
UpGrade Modules: Standalone Application for
Multi-Topic Learnersourced Open-Ended Questions

Brandon M. Garzez
Computer Science and Engineering

University of Michigan
Ann Arbor, MI, USA
bgarzez@umich.edu

Abstract—Open-ended assignments are popular throughout
schools and universities worldwide [1]. However, it is tedious for
instructors to grade open-ended assignments, and it is difficult
for students to repeatedly practice them [1]. UpGrade enables
automated and real-time feedback for open-ended assignments
by generating scalable learning opportunities based on previous
students’ solutions [1]. It is important that the student-facing side
of UpGrade is easy to navigate, intuitive to use, and useful for
feedback. To achieve all of these goals, UpGradeModules allows
students to choose between several modules, each with a list of
sections. These sections contain a handful of questions related to
an overarching topic, which enables repetition for the open-ended
assignments.

Index Terms—crowdsourcing; online education; deliberate
practice; open-ended assignment; multiple-choice question;
python; web design; databases; software engineering; computer
science; computer applications; web sites

I. INTRODUCTION

A. Research on Learning Outcomes

Open-ended questions and answers are a popular form
of assignments throughout schools and universities [1]. The
benefits of open-ended assignments include receiving feedback
from instructors which is helpful for preparing students for
future assignments, exams, and overall mastery of the subject
material [1]. Unfortunately, open-ended assignments are diffi-
cult and tedious for instructors to grade [1]. Often times, by the
time students have received their feedback for an open-ended
assignment, far too much time has passed for the feedback
to be useful for future assignments; rather, the material needs
to be partially or completely relearned before the feedback
can be used to improve learning outcomes, making repeated
practice with open-ended questions highly challenging [1].

1) Learnersourcing: UpGrade offers the ability for repeated
practice of automatically-generated interactive questions by
leveraging an area of research called learnersourcing, which is
a branch of crowdsourcing research [1]. Learnersourcing takes
advantage of the idea that students provide a large quantity of
open-ended content through their completion of open-ended
assignments [1]. Students’ responses can be automatically
logged and used to create scalable, repeatable, and easily
gradable questions which students can practice online. When
implemented correctly, learnersourcing enables students to
learn by answering questions, and their answers are used to
create new questions to help future students learn [1].

2) The Issue of Cognitive Load: While UpGrade’s learning
outcomes are compared to those of traditional open-ended
questions, UpGrade does not itself ask students to answer
open-ended questions. While open-ended questions offer many
benefits for learning outcomes, which I discuss above, they
also require a high cognitive output for students to complete
the assignment [1]. Because answering open-ended questions
requires such a high mental output, students often struggle
to learn from the feedback received from an open-ended
assignment since the student has already exhausted most of
their cognitive resources just to complete the assignment [1].
UpGrade avoids the ”overloaded cognitive resources” pitfall
by providing students with worked examples which are auto-
matically created using older student responses as inspiration
for new open-ended question/answer combinations [1].

3) The Issue of Expert Blind-Spots: In addition to avoiding
the issue of cognitive load, UpGrade also attempts to mitigate
the issue of expert blind-spots which can plague open-ended
assignments [1]. Since the instructors who create and grade
open-ended assignments are experts in the relevant fields,
they often fail to anticipate some of the amateur mistakes
which students will make and thus may not give adequate
feedback in those areas [1]. Contrast this with learnersourced
solutions, which encapsulate a vast spectrum of answers and
capture a more complete picture of the students’ understanding
for a given topic [1]. UpGrade takes additional advantage of
learnersourcing solutions by breaking students’ solutions into
many parts and showing the strengths and weaknesses of each
part to further help future students learn from them.

4) Repeated and Deliberate Practice: UpGrade focuses
on enabling students to repeatedly and deliberately practice
individual skills in order to achieve mastery. The motivation
for deliberate practice is twofold. First, research shows that
deliberate practice increases learning outcomes and leads
to continued learning [1]. UpGrade facilitates repeated and
deliberate practice by presenting information and questions to
students in small bits and pieces; by presenting only small
chunks, UpGrade mitigates the risk of students being over-
whelmed by repeated questions of great length and complexity
[1].

5) Repeated Feedback: Not only does UpGrade create
the opportunity for repeated and deliberate practice, it also
provides students with repeated feedback to maximize learn-



ing. Unlike with traditional open-ended assignments, which
take a large amount of time and resources for instructors
to grade, UpGrade quickly and efficiently provides feedback
to students [1]. Because UpGrade provides instantaneous
feedback, students can immediately incorporate that feedback
into their learning. Furthermore, because UpGrade breaks the
learnersourced responses into small chunks before presenting
them to students in the form of questions, the feedback a
student receives is highly focused, further enabling repeated
and deliberate practice [1].

B. UpGrade Workflow

There are three main components to UpGrade’s workflow:
solution logging, solution segmentation, and question genera-
tion. See Fig. 1 for an overview of the UpGrade workflow. In
this subsection, I discuss each step of UpGrade’s workflow in
more detail.

1) Solution Logging: UpGrade utilizes learnersourcing to
generate questions and feedback automatically. In the first step
of learnersourcing, UpGrade collects the solutions provided
by prior students in PDF documents. These PDF documents
are structured with specific sections based on the assignment
rubric. For the purposes of this research lab, the student
solutions have already been graded, and instructors and peers
have already provided feedback based on the assignment rubric
[1].

2) Solution Segmentation: After student solutions have
been collected, UpGrade parses the PDF documents and
separates the solutions into sections based on the assignment
rubric. Images and figures are included with the text for a given
section. If the assignment is given to students via an online
form with individual fields for students to respond to each
section, this separation step is not necessary; however, for the
purposes of this research lab, the assignments and solutions
exist in the form of a PDF, and thus UpGrade carries out the
segmentation process [1]. Where applicable, UpGrade pairs
the students’ solutions with the feedback they received, and
each section’s solutions and feedback are saved in a file.

3) Question Generation: Once student solutions are col-
lected and separated into sections, UpGrade automatically
creates new questions based on instructor-defined schema.
Instructors can specify several schemas using four compo-
nents: Question, Answer, Explanation, and Feedback [1]. See
Fig. 2 for a visual demonstration of how these components

Fig. 1. UpGrade Workflow [1].

would appear in an UpGrade-generated question. Questions
are the open-ended prompts which students answer in their
assignments. Answers are the student responses to the given
Questions. If required by the instructor, students give an
Explanation to justify the rationale for their Answer. Finally,
if the assignment has been graded, the Feedback compo-
nent includes the instructor’s feedback to the students [1].
Some common examples of schemas made from the four
components include the Question-Answer schema (Fig. 3),
the Question-Answer-Explanation schema (Fig. 4), and the
Answer-Feedback schema (Fig. 5).

II. UPGRADE MODULES

In this section, I compare the current state of the UpGrade
application to the ideal state of the program. Then I evaluate
two options for converting the application to the ideal state,
and I make a decision on which strategy to use in developing
the UpGrade Modules application.

A. Modules

1) Ideal State: As part of the solution segmentation pro-
cess, an instructor creates various modules to align with the
rubric of an open-ended assignment. When students sign in to
the UpGrade web system, they must be able to navigate to any
module to which they have been assigned in order to answer
questions created by UpGrade pertaining to that module.
Within each module, different sections further break down the
learning into manageable and focused chunks. Each section
has a set of questions which are drawn from a large pool
of generated questions for that module and section. Students
have an unlimited number of attempts to achieve a satisfactory
score on a given section, so students can repeatedly practice
and work towards mastery of a subject.

2) Current State: In the current state of the UpGrade web
system, each module exists as an individual application which
is run on a server and accessed by students. See Fig. 6 for
a visualization of the current state of the UpGrade system.
Because the modules run independently, there is no way
for students to navigate between modules without having to
switch between applications. This is functionally the same
as switching websites, even though the content of each site
is directly related, and the user’s credentials and data are
shared between the sites. Put another way, this would be
like if Google Search, Google Images, Google Videos, and

Fig. 2. Simple mockup of the four components used in UpGrade question
schemata [1].



Fig. 3. Example of Question-Answer schema [1].

Fig. 4. Example of Question-Answer-Explanation schema [1].

Fig. 5. Example of Answer-Feedback schema [1].

Google Scholar were all independent websites as opposed
to one website. Seamless navigation is impossible under the
current state of the system, as switching modules requires a
transition of browser data, session information, and account
information every time a new module is requested.

In addition to the poor user experience of navigating be-
tween modules, having each module exist as an independent
website leaves the system vulnerable to security threats. If
a threat is discovered on one of the modules, all modules
are potentially at risk of the same threat, and thus they all
must be patched to mitigate the risk of a security breach.
However, since each module exists as its own web application,
a developer needs to patch each module independently, and a
mistake on just one module could potentially leak information
which could give a hacker the ability to access all modules
with a student or instructor’s credentials. Furthermore, as
previously mentioned, having each module run independently
requires session data to be transferred between websites when
the user switches modules. If just one of the modules has
a vulnerability in its cookie management, a potential hacker
could gain access to a student’s session data and use that to
access all of the modules while impersonating the student.
These security risks pose a substantial threat to the web system
and further emphasize the need for a single website to manage
all of the modules.

Finally, because each module runs as an individual appli-
cation, each module also has its own database to house all of
its questions, progress, accounts, and other data. Each of these
databases are completely independent, meaning that changes in
one database cannot be directly accessed by another module
without substantial changes to the web system. This poses
multiple blockers to a seamless user experience and security.
Regarding user experience, if a user updates any of their
account information, perhaps their password for example, their
changes are not reflected in the other modules. Thus, the user
would need to change their password for each module to which
they have been assigned.

The user experience segues perfectly into the security risks
of multiple databases. If a user’s passwords are leaked in a data
breach and the user, like many, uses the same leaked password
for multiple websites, including UpGrade, they would need to
change their password to protect their account. If the user

Fig. 6. Visualization of the current state of the UpGrade system.



forgets to change their password for just one of the modules,
it would leave a vulnerability that a hacker could exploit to
access their account.

Clearly, separate modules raise several issues pertaining to
the user experience and security of the web system. In the next
section, I discuss various ideas for consolidating the modules
to correct the aforementioned problems.

B. Consolidation Strategies

1) Parent and Child Programs: The simplest approach to
consolidating the modules is to create a parent program which
oversees the operation of the child module programs. The user
logs into the parent program, and upon navigation to a module,
the parent program redirects the user to the module’s respective
child program. The parent program manages all session and
account data, and the user can navigate to a new module by
first returning to the parent program and then redirecting to a
different module’s child program. See Fig. 7 for a visualization
of the Parent and Child strategy. The issues with this approach
include the tedious development work, lack of generality, and
security risks.

When developing under the Parent and Child paradigm,
any code modifications which are made to one module do
not affect the other modules. While this independence be-
tween modules enables more control over the functionality
of each module, it requires any desired universal changes to
be reimplemented for each module. In terms of efficiency,
reimplementing code for each module increases the likelihood
of mistakes and requires more hours of development work.

In addition to the tedious nature of implementing changes
to the module codebases, the Parent and Child strategy also
suffers from a lack of generalization. Because the module
code is not generalized at all, new modules cannot be easily
added to the web system. Since each module runs on its
own web application, any new modules require the creation
of a new application with its own database, and then that
application needs to be integrated into the parent program for
it to be accessible by the students. Not only is it impossible

Fig. 7. Visualization of the Parent and Child Programs strategy.

to efficiently add new modules, but non-generalized code also
introduces variation in the functionality of each module. Since
there is no template code upon which to run each module,
small differences in each module can add up to create a
disorganized and inconsistent user experience.

Finally, the Parent and Child strategy shares another vul-
nerability with the current state of the UpGrade system.
Because each module and its database are independent from
the rest of the modules and databases, a vulnerability in one
of the modules puts the entire system at risk. Likewise, if a
vulnerability is discovered, the fix needs to be implemented
for each module, which is inefficient and runs the risk of a
mistake being made within one of the modules, rendering the
security patch useless. Due to the issues with development,
generalization, and security, the Parent and Child Programs
strategy was not used for this project.

2) Single Templated Application: The more complicated
approach requires the UpGrade system be redesigned from
the ground up with generalization and templating in mind
for modules to run under one application. Under the Single
Templated Application strategy, there is one instance of the
program running to handle all modules, and there is one
database which houses the accounts, questions, feedback, and
all other requisite data for all of the modules. See Fig. 8. for
a visualization of the Single Templated Application strategy.
After consolidating all of the modules into one program, I can
use templated HTML to give each page an identical structure
while enabling dynamic web pages which change depending
on the user’s module, section, and question. The server keeps
track of the state of the system: which page the user is on,
which questions the user has answered, the user’s score for
a given section, and which modules the user has access to.
Based on those state parameters, a small set of functions can
be adapted to fit any number of modules, users, sections, and
questions.

Fig. 8. Visualization of the Single Templated Application strategy.



The database setup sees only one unit which contains all
of the pertinent data for all modules. When a user wishes to
navigate between modules, the server requests the information
about that module from the database to present the user
with the appropriate web page. Adding a new module to the
database only requires the module’s metadata to be inserted
into the database without requiring a complete restructuring
of the web system. Where before each website had its own
specialized code, under the Single Templated Application
strategy, the database holds all of the information about all
of the modules, and the server plugs a requested module’s
metadata into a templated function to return the proper page
which is populated with that module’s data.

The Single Templated Application strategy also enables
developers to make widespread changes to all modules by
implementing a change to the templated function only. Fur-
thermore, only the templated HTML file and its corresponding
CSS file need to be changed to redesign or restyle the layout
of the page. All changes to the templated functions and files
are immediately reflected across all modules and subsections
within those modules. Furthermore, any security patches only
need to be implemented once, and the entire system falls under
one security protocol, requiring all attacks on the site to go
through the same security measures, eliminating the chance
that one weak module puts the whole system at risk. Finally,
the singular application maintains all of the session data; no
longer do multiple websites need to keep track of a user’s
cookies or credentials.

The downsides to the Single Templated Application strategy
are twofold. First, the strategy requires that the entire UpGrade
program be redesigned with templated code replacing the
existing code which is designed to only execute one module.
While the generalized code is similar in many ways to the
existing code, I must undergo copious planning and testing to
ensure that all modules, even modules with different schema
(Question-Answer, Answer-Feedback, etc.), run together with-
out errors in the templated functions. The planning and test-
ing required to modularize the code properly is more time-
consuming and complicated than simply creating a parent
program to oversee the individual module applications.

The other downside to the Single Templated Application
strategy is that it is more difficult to implement different
functionality between the modules. While generalized code is
excellent at maintaining consistent behavior between modules,
which is critical for this project, it creates challenges for imple-
menting modules which have distinctly different behavior. In
order to accommodate such differences between the modules,
I must set up the templated functions and database schema in
a way that enables multiple functionalities. As an example,
some modules require that the multiple choice options are
sentences, and others require that the options are images. For
the application to handle both cases, the database must allow
a question to be stored with both a text answer and an image
answer, and the server function which handles displaying the
questions must account for questions which have text options,
image options, or potentially both.

Despite the aforementioned downsides, the Single
Templated Application strategy enables highly scalable,
consistently-behaving, and intuitive modularization for the
UpGrade system which allows students to easily navigate
between modules and strengthen their skills. For this reason,
despite the complexity, this project followed the Single
Templated Application strategy.

III. IMPLEMENTATION

In this section, I specify the implementation details for the
UpGrade Modules application. First, I describe the backend
server code, and I list each server function with a detailed
description of its effects. Then, I discuss the database schema,
and I list and describe each table in detail.

1) URL Handling: Each of the UpGrade module applica-
tions handle their own URLs separately; however each module
handles the URLs in the same way with subtle differences
to account for the number of sections in each module, the
name of the module, etc. UpGrade Modules handles the
URLs in a nearly identical way with one key difference.
The original applications encode the module directly into the
URL, e.g. ”.../modulename/section1”, and UpGrade Modules
encodes the URL as a query parameter which is passed
to the backend server with every new HTTP request, e.g.
”.../upgrade/section1?module=2”. With the former encoding,
each module requires its own set of URL paths, and the server
has to redirect each URL to the same templated function.
However, the latter encoding uses the same URL for all
modules and passes the module parameter as a GET argument
to the templated function to indicate the current module to the
server.

2) Templated Server Code: When a user makes a request to
the server, the URL handler redirects the request to one of the
server’s backend functions to process the request and return
a web page to display to the user. There are many backend
functions, and the URL handler picks one depending on the
structure of the request. However, the server functions do not
know in advance which user is requesting a page. For example,
if User A requests section number 1 for module ”Storyboard,”
and User B requests section number 3 for module ”Logdata,”
the server does not know in advance where the users are
coming from. The users include which module, section, and
question they are requesting in the HTTP request itself, and
the backend function receives this information in the form of
parameters. The backend functions then use the parameters
from the HTTP request to pull the correct data from the
database, build the response, and send the response back to the
user. See Fig. 9 for a simplified example of how this request-
response cycle would work. The server has seven function
types, and I describe each of them in more detail in the
following subsections.

Note: each of the following functions first ensure that the
user is logged in before performing the described task; if the
user is not logged in, each page directs the user to the login
page before continuing.



a) index and moduleselect: The index function simply
redirects to the moduleselect function. Perhaps the most
straightforward function of the application, the moduleselect
function returns the module selection form and then redirects
the user to the homepage for the module they selected.

b) home: The home function first checks that the user
has signed the consent form for the website, and if not, it
prompts the user to sign the consent form. If the user has
consented to use the site, the function displays the list of
sections encapsulated by the current module which the user
can navigate to, and it gives the user a brief overview of the
module. Both the list of sections and the module overview are
queried from the database.

c) section: The section functions give a brief overview of
the selected section and displays the user’s best score for that
section. To find the user’s score, the section function performs
a database query and uses the returned data to compute the
user’s best score for that section. The returned page also has
a button which takes the user to the questions for that section.

d) section questionpage: The section questionpage
function shows the question which the user is currently
answering, starting with the first question. The function
queries the current question number from the database along
with that question’s prompt, answer choices, correct solution,
and feedback. The returned page shows the user the question
prompt, the list of options for the user to select, and a submit
button. Upon pressing the submit button, the user’s selected
choice is sent to the server’s imagefeedback function, and the
button prompts the user to go to the next question.

e) imagefeedback: The imagefeedback function com-
pares the user’s answer to the correct solution, and it returns
feedback according to whether the user answered correctly or
incorrectly. The function also updates the user’s progress for
the current section and marks the question as completed so the
user cannot resubmit the question until they finish the section.

f) nextpage: The nextpage function is called whenever
the user presses the button from the section questionpage
function after submitting their answer. The function saves the
response from the previous question and then redirects the
user to the next question’s section questionpage function. If
the user has answered all of the questions, the function instead
redirects the user back to the current section function.

g) signform: The signform function is invoked whenever
the user submits the consent form referenced in the home
function description. The function save’s the user’s response in
the database and then redirects the user to the home function
of the current module.

3) Templated HTML Files: An HTML file contains the
contents of a web page. When a user navigates to any website,
their browser builds the page they see from the data encoded
in the HTML file. Web frameworks such as Django enable
developers to create templated HTML files which are popu-
lated with dynamic information depending on the state of the
server and the user’s request. As an example, a website asks
for the user’s name, and when the user submits their name, the
website responds with the message, ”Hello Name!” Using a

Fig. 9. Diagram of HTTP request-response cycle between a browser, web
server, and database.

template makes it possible for the server to fill the user’s name
into the web page by passing the user’s name to the template as
a parameter. UpGrade Modules takes advantage of templated
HTML files to show the user dynamic web pages based on the
user’s current module, section, and question. The server has
four templated HTML file types, which I describe in detail in
the following subsections.

a) base and nobase: The base and nobase HTML files
are used by nearly every web page in the UpGrade Modules
system. Both files contain the navigation bar which is present
on nearly every page. The base file additionally contains the
list of sections for a given module, and it is only used for web
pages where a module has been selected by the user.

b) welcome: The welcome HTML file describes what the
user sees when they select a module, but before they select a
section from within the module. The file contains the name and
description of the module as well as an overview of the user’s
progress through each of the module’s sections. The file builds
on the base HTML file, so it also includes the navigation bar
and the list of sections for that module.

c) section: The section HTML file describes the web
page which the user sees after selecting a section from the
current module, but before starting the questions for that
section. The file contains a description of the section, and it
also tells the user the number of questions within the section
and their best score. The file builds on the base HTML file,
so it also includes the navigation bar and the list of sections
for the current module.

d) questionpage: The questionpage HTML file creates
the question form which the user submits to the website. It
contains the question prompt, any relevant images for the
question, and the answer choices for the question. Addition-
ally, the file contains a button which the user can press to
submit their selected answer and to then move to the next
question. Upon submitting an answer, the server will populate
the HTML file with relevant feedback depending on whether
the user answered correctly or incorrectly.



A. Database Schema

As previously stated, the original UpGrade modular ap-
plications each have their own databases. These databases
contain the questions, solutions, feedback, registered users,
and all of the other data about the module it is paired
with. UpGrade Modules consolidates these databases into one
universal database containing all of the data for all of the
modules. The database schema consists of many tables, each of
which contains information about some part of the application.
The Django framework creates several tables automatically,
and the UpGrade Modules application constructs the rest of
the tables. There are six tables which are built by UpGrade
Modules, and each will be described in detail in the following
subsections.

a) Participant: The Participant table holds all of the data
about the students who access the UpGrade Modules site. Each
participant has an indicator for whether they have signed the
consent form as well as whether or not they gave permission
to share their results.

b) Module: The Module table holds all of the modules
which have been consolidated into the UpGrade Modules ap-
plication. Each module in the table has a unique identification
number and a name.

c) Section: The Section table holds all of the sections
which are parts of various modules throughout the applica-
tion. Each section is directly affiliated with a module, and
each section has a unique identification number, a name, a
description, and a total number of questions.

d) Progress: The Progress table tracks the progress of
each user through each section and module. Each progress
entry is directly affiliated with a participant and a section, and
each entry also has an indicator for whether the participant
has completed their section, the participant’s score, the trial
number to track the number of attempts the participant has
made, and a field to track when this progress entry was last
updated so the most recent trial can be easily found.

e) Question: The Question table contains all of the
questions for all of the modules and sections in the application.
Each question is directly affiliated with a section, and each
has a correct answer and a list of options; additionally, each
can have a question stem, an image, and a list of feedback
messages.

f) Response: The Response table holds the responses that
are recorded as a participant answers questions. Each response
is directly affiliated with a participant, question, and section,
and each has a copy of the submitted answer, a copy of the
optional justification provided for that answer, an indicator for
whether the answer was correct, a trial number, a feedback
message, and timestamps for when the student submitted their
answer, navigated to the next page, and most recently updated
their response.

IV. RESULTS

In this section, I describe the results of the project and
show some sample screen captures from the UpGrade Modules
application for reference. This section also compares the

anticipated outcome of the project with the final deliverable
and reflects on how well expectations were met throughout the
project.

A. Implementation

1) Templated Server Code: I consolidated the server code
considerably into one Django application containing three
modules: Storyboard, Logdata, and UAR. In addition to the
module consolidation, the final product also enables users to
seamlessly navigate between the modules and sections once
they have logged into the system. Compared to the desired
implementation, the final product is not as consolidated as
possible, and much of the information is still hard coded
directly into the server functions. All server functions are
divided into four parts, one for each section. Each module’s
first section uses the ”function1” code, and its second section
uses the ”function2” code, and so on. While each module uses
the same section functions, the sections themselves are not
fully consolidated to the point where a single function can
handle all sections for all modules. However, for the three
modules which have been incorporated into the project, the
user experience is smooth, and adding additional modules does
not require much, if any, modification to the server functions.

2) Templated HTML Files: The HTML files are not fully
consolidated; each module has a folder for its respective
HTML files. While each module has very similar HTML files,
the differences are stark enough that a complete consolidation
is not possible within the timeframe of the project. However,
all of the HTML files contain template scaffolding, making the
consolidation of the files considerably easier now compared
to the beginning of the project when such scaffolding did not
exist.

3) Database Schema: The database is nearly completely
consolidated, although in order to fully consolidate the server
code and the HTML files, additional schema likely needs to
be added to the database. However, in the current state of
the UpGrade Modules application, there is only one database,
and all modules store questions, responses, and feedback using
one set of schema. The server code interprets the data from
the database in various ways depending on the current module
and section, but from the database’s perspective, all modules
use the exact same schema.

B. Application Interface

The module selection screen allows users to select modules
from a drop-down menu, as shown in Fig. 10. Upon submitting
a module selection, the website will show the corresponding
module’s homepage, as shown in Fig. 11 and Fig. 12. Finally,
the user can select sections and answer the corresponding
questions for that section, as shown in Fig. 13.

V. DISCUSSION, LIMITATIONS, AND FUTURE WORK

In this section, I discuss the limitations and potential future
work related to the UpGrade Modules application. I also reflect
on how I would redo this project differently if given the
opportunity.



A. Complete Consolidation of Server Code and HTML Files

While I consolidated most of the backend server functions
and HTML files during this project, much of the functionality
still relies on hardcoded values and special cases to force all
modules to conform to a homogeneous model. The time scope
of the project is a major reason why the server code and
HTML are not completely consolidated. As the sole developer
of UpGrade Modules, an application which uses a framework
with which I was not familiar at the start of this Capstone,
the scope of the project proved to be slightly larger than what
could be accomplished in one semester. However, while the
scope of the project was larger than anticipated, I also wasted
much of the time I spent at the beginning of the project by
attempting to learn the Django framework as I consolidated
the code. Because of my learn-on-the-job attitude towards
this project, most of the changes made in the first month of
the project needed to be redone or completely removed later
on due to a reevaluation of the workflow. Given the chance
to redo this project, I would spend more time planning the
development of the templated server functions before I write
any code. By planning more in advance, every change would
be deliberate and would be made with the foresight of future
additions to the project; thus, the changes made would be
permanent and no time would be wasted replacing broken code
with what should have been written the first time.

B. Storing all Metadata in the Database

While the database is the only part of the project which
is completely consolidated into one set of schema, there is
still room to further optimize how it is used throughout the
project. The HTML files are mostly hardcoded with only a
few templated variables incorporated into them. As a result,
each module has several HTML files which only it uses, and
there are several copies of near-identical files with only slight
differences; these copies should be consolidated into one file.
In order to remove the discrepancies between the files, the
section and module descriptions should be included as part of
the database. When the user requests the HTML for a module’s
welcome page, the server should query the module description
from the database and substitute that variable into the universal
HTML welcome page template rather than fetching a unique
HTML file for that request.

Similarly, the question pages are nearly identical for all
modules and sections, with only the number of questions and
types of questions being different between any two question-
page HTML files. The Question schema can be modified to
store the options as a JSON string which includes the text
answer and the image path for an image that corresponds to
that answer. By storing the options as a JSON string, answers
can consist of text and images simultaneously, and all of the
questions can fit the same schema regardless of how many
options a given question has. The JSON string would be parsed
by the server function and then passed as a list of objects to
the HTML template. By doing this, the questionpage HTML
files could be reduced to just one file for all modules and all
sections.

Fig. 10. Screen capture of module selection screen interface.

Fig. 11. Screen capture of a module’s home page interface.

Fig. 12. Screen capture of another module’s home page interface.



Fig. 13. Screen capture of a section’s question page.

VI. CONCLUSION

In this work, I discuss the research behind UpGrade’s
learnersourcing approach to open-ended assignment practice
with multiple-choice questions automatically generated from
prior students’ solutions to open-ended problems. I explain the
issues with UpGrade’s independently-running modules, and I
compare two solutions. I then describe the implementation
goals of UpGrade Modules, expanding upon the templated
server code, templated HTML files, and unified database.
Finally, I reveal the results of the project and discuss how Up-
Grade Modules compares to the target implementation. With
additional development and consolidation, UpGrade Modules
can stand alone as a fully-functional application and allow
instructors to easily add and adjust modules, sections, and
questions to maximize the learning outcomes of their students.

ACKNOWLEDGMENT

This work was created as part of the Lifelong Learning Lab
at the University of Michigan, led by Assistant Professor Xu
Wang. I thank Professor Wang for adding me to the lab team
and for guiding the development of the UpGrade Modules
application. I also thank Lukas Stauffer and Alyvia Meanor
for participating in user tests of the web site and interface.

REFERENCES

[1] X. Wang, S. T. Talluri, C. Rose, and K. Koedinger, “UpGrade: Sourcing
Student Open-Ended Solutions toCreate Scalable Learning Opportuni-
ties,” Proceedings of the Sixth (2019) ACM Conference on Learning @
Scale. ACM, Jun. 24, 2019. doi: 10.1145/3330430.3333614.


