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1 Introduction and background

Markov Decision Processes (MDPs) are used extensively in artificial intelligence and rein-
forcement learning to describe how an agent interacts with its environment. MDPs specify
what possible states an agent can be in, what its possible actions are, and what the effects
of taking those actions will be. By studying MDPs, we can develop techniques and algo-
rithms which can be applied to many real-world problems where an agent is required to
act intelligently. Many such algorithms have been developed with the assumption that the
conditions of the MDP is known to the agent, i.e. the agent knows all the information it
needs about the environment, including the possible states, actions, and effects of taking
actions. This project focuses on settings where such information is unknown to the agent:
it does not know how the world will behave when it takes a certain action. This makes
it necessary for the agent to take actions it is unfamiliar with in order to gradually learn
what their effects may be.

There have been several algorithms introduced to solve this problem, most notably
UCRL2 [1]. However, the regret bound achieved by UCRL2 is dependent on the diameter
of the MDP. The diameter is the maximum average number of steps it takes to get from
one state to another state. In MDPs where at least one state is unreachable from any of
the other states, the diameter is infinite, making UCRL2 ineffective.

In this project, I will build upon on already developed algorithm called REGAL [2].
This algorithm has good provable theoretical performance and achieves a regret bound
which does not depend on the diameter. However, it cannot be implemented into a real
computer program because it requires knowledge of certain information which are unavail-
able. This report presents a modification to the algorithm which makes it implementable,
while preserving the provable theoretical performance of the original algorithm.

1



2 Modification to REGAL using known deterministic

episode length

Algorithm 1 describes the original REGAL algorithm. The algorithm works in episodes.
At each episode k, the REGAL constructs a set of plausible MDPs Mk. This is the
set of MDPs which the algorithm believes has a high probability of containing the true
underlying MDP which accurate describing the environment. From this set, REGAL then
chooses the MDP which maximizes λ∗(M) − Cksp(h∗(M)). This criterion maximizes the
optimal average reward λ∗(M) while minimizes the regularization term Cksp(h∗(M)). The
algorithm then computes the optimal policy for the chosen MDP, and follows that policy
until the total number of visits to any state-action pair doubles. Ck is the regularization
parameter which is set at the beginning of each episode as:

Ck =
2
∑

s,a vk(s, a)
√

12S log 2AT
δ

Nk(s,a)
+
√

2lk log 1
δ

lk

The problematic term is vk(s, a), the number of times the state-action pair (s, a) is
visited in the episode. In order to set Ck, vk(s, a) needs to be known before the episode
begins, which is impossible. We also do not know lk, because the stopping condition of the
algorithm gives us no way to calculate the length of the episode.

In order to solve the issue of the regularization parameter Ck requring unavailable, we
set the length of each episode according to some known deterministic function f . This
removes the need to guess episode length. To achieve the same bounds as the original
algorihm we use f(k) = k√

SA
.
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Algorithm 2: REGularization based Regret Minimizing ALgorithm (REGAL)
with known episode length

for episodes k = 1, 2, . . . , do
tk ← current time
Mk is the set of MDPs whose transition function satisfies (5) with t = tk
Choose Mk ∈Mk to maximize the following criterion over Mk:

λ∗(M)− Cksp(h∗(M))

πk ← average reward optimal policy for Mk

Follow πk for f(k) time steps.
end

Regret bound

Consider an episode k ∈ G, we have

λ∗k − Cksp(h∗k) ≥ λ∗ − Cksp(h∗) (1)

∆k =
∑
s,a

vk(s, a)[λ∗ − r(s, a)]

=
∑
s,a

vk(s, a)[λ∗ − λ∗k + λ∗k − r(s, a)]

≤
∑
s,a

vk(s, a)[λ∗k − Cksp(h∗k) + Cksp(h∗)− r(s, a)]

=
∑
s,a

vk(s, a)[λ∗k − r(s, a)]− Ck
∑
s,a

vk(s, a)[sp(h∗k)− sp(h∗)]

= vk(λ
∗
ke− rk)− Ck

∑
s,a

vk(s, a)[sp(h∗k)− sp(h∗)]

= vk(P̃k − I)h∗k − Ck
∑
s,a

vk(s, a)[sp(h∗k)− sp(h∗)]

[using equation (7) of [2]]

= vk(P̃k −Pk + Pk − I)h∗k − Ck
∑
s,a

vk(s, a)[sp(h∗k)− sp(h∗)]

≤ ‖vk(P̃k −Pk)‖1sp(h∗k) + vk(Pk − I)h∗k − Ck
∑
s,a

vk(s, a)[sp(h∗k)− sp(h∗)]

(2)

From the proof of Lemma 10 of [1], replacing Hoeffding-Azuma with Bernstein’s in-
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equality we have∑
k∈G

vk(Pk − I)h∗k ≤
√

2
∑
k∈G

sp(h∗k)
2lk log(1/δ) + max

k∈G
sp(h∗k)(m+ log(1/δ)) (3)

If k ∈ G then M,Mk ∈M, and we also have

‖vk(P̃k −Pk)‖1 ≤ 2
∑
s,a

vk(s, a)

√
12S log(2AT/δ)

Nk(s, a)
(4)

Plugging equations 3 and 4 into 2, we get

∑
k∈G

∆k ≤
∑
k∈G

sp(h∗k)

(
2
∑
s,a

vk(s, a)

√
12S log(2AT/δ)

Nk(s, a)
+
√

2lk log(1/δ) + Ck
∑
s,a

vk(s, a)

)

+
∑
k∈G

Cklksp(h∗) + (sp(h∗) + max
k∈G

1

Ck
)(m+ log(1/δ))

(5)

Let T = maxk lk ≤
√

T
SA

(because we choose f(k) = lk = k√
SA

), Lemma 4 of [3] gives

∑
s,a

∑
k

νk(x)√
max(1, Nk(x))

≤
√
SAT +

4
√
SAT (6)

Thus choosing

Ck =
2
√

12S log(2AT/δ)(
√
SAT + 4

√
SAT ) +

√
2lk log(1/δ)

lk
(7)

gives ∑
k∈G

∆k ≤ sp(h∗)(2
√

12S log(2AT/δ)(
√
SAT +

4
√
SAT ) +

√
2lk log(1/δ))

+ (sp(h∗) + max
k∈G

1

Ck
)(m+ log(1/δ))

= O(sp(h∗)S
√
AT log(AT/δ))

(8)

This modified REGAL algorithm achieves the same regret bound as the original. The
Ck parameter no longer requires knowledge of vk(s, a), while lk is known at the start of the
episode.
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3 Addressing several issues for REGAL paper

3.1 Definition issue

Mk, the set of MDPs which contains the true MDP with high probability, does not exclu-
sively contain weakly communicating MDPs. Therefore, the optimization step in REGAL
is ill-defined because there is no guarantee that all MDPs inMk have constant gain. Fur-
thermore, there may exist several optimal MDPs which maximizes the regularized gain of
REGAL. To address this, the set Mk should be redefined to only contain weakly commu-
nicating MDPs, and in the case of multiple optimal MDPs, the MDP with the largest span
sp(h∗(M)).

3.2 Problem with Theorem 3 proof

Fruit et al claims the following proof issue in the proof of theorem 3, in which the term

c
√

Σs,avk,j(s, a)− Ck,jΣs,avk,j(s, a)

cannot be eliminated in equation 16 because it is not less than or equal to 0:

Σs,avk,j(s, a) ≤ 2j

−Ck,j = − c√
Σs,avk,j(s, a)

≤ − c√
2j
≤ 0 c ≥ 0

−Ck,jΣs,avk,j(s, a) ≥ −Ck,j2j

However, the REGAL paper does not use any inequality to eliminate this term. Instead,
the term

c
√

Σs,avk,j(s, a)− Ck,jΣs,avk,j(s, a)

is set to 0, by definition of Ck,j = − c√
Σs,avk,j(s,a)

.

Thus, their claim in incorrect.

4 Next steps: The maximization problem

This section explores methods for implementing the maximization in Algorithm 2. The
problem is to find an implementable algorithm to choose Mk ∈ Mk which maximizes the
following value over Mk:

λ∗(M)− Cksp(h∗(M))

We can construct an extended MDP based on extreme transition dynamics. For each
transition P (x), the extreme transition probability which encourages visiting s is

P (x)s+ = P (x)−WP (·|x) + 1sΣjWP (j|x)
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Figure 1: The Riverswim MDP

The extended MDP combines all potential MDP Mk ∈ Mk into a single MDP, with
extended action space A′. For each action a in A, there are corresponding actions a′ ∈ A′,
such that a′ = (a, s), where s is the state onto which all the uncertainty is placed.

To prove that the policy which maximizes the penalized reward in the extended MDP
corresponds to the policy which maximizes the penalized reward in the original MDP, we
have to find a bound on sp(h∗(M))− sp(h̃(M)).

5 Evaluation

To make the problem tractable, I implemented a version which only considers a discrete
set of MDPs. Each MDP in this set uses only the most extreme values of the transition
dynamics (maximum or minimum). An early implementation allowed each state-action
pair to select its own next state to prioritize in the extreme transition dynamics, however,
the runtime was excessively long. Instead, every state-action pair now has to prioritize the
same next state.

I also implemented several other popular algorithms for MDPs to compare their per-
formance against REGAL. They are evaluated on the Riverswim MDP, shown in Figure
1. The agent starts at state s1. It can choose to go left, which is always successful. Alter-
natively, it can choose to move right, which has a 0.35 probability of moving it right, 0.6
probability of staying still, and 0.05 probability of moving to the left. The rightmost state
s6 has the highest reward of 1, while the leftmost state has very low reward.

In Figure 2, we see that REGAL performs about the same as UCRL2, however they
are both outperformed by Thompson sampling and SCAL. However, when the Riverswim
is modified so that the leftmost state has a much high reward of 0.35, while the rightmost
state still has reward 1.0, REGAL performs better than the other algorithms (Figure 3).
By increasing the reward of the leftmost state, the span of the bias vector of the MDP
is reduced, which suggests that the modified REGAL algorithm can outperform other
algorithms in low span environments.
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Figure 2: Cumulative regret achieved by several algorithms in the Riverswim MDP envi-
ronment.

Figure 3: Cumulative regret achieved by several algorithms in the low span Riverswim
MDP environment.
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6 Applications

Many real world environments are complex and messy, and thus can be considered un-
known. Agents which interact with the real world do not fully know what effects their
actions will have on the environment. By continuing to improve on algorithms which deal
with unknown MDPs, we will be able to develop better and better autonomous systems
which can behave more intelligently in unknown or uncertain environments.
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