Passive Audio Amplification for Wildlife Recording System

Peter Wacnik

Project Background

Problem Description

- More than half of U.S. bird species are threatened by climate change
- To track migrations and population numbers, need large scale data collection on songbirds in U.S. and remote regions of the world
- Documenting the activity of songbirds is a challenge with high costs for data collection and storage
- Backyard Brains, in conjunction with MDP, developed a device to collect and store audio data to identify bird songs, insects, and rainfall

[1

www.galapagosunbound.com/birds-ecuador

[1] Image by Benjamint444 - Own work, GFDL 1.2 theamazonrainforestanimals.blogspot.com/2018/04/amazon-rainforest-animals-scarlet-macaw.html [2] Image, Andean Cock-of-the-Rock

MDP Project: Sponsor and Goals

Backyard Brains

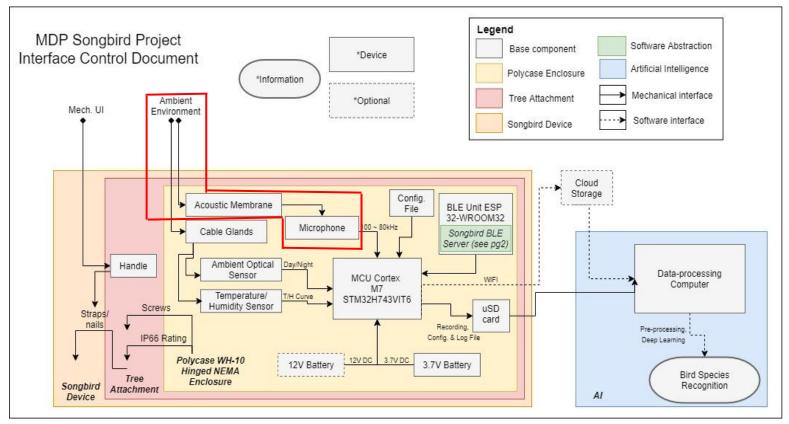
- Based in Ann Arbor
- Citizen science company

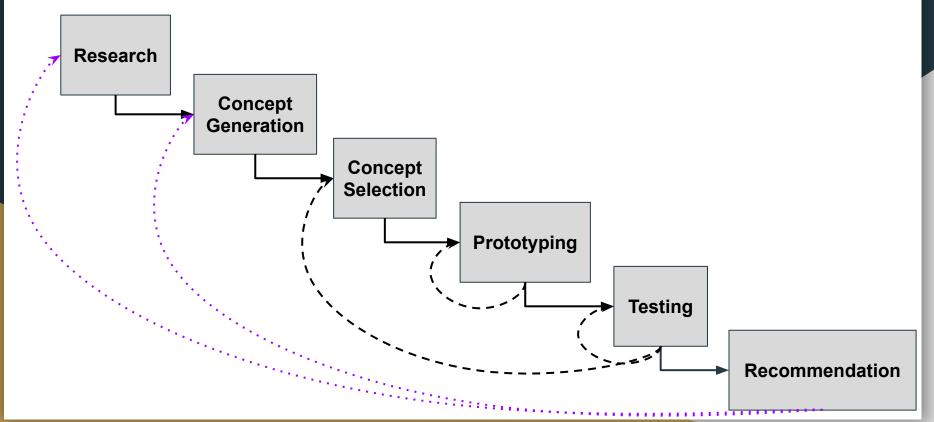
Project Goals

- Study bird species affected by climate change
- Develop device to record data about bird songs
- Inexpensive product for consumers with device performance for researchers

RISE Project Origin

Audio Recording Issues


- During device development of WN21 team found:
 - Enclosure significantly damped recordings
 - Benefits of the enclosure outweighed this issue
- Generated need for inexpensive audio amplification
 - New microphone too expensive
 - Agreed upon that passive audio amplification plausible alternative


RISE Project Goals

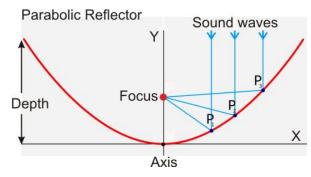
- 1. Passive audio amplification research
- 2. Concept generation of numerous potential solutions
- 3. Rapid prototyping of multiple concepts for evaluation and data collection
- 4. Develop a testing plan for the passive sound amplifier prototypes
- 5. Concept evaluation using collected testing results
- 6. Finalize amplifier design and recommendation

Device Schematic and RISE Scope

Project Design Process

Stage 1: Research

Passive Amplification Research

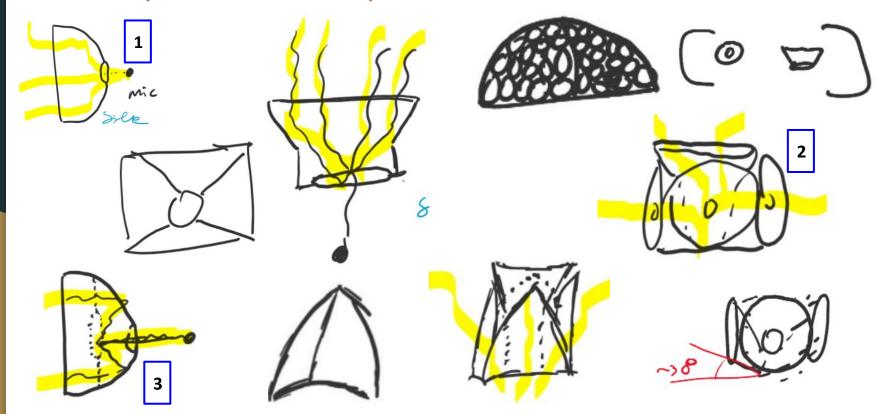

Parabolic mic \rightarrow sounds are too weak for normal microphones, highly directional microphone is needed, boosting sounds for human ear [1]

Benefits:

Bird w 2kHz call will appear 20x closer and bird with
 5kHz voice will appear 40x closer [2]

Drawbacks:

- Parabolic mics sensitive to sounds in one direction [2]
- Not capable of full fidelity recordings → at 20Hz
 parabolic mic needs to be 17m across [2]


^[1] Wildtronics, LLC, "Parabolic Microphone: Theory, Use, Performance," 2021 www.wildtronics.com/parabolicarticle.html

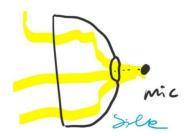
www.umesc.usgs.gov/images/photos/scientists/parabolic microphone Im04.jpg

^[2] Creative Field Recording, "Review: Wildtronics Parabolic Microphone Dish", July 2019 www.creativefieldrecording.com/2019/07/24/review-wildtronics-parabolic-microphone-dish/ [3] Photo by Leah Monson, USGS, UMESC, 2004 Accessible:

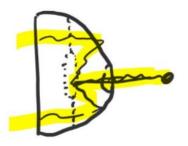
Stage 2: Concept Generation

Amplifier Concept Generation

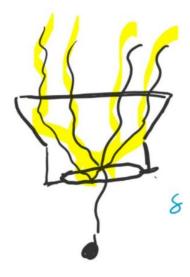
Stage 3: Concept Selection I


Concept Selection Criteria

Criteria:


- Researched Functionality (3)
- Complexity (2)
- Creativity (1)
- Design Preferences (1)

Weight	3 - Critical for success		
	2 - Contributor to success		
	1 - Not likely important to		
	success		
Score	3 - Large potential		
	2 - Mid-potential		
	1 - Low potential		
	0 - No potential		


Selected Amplifier Concepts

Parabolic Mic

Parabolic Mic w Reflector

Round Funnel

Dog's ears

Stage 4: Prototyping

Amplifier Prototype CAD

Notes:

- Parabolic Audio Moth (AM) design was added since selection from competitor's device (seen at right)
- Each CAD model is ~20mm in height

Amplifier Prototype Manufacturing

Preliminary prototypes printed with PLA (shown at right)

Worked with Kaylla Cantilina at C-SED to determine improved prototyping materials:

- Harder materials better
- SLA (Resin) printing
 - No printing layers
 - Cost-effective
 - Ease of manufacturing

Stage 5: Testing

Amplifier Performance Testing

Testing Scenarios:

- 1. No Case
- 2. Case (No Amp)
- 3. Parabolic Amp
- 4. Parabolic Audio Moth Amp
- 5. Parabolic Reflector Amp
- 6. Funnel Amp
- 7. Dog Ear Amp (Vertical Orientation)
- 8. Dog Ear Amp (Horizontal Orientation)

Testing 1 - Bird Call Testing

- Played four (4) different bird call audio files
- Measured peak amplitude (dB) of each testing scenario

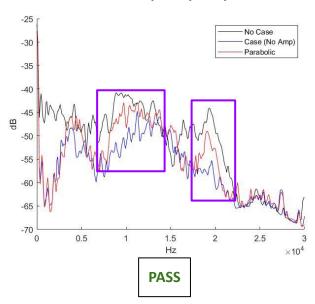
Testing 2 - Speaker Sweep Testing

- Played 20Hz 20kHz audio sweep from computer
- Plotted frequency response of each testing scenario

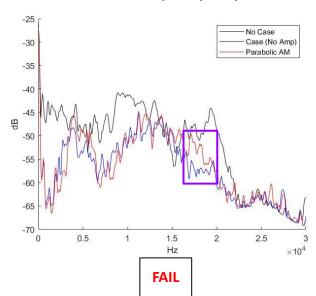
Amplifier Performance Testing Setup

Bird Call Testing

	No Case	Case (No Amp)
Bird Call	Peak Amplitude (dB)	Peak Amplitude (dB)
Olive Warbler	-17.32	-27.01
Robin	-11.73	-22.68
Blue Jay	-20.95	-25.69
Parrot	-15.27	-24.21

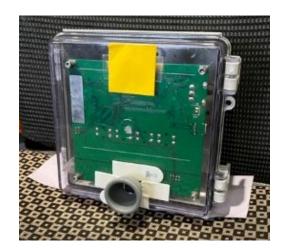

Bird Call	Max Positive %Change	Amplifier Used for Max
Olive Warbler	31.14%	Funnel
Robin	42.77%	Dog Ear (Vert)
Blue Jay	14.25%	Parabolic
Parrot	17.72%	Parabolic Reflector

Findings:


- Significant damping effect of the enclosure with bird calls
- Amplifiers are performing as intended
- 3. Bird call testing inconclusive for amplifier selection

Computer Speaker Frequency Sweep Testing

Parabolic Amp Freq. Response


Parabolic AM Amp Freq. Response

Findings:

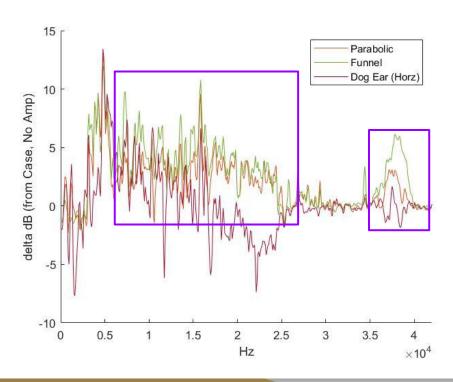
- Most amplifiers performing as intended
- Results can be used for concept filtering
- Further ultrasonic (>20kHz) testing required with different method

Amplifier Filtering Results

Parabolic Amp

Funnel Amp

Dog Ear (Horizontal)


Function Generator Frequency Sweep Testing

Testing 3 - Function Generator Testing

- Played 10Hz 40kHz audio sweep from function generator
- Plotted ΔdB vs. frequency for each amplifier compared to case with no amplifier

∆dB (from no amplifier) vs. Frequency

Stage 6: Recommendation

Recommendations and Final Device Prototype

Final Recommendation

 Use of Funnel Amplifier in the field for passive audio amplification

Recommended Next Steps

- Iteration of concept generation phase (additional parabolic shapes)
- Controlled testing iteration with new concepts
- Field testing with different amplifiers

Acknowledgments

RISE:

- Professor Shanna Daly and Robert Loweth

MDP:

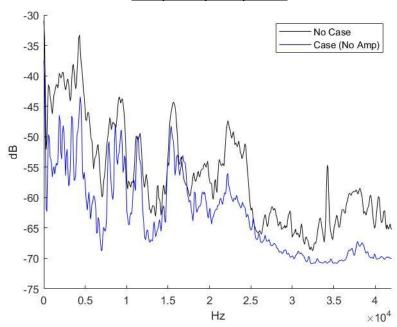
- Lin Van Nieuwstadt
- Andrew Cao, Noah Lichtenberg, Kane Sweet, Igor Veklenko, Kefan Zhou

Backyard Brains:

- Greg Gage, Wenbo Gong, and Miroslav Nestorovic

Contact Information

Peter Wacnik


pjwacnik@umich.edu

Recording Damping Quantified

Utilized a function generator to produce a 10Hz - 40kHz audio sweep

Plotted frequency response data to visualize and quantify the effect of the enclosure on recording amplitude

No Case & Case (No Amp) Frequency Response

Amplifier Concept Selection

Name		Researched Functionality	Complexity	Creativity	Design Preference
	Weight →	3	2	1	1
Parabolic Mic		3	3	1	1
Parabolic Mic w Reflector		2	2	3	1
Funnel		2	3	1	0
Square Funnel		1	3	2	0
Dog's Ears		2	2	3	1
Quad Funnels		1	1	2	0
Cube Funnel		2	1	2	1
Funnel + Dog's Ears		1	0	2	0
Pockmarked Mini-Funnel		0	0	3	0
		High score = high functionality potential	Low complexity = high potential = high score	Highly creative = High Score	

Bird Call Testing

	No Case	Case (No Amp)
Bird Call	Peak Amplitude (dB)	Peak Amplitude (dB)
Olive Warbler	-17.32	-27.01
Robin	-11.73	-22.68
Blue Jay	-20.95	-25.69
Parrot	-15.27	-24.21

Parabolic	Parabolic AM	Parabolic Reflector	Funnel	Dog Ear (Vert)	Dog Ear (Horz)
Peak Amplitude (dB)					
-19.56	, ,	,			, ,
-15.54	-18.03	-18.14	-16.2	-12.98	-15.83
-22.03	-23.78	-23.57	-23.39	-23.81	-25.3
-21.73	-24.45	-19.92	-21.96	-23.03	-21.4

Appendix Documents

Bird Call Testing Plan:

https://docs.google.com/document/d/1M9KLAnDRkhVpH hONTqH3vPULE-y-npLp9ZaE4V4eg8/edit?usp=sharing

Bird Call + Computer Speaker Sweep Setup:

https://docs.google.com/spreadsheets/d/1XfepHQq48t7t2OAuNSgvy4H7ibN1lH8ilNUKYRUoqQ4/edit?usp=sharing

Computer Speaker Sweep Results:

https://docs.google.com/document/d/1aeWaNYwXhXFakbMT9x5uBl2cSSWcEM3wxKdn03z6u7A/edit?usp=sharing

Function Generator Sweep Setup:

https://docs.google.com/document/d/1jQiRbVijyyDziMfjhSZFGlGVR9LpIXE9fOGUOEGOGO0/edit?usp=sharing

Function Generator Sweep Results:

https://docs.google.com/document/d/1cqp6A32-jsnfpslTOliAwxYJPVq-f0tLTCVgWlDK-Ms/edit?usp=sharing