝑘 + 1 is given by

𝑢𝑘+1 = Φ𝑘+1𝜃1,𝑘+1 + 𝐻 (q−1)𝑟𝑘+1. (4.43)

Note that the identified Bezout coefficients 𝐵̂(q−1) and 𝐶̂ (q−1) are available from the RLS solution.
However, these estimates are not used to determine the control input. In addition, 𝐵̂(q−1) and 𝐶̂ (q−1)
could be used to obtain estimates of 𝑁 (q−1) and 𝐷 (q−1). However, these estimates are not needed
for APPC.

4.2.3 APPC Global Stability Results

The following section briefly restates the global stability results of APPC as given in [66]. Let
the unknown system of order 𝑛 be given by (4.1), where 𝑁 (q−1) and 𝐷 (q−1) are coprime. Let the
command 𝑟𝑘 be of the form

𝑟𝑘 =

2𝑛∑︁
𝑖=1

𝐿𝑖𝑒
𝚥𝜔𝑖𝑘 + 𝐿𝑖𝑒− 𝚥𝜔𝑖𝑘 , (4.44)

where 𝐿𝑖 ≠ 0 ∀𝑖, 𝜔𝑖 ≠ 𝜔 𝑗 if 𝑖 ≠ 𝑗 , and 𝐿 is the complex conjugate of 𝐿. Let the control law be
(4.43) and the identification scheme be the minimization of the cost function (4.42) using RLS at
each step. Then, if 𝐿𝑖 is chosen such that

∞∑︁
𝑘=1

[
Φ𝑘 Φf,𝑘

]T [
Φ𝑘 Φf,𝑘

]
≥ 𝜀𝐼4𝑛, (4.45)

where 𝜀 is finite and positive, then 𝑢𝑘 , 𝑦𝑘 , and 𝑥𝑘 are bounded, and the closed-loop system is
globally stable converging to a system that satisfies (4.20).
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4.3 Retrospective Cost Model Reference Adaptive Control

4.3.1 RC-MRAC Derivation

Let 𝑁 (q−1) be factored as

𝑁 (q−1) = 𝑁𝑛r𝑁u(q−1)𝑁s(q−1)q−𝑛r , (4.46)

where 𝑁u(q−1) and 𝑁s(q−1) as a function of q are monic polynomials of order 𝑛u and 𝑛s whose
roots have modulus at least 1 and less than 1, respectively. Next, consider the controller

𝑢𝑘 = 𝑁c(q−1)𝑦𝑘 + 𝐷c(q−1)𝑢𝑘 + 𝑅c(q−1)𝐹 (q−1)𝑟𝑘 , (4.47)

where 𝑁c(q−1) and 𝐷c(q−1) are given by (4.11) and (4.12), and

𝑅c(q−1) △= 𝑅c,0 +
𝑛s∑︁
𝑖=1

𝑅c,𝑖q−𝑖, (4.48)

𝐹 (q−1) △= 1 +
𝑛−𝑛s∑︁
𝑖=1

𝐹𝑖q−𝑖, (4.49)

where 𝐹 (q−1) is an arbitrary stable monic polynomial in q. Combining (4.8), (4.9), and (4.47)
yields

𝐷 (q−1)𝑥𝑘 = 𝑁c(q−1)𝑁 (q−1)𝑥𝑘 + 𝐷c(q−1)𝐷 (q−1)𝑥𝑘 + 𝑅c(q−1)𝐹 (q−1)𝑟𝑘 , (4.50)

which implies

𝑥𝑘 =
𝑅c(q−1)𝐹 (q−1)

𝐷̃ (q−1)
𝑟𝑘 , (4.51)

where
𝐷̃ (q−1) △= 𝐷 (q−1) − 𝑁c(q−1)𝑁 (q−1) − 𝐷c(q−1)𝐷 (q−1). (4.52)

Proposition 4.3.1. Let the desired closed-loop poles be the roots of

𝐷m(q−1) = 1 +
𝑛∑︁
𝑖=1

𝐷m,𝑖q−𝑖, (4.53)

and assume there exist 𝑁∗c (q−1) and 𝐷∗c (q−1) such that

𝐷m(q−1)𝑁s(q−1)𝐹 (q−1) = 𝐷̃∗(q−1), (4.54)
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where

𝐷̃∗(q−1) △= 𝐷 (q−1) − 𝑁∗c (q−1)𝑁 (q−1) − 𝐷∗c (q−1)𝐷 (q−1). (4.55)

Then, the closed-loop dynamics are given by

𝑦𝑘 =
𝑁𝑛r𝑁𝑢 (q−1)𝑅c(q−1)q−𝑛r

𝐷m(q−1)
𝑟𝑘 . (4.56)

Proof. Using (4.9), (4.51) with 𝐷̃ (q−1) = 𝐷̃∗(q−1), and (4.54),

𝑦𝑘 = 𝑁 (q−1)𝑥𝑘 =
𝑁 (q−1)𝑅c(q−1)𝐹 (q−1)

𝐷̃∗(q−1)
𝑟𝑘 =

𝑁 (q−1)𝑅c(q−1)𝐹 (q−1)
𝐷m(q−1)𝑁s(q−1)𝐹 (q−1)

𝑟𝑘

=
𝑁𝑛r𝑁𝑢 (q−1)𝑅c(q−1)q−𝑛r

𝐷m(q−1)
𝑟𝑘 .

Proposition 4.3.2. Assume there exists 𝑅∗c (q−1) such that

𝑁m(q−1) = 𝑁𝑛r𝑁𝑢 (q−1)𝑅∗c (q−1)q−𝑛r , (4.57)

and let

𝑁̃c(q−1) △= 𝑁̂c(q−1) − 𝑁∗c (q−1), (4.58)

𝐷̃c(q−1) △= 𝐷c(q−1) − 𝐷∗c (q−1), (4.59)

𝑅̃c(q−1) △= 𝑅̂c(q−1) − 𝑅∗c (q−1). (4.60)

Then,

𝑁𝑛r𝑁𝑢 (q−1)q−𝑛r [𝑁̃c(q−1)𝑦𝑘 + 𝐷̃c(q−1)𝑢𝑘 + 𝑅̃c(q−1)𝑟𝑘 ]
= 𝐷m(q−1)𝐹 (q−1) (𝑦𝑘 − 𝑦m,𝑘 ) − 𝑁𝑛r𝑁𝑢 (q−1)q−𝑛r [𝑢𝑘 − 𝑁̂c(q−1)𝑦𝑘 − 𝐷̂c(q−1)𝑢𝑘 − 𝑅̂c(q−1)𝑟𝑘 ]

(4.61)

Proof. Multiplying both sides of (4.55) by 𝑥𝑘 , and using (4.8), (4.9), and (4.54) yields

𝐷m(q−1)𝑁s(q−1)𝐹 (q−1)𝑥𝑘 = 𝑢𝑘 − 𝑁∗c (q−1)𝑦𝑘 − 𝐷∗c (q−1)𝑢𝑘 . (4.62)
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Then, multiplying both sides of (4.62) by 𝑁𝑛r𝑁𝑢 (q−1)q−𝑛r and using (4.9) yields

𝐷m(q−1)𝐹 (q−1)𝑦𝑘 = 𝑁𝑛r𝑁𝑢 (q−1)q−𝑛r [𝑢𝑘 − 𝑁∗c (q−1)𝑦𝑘 − 𝐷∗c (q−1)𝑢𝑘 ] . (4.63)

Subtracting 𝐹 (q−1)𝑁m(q−1)𝑟𝑘 from both sides of (4.63) and using (4.4) yields

𝐷m(q−1)𝐹 (q−1) (𝑦𝑘−𝑦m,𝑘 ) = 𝑁𝑛r𝑁𝑢 (q−1)q−𝑛r [𝑢𝑘−𝑁∗c (q−1)𝑦𝑘−𝐷∗c (q−1)𝑢𝑘 ]−𝐹 (q−1)𝑁m(q−1)𝑟𝑘 .
(4.64)

Then, combining (4.57) with (4.64) yields

𝐷m(q−1)𝐹 (q−1) (𝑦𝑘 − 𝑦m,𝑘 ) − 𝑁𝑛r𝑁𝑢 (q−1)q−𝑛r [𝑢𝑘 − 𝑁∗c (q−1)𝑦𝑘 − 𝐷∗c (q−1)𝑢𝑘 − 𝑅∗c (q−1)𝐹 (q−1)𝑟𝑘 ] = 0.
(4.65)

Substituting (4.58)-(4.60) into (4.65) yields (4.61).

Note that all the terms on the right-hand side of (4.61) are known, and thus the sum of terms on
the left-hand side is known despite the fact that 𝑁̃c(q−1), 𝐷̃c(q−1), and 𝑅̃c(q−1) are individually
unknown. Furthermore, if (4.58)-(4.60) are all zero, then both sides of (4.61) are zero. We thus
define the performance variable

𝑧𝑘
△
= 𝐷m(q−1)𝐹 (q−1) (𝑦𝑘 − 𝑦m,𝑘 ) − 𝑁𝑛r𝑁𝑢 (q−1)q−𝑛r [𝑢𝑘 − 𝑁̂c(q−1)𝑦𝑘
− 𝐷̂c(q−1)𝑢𝑘 − 𝑅̂c(q−1)𝐹 (q−1)𝑟𝑘 ] (4.66)

= 𝑁𝑛r𝑁𝑢 (q−1)q−𝑛r [𝑁̃c(q−1)𝑦𝑘 + 𝐷̃c(q−1)𝑢𝑘 + 𝑅̃c(q−1)𝐹 (q−1)𝑟𝑘 ] . (4.67)

Note that, if 𝑁̃c(q−1), 𝐷̃c(q−1), and 𝑅̃c(q−1) are all zero, then 𝑧𝑘 is zero. We thus seek estimates
𝑁̂c(q−1), 𝐷̂c(q−1), and 𝑅̂c(q−1) of 𝑁∗c (q−1), 𝐷∗c (q−1), and 𝑅∗c (q−1), respectively, that minimize
the magnitude of 𝑧𝑘 .

4.3.2 RC-MRAC Algorithm

Proposition 4.3.3. Define

𝜃
△
=

[
𝑁∗c,1 · · · 𝑁∗c,𝑛 𝐷∗c,1 · · · 𝐷∗c,𝑛 𝑅∗c,0 · · · 𝑅∗c,𝑛s

]T
, (4.68)

Then,

𝑧f,𝑘 − 𝑢f,𝑘 +Φf,𝑘𝜃 = 0, (4.69)
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where

𝑟f,𝑘
△
= 𝐹 (q−1)𝑟𝑘 (4.70)

Φ𝑘
△
=

[
𝑦𝑘−1 · · · 𝑦𝑘−𝑛 𝑢𝑘−1 · · · 𝑢𝑘−𝑛 𝑟f,𝑘 · · · 𝑟f,𝑘−𝑛s

]
, (4.71)

Φf,𝑘
△
= 𝑁𝑛r𝑁𝑢 (q−1)q−𝑛rΦ𝑘 , (4.72)

𝑢f,𝑘
△
= 𝑁𝑛r𝑁𝑢 (q−1)q−𝑛r𝑢𝑘 . (4.73)

𝑧f,𝑘
△
= 𝐷m(q−1)𝐹 (q−1) (𝑦𝑘 − 𝑦m,𝑘 ). (4.74)

Since 𝑁∗c (q−1), 𝐷∗c (q−1), and 𝑅∗c (q−1) are unknown, the goal is to solve the regression (4.69) at
each step 𝑘 to obtain the estimate 𝜃𝑘 . The estimation error is thus given by

𝑧𝑘 (𝜃𝑘 )
△
= 𝑧f,𝑘 − 𝑢f,𝑘 +Φf,𝑘𝜃𝑘 . (4.75)

For regression at each step, RLS is used to minimize the cost function

𝐽𝑘 (𝜃𝑘 )
△
=

𝑘∑︁
𝑖=1

𝜆𝑘−𝑖 [𝑧𝑖 (𝜃𝑖)T𝑧𝑖 (𝜃𝑖)] + 𝜆𝑘 (𝜃𝑘 − 𝜃0)T𝑅𝜃 (𝜃𝑘 − 𝜃0), (4.76)

where 𝜆 ∈ (0, 1] is the forgetting factor. Using the computed RLS solution and (4.47), the control
input at step 𝑘 + 1 is given by

𝑢𝑘+1 = Φ𝑘+1𝜃𝑘+1. (4.77)

Note that 𝑁𝑛r , 𝑁𝑢 (q−1), 𝑛r, and 𝑛 are assumed to be known a priori.

4.4 Connection Between RC-MRAC and APPC

In the following section we show that in the special case where 𝑁m(q−1) = 𝑁 (q−1), and
𝐻 (q−1) = 𝑁s(q−1)𝐹 (q−1), APPC and RC-MRAC are equivalent.

Proposition 4.4.1. Let 𝐻 (q−1) = 𝑁s(q−1)𝐹 (q−1), and 𝑁m(q−1) = 𝑁 (q−1) such that 𝑅∗c (q−1) =
𝑁s(q−1). Then, (4.65) is equivalent to (4.32).

Proof. Substituting 𝑅∗c (q−1) = 𝑁s(q−1) into (4.65) yields

𝐷m(q−1)𝐹 (q−1) (𝑦𝑘 − 𝑦m,𝑘 ) − 𝑁𝑛r𝑁𝑢 (q−1)q−𝑛r [𝑢𝑘 − 𝑁∗c (q−1)𝑦𝑘 − 𝐷∗c (q−1)𝑢𝑘 − 𝑁s(q−1)𝐹 (q−1)𝑟𝑘 ] = 0.
(4.78)
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Using (4.4) and (4.57) in (4.78),

𝐷m(q−1)𝐹 (q−1)𝑦𝑘 − 𝐹 (q−1)𝑁m(q−1)𝑟𝑘
− 𝑁𝑛r𝑁𝑢 (q−1)q−𝑛r [𝑢𝑘 − 𝑁∗c (q−1)𝑦𝑘 − 𝐷∗c (q−1)𝑢𝑘 − 𝑁s(q−1)𝐹 (q−1)𝑟𝑘 ]

= 𝐹 (q−1)𝐷m(q−1)𝑦𝑘 − 𝐹 (q−1)𝑁m(q−1)𝑟𝑘 − 𝑁𝑛r𝑁𝑢 (q−1)q−𝑛r [𝑢𝑘 − 𝑁∗c (q−1)𝑦𝑘 − 𝐷∗c (q−1)𝑢𝑘 ]
+ 𝑁𝑛r𝑁𝑢 (q−1)𝑁s(q−1)q−𝑛r𝐹 (q−1)𝑟𝑘 = 0. (4.79)

Using (4.57) in (4.79),

𝐷m(q−1)𝐹 (q−1)𝑦𝑘 − 𝑁𝑛r𝑁𝑢 (q−1)q−𝑛r [𝑢𝑘 − 𝑁∗c (q−1)𝑦𝑘 − 𝐷∗c (q−1)𝑢𝑘 ] = 0. (4.80)

Then, substituting (4.9) into (4.80) and dividing by 𝑁𝑛r𝑁𝑢 (q−1)q−𝑛r yields

𝐷m(q−1)𝐹 (q−1)𝑁 (q−1)𝑥𝑘 − 𝑁𝑛r𝑁𝑢 (q−1)q−𝑛r [𝑢𝑘 − 𝑁∗c (q−1)𝑦𝑘 − 𝐷∗c (q−1)𝑢𝑘 ]
= 𝐷m(q−1)𝐹 (q−1)𝑁s(q−1)𝑥𝑘 − [𝑢𝑘 − 𝑁∗c (q−1)𝑦𝑘 − 𝐷∗c (q−1)𝑢𝑘 ] = 0. (4.81)

Substituting 𝑁s(q−1)𝐹 (q−1) = 𝐻 (q−1), and using the Bezout identity (4.31) yields the result

𝐷m(q−1)𝐻 (q−1) [𝐵∗(q−1)𝑦𝑘 + 𝐶∗(q−1)𝑢𝑘 ] = 𝑢𝑘 − 𝑁∗c (q−1)𝑦𝑘 − 𝐷∗c (q−1)𝑢𝑘 . (4.82)

4.5 Example 1: Minimum-Phase Plant

Consider the plant

𝑁 (q−1)
𝐷 (q−1)

=
q−1 − 0.5q−2

(1 − 𝜌𝑒 𝚥𝜈q−1) (1 − 𝜌𝑒− 𝚥𝜈q−1)
, (4.83)

and the desired model

𝑁m(q−1)
𝐷m(q−1)

=
q−1 − 0.5q−2

(1 − 0.5𝑒 𝚥 𝜋2 q−1) (1 − 0.5𝑒− 𝚥 𝜋2 q−1)
. (4.84)

The following subsections demonstrate the model-following performance of APPC and RC-MRAC
for various values of 𝜌 and 𝜈 for step and harmonic commands. It is assumed that 𝑁 (q−1) is
known in order to compare the two algorithms. Each simulation is run for 200 steps, where the
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performance metric

∥𝑒∥ △=

√√√ 200∑︁
𝑖=101

𝑒2
𝑖

(4.85)

is used to compare the algorithms.

4.5.1 Example 1a: APPC for Reference Model Following

For the APPC algorithm we choose

𝐻 (q−1) = 𝑁s(q−1)𝐹 (q−1) = (1 − 0.5q−1) (1 + 0.5q−1) = 1 − 0.25q−2, (4.86)

and initialize 𝜃1,0 = 04×1 and 𝜃2,0 = 04×1 with 𝑅𝜃 = 10−5𝐼8 and 𝜆 = 1.
Given a unit step command for 𝑟𝑘 , the model-following error versus the pole locations of the plant

is shown in Figure 4.2a for various values of 𝜌 and 𝜈. Note that the model-following performance
degrades as the plant poles move closer to the plant zero due to the system nearing a decrease in
order. The response of the system for 𝜌 = 0.5 and 𝜈 = 𝜋

4 is given in Figure 4.2b.
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Figure 4.2: APPC for the minimum-phase plant (4.83) with a step command. a) Log of the model-
following error versus the pole locations of the plant. b) Response of the system for 𝜌 = 0.5 and
𝜈 = 𝜋

4 . Viewing clockwise from the top left: model-following error 𝑒𝑘 , control input 𝑢𝑘 , Bezout
coefficient estimates 𝜃2, and controller coefficient estimates 𝜃1.

Given the two-harmonic command 𝑟𝑘 = cos(𝑘) + cos( 18 𝑘), the model-following error versus the
pole locations of the plant is shown in Figure 4.3a for various values of 𝜌 and 𝜈. Note that the
model-following performance degrades as the plant poles move closer to the plant zero. The overall
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model-following error is improved compared to the step command. The response of the system for
𝜌 = 0.5 and 𝜈 = 𝜋

4 is given in Figure 4.3b.
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Figure 4.3: APPC for the minimum-phase plant (4.83) with a two-harmonic command. a) Log
of the model-following error versus the pole locations of the plant. b) Response of the system for
𝜌 = 0.5 and 𝜈 = 𝜋

4 . Viewing clockwise from the top left: model-following error 𝑒𝑘 , control input
𝑢𝑘 , Bezout coefficient estimates 𝜃2, and controller coefficient estimates 𝜃1.

Given the four-harmonic command 𝑟𝑘 = cos(𝑘) + cos( 12 𝑘) + cos( 14 𝑘) + cos( 18 𝑘), the model-
following error versus the pole locations of the plant is shown in Figure 4.4a for various values
of 𝜌 and 𝜈. Note that the model-following performance degrades as the plant poles move closer
to the plant zero. Due to the increased persistency of the command, the model-following error
is improved over both the step command and the two-harmonic command. The response of the
system for 𝜌 = 0.5 and 𝜈 = 𝜋

4 is given in Figure 4.4b.
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Figure 4.4: APPC for the minimum-phase plant (4.83) with a four-harmonic command. a) Log
of the model-following error versus the pole locations of the plant. b) Response of the system for
𝜌 = 0.5 and 𝜈 = 𝜋

4 . Viewing clockwise from the top left: model-following error 𝑒𝑘 , control input
𝑢𝑘 , Bezout coefficient estimates 𝜃2, and controller coefficient estimates 𝜃1.

4.5.2 Example 1b: RC-MRAC for Reference Model Following

For RC-MRAC, we choose

𝐹 (q−1) = (1 + 0.5q−1), (4.87)

and initialize 𝜃0 = 06×1, with 𝑅𝜃 = 10−5𝐼6 and 𝜆 = 1.
Given a unit step command for 𝑟𝑘 , the model-following error versus the pole locations of the plant

is shown in Figure 4.5a for various values of 𝜌 and 𝜈. Note that the model-following performance
degrades as the plant poles move closer to the plant zero. The response of the system for 𝜌 = 0.5
and 𝜈 = 𝜋

4 is given in Figure 4.5b.
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Figure 4.5: RC-MRAC for the minimum-phase plant (4.83) with a step command. a) Log of the
model-following error versus the pole locations of the plant. b) Response of the system for 𝜌 = 0.5
and 𝜈 = 𝜋

4 . Viewing clockwise from the top left: model-following error 𝑒𝑘 , control input 𝑢𝑘 ,
controller coefficients 𝜃 associated with 𝑟𝑘 , and controller coefficients 𝜃 associated with 𝑦𝑘 and 𝑢𝑘 .

Given the two-harmonic command 𝑟𝑘 = cos(𝑘) + cos( 18 𝑘), the model-following error versus the
pole locations of the plant is shown in Figure 4.6a for various values of 𝜌 and 𝜈. Note that the
model-following performance degrades as the plant poles move closer to the plant zero. The overall
model-following error is similar to the step command. The response of the system for 𝜌 = 0.5 and
𝜈 = 𝜋

4 is given in Figure 4.6b.
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Figure 4.6: RC-MRAC for the minimum-phase plant (4.83) with a two-harmonic command. a)
Log of the model-following error versus the pole locations of the plant. b) Response of the system
for 𝜌 = 0.5 and 𝜈 = 𝜋

4 . Viewing clockwise from the top left: model-following error 𝑒𝑘 , control
input 𝑢𝑘 , controller coefficients 𝜃 associated with 𝑟𝑘 , and controller coefficients 𝜃 associated with
𝑦𝑘 and 𝑢𝑘 .

Given the four-harmonic command 𝑟𝑘 = cos(𝑘) + cos( 12 𝑘) + cos( 14 𝑘) + cos( 18 𝑘), the model-
following error versus the pole locations of the plant is shown in Figure 4.7a for various values of
𝜌 and 𝜈. Note that the model-following performance degrades as the plant poles move closer to the
plant zero. The response of the system for 𝜌 = 0.5 and 𝜈 = 𝜋

4 is given in Figure 4.7b.
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Figure 4.7: RC-MRAC for the minimum-phase plant (4.83) with a four-harmonic command. a)
Log of the model-following error versus the pole locations of the plant. b) Response of the system
for 𝜌 = 0.5 and 𝜈 = 𝜋

4 . Viewing clockwise from the top left: model-following error 𝑒𝑘 , control
input 𝑢𝑘 , controller coefficients 𝜃 associated with 𝑟𝑘 , and controller coefficients 𝜃 associated with
𝑦𝑘 and 𝑢𝑘 .

4.6 Example 2: Nonminimum-Phase Plant

Consider the plant

𝑁 (q−1)
𝐷 (q−1)

=
q−1 − 1.5q−2

(1 − 𝜌𝑒 𝚥𝜈q−1) (1 − 𝜌𝑒− 𝚥𝜈q−1)
, (4.88)

and the desired model

𝑁m(q−1)
𝐷m(q−1)

=
q−1 − 1.5q−2

(1 − 0.5𝑒 𝚥 𝜋2 q−1) (1 − 0.5𝑒− 𝚥 𝜋2 q−1)
. (4.89)

The following subsections demonstrate the model-following performance of RC-MRAC and APPC
for various values of 𝜌 and 𝜈 for step and harmonic commands. It is assumed that 𝑁 (q−1) is known
in order to compare the two algorithms. The same performance metric (4.85) as in Example 1 is
used.

4.6.1 Example 2a: APPC for Reference Model Following

For the APPC algorithm we choose

𝐻 (q−1) = 1 − 0.25q−2, (4.90)
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and initialize 𝜃1,0 = 04×1 and 𝜃2,0 = 04×1 with 𝑅𝜃 = 10−5𝐼8 and 𝜆 = 1.
Given a unit step command for 𝑟𝑘 , the model-following error versus the pole locations of the plant

is shown in Figure 4.8a for various values of 𝜌 and 𝜈. Note that the model-following performance
degrades as the plant poles move closer to the plant zero. The response of the system for 𝜌 = 0.5
and 𝜈 = 𝜋

4 is given in Figure 4.8b.
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Figure 4.8: APPC for the NMP plant (4.88) with a step command. a) Log of the model-following
error versus the pole locations of the plant. Empty squares represent regions where the system
became unstable. b) Response of the system for 𝜌 = 0.5 and 𝜈 = 𝜋

4 . Viewing clockwise from the
top left: model-following error 𝑒𝑘 , control input 𝑢𝑘 , Bezout coefficient estimates 𝜃2, and controller
coefficient estimates 𝜃1.

Given the two-harmonic command 𝑟𝑘 = cos(𝑘) + cos( 18 𝑘), the model-following error versus the
pole locations of the plant is shown in Figure 4.9a for various values of 𝜌 and 𝜈. Note that the
model-following performance degrades as the plant poles move closer to the plant zero. The overall
model-following error is improved compared to the step command. The response of the system for
𝜌 = 0.5 and 𝜈 = 𝜋

4 is given in Figure 4.9b.
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Figure 4.9: APPC for the NMP plant (4.88) with a two-harmonic command. a) Log of the model-
following error versus the pole locations of the plant. Empty squares represent regions where the
system became unstable. b) Response of the system for 𝜌 = 0.5 and 𝜈 = 𝜋

4 . Viewing clockwise
from the top left: model-following error 𝑒𝑘 , control input 𝑢𝑘 , Bezout coefficient estimates 𝜃2, and
controller coefficient estimates 𝜃1.

Given the four-harmonic command 𝑟𝑘 = cos(𝑘) + cos( 12 𝑘) + cos( 14 𝑘) + cos( 18 𝑘), the model-
following error versus the pole locations of the plant is shown in Figure 4.10a for various values
of 𝜌 and 𝜈. Note that the model-following performance degrades as the plant poles move closer
to the plant zero. Due to the increased persistency of the command, the model-following error
is improved over both the step command and the two-harmonic command. The response of the
system for 𝜌 = 0.5 and 𝜈 = 𝜋

4 is given in Figure 4.10b.
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Figure 4.10: APPC for the NMP plant (4.88) with a four-harmonic command. a) Log of the model-
following error versus the pole locations of the plant. Empty squares represent regions where the
system became unstable. b) Response of the system for 𝜌 = 0.5 and 𝜈 = 𝜋

4 . Viewing clockwise
from the top left: model-following error 𝑒𝑘 , control input 𝑢𝑘 , Bezout coefficient estimates 𝜃2, and
controller coefficient estimates 𝜃1.

4.6.2 Example 2b: RC-MRAC for Reference Model Following

For RC-MRAC, we choose

𝐹 (q−1) = 1 − 0.25q−2, (4.91)

and initialize 𝜃0 = 05×1, with 𝑅𝜃 = 10−5𝐼5 and 𝜆 = 1. Given a unit step command for 𝑟𝑘 , the
model-following error versus the pole locations of the plant is shown in Figure 4.11a for various
values of 𝜌 and 𝜈. Note that the model-following performance degrades as the plant poles move
closer to the plant zero and that the convergence is much slower than in the minimum-phase case.
The response of the system for 𝜌 = 0.5 and 𝜈 = 𝜋

4 is given in Figure 4.11b.
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Figure 4.11: RC-MRAC for the NMP plant (4.88) with step command. a) Log of the model-
following error versus the pole locations of the plant. b) Response of the system for 𝜌 = 0.5 and
𝜈 = 𝜋

4 . Viewing clockwise from the top left: model-following error 𝑒𝑘 , control input 𝑢𝑘 , controller
coefficients 𝜃 associated with 𝑟𝑘 , and controller coefficients 𝜃 associated with 𝑦𝑘 and 𝑢𝑘 .

Given the two-harmonic command 𝑟𝑘 = cos(𝑘) + cos( 18 𝑘), the model-following error versus the
pole locations of the plant is shown in Figure 4.12a for various values of 𝜌 and 𝜈. Note that the
model-following performance degrades as the plant poles move closer to the plant zero. The overall
model-following error is improved compared to the step command, but the controller convergence
is still slower than the minimum-phase case. The response of the system for 𝜌 = 0.5 and 𝜈 = 𝜋

4 is
given in Figure 4.12b.
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Figure 4.12: RC-MRAC for the NMP plant (4.88) with a two-harmonic command. a) Log of the
model-following error versus the pole locations of the plant. b) Response of the system for 𝜌 = 0.5
and 𝜈 = 𝜋

4 . Viewing clockwise from the top left: model-following error 𝑒𝑘 , control input 𝑢𝑘 ,
controller coefficients 𝜃 associated with 𝑟𝑘 , and controller coefficients 𝜃 associated with 𝑦𝑘 and 𝑢𝑘 .

Given the four-harmonic command 𝑟𝑘 = cos(𝑘) + cos( 12 𝑘) + cos( 14 𝑘) + cos( 18 𝑘), the model-
following error versus the pole locations of the plant is shown in Figure 4.13a for various values
of 𝜌 and 𝜈. Note that the model-following performance degrades as the plant poles move closer
to the plant zero. Due to the increased persistency of the command, the model-following error is
improved over both the step command and the two-harmonic command. The convergence of the
controller is much slower than in the minimum-phase case. The response of the system for 𝜌 = 0.5
and 𝜈 = 𝜋

4 is given in Figure 4.13b.
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Figure 4.13: RC-MRAC for the NMP plant (4.88) with a four-harmonic command. a) Log of the
model-following error versus the pole locations of the plant. b) Response of the system for 𝜌 = 0.5
and 𝜈 = 𝜋

4 . Viewing clockwise from the top left: model-following error 𝑒𝑘 , control input 𝑢𝑘 ,
controller coefficients 𝜃 associated with 𝑟𝑘 , and controller coefficients 𝜃 associated with 𝑦𝑘 and 𝑢𝑘 .

4.7 Example 3: Unknown Harmonic Disturbance Rejection Us-
ing RC-MRAC

Consider the same system (4.83), and reference model (4.84), as in Example 1. We now place
an unknown single harmonic disturbance at the frequency 0.35 radians per step at the input of
the system. In this section we show that, unlike APPC, RC-MRAC can be used for disturbance
rejection of unknown harmonic disturbances with a small modification. The disturbance rejection
capability is tested for various values of 𝜌 and 𝜈 for a step command on the reference model. It is
assumed that 𝑁 (q−1) is known. The same performance metric (4.85) as in Example 1 is used.

To accomplish harmonic disturbance rejection and model-following, we increase the order of
the controller to 𝑛 = 4, and set 𝑛s = 3 to match the desired closed-loop model relative degree. The
order must be incremented by 2 for each expected harmonic disturbance. The order can be larger
than required at the cost of perfect model tracking. RLS is initialized with 𝜃0 = 012×1, 𝑅𝜃 = 10−5𝐼12

and 𝜆 = 1. 𝐹 (q−1) is chosen to be (4.87), the same as in Example 1b.
Given a unit step command for 𝑟𝑘 , the model-following error versus the pole locations of the

plant is shown in Figure 4.14a for various values of 𝜌 and 𝜈. Note that the model-following
performance degrades as the plant poles move closer to the plant zero, but the algorithm is able to
perform the model-following task while rejecting the disturbance for all tested poles. The response
of the system for 𝜌 = 0.5 and 𝜈 = 𝜋

4 is given in Figure 4.14b.
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Figure 4.14: RC-MRAC for harmonic disturbance rejection on the plant (4.83) with a step command.
a) Log of the model-following error versus the pole locations of the plant. b) Response of the system
for 𝜌 = 0.5 and 𝜈 = 𝜋

4 . Viewing clockwise from the top left: model-following error 𝑒𝑘 , control
input 𝑢𝑘 , controller coefficients 𝜃 associated with 𝑟𝑘 , and controller coefficients 𝜃 associated with
𝑦𝑘 and 𝑢𝑘 .

4.8 Conclusions

In this chapter, RC-MRAC was developed and compared to Elliot’s APPC. This controller
places the closed-loop poles of the system to match the desired closed-loop poles given by a
reference model provided that the leading numerator coefficient, relative degree, system order,
and NMP zeros are known. RC-MRAC was shown numerically to be stable over a wide range
of systems. Unlike APPC, the performance of RC-MRAC is not as sensitive to the persistency
of the desired command. Additionally, it was shown that, with a slight modification, RC-MRAC
can reject harmonic disturbances. For minimum-phase systems, RC-MRAC outperforms APPC
without the need for persistency. For NMP systems, RC-MRAC performs better than APPC at
lower persistency levels at the price of knowledge of the NMP zeros and slower convergence times.
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CHAPTER 5

Variable-Rate Forgetting Using the F-Test

In this chapter we consider the RLS-VRF equations (2.12)-(2.14). The variable-rate forgetting
factor 𝜆𝑘 is used to enable RLS to track time-varying parameters by discounting past data. This
factor can take many forms and still maintain the consistency properties of RLS as long as they
follow the conditions given in [45]. For example, the formulation in [50] uses a ratio of RMS
performance errors to the noise standard deviation.

Inspired by the statistical analysis of the ratio of sample variances, we develop a new variable-
rate forgetting factor using the F-test. The F-test is typically used to compare whether two sample
variances are statistically equal in analysis of variance tests [74, 75]. The ratio of sample variances
taken from normally distributed random variables follows an F-distribution, and if the ratio exceeds
or is below what is expected for a given significance level, then the two variances are determined
to not be equal. The main idea is to use the F-test to determine the level of forgetting to use in RLS
based on the ratio of the variance of two sliding windows of prediction errors of differing length.
When the variance of recent predictions increases relative to earlier predictions, we expect that the
parameters have changed, and forgetting is warranted relative to the increase in variance. The goal
is to prevent forgetting when sufficiently exciting data is not available while also enabling forgetting
during parameter changes to allow RLS to quickly learn new parameters. The approach is applied
to a parameter identification task and is compared to a constant-rate forgetting factor and the RMS
performance error and noise standard-deviation-based forgetting factor given in [50].

5.1 Variable Rate Forgetting Using the F-Test

When using RLS, we would like to use forgetting to place a higher weight on more recent data
while also suspending forgetting when new data is not available. To accomplish this, let 𝛽𝑘 be
given by

𝛽𝑘
△
= 1 + 𝜂𝑔(𝑒0(𝜃0), . . . , 𝑒𝑘 (𝜃𝑘 ))1[𝑔(𝑒0(𝜃0), . . . , 𝑒𝑘 (𝜃𝑘 ))] (5.1)
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where 1 : R → {0, 1} is the unit step function, 𝜂 > 0, and 𝑔(𝑒0(𝜃0), . . . , 𝑒𝑘 (𝜃𝑘 )) is a func-
tion of past RLS prediction errors. From (5.1) it follows that, if 𝑔(𝑒0(𝜃0), . . . , 𝑒𝑘 (𝜃𝑘 )) ≤ 0,
then forgetting is suspended, otherwise the level of forgetting is proportional to the mag-
nitude of 𝑔(𝑒0(𝜃0), . . . , 𝑒𝑘 (𝜃𝑘 )) scaled by 𝜂. The objective is to determine an appropriate
𝑔(𝑒0(𝜃0), . . . , 𝑒𝑘 (𝜃𝑘 )). We expect that, if the true 𝜃 has changed relative to the current esti-
mate of 𝜃, then the variance of the prediction errors will increase [76]. When this occurs, we
wish to forget older data in order to adjust the parameter estimate quickly. Therefore, we wish
to compare the variance of a long and short window of past RLS prediction errors to determine
whether the variance has increased, and, if so, enable forgetting. For 𝑝 = 1, the F-test will facilitate
this comparison.

Given two sample variances 𝜎2
𝜏n from 𝜏n + 1 samples and 𝜎2

𝜏d
from 𝜏d + 1 samples, where

𝜏d > 𝜏n ≥ 𝑝, and 𝜎2
𝜏n ≥ 𝜎

2
𝜏d

, the variance 𝜎2
𝜏n is greater than 𝜎2

𝜏d
with significance level 𝛼 if

𝐹−1
𝜏n,𝜏d
(1 − 𝛼) <

𝜎2
𝜏n

𝜎2
𝜏d

, (5.2)

where 𝐹−1
𝜏n,𝜏d
(𝑥) is the inverse cumulative distribution function of the F-distribution with degrees of

freedom 𝜏n and 𝜏d [75]. The larger the variance ratio is from 𝐹−1
𝜏n,𝜏d
(1−𝛼), the stronger the evidence

that 𝜎2
𝜏n is greater than 𝜎2

𝜏d
. The F-test can also be written as

√︃
𝐹−1
𝜏n,𝜏d (1 − 𝛼) <

√︄
𝜎2
𝜏n

𝜎2
𝜏d

. (5.3)

This leads to a 𝑔(𝑒0(𝜃0), . . . , 𝑒𝑘 (𝜃𝑘 )) for the case 𝑝 = 1. Given sample variances of the past RLS
prediction errors 𝜎2

𝜏n (𝑒𝑘−𝜏𝑛 (𝜃𝑘−𝜏𝑛), . . . , 𝑒𝑘 (𝜃𝑘 )) and 𝜎2
𝜏d
(𝑒𝑘−𝜏𝑑 (𝜃𝑘−𝜏𝑑 ), . . . , 𝑒𝑘 (𝜃𝑘 )), for 𝑝 = 1, the

function 𝑔(𝑒0(𝜃0), . . . , 𝑒𝑘 (𝜃𝑘 )) is defined as

𝑔
△
=

√︄
𝜎2
𝜏n

𝜎2
𝜏d

−
√︃
𝐹−1
𝜏n,𝜏d (1 − 𝛼), (5.4)

where the error terms 𝑒𝑘 (𝜃𝑘 ) are dropped for notational convenience. Using (5.4), forgetting
is enabled when 𝜎2

𝜏n is statistically larger than 𝜎2
𝜏d

. The magnitude of the forgetting factor 𝜆𝑘
is inversely proportional to the difference between the square roots of the variance ratio and
𝐹−1
𝜏n,𝜏d
(1 − 𝛼), thereby increasing the level of forgetting when there is more evidence that 𝜎2

𝜏n is
larger 𝜎2

𝜏d
. A large value of 𝛼 will cause the level of forgetting to be more sensitive to changes in

the ratio of 𝜎2
𝜏n to 𝜎2

𝜏d
compared to a smaller one.

For the case 𝑝 ≥ 1, the variances 𝜎𝜏n and 𝜎𝜏d are now covariance matrices Σ𝜏n and Σ𝜏d , and the
ratio of the two covariance matrices is given by Σ𝜏nΣ

−1
𝜏d

. In this case, the ratio must be converted
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into a scalar test statistic. Four commonly used test statistics are

• Wilks’s Lambda: |𝐼 + 𝜏n
𝜏d
Σ𝜏nΣ

−1
𝜏d
|−1 =

|𝜏dΣ𝜏d |
|𝜏nΣ𝜏n+𝜏dΣ𝜏d |

=
∏𝑛
𝑖=1

1
1+𝜇𝑖 ,

• Lawley-Hotelling Trace: 𝜏n
𝜏d

tr(Σ𝜏nΣ
−1
𝜏d
) = ∑𝑛

𝑖=1 𝜇𝑖,

• Pillai’s Trace: tr
(
𝜏n
𝜏d
Σ𝜏nΣ

−1
𝜏d
(𝐼 + 𝜏n

𝜏d
Σ𝜏nΣ

−1
𝜏d
)−1

)
=

∑𝑛
𝑖=1

𝜇𝑖
1+𝜇𝑖 ,

• Roy’s Greatest Root: max𝑖 (𝜇𝑖),

where 𝜇𝑖, 𝑖 = 1, . . . , 𝑛 are the eigenvalues of 𝜏n
𝜏d
Σ𝜏nΣ

−1
𝜏d

[75]. The Lawley-Hotelling trace is chosen
due to its ease of use, similarity to the variance ratio in the F-Test, and availability of simple
approximations. Using the Lawley-Hotelling trace with the approximation given by [55], Σ𝜏n is
greater than Σ𝜏d with significance level 𝛼 if

𝐹−1
𝑝𝜏n,𝑏
(1 − 𝛼) < 𝜏n

𝜏d

tr(Σ𝜏nΣ
−1
𝜏d
)

𝑐
, (5.5)

where

𝑎
△
=
(𝜏n + 𝜏d − 𝑝 − 1) (𝜏d − 1)
(𝜏d − 𝑝 − 3) (𝜏d − 𝑝)

,

𝑏
△
= 4 + (𝑝𝜏n + 2)

(𝑎 − 1) , 𝑐
△
=

𝑝𝜏n(𝑏 − 2)
𝑏(𝜏d − 𝑝 − 1) . (5.6)

For 𝑝 = 1, (5.5) is equivalent to the F-test. Given sample covariances of the past RLS prediction
errors Σ𝜏n and Σ𝜏d , 𝑔 is defined as

𝑔
△
=

√︄
𝜏n
𝜏d

tr
(
Σ𝜏nΣ

−1
𝜏d

)
𝑐

−
√︃
𝐹−1
𝑝𝜏n,𝑏
(1 − 𝛼). (5.7)

The resulting RLS update using the F-test variable-rate forgetting factor (RLS/FTVRF) is given in
Algorithm 1.

Some recommendations for the parameters 𝜏n, 𝜏d, 𝜂, and 𝛼 are given as follows. A small 𝜏n

will cause forgetting to occur sooner and is recommended for fast changing systems while a larger
𝜏n < 100 will delay forgetting and is recommended for slowly changing systems. 𝜏d should be 5-10
times larger than 𝜏n. The parameter 𝜂 adjusts the amount of forgetting and is recommended to set
0 < 𝜂 ≤ 1, with lower values of 𝜂 if lack of input persistency is expected. The variable 𝛼 adjusts
the sensitivity of the forgetting factor and should be less than 0.1 with smaller values reducing the
sensitivity. Smaller values are recommended if the system has noisy measurements.
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Algorithm 1 RLS-VRF using the F-test
Initialize: 𝜃0 ∈ R𝑛×1, 𝑃0 ∈ R𝑛×𝑛 positive-definite, 𝜏d > 𝜏n ≥ 𝑝, 𝜂 > 0, 𝛼 > 0, 𝑘 = 0, and a buffer

of 𝜏d + 1 previous errors
while 𝑘 ≥ 0 do

Measure 𝑦𝑘 ∈ R𝑝×1

𝑒𝑘 ← 𝑦𝑘 − 𝜙𝑘𝜃𝑘
Add 𝑒𝑘 to error buffer and remove oldest entry
Compute sample covariance matrices Σ𝜏n ∈ R𝑝×𝑝, Σ𝜏d ∈ R𝑝×𝑝 from previous 𝜏n+1 and 𝜏d+1

errors from buffer
if 𝑘 ≥ 𝜏d + 1 then

Compute 𝑎, 𝑏, and 𝑐 using (5.6)
𝑔 ← (5.7)

else
𝑔 ← 0

end if
𝛽𝑘 ← 1 + 𝜂𝑔1[𝑔]
𝐿𝑘 ← 𝛽𝑘𝑃𝑘
𝜃𝑘+1 ← 𝜃𝑘 + 𝑃𝑘+1𝜙T

𝑘
(𝑦𝑘 − 𝜙𝑘𝜃𝑘 )

𝑃𝑘+1 ← 𝐿𝑘 − 𝐿𝑘𝜙T
𝑘
(𝐼𝑝 + 𝜙𝑘𝐿𝑘𝜙T

𝑘
)−1𝜙𝑘𝐿𝑘

𝜙𝑘+1 ← Update regressor 𝜙𝑘 with current measurement and input
𝑘 ← 𝑘 + 1

end while
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5.2 Equivalence to the RLS/RMSVRF Function

In this section, we show that RLS/RMSVRF used in [50, 32] is a special case of RLS/FTVRF.

Proposition 5.2.1. Assume E[𝑒(𝜃)] = 0. For 𝑝 = 1 and 𝛼 = 1 − 𝐹𝜏n,𝜏d (1), the variable-rate
forgetting function given in [50, 32] is a special case of (5.7).

Proof. From (5.7), it follows that

𝑔
△
=

√︄
𝜏n
𝜏d

tr
(
Σ𝜏nΣ

−1
𝜏d

)
𝑐

−
√︃
𝐹−1
𝑝𝜏n,𝑏
(1 − 𝛼),

=

√︄
𝜎2
𝜏n

𝜎2
𝜏d

−
√︃
𝐹−1
𝜏n,𝜏d (1 − 𝛼),

=

√√√ 1
𝜏n

∑𝑘
𝑖=𝑘−𝜏𝑛 𝑒

2
𝑖
(𝜃𝑖)

1
𝜏d

∑𝑘
𝑖=𝑘−𝜏𝑑 𝑒

2
𝑖
(𝜃𝑖)
−

√︃
𝐹−1
𝜏n,𝜏d (1 − 𝛼),

=

√√√ 1
𝜏n

∑𝑘
𝑖=𝑘−𝜏𝑛 𝑒

2
𝑖
(𝜃𝑖)

1
𝜏d

∑𝑘
𝑖=𝑘−𝜏𝑑 𝑒

2
𝑖
(𝜃𝑖)
− 1.

For the suggested values of 𝜏n and 𝜏d given in [32], the forgetting function is equivalent to
using a significance level of 𝛼 ≈ 0.5, and is equal to 0.5 in the limit of the window sizes
lim𝜏n,𝜏d→∞ 𝐹𝜏n,𝜏d (1) = 0.5. A significance level of 𝛼 = 0.5 means that 50% of the time, we
conclude that 𝜎2

𝜏n > 𝜎2
𝜏d

when it is not true, causing forgetting to occur when it is not needed.
This may lead to instability of the RLS/RMSVRF algorithm if the forgetting were to occur under
nonpersistent excitation.

5.3 Examples

To demonstrate RLS/FTVRF, we use a similar example to the one used in [45]. Consider a
mass-spring-damper system with 𝑀 = 5 kg, 𝐾 = 1 N

m , and 𝐶 = 1 N s
m . After 100 steps, the system

parameters change to 𝐾 = 10 N
m , and 𝐶 = 0.01 N s

m . The discrete-time transfer function is given by

𝐺𝑘 (q) =


0.4606q+0.4307
q2−1.64q+0.8187 , 𝑘 < 100

0.4218q+0.4215
q2−0.3116q+0.998 , 𝑘 ≥ 100,

(5.8)
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where q is the forward shift operator. We compare RLS/FTVRF to RLS with a constant-rate
forgetting factor (RLS/CRF) of 𝜆 = 0.99 under noiseless measurements, noisy measurements, and
nonpersistent inputs. We also compare to RLS/RMSVRF under noisy measurements. For all cases,
𝜃0 = 05×1, 𝑃0 = 100𝐼5, 𝜏n = 10, 𝜏d = 80, 𝜂 = 1, and 𝛼 = 0.001. The regressor is implemented
as 𝜙𝑘 =

[
𝑦𝑘−1 𝑦𝑘−2 𝑢𝑘 𝑢𝑘−1 𝑢𝑘−2

]
so that the coefficients of the transfer function (5.8) are

identified in the parameter vector 𝜃𝑘 .

5.3.1 Noiseless Measurements

Let the input into (5.8) be 𝑢𝑘 ∼ N(0, 1). First, comparing to RLS/CRF, from Figure 5.1 the
parameters for RLS/FTVRF converge in less than 20 steps after the parameter change at 𝑘 = 100.
For RLS/CRF, the parameters are still not converged after 200 steps. Notice for RLS/FTVRF that
once the prediction error increases, forgetting is enabled and tr(𝑃𝑘 ) increases as past data is given
lower weight. Figure 5.2 shows the median, and 5th and 95th percentiles of 1000 Monte Carlo
simulations of RLS/FTVRF. Notice that all simulations converge to the true parameters in less than
20 steps.
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Figure 5.1: Noiseless measurements. Estimated parameters 𝜃𝑘 , trace of RLS covariance tr(𝑃𝑘 ),
forgetting factor 𝜆𝑘 , and prediction error 𝑒𝑘 for RLS/FTVRF and RLS/CRF.
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Figure 5.2: Noiseless measurements. Estimated parameters 𝜃𝑘 , trace of RLS covariance tr(𝑃𝑘 ),
forgetting factor 𝜆𝑘 , and prediction error 𝑒𝑘 for RLS/FTVRF for 1000 simulations. The red line is
the median and the upper and lower bounds are the 95th and 5th percentiles, respectively.

5.3.2 Noisy Measurements

Let the input into (5.8) be 𝑢𝑘 ∼ N(0, 1). Now the measurements are corrupted by noise
𝜈𝑘 ∼ N(0, 0.05). From Figure 5.3 the parameters for RLS/FTVRF converge in less than 20
steps after the parameters change at 𝑘 = 100 despite the noisy measurements. For RLS/CRF, the
parameters are still not converged after 200 steps. Notice for RLS/FTVRF that once the prediction
error increases, forgetting is enabled and tr(𝑃𝑘 ) increases as past data is given lower weight. The
forgetting factor takes longer to reach its minimum value than in Figure 5.1, suggesting that the
F-test limits the level of forgetting due to the uncertainty in whether the variance of errors has
increased due to a parameter change or just temporarily due to noise. Figure 5.4 shows the median,
and 5th and 95th percentiles of 1000 Monte Carlo simulations of RLS/FTVRF. Note that most of
the simulation runs converge to the true parameters in less than 50 steps.

Figure 5.5 compares RLS/FTVRF to RLS/RMSVRF. Notice that RLS/RMSVRF enables forget-
ting at step 88 which is before any of the model parameters change and that forgetting also occurs at
near the end of the simulation due to noise. RLS/FTVRF takes 8 more steps for its error to converge
than RLS/RMSVRF, but convergence speed can be improved by increasing the significance level
to 𝛼 = 0.01 without substantially risking forgetting before the parameter change or due to noise.
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Figure 5.3: Noisy measurements. Estimated parameters 𝜃𝑘 , trace of RLS covariance tr(𝑃𝑘 ),
forgetting factor 𝜆𝑘 , and prediction error 𝑒𝑘 for RLS/FTVRF and RLS/CRF.
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Figure 5.4: Noisy measurements. Estimated parameters 𝜃𝑘 , trace of RLS covariance tr(𝑃𝑘 ),
forgetting factor 𝜆𝑘 , and prediction error 𝑒𝑘 for RLS/FTVRF for 1000 simulations. The red line is
the median, and the upper and lower bounds are the 95th and 5th percentiles, respectively.
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Figure 5.6 shows the median, and 5th and 95th percentiles of 1000 Monte Carlo simulations of
the RLS/RMSVRF method. At step 80, 26% of simulations forget when it is not needed. Many
simulations also forget long after the parameter change suggesting sensitivity to noise.
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Figure 5.5: Noisy measurements. Estimated parameters 𝜃𝑘 , trace of RLS covariance tr(𝑃𝑘 ),
forgetting factor 𝜆𝑘 , and prediction error 𝑒𝑘 for RLS/FTVRF and RLS/RMSVRF.

5.3.3 Nonpersistently Exciting Input

Let the input into (5.8) be

𝑢𝑘 =


N(0, 1), if 𝑘 < 100

0, if 𝑘 ≥ 100,
(5.9)

with measurements corrupted by noise 𝜈𝑘 ∼ N(0, 0.05). The input is no longer persistently exciting
once the parameters change, although the system may still be oscillating. In Figure 5.7 notice that
over many steps for RLS/CRF, tr(𝑃𝑘 ) continuously increases and will eventually cause RLS to
’blow-up’ while for RLS/FTVRF, tr(𝑃𝑘 ) stays bounded. Figure 5.8 shows the median, 5th and
95th percentiles of 1000 Monte Carlo simulations of RLS/FTVRF. Notice that all simulations keep
tr(𝑃𝑘 ) bounded.
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Figure 5.6: Noisy measurements. Estimated parameters 𝜃𝑘 , trace of RLS covariance tr(𝑃𝑘 ),
forgetting factor 𝜆𝑘 , and prediction error 𝑒𝑘 for RLS/RMSVRF for 1000 simulations. The blue line
is the median and the upper and lower bounds are the 95th and 5th percentiles, respectively. Notice
how forgetting sometimes occurs even before the parameter change at 100 steps. Forgetting also
sometimes occurs long after the parameter change due to noise.
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Figure 5.7: Nonpersistently exciting input. Estimated parameters 𝜃𝑘 , trace of RLS covariance
tr(𝑃𝑘 ), forgetting factor 𝜆𝑘 , and prediction error 𝑒𝑘 for RLS/FTVRF and RLS/CRF.
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Figure 5.8: Nonpersistently exciting measurements. Estimated parameters 𝜃𝑘 , trace of RLS covari-
ance tr(𝑃𝑘 ), forgetting factor 𝜆𝑘 , and prediction error 𝑒𝑘 for RLS/FTVRF for 1000 simulations. The
red line is the median and the upper and lower bounds are the 95th and 5th percentiles, respectively.
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5.4 Conclusions

In this chapter, we developed and investigated the performance of recursive least squares with F-
test variable-rate forgetting (RLS/FTVRF), which uses a variable-rate forgetting factor for recursive
least squares based on the F-test. The variable-rate forgetting method uses a ratio of covariances
of errors from a short and long moving horizon to determine whether the underlying parameters
have changed. A multivariate approximation of the F-test was used to extend the method to the
multi-output case. The method was compared to a constant-rate forgetting factor in noiseless, noisy,
and nonpersistently exciting input situations and also compared to the recursive least squares with
root-mean-square variable-rate forgetting (RLS/RMSVRF) method used in [50, 32]. It was shown
that RLS/FTVRF enabled forgetting when parameter changes occurred and prevented forgetting
from occurring due to noise. In the nonpersistent input case, the method kept RLS from forgetting
and kept the eigenvalues of the RLS covariance matrix bounded.
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CHAPTER 6

Predictive Cost Adaptive Control of Flexible
Structures with Harmonic and Broadband

Disturbances

This chapter is focused on vibration suppression for large flexible structures such as space
telescopes where closed-loop identification is unavoidable. Certain missions require on-orbit
system identification to develop accurate operational models for vibration suppression, but due to
the nature of the operational environment, these models are corrupted by unavoidable disturbances.
These disturbances may arise from onboard equipment that cannot be shut down (for example,
cryocoolers or control-moment gyros), and they may be due to environmental sources, such as
solar pressure, magnetic torquing, and thermal gradients. Closed-loop system identification is also
challenging due to the lack of consistency arising from correlated control inputs and plant outputs
[77, 78, 79]. Specialized techniques, such as prediction error methods [80] can overcome this
problem to some extent, but are not generally amenable to online implementation.

To address this problem, this chapter considers PCAC which was developed in Section 2.3.
Since the online identification in PCAC is performed in the presence of disturbances, it can be
expected that the disturbances will degrade the accuracy of the identified model. Interestingly,
however, in the case of harmonic disturbances, the identified model incorporates a model of the
harmonic disturbances, which enables the identified model to predict the future forced response
of the structure. As shown in [33], these predictions facilitate the receding horizon optimization
that MPC uses to determine the future control inputs. The contents of the chapter are as follows.
Section 6.1 describes the class of flexible structure models of interest. Section 6.2 contains an
investigation of PCAC for disturbance rejection of a flexible structure model for harmonic and
broadband disturbances.
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6.1 Problem Formulation

Consider a flexible structure modeled by

𝑀 ¥𝑞(𝑡) + 𝐶 ¤𝑞(𝑡) + 𝐾𝑞(𝑡) = 𝐵𝑢(𝑡) + 𝐵𝑤𝑤(𝑡), (6.1)

where 𝑀 , 𝐶, and 𝐾 ∈ R𝑛×𝑛 are, respectively, the positive-definite mass, positive-semidefinite
damping, and positive-definite stiffness matrices of the structure, 𝑞(𝑡) ∈ R𝑛×1 is a state vector
describing the generalized displacements, 𝐵 ∈ R𝑛×𝑚 is the control input distribution matrix,
𝐵𝑤 ∈ R𝑛×𝑚𝑤 is the exogenous disturbance input matrix, 𝑢(𝑡) ∈ R𝑚×1 is the control input, and
𝑤(𝑡) ∈ R𝑚𝑤×1 is the exogenous disturbance. The objective is to reject the effect of the disturbance
𝑤(𝑡) on 𝑞(𝑡) using control inputs 𝑢(𝑡) under the following assumptions.

Assumption 1. The control input 𝑢(𝑡) is determined by a discrete-time controller with sample time
𝑇𝑠 whose computed digital control request is converted to an analog signal by means of a ZOH
circuit and is implemented by electromechanical actuators. Because of the ZOH, 𝑢(𝑡) is constant
over each time period [𝑘𝑇s, (𝑘 + 1)𝑇s), where 𝑘 is the time step.

Assumption 2. 𝑀 , 𝐶, and 𝐾 are unknown except for an upper bound on the number of degrees
of freedom (DOF) within the control bandwidth. However, additional modes may lie above the
Nyquist rate of the sampled-data controller.

Note that the modes whose frequencies are above the Nyquist rate of the sampled-data controller
are subjected to aliasing and thus constitute spillover.

6.2 Numerical Examples

Consider the 4-bay truss structure shown in Figure 6.1a. The structure is assumed to be made
of pinned truss elements, where each element has local mass and stiffness matrices of the form

𝑀̄ =
𝜌𝐴𝐿

6


2 0 1 0
0 2 0 1
1 0 2 0
0 1 0 2


, 𝐾̄ =

𝐸𝐴

𝐿


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0


. (6.2)

The local state 𝑞(𝑡) =
[
𝛿𝑥,1 𝛿 𝑦̄,1 𝛿𝑥,2 𝛿 𝑦̄,2

]T
corresponds to the local 𝑥 and 𝑦 displacements of

each end of the element, where 𝑀̄ is the local consistent mass matrix, 𝐾̄ the local stiffness matrix,
𝐸 is the elastic modulus, 𝐴 is the cross-sectional area of the truss member, 𝐿 is the length of
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the truss member, and 𝜌 is the density of the truss member material. The individual local mass
and stiffness matrices are then assembled into the global mass and stiffness matrices 𝑀 and 𝐾
using appropriate coordinate transformations, and states corresponding to boundary constraints are
removed. The global damping matrix𝐶 is constructed by assuming each normal mode has the same
damping ratio 𝜁 = 0.005. The material is chosen to be a graphite-epoxy composite with properties
𝐸 = 1 × 1011 Pa, 𝐴 = 5 × 10−4 m2, and 𝜌 = 1700 kg

m3 [81, 82]. There are two 2-kg force actuators
located at nodes 3 and 4, with control authority in the 𝑥-direction, and 𝑥-direction displacement
sensors at nodes 5, 6, 7, and 8. The entire state of the structure is not measured. There are also
1-kg masses on nodes 1, 2, 5, 6, 7 and 8. The actuator force is limited to 10 N.

The objective is to investigate the ability of PCAC to suppress the effect of harmonic and broad-
band disturbances entering from node 1 on node 8 of the truss structure. For a large structure such
as a space telescope, the displacement of node 8 is representative of the line-of-sight performance,
and the disturbances entering at node 1 represent disturbances from control-moment gyros or other
internal components. Measurements are corrupted with white noise such that a sensor measuring
a 0.1-Hz disturbance at node 8 has a signal-to-noise ratio (SNR) of 40-dB. The measurements also
have a gain of 10x.

The transfer function matrix representing the portion of the structure under consideration is
given by

𝐺 (𝑠) =


𝐺5,1(𝑠) 𝐺5,3(𝑠) 𝐺5,4(𝑠)
𝐺6,1(𝑠) 𝐺6,3(𝑠) 𝐺6,4(𝑠)
𝐺7,1(𝑠) 𝐺7,3(𝑠) 𝐺7,4(𝑠)
𝐺8,1(𝑠) 𝐺8,3(𝑠) 𝐺8,4(𝑠)


, (6.3)

where 𝐺𝑖, 𝑗 (𝑠) is the transfer function from an 𝑥-direction input at node 𝑗 to a 𝑥-direction displace-
ment in node 𝑖. The maximum singular values of 𝐺 ( 𝚥𝜔) are shown in Figure 6.1b. Notice that the
structure is lightly damped with a cluster of modes near 10-Hz.

PCAC is initialized with the cold-start model 𝜃0 = 10−101600×1, 𝑛̂ = 25, 𝑃0 = 1𝐼600, 𝜂 = 0.1,
𝜏n = 40, 𝜏d = 200, 𝛼 = 0.001, ℓ = 40, 𝑄 = 106𝐼160, 𝑅 = 𝐼160, 𝐶t =

[
01×3 1

]
, 𝐶c = 04, C = 04×4,

and D = 04×1. 𝐶t was chosen such that PCAC attempts to minimize the response of node 8,
the fourth measurement. In the below figures, the open-loop response is denoted by OL and the
closed-loop response is denoted by CL.

6.2.1 Harmonic Disturbance

The structure is excited by a harmonic disturbance consisting of sinusoidal tones at 0.354, 1, and
1.55-Hz entering in the 𝑥-direction of node 1 with PCAC running at a 50-Hz. Figures 6.2 and 6.3
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(a) Schematic of the truss structure with the nodes
labeled.
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(b) Magnitude plot of the largest singular values of
𝐺 ( 𝚥𝜔).

show that the disturbance is suppressed in all measurements, with the most suppression occurring
on nodes 7 and 8. Figure 6.4 shows the norm of the identification coefficients ∥𝜃𝑘 ∥ and the trace
of the identification covariance 𝑃𝑘 . Notice that the disturbance is suppressed before either ∥𝜃𝑘 ∥ or
tr(𝑃𝑘 ) converge with ∥𝜃𝑘 ∥ converging soon after.

6.2.2 Band-Limited Broadband Disturbance

The structure is excited by a 25-Hz band-limited broadband disturbance entering in the 𝑥-
direction of node 1 with PCAC running at a 50-Hz. Figures 6.5 and 6.6 show that the disturbance
is suppressed in all measurements, with the most suppression occurring on nodes 7 and 8. Figure
6.7 shows the norm of the estimated model coefficients ∥𝜃𝑘 ∥ and the trace of the estimated
model-coefficient covariance 𝑃𝑘 . Notice that the disturbance is suppressed before ∥𝜃𝑘 ∥ or tr(𝑃𝑘 )
converges.

6.2.3 Band-Limited Broadband Disturbance with Aliasing

In practice, a large structure has many modes outside the control bandwidth that can be excited
by external disturbances and are spilled over due to sampling. The response of these excited modes
aliases onto the control bandwidth and can cause instability if not accounted for in the original
control design. Additionally, the ZOH control input can also excite these undersampled modes. To
demonstrate robustness of PCAC to aliasing and spillover, the sample rate is reduced to 10 Hz so
that there exist structural modes and disturbances outside the control bandwidth. The structure is
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Figure 6.2: Harmonic disturbance: Open- and closed-loop response subject to the band-limited
broadband disturbance. Starting from the top left moving clockwise, the measurements are the
𝑥-direction displacements of nodes 5, 6, 7, and 8, respectively. The closed-loop response converges
within 10 s.
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Figure 6.3: Harmonic disturbance: Power spectral densities of the open- and closed-loop systems.
Starting from the top left moving clockwise, the measurements are the 𝑥-direction displacements
of nodes 5, 6, 7, and 8, respectively. Notice that the 3 peaks corresponding to the 3 sinusoidal
disturbances are suppressed in closed-loop for nodes 7 and 8.
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Figure 6.4: Harmonic disturbance: Norm of the estimated model coefficients 𝜃𝑘 and the trace of
the matrix 𝑃𝑘 .
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Figure 6.5: Band-limited broadband disturbance: Open- and closed-loop response subject to the
band-limited broadband disturbance. Starting from the top left moving clockwise, the measure-
ments are the 𝑥-direction displacements of nodes 5, 6, 7, and 8, respectively. Notice that the
broadband disturbance is suppressed within 10 s for nodes 5 and 6, and within 5 s for nodes 7 and
8.
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Figure 6.6: Band-limited broadband disturbance: Power spectral densities of the open- and closed-
loop systems. Starting from the top left moving clockwise, the measurements are the 𝑥-direction
displacements of nodes 5, 6, 7, and 8, respectively. Notice that most of the peaks in the open-loop
response of nodes 7 and 8 are suppressed in closed-loop.
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Figure 6.7: Band-limited broadband disturbance: Norm of the identification coefficients 𝜃𝑘 and the
trace of the matrix 𝑃𝑘 .
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excited by a 50 Hz band-limited noise disturbance entering in the 𝑥-direction of node 1. Figures
6.8 and 6.9 show that the broadband disturbance is suppressed in all measurements despite aliased
disturbances and spillover. Note also that the initial transient is larger than in the nonaliased case.
Figure 6.10 shows that the identification coefficients do not need to be converged for the disturbance
to be suppressed.
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Figure 6.8: Band-limited broadband disturbance with aliasing: Open- and closed-loop response
subject to the band-limited broadband disturbance. Starting from the top left moving clockwise,
the measurements are the 𝑥-direction displacements of nodes 5, 6, 7, and 8, respectively. Notice
that the broadband disturbance is suppressed within 15 s for nodes 5 and 6, and within 10 s for
nodes 7 and 8.

6.3 Conclusions

This chapter investigated the performance of PCAC for disturbance rejection of flexible struc-
tures. A model of a large truss structure was developed and used to investigate MIMO disturbance
rejection for unknown harmonic and broadband disturbances as well as broadband disturbances
with aliasing. PCAC was shown to suppress the disturbances in all cases without a priori knowledge
of the dynamics or disturbance spectra.
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Figure 6.9: Band-limited broadband disturbance with aliasing: Power spectral densities of the
open- and closed-loop systems. Starting from the top left moving clockwise, the measurements are
the 𝑥-direction displacements of nodes 5, 6, 7, and 8, respectively. Notice that the modes inside the
control bandwidth are suppressed.
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Figure 6.10: Band-limited broadband disturbance with aliasing: Norm of the identification coeffi-
cients 𝜃𝑘 and the trace of the matrix 𝑃𝑘 .
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CHAPTER 7

Adaptive Force-Control Augmentation for Small
Celestial Body Sampling

In this chapter we investigate the spacecraft surface sampling problem. The objective of a
sampling mission is to bring a spacecraft with a sampler in contact with the surface of a celestial
body and maintain a desired contact force in order to capture a sample from the surface [11, 12]. The
resulting samples are used to further scientific knowledge about the origins of the solar system and
universe. Before contact with the surface, surface properties such as the compliance are uncertain.
Additional challenges arise due to unknown nonlinear contact dynamics such as hysteretic effects,
and the inability to use the spacecraft thrusters to augment the contact force. Therefore, the
controller must be designed to be robust to a wide variety of surface properties. If the true surface
properties are outside expectations, mission performance will be adversely affected possibly leading
to mission failure.

The challenges associated with surface sampling missions motivates an alternative adaptive
approach to the surface sampling control problem. The control algorithm proposed consists of a
feedback linearization controller with a nominal robust controller that is augmented using PCAC
to adaptively regulate the contact force of the sampler when subject to a surface with unknown
properties. The robust controller is developed using a set of linear matrix inequalities (LMIs) to
guarantee stability for a wide range of surface properties. The robust controller on its own is unable
to meet the performance requirements of the mission and therefore PCAC is used to augment the
commanded sampling arm torques. The present chapter extends the robust control algorithm given
in [83] to the case of an adaptive controller.

7.1 Spacecraft Dynamics and Modeling

An overview of the spacecraft equations of motion and contact dynamics are given in this
section. For simplicity, we assume a two-dimensional model, where all masses are rigid. Consider
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the spacecraft with a 2-link sampling arm as shown in Figure 7.1. The relative joint angles are
given by 𝜃1 and 𝜃2, the control torques by 𝜏1 and 𝜏2, the spacecraft bus mass by 𝑚sc, the link masses
and inertias by 𝑚1, 𝑚2, 𝐼1, and 𝐼2 respectively, the link lengths and distance to the link center of
mass by 𝐿1, 𝐿2, 𝑅1, and 𝑅2, the sampler position relative to the surface by 𝑥 and 𝑦, and the sampler
mass by 𝑚s. The contact and friction forces due to the surface are given by 𝐹c and 𝐹f . Due to
the small gravitational forces in this environment, gravitational forces are assumed to be negligible
relative to the contact forces and are ignored during the contact phase. The resulting equations of
motion have the form

𝑀 (𝑞) ¥𝑞 + 𝐷 (𝑞, ¤𝑞) ¤𝑞 = 𝑄 (7.1)

𝑞
△
=


𝜃1

𝜃2

𝑥

𝑦


, ¤𝑞 △=


¤𝜃1
¤𝜃2

¤𝑥
¤𝑦


, (7.2)

where 𝑀 (𝑞), 𝐷 (𝑞, ¤𝑞), and 𝑄 are the mass, damping and generalized force matrices. Details of
the derivation and structure of these matrices without the sampler mass are given in [83]. The
equations of motion are derived below for reference.

Compliance

𝐹c

𝐹f
𝑥

𝑦

𝜃1

𝜃2

𝑚sc

𝑚s

𝑚1, 𝐿1, 𝐼1

𝑚2, 𝐿2, 𝐼2

𝜏1

𝜏2

Surface

𝑅1

𝑅2

Figure 7.1: Spacecraft model for celestial body sampling.

The position the center of mass of each component of the spacecraft relative to the surface is
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given by

𝑝s =

[
𝑥

𝑦

]
, 𝑝1 =

[
𝑥 + 𝑅1 cos(𝜃1)
𝑦 + 𝑅1 sin(𝜃1)

]
, (7.3)

𝑝2 =

[
𝑥 + 𝐿1 cos(𝜃1) + 𝑅2 cos(𝜃1 + 𝜃2)
𝑦 + 𝐿1 sin(𝜃1) + 𝑅2 sin(𝜃1 + 𝜃2)

]
, (7.4)

𝑝sc =

[
𝑥 + 𝐿1 cos(𝜃1) + 𝐿2 cos(𝜃1 + 𝜃2)
𝑦 + 𝐿1 sin(𝜃1) + 𝐿2 sin(𝜃1 + 𝜃2)

]
, (7.5)

and velocities by

𝑣s =

[
¤𝑥
¤𝑦

]
, 𝑣1 =

[
¤𝑥 − 𝑅1 ¤𝜃1 sin(𝜃1)
¤𝑦 + 𝑅1 ¤𝜃1 cos(𝜃1)

]
, (7.6)

𝑣2 =

[
¤𝑥 − 𝐿1 ¤𝜃1 sin(𝜃1) − 𝑅2( ¤𝜃1 + ¤𝜃2) sin(𝜃1 + 𝜃2)
¤𝑦 + 𝐿1 ¤𝜃1 cos(𝜃1) + 𝑅2( ¤𝜃1 + ¤𝜃2) cos(𝜃1 + 𝜃2)

]
, (7.7)

𝑣sc =

[
¤𝑥 − 𝐿1 ¤𝜃1 sin(𝜃1) − 𝐿2( ¤𝜃1 + ¤𝜃2) sin(𝜃1 + 𝜃2)
¤𝑦 + 𝐿1 ¤𝜃1 cos(𝜃1) + 𝐿2( ¤𝜃1 + ¤𝜃2) cos(𝜃1 + 𝜃2)

]
. (7.8)

The velocities and angular velocities of each center of mass can then be written as

𝑣s = 𝐴(𝑞) ¤𝑞
△
=

[
0 0 1 0
0 0 0 1

]
¤𝑞 (7.9)

𝑣1 = 𝐵(𝑞) ¤𝑞 △=
[
−𝑅1 sin(𝜃1) 0 1 0
𝑅1 cos(𝜃1) 0 0 1

]
¤𝑞 (7.10)

𝑣2 = 𝐶 (𝑞) ¤𝑞 △=
[
−𝐿1 sin(𝜃1) − 𝑅2 sin(𝜃1 + 𝜃2) −𝑅2 sin(𝜃1 + 𝜃2) 1 0
𝐿1 cos(𝜃1) + 𝑅2 cos(𝜃1 + 𝜃2) 𝑅2 cos(𝜃1 + 𝜃2) 0 1

]
¤𝑞 (7.11)

𝑣sc = 𝐷 (𝑞) ¤𝑞
△
=

[
−𝐿1 sin(𝜃1) − 𝐿2 sin(𝜃1 + 𝜃2) −𝐿2 sin(𝜃1 + 𝜃2) 1 0
𝐿1 cos(𝜃1) + 𝐿2 cos(𝜃1 + 𝜃2) 𝐿2 cos(𝜃1 + 𝜃2) 0 1

]
¤𝑞 (7.12)

¤𝜃1 = 𝐸 (𝑞) ¤𝑞 △=
[
1 0 0 0

]
¤𝑞 (7.13)

¤𝜃1 + ¤𝜃2 = 𝐹 (𝑞) ¤𝑞 △=
[
1 1 0 0

]
¤𝑞 (7.14)

The kinetic energy 𝑇 of the spacecraft can then be written as

𝑇 =
1
2
¤𝑞T𝑀 (𝑞) ¤𝑞, (7.15)
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where,

𝑀 (𝑞) △= 𝑚s𝐴
T(𝑞)𝐴(𝑞) + 𝑚1𝐵

T(𝑞)𝐵(𝑞) + 𝑚2𝐶
T(𝑞)𝐶 (𝑞)

+ 𝑚sc𝐷
T(𝑞)𝐷 (𝑞) + 𝐼1𝐸T(𝑞)𝐸 (𝑞) + 𝐼2𝐹T(𝑞)𝐹 (𝑞). (7.16)

The following property is given for two matrix functions 𝐴(𝑞) and 𝐵(𝑞) [84],

𝜕

𝜕𝑞
[𝐴(𝑞)𝐵(𝑞)] △= [𝐼 ⊗ 𝐴(𝑞)] 𝜕𝐵(𝑞)

𝜕𝑞
+ 𝜕𝐴(𝑞)

𝜕𝑞
𝐵(𝑞), (7.17)

where

𝜕𝐴(𝑞)
𝜕𝑞

=


𝜕𝐴(𝑞)
𝜕𝑞1
...

𝜕𝐴(𝑞)
𝜕𝑞𝑛

 . (7.18)

The equations of motion are then given by Lagrange’s equations

𝑑

𝑑𝑡

𝜕𝑇

𝜕 ¤𝑞 −
𝜕𝑇

𝜕𝑞
= 𝑄, (7.19)

𝑀 (𝑞) ¥𝑞 + ¤𝑀 (𝑞) ¤𝑞 − 𝜕𝑇
𝜕𝑞

= 𝑄. (7.20)

where

¤𝑀 (𝑞) =
(
𝜕𝑀 (𝑞)
𝜕𝑞

)T
( ¤𝑞 ⊗ 𝐼4), (7.21)

and using (7.17)

𝜕𝑇

𝜕𝑞
=
𝜕

𝜕𝑞
[1
2
¤𝑞T𝑀 (𝑞) ¤𝑞] = 1

2
[𝐼4 ⊗ ¤𝑞T] 𝜕𝑀 (𝑞)

𝜕𝑞
¤𝑞, (7.22)

which leads to

𝑀 (𝑞) ¥𝑞 +
[(
𝜕𝑀 (𝑞)
𝜕𝑞

)T
( ¤𝑞 ⊗ 𝐼4) −

1
2
[𝐼4 ⊗ ¤𝑞T] 𝜕𝑀 (𝑞)

𝜕𝑞

]
¤𝑞 = 𝑄, (7.23)

where (
𝜕𝑀 (𝑞)
𝜕𝑞

)T
( ¤𝑞 ⊗ 𝐼4) −

1
2
[𝐼4 ⊗ ¤𝑞T] 𝜕𝑀 (𝑞)

𝜕𝑞

△
= 𝐷 (𝑞, ¤𝑞). (7.24)
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During contact, the generalized force is given by

𝑄𝑖 = 𝜏1
𝜕 ¤𝜃1
𝜕 ¤𝑞𝑖
+ 𝜏2

𝜕 ( ¤𝜃1 + ¤𝜃2)
𝜕 ¤𝑞𝑖

+ 𝐹f
𝜕 ¤𝑥
𝜕 ¤𝑞𝑖
+ 𝐹c

𝜕 ¤𝑦
𝜕 ¤𝑞𝑖

for 𝑖 = 1, 2, 3, 4 (7.25)

𝑄 =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1



𝜏1

𝜏2

𝐹f

𝐹c


. (7.26)

For the contact force, two models commonly used for small celestial body sampling are used.
The first is the linear Kelvin-Voigt model [85] given by

𝐹c = −𝑘s𝑦 − 𝑐s ¤𝑦, (7.27)

where 𝑘s and 𝑐s are the stiffness and damping of the surface material, The second is a nonlinear
Hunt-Crossley model [85, 86, 87] given by

𝐹c = 𝑘s(−𝑦)
3
2

(
1 + 3(1 − 𝑐r)

2
¤𝑦
¤𝑦0

)
, (7.28)

with coefficient of restitution 𝑐r, surface stiffness 𝑘s, and initial contact velocity ¤𝑦0.
Since the contact event occurs with friction, for the friction model, an approximation of the

Coulomb force using a regularized friction coefficient is given by

𝐹f
△
=


−𝜇

(
∥ ¤𝑥∥

10−4

)
𝐹c sgn( ¤𝑥), 0 ≤ ∥ ¤𝑥∥

10−4 ≤ 1,

−𝜇𝐹c sgn( ¤𝑥), 1 < ∥ ¤𝑥∥
10−4 ,

(7.29)

where 𝜇 is the coefficient of friction [88].

7.2 Control Architecture

The control architecture for the contact phase is shown in Figure 7.2. The controller consists of
three components, a feedback linearization controller, a nominal robust controller, and an adaptive
controller augmentation using Predictive Cost Adaptive Control. The ascent and descent control
follows the method given in [83]. A summary of the control algorithm for the contact phase is
given in Algorithm 3.
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𝑢robust,𝑘

Figure 7.2: Adaptive force control architecture for small celestial body sampling.

7.2.1 Feedback Linearization Controller

The mass and damping matrices can be decomposed into the following 2 × 2 partitions

𝑀 (𝑞) =
[
𝑀1(𝜃) 𝑀2(𝜃)
𝑀T

2 (𝜃) 𝑚0𝐼2

]
,

𝐷 (𝑞, ¤𝑞) =
[
𝐷1(𝜃, ¤𝑞) 𝐷2(𝜃, ¤𝑞)
𝐷T

2 (𝜃, ¤𝑞) 02

]
, 𝜃

△
=

[
𝜃1

𝜃2

]
, (7.30)

where 𝑚0
△
= 𝑚sc +𝑚1 +𝑚2 +𝑚s. Since 𝜃1, 𝜃2, ¤𝜃1, ¤𝜃2, ¤𝑥, ¤𝑦, and 𝐹c are assumed to be measured, the

following feedback linearization controller can be used[
𝜏1

𝜏2

]
= 𝐿−1 [(𝐷1(𝜃, ¤𝑞) − 𝑀1(𝜃)𝑀−T

2 (𝜃)𝐷
T
2 (𝜃, ¤𝑞))

[
¤𝜃1
¤𝜃2

]
+ 𝐷2(𝜃, ¤𝑞)

[
¤𝑥
¤𝑦

]
+ 𝑀1(𝜃)𝑀−T

2

[
0
1

]
𝐹c + (𝑀2(𝜃) − 𝑀1(𝜃)𝑀−T

2 (𝜃)𝑚0𝐼2)
[
𝜏1, 𝑓

𝜏2, 𝑓

]
], (7.31)

where 𝜏1, 𝑓 and 𝜏2, 𝑓 are the feedforward portion of the feedback linearization controller to be given
by a combination of the robust controller (see subsection 7.2.2) and PCAC (see subsection 7.2.3),

and 𝐿
△
=

[
1 1
0 1

]
. For the feedback linearization controller, we assume that the contact force is of

the linear form given by (7.27). Let the desired contact force be 𝐹d and define the contact force
error by

𝑒
△
= 𝐹c − 𝐹d = −𝑘s𝑦 − 𝑐s ¤𝑦 − 𝐹d, (7.32)
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Substituting (7.31) into (7.1) and taking the derivative of (7.32) leads to the following dynamics in
state-space form

¤𝜁 = 𝐴(𝜃, ¤𝑞)𝜁 + 𝐵(𝜃)𝜏 𝑓 + 𝐸 (𝜃)𝐹f , (7.33)

𝜁
△
=



¤𝜃1
¤𝜃2

¤𝑥
¤𝑦
𝑒


, 𝜏 𝑓

△
=

[
𝜏1, 𝑓

𝜏2, 𝑓

]
(7.34)

𝐴(𝜃, ¤𝑞) △=



−𝑀−T
2 (𝜃)𝐷

T
2 (𝜃, ¤𝑞)

0 0
0 0
0 0

0
0
0
0
0

0
0
0
0
−𝑘s

𝑀−T
2 (𝜃)

[
0
1

]
0
0
0


, (7.35)

𝐵(𝜃) △=


𝑀−T

2 (𝜃)𝑚0𝐼2

1 0
0 1
0 −𝑐s


, (7.36)

𝐸 (𝜃) △=



𝑀−T
2 (𝜃)

[
1
0

]
𝜉 (𝜃)

[
1
0

]
−𝑐s

[
0 1

]
𝜉 (𝜃)

[
1
0

]

, (7.37)

𝜉 (𝜃) △=
(
𝑀2(𝜃) − 𝑀1(𝜃)𝑀−T

2 (𝜃)𝑚0𝐼2

)−1
𝑀1(𝜃)𝑀−T

2 (𝜃). (7.38)

7.2.2 Robust Controller

We seek to regulate the sampler velocity and error states of (7.35)-(7.36). It can be seen that
the states ¤𝑥, ¤𝑦, and 𝑒 are decoupled from the sampling arm angular rates ¤𝜃1 and ¤𝜃2. Therefore, we

focus on the block entries of (7.35)-(7.36) containing the states 𝜒 =

[
¤𝑥 ¤𝑦 𝑒

]T
where
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𝐴
△
=


0 0 0
0 0 0
0 −𝑘s 0

 , 𝐵
△
=


1 0
0 1
0 −𝑐s

 . (7.39)

The goal is to find a discrete-time controller of the form 𝜏 𝑓 ,𝑘 = 𝐾𝜒𝑘 that is robust for values of 𝑘s

in the range [𝑘1, 𝑘2] and values of 𝑐s in the range [𝑐1, 𝑐2]. Let 𝐴d,𝑖 and 𝐵d, 𝑗 be (7.39) discretized
using a zero-order hold at the sample rate 𝑇s, and stiffness and damping coefficients 𝑘𝑖 and 𝑐 𝑗 .
The control gain 𝐾 that exponentially stabilizes the system for the range of stiffness and damping
coefficients must satisfy the following set of Lyapunov equations

(𝐴d,𝑖 + 𝐵d, 𝑗𝐾)𝑄(𝐴d,𝑖 + 𝐵d, 𝑗𝐾)T − 𝑒−2𝜆𝑇s𝑄 ≤ 0 for 𝑖 = 1, 2 and 𝑗 = 1, 2,

𝑄 > 0,
(7.40)

where 𝑄 is a positive-definite matrix, and 𝜆 is a tuning parameter representing the slowest desired
exponential decay rate of the closed-loop system for all combinations of stiffness and damping
parameters in the range [𝑘1, 𝑘2], and [𝑐1, 𝑐2] [89]. Using the Schur complement, defining𝑌 △= 𝐾𝑄,
and incorporating a slack variable 𝑠, (7.40) can be rewritten as a set of LMI constraints in the
following optimization problem

min
𝑄,𝑌

𝑠

s.t.

[
𝑒−2𝜆𝑇s𝑄 (𝐴d,𝑖𝑄 + 𝐵d, 𝑗𝑌 )

(𝐴d,𝑖𝑄 + 𝐵d, 𝑗𝑌 )T 𝑄

]
≥

[
𝑠𝐼3 03

03 03

]
for 𝑖 = 1, 2 and 𝑗 = 1, 2,

𝑄 ≥ 𝑠𝐼3
𝑠 ≥ 0,

(7.41)

which can be solved using CVX [90, 91]. The resulting robust controller is then given by𝐾 = 𝑌𝑄−1.

7.2.3 Predictive Cost Adaptive Control

PCAC combines online identification using recursive least squares with a forgetting factor, and a
model predictive controller in two separate steps [32]. For the purposes of augmenting the nominal
robust controller for surface sampling, PCAC is modified so that the identification portion attempts
to identify the feedback-linearized system without the robust controller instead of the full system
model. The identified model is then augmented with the robust controller and sent to the MPC
portion of PCAC. The MPC controller outputs a torque augmentation that is added to the torque
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command produced by the robust controller.

7.2.3.1 Online Identification

Consider the MIMO input-output model

𝑦̂𝑘 = −
𝑛̂∑︁
𝑖=1

𝐹̂𝑖𝑦𝑘−𝑖 +
𝑛̂∑︁
𝑖=1

𝐺̂𝑖𝜏 𝑓 ,𝑘−𝑖, (7.42)

where 𝑘 ≥ 0 is the time step, 𝑛̂ ≥ 1 is the identification data window, 𝐹̂𝑖 ∈ R𝑝×𝑝 and 𝐺̂𝑖 ∈ R𝑝×𝑚

are the estimated model coefficients, and 𝜏 𝑓 ,𝑘 ∈ R𝑚×1, 𝑦𝑘 ∈ R𝑝×1, and 𝑦̂𝑘 ∈ R𝑝×1 are the inputs,
outputs, and predicted outputs at step 𝑘 , respectively.

To estimate the coefficients 𝐹̂𝑖 and 𝐺̂𝑖 online, we use RLS with variable-rate forgetting [45].
RLS minimizes the cumulative cost

𝐽𝑘 (𝑤̂) =
𝑘∑︁
𝑖=0

𝜌𝑖

𝜌𝑘
𝑧T
𝑖 (𝑤̂)𝑧𝑖 (𝑤̂) +

1
𝜌𝑘
(𝑤̂ − 𝑤0)T𝑃−1

0 (𝑤̂ − 𝑤0), (7.43)

where 𝜌𝑘
△
=

∏𝑘
𝑗=0 𝜆

−1
𝑗
∈ R, 𝜆𝑘 ∈ (0, 1] is the forgetting factor, 𝑃0 ∈ R[𝑛̂𝑝(𝑚+𝑝)]×[𝑛̂𝑝(𝑚+𝑝)] is positive-

definite, and 𝑤0 ∈ R[𝑛̂𝑝(𝑚+𝑝)]×1 is the initial estimate of the coefficient vector. The performance
variable 𝑧𝑖 (𝑤̂) ∈ R𝑝×1 is defined as

𝑧𝑘 (𝑤̂)
△
= 𝑦𝑘 +

𝑛̂∑︁
𝑖=1

𝐹̂𝑖𝑦𝑘−𝑖 −
𝑛̂∑︁
𝑖=1

𝐺̂𝑖𝜏 𝑓 ,𝑘−𝑖, (7.44)

where the vector 𝑤̂ ∈ R[𝑛̂𝑝(𝑚+𝑝)]×1 of coefficients to be estimated is defined by

𝑤̂
△
= vec

[
𝐹̂1 · · · 𝐹̂𝑛̂ 𝐺̂1 · · · 𝐺̂ 𝑛̂

]
. (7.45)

Defining the regressor matrix 𝜙𝑘 ∈ R𝑝×[𝑛̂𝑝(𝑚+𝑝)] by

𝜙𝑘
△
=

[
−𝑦T

𝑘−1 · · · −𝑦
T
𝑘−𝑛̂ 𝜏T

𝑓 ,𝑘−1 · · · 𝜏T
𝑓 ,𝑘−𝑛̂

]
⊗ 𝐼𝑝, (7.46)

the performance variable can be written as

𝑧𝑘 (𝑤̂) = 𝑦𝑘 − 𝜙𝑘 𝑤̂. (7.47)
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The global minimizer 𝑤𝑘+1
△
= argmin𝑤̂ 𝐽𝑘 (𝑤̂) is computed by RLS as

𝑃𝑘+1 = 𝜆−1
𝑘 𝑃𝑘 − 𝜆

−1
𝑘 𝑃𝑘𝜙

T
𝑘 (𝜆𝑘 𝐼𝑝 + 𝜙𝑘𝑃𝑘𝜙

T
𝑘 )
−1𝜙𝑘𝑃𝑘 (7.48)

𝑤𝑘+1 = 𝑤𝑘 + 𝑃𝑘+1𝜙T
𝑘 (𝑦𝑘 − 𝜙𝑘 𝑤̂), (7.49)

where 𝑤𝑘+1 = vec
[
𝐹̂1,𝑘+1 · · · 𝐹̂𝑛̂,𝑘+1 𝐺̂1,𝑘+1 · · · 𝐺̂ 𝑛̂,𝑘+1

]
.

The VRF factor 𝜆𝑘 is developed in [49] and given by

𝜆𝑘 =
1

1 + 𝜂𝑔(𝑧𝑘−𝜏d , . . . , 𝑧𝑘 )1[𝑔(𝑧𝑘−𝜏d , . . . , 𝑧𝑘 )]
, (7.50)

where 1 : R→ {0, 1} is the unit step function, and

𝑔(𝑧𝑘−𝜏𝑑 , . . . , 𝑧𝑘 )
△
=

√︄
𝜏n
𝜏d

tr
(
Σ𝜏n (𝑧𝑘−𝜏n , . . . , 𝑧𝑘 )Σ𝜏d (𝑧𝑘−𝜏d , . . . , 𝑧𝑘 )−1)

𝑐
−

√︁
𝑓 , (7.51)

where 𝜂 > 0 and 𝑝 ≤ 𝜏n < 𝜏d represent numerator and denominator window lengths, respectively.
In (7.51), Σ𝜏n and Σ𝜏d ∈ R𝑝×𝑝 are the sample variances of the respective window lengths, 𝑐 is a
constant given by

𝑎
△
=
(𝜏n + 𝜏d − 𝑝 − 1) (𝜏d − 1)
(𝜏d − 𝑝 − 3) (𝜏d − 𝑝)

, 𝑏
△
= 4 + (𝑝𝜏n + 2)

(𝑎 − 1) ,

𝑐
△
=

𝑝𝜏n(𝑏 − 2)
𝑏(𝜏d − 𝑝 − 1) , (7.52)

𝑓
△
= 𝐹−1

𝑝𝜏n, 𝑏
(1−𝛼) is a thresholding constant, where 𝐹−1

𝑝𝜏n, 𝑏
(𝑥) is the inverse cumulative distribution

function of the 𝐹-distribution with degrees of freedom 𝑝𝜏n and 𝑏, and 𝛼 is the significance level
[55].

For model predictive control, the input-output model (7.42) is written as the BOCF state-space
realization augmented by the robust controller

𝑥1|𝑘
△
= 𝐴̂𝑘𝑥𝑘 + 𝐵̂𝑘𝑢aug,𝑘 ,

𝑦𝑘 = 𝐶̂𝑥𝑘 , (7.53)

where 𝑥1|𝑘 ∈ R𝑛̂𝑝 is the one-step predicted state, 𝑥𝑘
△
=

[
𝑥T

1,𝑘 · · · 𝑥T
𝑛̂,𝑘

]T
∈ R𝑛̂𝑝 is the state estimate,
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and

𝑥1,𝑘
△
= 𝑦𝑘 , (7.54)

𝑥𝑖,𝑘
△
= −

𝑛̂−𝑖+1∑︁
𝑗=1

𝐹̂𝑖+ 𝑗−1,𝑘+1𝑦𝑘− 𝑗 +
𝑛̂−𝑖+1∑︁
𝑗=1

𝐺̂𝑖+ 𝑗−1,𝑘+1𝜏 𝑓 ,𝑘− 𝑗 , 𝑖 = 2, . . . , 𝑛̂ (7.55)

𝐴̂𝑘
△
=



−𝐹̂1,𝑘+1 𝐼𝑝 · · · · · · 0𝑝×𝑝
... 0𝑝×𝑝

. . .
...

...
...

. . .
. . . 0𝑝×𝑝

...
...

. . . 𝐼𝑝

−𝐹̂𝑛̂,𝑘+1 0𝑝×𝑝 · · · · · · 0𝑝×𝑝


+


𝐺̂1,𝑘+1

𝐺̂2,𝑘+1
...

𝐺̂ 𝑛̂,𝑘+1


𝐾, (7.56)

𝐵̂𝑘
△
=


𝐺̂1,𝑘+1

𝐺̂2,𝑘+1
...

𝐺̂ 𝑛̂,𝑘+1


, 𝐶̂

△
=

[
𝐼𝑝 0𝑝×𝑝 · · · 0𝑝×𝑝

]
, (7.57)

7.2.3.2 Model Predictive Control

The ℓ-step predicted output of (7.53) for a sequence of ℓ future controls is given by

𝑌1|𝑘,𝑙 = Γ̂𝑘,ℓ𝑥1|𝑘 + 𝑇𝑘,ℓ𝑈1|𝑘,ℓ, (7.58)

where

𝑌1|𝑘,ℓ
△
=


𝑦1|𝑘
...

𝑦ℓ |𝑘

 ∈ R
ℓ𝑝, 𝑈1|𝑘,ℓ

△
=


𝑢1|𝑘
...

𝑢ℓ |𝑘

 ∈ R
ℓ𝑚, (7.59)

and Γ̂𝑘,ℓ ∈ Rℓ𝑝×𝑛̂𝑝 and 𝑇𝑘,ℓ ∈ Rℓ𝑝×ℓ𝑚 are

Γ̂𝑘,ℓ
△
=


𝐶̂

𝐶̂ 𝐴̂𝑘
...

𝐶̂ 𝐴̂ℓ−1
𝑘


, 𝑇𝑘,ℓ

△
=



0𝑝×𝑚 · · · · · · · · · 0𝑝×𝑚
𝐻̂𝑘,1 0𝑝×𝑚 · · · · · · 0𝑝×𝑚
𝐻̂𝑘,2 𝐻̂𝑘,1

. . . · · · 0𝑝×𝑚
...

...
. . .

. . .
...

𝐻̂𝑘,ℓ−1 𝐻̂𝑘,ℓ−2 · · · 𝐻̂𝑘,1 0𝑝×𝑚


,

where 𝐻̂𝑘,𝑖 ∈ R𝑝×𝑚 is defined by 𝐻̂𝑘,𝑖
△
= 𝐶̂ 𝐴̂𝑖−1

𝑘
𝐵̂𝑘 .
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Let R𝑘,ℓ
△
=

[
𝑟T
𝑘+1 · · · 𝑟

T
𝑘+ℓ

]T
∈ Rℓ𝑝t be the vector of ℓ future commands, 𝐶t,ℓ

△
= 𝐼ℓ ⊗ 𝐶t ∈ Rℓ𝑝t×ℓ𝑝,

where 𝐶t𝑦𝑖 |𝑘 creates the tracking outputs from 𝑦𝑖 |𝑘 , let 𝑌t,1|𝑘,ℓ
△
= 𝐶t,ℓ𝑌1|𝑘,ℓ be the ℓ-step predicted

tracking output, and define Δ𝑈1|𝑘,ℓ ∈ Rℓ𝑚×1 as

Δ𝑈1|𝑘,ℓ
△
=

[
(𝑢1|𝑘 − 𝑢𝑘 )T · · · (𝑢ℓ |𝑘 − 𝑢ℓ−1|𝑘 )T

]T
. (7.60)

The receding horizon optimization problem is then given by

min
𝑈1 |𝑘,ℓ

(
𝑌t,1|𝑘,ℓ − R𝑘,ℓ

)T
𝑄

(
𝑌t,1|𝑘,ℓ − R𝑘,ℓ

)
+ Δ𝑈T

1|𝑘,ℓ𝑅Δ𝑈1|𝑘,ℓ

s.t. 𝑈min ≤ 𝑈1|𝑘,ℓ ≤ 𝑈max

Δ𝑈min ≤ Δ𝑈1|𝑘,ℓ ≤ Δ𝑈max,

(7.61)

where 𝑄 ∈ Rℓ𝑝t×ℓ𝑝t is the positive-definite tracking weight, 𝑅 ∈ Rℓ𝑚×ℓ𝑚 is the positive-definite
control move-size weight, 𝑈min

△
= 1ℓ×1 ⊗ 𝑢min ∈ Rℓ𝑚, 𝑈max

△
= 1ℓ×1 ⊗ 𝑢max ∈ Rℓ𝑚, Δ𝑈min

△
=

1ℓ×1 ⊗ Δ𝑢min ∈ Rℓ𝑚, and Δ𝑈max
△
= 1ℓ×1 ⊗ Δ𝑢max ∈ Rℓ𝑚. The first entry of𝑈1|𝑘,ℓ is then used as the

control augmentation 𝑢aug,𝑘 .

Algorithm 2 PCAC Identification For Adaptive Force Control

Initialize: 𝑤̂0 ∈ R[𝑛̂𝑝(𝑚+𝑝)]×1, 𝑃0 ∈ R[𝑛̂𝑝(𝑚+𝑝)]×[𝑛̂𝑝(𝑚+𝑝)] positive-definite, 𝜏d > 𝜏n ≥ 𝑝, 𝜂 > 0,
𝛼 > 0, 𝑘 = 0, and a buffer of 𝜏d + 1 previous performance variables initialized as 0
function PCAC ID(𝑦𝑘 , 𝜏 𝑓 ,𝑘 )

𝑧𝑘 ← 𝑦𝑘 − 𝜙𝑘 𝑤̂𝑘
Add 𝑧𝑘 to performance variable buffer and remove oldest entry
Compute sample covariance matrices Σ𝜏n ∈ R𝑝×𝑝, Σ𝜏d ∈ R𝑝×𝑝 from previous 𝜏n+1 and 𝜏d+1

errors from buffer
if 𝑘 ≥ 𝜏d + 1 then

Compute 𝑎, 𝑏, and 𝑐 using (5.6)
𝑔 ← (5.7)

else
𝑔 ← 0

end if
𝛽𝑘 ← 1 + 𝜂𝑔1[𝑔]
𝐿𝑘 ← 𝛽𝑘𝑃𝑘
𝑤𝑘+1 ← 𝑤𝑘 + 𝑃𝑘+1𝜙T

𝑘
(𝑦𝑘 − 𝜙𝑘𝑤𝑘 )

𝑃𝑘+1 ← 𝐿𝑘 − 𝐿𝑘𝜙T
𝑘
(𝐼𝑝 + 𝜙𝑘𝐿𝑘𝜙T

𝑘
)−1𝜙𝑘𝐿𝑘

𝜙𝑘+1 ← Update regressor 𝜙𝑘 with current measurement and input
end function
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Algorithm 3 Adaptive Force Control Augmentation
Initialize: 𝑝 = 5, 𝑚 = 2, Sample rate 𝑇s, Solve (7.41) to get 𝐾 , 𝜏 𝑓 ,0 = 0𝑚×1, 𝑘 = 0

while In contact phase do
Measure 𝜃1, 𝜃2, 𝜁𝑘 =

[ ¤𝜃1 ¤𝜃2 ¤𝑥 ¤𝑦 𝑒
]T ∈ R𝑝×1, and 𝜒𝑘 =

[
¤𝑥 ¤𝑦 𝑒

]T ∈ R𝑝−2×1

Start Robust Controller
𝑢robust,𝑘 ← 𝐾𝜒𝑘

End Robust Controller
Start PCAC Identification

𝑦𝑘 ← 𝜁𝑘 State measurement
𝑤𝑘+1 ← PCAC ID(𝑦𝑘 , 𝜏 𝑓 ,𝑘 )

End PCAC Identification
𝑥𝑘 ← 𝑤𝑘+1, 𝑦𝑘 from (7.54)-(7.55)
𝐾 ←

[
02 𝐾

]
𝐴̂𝑘 , 𝐵̂𝑘 , 𝐶̂ ← 𝑤𝑘+1, 𝐾 from (7.56)-(7.57)
Start PCAC MPC

𝑈1|𝑘,ℓ ← Solve (7.61)
𝑢aug,𝑘 ←

[
𝐼𝑚 0𝑚×(ℓ−1)𝑚

]
𝑈1|𝑘,ℓ

End PCAC MPC
𝜏 𝑓 ,𝑘 ← 𝑢robust,𝑘 + 𝑢aug,𝑘
Start Feedback Linearization

𝜏 𝑓 ← 𝜏 𝑓 ,𝑘[
𝜏1 𝜏2

]T ← 𝜏 𝑓 from (7.31)
End Feedback Linearization
𝑘 ← 𝑘 + 1

end while
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7.3 Numerical Examples

To demonstrate the advantage of the adaptive augmentation method we compare the algorithm
to the nominal robust controller for a variety of surface properties including linear and nonlinear
contact models. We also demonstrate a double sampling maneuver where the sampler mass
increases by an unknown amount after obtaining a surface sample from the first maneuver before
descending onto the surface again to obtain additional material. In these examples, the spacecraft
in Figure 7.1 descends onto the surface at a speed of 0.1 m

s starting from a height of 0.2 m. There
are seven sensors measuring 𝜃1, 𝜃2, ¤𝜃1, ¤𝜃2, ¤𝑥, ¤𝑦, and 𝐹c. Once contact is made, the controller
attempts to regulate the sampler’s contact force to 𝐹d = 25 N and its 𝑥 and 𝑦 velocity to 0 before
departing the surface after 2 s.

The spacecraft parameters are 𝑚sc = 420 kg, 𝑚1 = 𝑚2 = 𝑚s = 1 kg, 𝐿1 = 𝐿2 = 2 m, 𝑅1 = 𝑅2 =

1 m, 𝐼1 = 𝐼2 = 1
3

kg
m2 , 𝜃1,0 = 𝜋

4 , and 𝜃2,0 = 𝜋
2 . The surface coefficient of friction is taken to be 𝜇 = 0.5.

The robust controller parameters were taken to be 𝜆 = 0.05, 𝑘1 = 300 N
m , 𝑘2 = 2.7 × 105 N

m , 𝑐1 =

0.35 N s
m , and 𝑐2 = 103 N s

m . PCAC is initialized with 𝑝 = 5, 𝑚 = 2, 𝑛̂ = 1, 𝑃0 = 10𝐼35, 𝜂 = 0.1,
𝜏n = 40, 𝜏d = 200, 𝛼 = 0.001, ℓ = 50, 𝑄 = 𝐼ℓ ⊗ diag(1000, 100, 1), 𝑅 = 1𝐼ℓ𝑚, 𝐶t =

[
03×2 𝐼3

]
,

𝑢max = −𝑢min = 100, and R𝑘,ℓ = 13×ℓ ⊗
[
0 0 0

]T
. The initial PCAC model coefficients 𝑤0 are

initialized to match the zero-order-hold discretized model of (7.35)-(7.36), with the linear surface
contact model 𝑘s = 100 N

m and 𝑐s = 103 N s
m , and 𝜃, ¤𝑞 being set to their respective values at contact.

This makes 𝑤0 a 35 parameter vector. The controller runs in a sample-data feedback loop at 2 kHz.

7.3.1 Linear Contact Model

Assuming the surface has the linear Kelvin-Voigt contact model (7.27) we compare the perfor-
mance of the robust controller and augmented robust controller with PCAC for stiffness coefficients
between 300 N

m and 2.7× 105 N
m , and damping coefficients 0.35 N s

m and 103 N s
m . Figure 7.3 shows the

median contact force over the 2 second contact period over the range of surface properties. Notice
that the nominal robust controller has difficulty reaching the desired contact force for low surface
stiffness coefficients while the augmented controller consistently reaches the desired contact force
for all tested surface properties. Figure 7.4 shows the contact force, sampler velocity, actuator
torques, and PCAC model coefficients for the surface properties 𝑘s = 2 × 105 N

m and 𝑐s = 5 N s
m .

Notice that the PCAC augmented controller quickly reaches the desired contact force while the
nominal robust controller on its own takes most of the 2 second contact period to reach the desired
contact force of 25 N.
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(b) PCAC augmented controller

Figure 7.3: Median contact force for various surface stiffness 𝑘s and damping 𝑐s values using the
linear Kelvin-Voigt contact model (7.27).
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(b) PCAC augmented controller

Figure 7.4: Contact force, sampler velocity, actuator torques, and PCAC model coefficients for the
linear contact model (7.27) with 𝑘s = 2 × 105 N

m and 𝑐s = 5 N s
m .

7.3.2 Nonlinear Contact Model

Assuming the surface has the nonlinear Hunt-Crossley contact model (7.28) we compare the
performance of the robust controller and augmented robust controller with PCAC for stiffness
coefficients between 300 N

m and 2.7 × 105 N
m , and coefficient of restitution between 0.1 and 1.

Figure 7.5 shows the median contact force over the 2 second contact period over the range of surface
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properties. Notice that the nominal robust controller’s median contact force has difficulty reaching
even half of the desired 25 N while the augmented controller consistently reaches the desired contact
force for all tested surface properties except for situations where there is low stiffness combined
with a high coefficient of restitution. Figure 7.6 shows the contact force, sampler velocity, actuator
torques, and PCAC model coefficients for the surface properties 𝑘s = 2×105 N

m and 𝑐r = 0.9. Notice
that the PCAC augmented controller quickly reaches the desired contact force while the nominal
robust controller never does.
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Figure 7.5: Median contact force for various surface stiffness 𝑘s and damping 𝑐s values using the
nonlinear Hunt-Crossley contact model (7.28).
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(b) PCAC augmented controller

Figure 7.6: Contact force, sampler velocity, actuator torques, and PCAC model coefficients for the
nonlinear contact model (7.28) with 𝑘s = 2 × 105 N

m and 𝑐r = 0.9.

7.3.3 Double Sampling Maneuver with Linear Contact Model

We now consider a double sampling maneuver where after descending onto the surface and
collecting a sample, the spacecraft then descends again onto a different region of the celestial body
to collect additional material. The amount of material collected on the first maneuver is chosen
to be 0.5 kg and is unknown to the spacecraft. Assuming the surface has the linear Kelvin-Voigt
contact model (7.27), the surface on the first maneuver has properties 𝑘s = 2× 105 N

m and 𝑐s = 5 N s
m ,

and the surface on the second maneuver has 𝑘s = 200 N
m and 𝑐s = 500 N s

m . Figure 7.7 shows that the
desired contact force is reached for both maneuvers. Notice that on contact with the new surface at
8 s the RLS VRF factor 𝜆𝑘 automatically decreases, enabling forgetting of the old surface properties
and causing an increase in the trace of the RLS covariance tr(𝑃𝑘 ) to allow for fast identification of
a new surface contact model.
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Figure 7.7: Contact force, sampler velocity, actuator torques, and PCAC model coefficients for a
double sampling maneuver with the linear contact model (7.27) with 𝑘s = 2 × 105 N

m and 𝑐s = 5 N s
m

for the first maneuver and 𝑘s = 200 N
m and 𝑐s = 500 N s

m for the second maneuver. Note that the
forgetting factor drops immediately when the sampler contacts a different surface.

7.3.4 Double Sampling Maneuver with Nonlinear Contact Model

For the double sampling maneuver, assuming the surface has the nonlinear Hunt-Crossley
contact model (7.28), the surface on the first maneuver has properties 𝑘s = 2 × 105 N

m and 𝑐r = 0.9,
and the surface on the second maneuver has 𝑘s = 300 N

m and 𝑐r = 0.2. Figure 7.8 shows that the
desired contact force is reached for both maneuvers. Notice that on contact with the new surface at
8 s the RLS VRF factor 𝜆𝑘 automatically decreases, enabling forgetting of the old surface properties
and causing an increase in the trace of the RLS covariance tr(𝑃𝑘 ) to allow for fast identification of
a new surface contact model.
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Figure 7.8: Contact force, sampler velocity, actuator torques, and PCAC model coefficients for
a double sampling maneuver with the nonlinear contact model (7.28) with 𝑘s = 2 × 105 N

m and
𝑐r = 0.9 for the first maneuver, and 𝑘s = 300 N

m and 𝑐r = 0.2 for the second maneuver.

7.4 Conclusions

This chapter developed and investigated the performance of an adaptive force control aug-
mentation algorithm for spacecraft sampling maneuvers on small celestial bodies. The algorithm
consisted of a nominal robust controller with an adaptive augmentation using PCAC combined with
feedback linearization to maintain a desired contact force during the sampling maneuver. PCAC
uses output-feedback model predictive control without an estimator and with concurrent online
identification. Both linear and nonlinear contact models were used to investigate the controller’s
performance under various surface properties. Additionally, a double sampling maneuver was in-
vestigated where the spacecraft collected an unknown amount of material from an initial maneuver
before ascending and descending and then sampling from a different region of the celestial body
with different surface properties. The controller was shown to reach the desired contact force over
a wide range of surface properties and outperformed the nominal robust controller in all cases.
For the double sampling maneuver, PCAC was able to identify a new model of the surface and
successfully adjust the control input to reach the desired contact force on the second surface.
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CHAPTER 8

Conclusions and Future Work

8.1 Conclusions

This dissertation presented and applied retrospective cost adaptive control (RCAC) and predictive
cost adaptive control (PCAC) to problems representative of spacecraft disturbance rejection and
asteroid sample gathering scenarios. It was demonstrated that a dereverberated transfer function
(DTF) can be used as the modeling information for RCAC for disturbance rejection of lightly
damped structures and two methods for constructing a dereverberated transfer function (DTF)
were presented. Additionally, a new adaptive control method, retrospective cost model reference
adaptive control (RC-MRAC), and a new variable-rate forgetting (VRF) factor for recursive least
squares (RLS) using the F-test were developed.

First, two methods for identifying DTFs were formulated. A DTF that captures the phase and
magnitude trend but not the detailed peaks and notches of the system was used as the target model
for RCAC. It was shown numerically and in a lab experiment that RCAC with a DTF target model
could be used for harmonic disturbance rejection of lightly damped systems where the frequency,
amplitude, and phase of the harmonic disturbances are unknown. In addition, it was demonstrated
that RCAC with a DTF target model was robust to errors in the damping ratio of the model used to
construct the DTF. For the lab experiment, a gradient-based version of RCAC was developed and
implemented at 8-kHz for a noise rejection problem. This variant of RCAC could be implemented
for real-time control of large space structures such as telescopes.

Next, RC-MRAC was developed and compared to Elliot’s adaptive pole placement control
(APPC). If the leading numerator coefficient, relative degree, system order, and nonminimum-
phase (NMP) zeros are known then RC-MRAC is able to place the closed-poles of the system
such that they match the closed-loop poles of a desired reference model. RC-MRAC was then
demonstrated to require little persistency in the reference command for accurate model following.
With a slight modification, RC-MRAC was shown to be able to reject harmonic disturbances which
is a vital aspect for the control of systems such as robotic arms. For minimum-phase systems,
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RC-MRAC outperforms APPC without the need for persistency, and NMP systems, RC-MRAC
performs better than APPC at lower persistency levels at the price of knowledge of the NMP zeros
and slower convergence times.

Next, to improve the performance of RLS for tracking time-varying parameters, a new VRF
factor for RLS which uses the F-test was developed and investigated. The new method uses a
ratio of covariances of a short and long horizon of one-step prediction errors combined with the
F-test to determine whether the underlying system parameters have changed. To deal with MIMO
systems, a multivariate approximation of the F-test was used. Compared to the standard constant-
rate forgetting and the original VRF factor used in PCAC, the new F-test method outperformed
the former methods in system identification scenarios with noiseless and noisy measurements,
and nonpersistently exciting inputs. For noisy measurements, the F-test prevented forgetting from
occurring due to noise, and for nonpersistently exciting inputs, the method kept RLS from forgetting
when it was not needed, which kept the eigenvalues of the RLS covariance matrix bounded and
stable.

Next, the performance of PCAC was investigated for disturbance rejection of large flexible
structures. Large structures such as those present in space telescopes are subject to unknown
disturbances which excite the lightly damped modes in the structure. These excitations degrade
the line-of-sight performance of the space telescope and would need to be suppressed to maximize
imaging performance. To demonstrate the performance of PCAC for a line-of-sight disturbance
rejection scenario, a model of a large truss structure was developed and was subject to unknown
harmonic and broadband disturbances. Additionally, the effects of aliasing and modal folding were
considered. PCAC was demonstrated to suppress the disturbances in all cases without a priori
knowledge of the dynamics or disturbance spectra.

Finally, PCAC was used in a spacecraft surface sampling scenario of a small celestial body.
PCAC augmented a nominal controller which consisted of a feedback linearization controller
combined with a robust controller developed through a set of linear matrix inequalities (LMIs). To
model the surface of the celestial body, both linear and nonlinear spring-damping contact models
were investigated. The augmented controller reached the desired surface contact force over a wide
range of tested surface properties and outperformed the nominal controller in all cases. In order to
demonstrate the F-test forgetting method, a double sampling maneuver was investigated where the
spacecraft collected an unknown amount of material from an initial maneuver before ascending,
descending, then sampling from a different region of the celestial body with different surface
properties. PCAC with F-test forgetting enabled forgetting on contact with the new surface and
quickly identified a new model and adjusted the contact force to successfully grab a new sample.
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8.2 Future Work

Future work will extend RC-MRAC to the MIMO case following a similar development for
RCAC given in [23]. Additionally, a key challenge is the development of stability results for
RC-MRAC. Given the development of stability results for similar algorithms [19, 66], a stability
result for RC-MRAC will closely follow established arguments.

For the VRF factor using the F-test, the F-test is known to be sensitive to non-normality of
the data used to compute the sample variances. Situations such as nonwhite and heavy-tailed
noise sources will need to be investigated in order to determine the extent of this sensitivity for
variable-rate forgetting. Additionally, it is preferred to use a method of computing sample variances
such that no buffer of past errors is needed for memory and computational performance reasons.
Incorporating a weighted moving average of errors with a weighted sum of squares of errors as in
[92] with a modified version of the F-test would allow faster computation of the forgetting factor.

The controller provided by MPC and PCAC is the result of a receding-horizon optimization and
is not necessarily a linear time-invariant control law. For structural control problems, the Bode
sensitivity integral constraints are an important factor in achieving the best disturbance rejection
performance. The relevance of these constraints to vibration suppression is considered in [10] for
SISO systems for the case of linear time-invariant controllers. It is interesting to determine the
extent to which the Bode sensitivity integral constraints [93] apply to the “loop transfer function.”
for time-variant control law. Additionally, analysis of PCAC via Bode integrals in the MIMO case
could be used to guide sensor/actuator placement.

During the first few steps of PCAC, the controller tends to bang on control constraints, and
exceed desired measurement constraints while attempting to identify a sufficient model. To prevent
this from occurring, the RLS covariance matrix 𝑃𝑘 could be used in the MPC portion of RCAC
to incorporate more “cautious” control action when model uncertainty is high. Additionally, an
approximation of the RLS covariance matrix update can be included as a constraint in the MPC
portion to help guide control inputs to those that would provide greater excitation. This would
allow PCAC to incorporate “dual” control action which could improve model identification speed
during the initial steps and after system changes.

For the celestial body surface sampling problem, when contact is first made with the surface,
there is an initially large transient force exerted on the sampler. This can be mitigated using a
combination of the proposed control algorithm and passive damping of the sampling arm. The
inclusion of passive damping lessens the total required control input. Additionally, investigation
of more accurate surface contact models is of interest. Complementarity contact models and
high-fidelity, particle-based soil-contact models are possible avenues for improving the simulation
accuracy of the sampling maneuver.
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