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1 Abstract

Vehicle-to-vehicle (V2V) connectivity has gained traction in the automated ve-
hicle space for its potential to improve congestion mitigation, fuel economy,
and vehicle safety. V2V connectivity refers to when automated vehicles ex-
change data with other nearby vehicles to inform their driving. In this way,
the vehicles are now ‘connected’. However, the current lack of a control frame-
work with provable safety guarantees for V2V connected vehicles prevents this
form of automation from being applicable outside of the academic setting. The
objective of this project was to develop a V2V safety-critical controller via con-
trol barrier function (CBF) framework and apply this framework to models of
increasing fidelity, from the 1 state to 4 state model case. Due to the complex-
ity of real car dynamics, this paper approximates the vehicle with integrator,
unicycle, and bicycle models and characterizes general controller behaviors for
these models. Simulations of the CBF framework applied to these three models
were conducted in MatLab and characteristic vehicle behaviors were analyzed
for varying parameter values and initial conditions. Particular behaviors of
interest were examined to find 1. initial (velocity) conditions that do not sat-
isfy the safety condition 2. vehicle switching position between nominal and
safety-critical control as a function of parameters, and 3. vehicle freezing as
a function of parameters. These behaviors are useful in characterizing when
the CBF framework controller is effective in delivering desirable safety-critical
driving, giving a better understanding of how to engineer safety guarantees for
V2V vehicles.

Keywords: V2V connectivity, autonomous vehicles, safety-critical control,
control barrier function framework, extended barriers, integrator model, unicy-
cle model, bicycle model, nominal to safety-critical switching, vehicle controller
freezing, vehicle model parameters
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2 Introduction

Vehicle-to-vehicle (V2V) connectivity has gained traction in the automated ve-
hicle space for its potential to improve congestion mitigation, fuel economy, and
vehicle safety. V2V connectivity refers to when automated vehicles exchange
real-time data with other nearby vehicles to inform their driving. In this way,
the vehicles are now ‘connected’. This form of connectivity is powerful because it
enables the vehicle to access information about the speed and position of nearby
vehicles that it may not have otherwise, which can be used to detect crashes,
dangerous traffic, and other driving phenomenon earlier and more readily than
was previously possible. However, a significant problem in the V2V space is that
there is currently lack of a control framework with provable safety guarantees
for V2V connected vehicles. This limitation prevents this form of automation
from being applicable outside of the academic setting.

Control barrier functions have been studied as a tool to engineer safety-
critical control in applications including multi-agent systems [1], robotics [2],
and automated vehicles [3]. Existing research on the creation of robust, tun-
able CBF frameworks [4],[5] and adaption of this framework for autonomous
vehicles [3] makes this framework a natural candidate for exploration in the
safety-critical V2V connected vehicle space. The objective of this project was
to develop a V2V safety-critical controller via control barrier function (CBF)
framework and apply this framework to models of increasing fidelity, from the
1 state to 4 state model case. Due to the complexity of real car dynamics, this
paper approximates the vehicle with integrator, unicycle, and bicycle models
and characterizes general controller behaviors for these models. This builds off
of previous research done by T.G. Molnar et al, which shows that this CBF
framework can be used to create application-agnostic safety-critical control of
robotic systems without relying on the use of a high-fidelity dynamical model of
the robot [6]. Simulations of the CBF framework applied to these three models
were conducted in MatLab and characteristic vehicle behaviors were analyzed
for varying parameter values and initial conditions.

This paper first demonstrates that a CBF framework applied to integrator,
unicycle, and bicycle vehicle models can create desirable control with theoretical
safety guarantees for V2V connected vehicles. Then, by simulating and eval-
uating the controller under varying safety critical obstacle cases, initial state
conditions, and tuning and gain parameter conditions, limiting controller be-
haviors are identified that characterize when the framework delivers desirable
control, or lack thereof. Particular behaviors of interest were examined to find
1. initial (velocity) conditions that do not satisfy the safety condition 2. vehicle
switching position between nominal and safety-critical control as a function of
parameters, and 3. vehicle freezing as a function of parameters. It is found
that in the extended barrier case, the control framework safety goal may be
violated if the vehicle is assigned high initial velocity. This limits the ability
to simulate a more true to life vehicle case where there likely would be nonzero
initial velocity. Vehicle switching is shown to be dependent on system parame-
ters α and αe in the unextended barrier case, as well as vehicle velocity in the
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extended barrier case. However, more research is needed to characterize switch-
ing behavior for higher fidelity vehicle models. Finally, it is found that in the
models where vehicle freezing occurs (unicycle and bicycle), this behavior as a
function of parameters becomes more prominent with higher angular gain and is
most prominent when lateral gain is between 0.1 and 0.2. However, more work
is needed to understand mathematically why freezing occurs in the unicycle
and bicycle, and why the aforementioned parameter conditions are particularly
conducive to freezing.

The hope is that these findings serve as a base for further investigation of the
application of control barrier functions on models of higher fidelity beyond the
bicycle case and complex obstacle cases beyond the stationary single obstacle.

3 Methods

The general procedure for analyzing the impact of a control barrier function
(CBF) framework on V2V connected vehicle safety-critical behavior consisted
of three areas. First, a vehicle model was developed to characterize the vehi-
cle’s dynamics. Second, a safety function is defined and the CBF framework is
applied to the model through inputs to create safety-critical control. Third, the
resulting system is simulated via MatLab and the controller behavior with vary-
ing models and parameters is evaluated. This section will focus on discussing
vehicle models that were explored and characterizing the procedure for applying
the CBF framework.

3.1 General Representation of Vehicle Models

The first step is to develop a mathematical representation, or model, of the
vehicle’s dynamics. The most general expression of a vehicle model can be
represented in state space form as (1).

ẋ = f(x) + g(x)u (1)

Here, ẋ represents the time derivative of relevant vehicle states, typical states
being longitudinal and lateral positions, velocity, and heading angle. The u
component represents the controller inputs to the system. These inputs are the
only portion of the model that the controller has direct control over, and this
component is where the CBF framework will be implemented to create safety-
critical control. For example, some controller inputs that were used in this work
were acceleration, which controls the velocity state, and front wheel steering
angle, which controls the heading angle state for a bicycle model. g(x) and f(x)
simply separate the portions of the model that u has and does not have direct
control over respectively. A typical representation of a vehicle model with states
is given in Figure 1.
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Figure 1: Representation of autonomous vehicle in a safety critical scenario,
characterizing the typical vehicle states needed to fully define a model in this
paper. As shown, x1 [m] is the longitudinal position (in the direction of the
road) while x2 [m] is the lateral direction (transverse to the direction of the
road), v [m/s] is the vehicle velocity, and φ [rad] is the vehicle heading angle
relative to x1.

Because the dynamics of a real-world car are complex, a model that fully
characterizes the vehicle behavior is difficult to implement. However, simpler
vehicle models can give a good representation of car behavior while making it
easier to analyze relevant dynamics and behavior. The three models examined
in this project were the integrator (point), unicycle, and bicycle. These three
models, their mathematical representations, and their dynamics are elaborated
in 4 Implementation of Various Vehicle Models.

3.2 Implementation of Control Barrier Function Frame-
work

The crux of the control barrier function (CBF) framework is to define a safety
control barrier function h(x), as shown in (2).

h(x) = d− r (2)

d =
√
(xo1 − x1)2 + (xo2 − x2)2 (3)

This h(x) [m] is the difference between d [m] (3), the distance from the car
position [x1, x2] to the center position of the obstacle [xo1, xo2], and r [m], the
radius of the perceived obstacle. A visual representation of d and r can be seen
in Figure 2.
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Figure 2: Representation of autonomous vehicle in a safety critical scenario.
The objective of the car is to swerve around the boxes dropped on the road,
then keep driving. x1 is the longitudinal position (in the direction of the road)
while x2 is the lateral direction (transverse to the direction of the road). d is
shown as the distance from the vehicle to the obstacle and r is the radius of the
perceived obstacle.

If h(x) is positive, there is a positive distance between the vehicle and the
outer boundary of the obstacle, which is regarded as a circle in 2D space. This
means that the vehicle is safe. A more formal way of writing this is by defining
a safe set S, as shown in (4), that encompasses the total domain over which
safety is guaranteed.

S = [x ∈ Rn : h(x) ≥ 0] (4)

The objective of the CBF framework is to ensure that the controller remains
within the safe set for all time, and the case where this is achieved can be written
as the safety goal, (5). Finally, a safety condition can be written in terms of
h(x) for creating a controller that will guarantee safety (i.e. h(x) ≥ 0 for all
time), (6).

x(0) ∈ S −→ x(t) ∈ S ∀t (5)

∂h(x)

∂x
· (f(x) + g(x) · u) ≥ −α(h(x)) (6)

In (6), α is a non-dimensional tuning parameter. The next step is to define
a controller input that by definition satisfies (6). This can be written as shown
in (7).
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ks(x) =argmin||u− kn(x)||2 (7)

u ∈ Rm

s.t.
∂h(x)

∂x
· (f(x) + g(x) · u) ≥ −α(h(x))

Here, ks(x) is the safety critical controller, and kn(x) is the desired (nomi-
nal) controller. The optimization problem translates as modifying the nominal
input just enough so that the safety condition is fulfilled. To solve the system
analytically, the safety condition can be rewritten as follows:

c(x) ≜
∂h(x)

∂x
· (f(x) + g(x)kn(x)) + α(h(x)) (8)

b(x) ≜
∂h(x)

∂x
· g(x) (9)

Finally, the analytical solution to ks(x) can be written as (10).

ks(x) = kn(x) + max

(
0,

−c(x)

||b(x)||2

)
bT (x) (10)

We notice that the final general form of ks(x) consists of kn(x) and a max
function dependent on h(x) through α(h(x)). In the case that the vehicle is
very far from an obstacle α(h(x)) becomes very large. If it is large enough to
make c(x) positive then the max function outputs zero, so ks(x) = kn(x). Once
the vehicle moves close enough to an obstacle, α(h(x)) becomes small enough
such that c(x) < 0, and the max function outputs the second term. When this
happens we say the controller ‘switches’ to the safe controller, which modifies
the nominal controller.

3.3 Extended CBF Case

An important note is that when working with models beyond the integrator (i.e.
the unicycle and bicycle model), it does not make physical sense to control the
vehicle’s velocity. Rather, it makes more physical sense to control the vehic-
ular acceleration, as this quantity can be directly controlled via force through
Newton’s Second Law. Therefore, h(x) is in this case implemented as an input
to the vehicle’s acceleration. However, controlling the vehicle’s acceleration in
this way is not enough to guarantee safety critical behavior. Solving the system
analytically, it is seen that this is because b(x) in (10) will now always equal
0. When this occurs, the control input u has no effect on safety as defined
with h(x), so the optimal controller gives a controller with singularity. A way
to resolve this is to“extend” the control barrier safety function. The extended
safety function he(x) [m] is shown in (11).

he(x) =
∂h(x)

∂x
· f(x) + α(h(x)) (11)
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This definition comes from (6) - setting b(x) = ∂h(x)
∂x · g(x) = 0 and mak-

ing the right side of the equation equal to 0 yields the exact expression for
he(x). The vehicle is now safe if both he(x) and h(x) are greater than 0. The
extended barrier can be implemented into the vehicle model in the same way
as the unextended barrier. Replacing h(x) with he(x), ks(x) for the extended
case can be derived in the same way as with the unextended case. See 3.2
Implementation of Control Barrier Function Framework.

4 Implementation of Various Vehicle Models

This section will provide a more in-depth discourse on the each of the three
vehicle models (integrator, unicycle, and bicycle) implemented and analyzed
through this project. Each vehicle model will be characterized mathematically
through the model-specific form of (1) and the nominal inputs, kn(x) used in
each model will be discussed. This section will also outline important model
parameters examined through the project and show that each model is capable
of producing desirable safety-critical control.

4.1 Integrator Model: Unconstrained Movement

The simplest vehicle model is the integrator, or ‘point’. This model approxi-
mates the vehicle as a point in space that is capable of omnidirectional move-
ment. Therefore, the integrator model is the simplest way to model a vehicle
- the point is unconstrained by any real world vehicle dynamics. As such, this
model can be characterized fully by just longitudinal and lateral position. The
general 2D system for this point model can be expressed as (12).[

ẋ1

ẋ2

]
=

[
0
0

]
+

[
1 0
0 1

] [
ks1
ks2

]
(12)

Here, x1 [m] is the longitudinal position and x2 [m] is the lateral position.
As the vehicle dynamics are fully controlled by model inputs over two states,
the integrator system is relatively simple to control and to solve analytically.

A sample nominal controller that could be implemented for this model is
given in (13).

kn(x) = −kp

([
x1

x2

]
−

[
xg1

xg2

])
(13)

Here, the x vector denotes the vehicle position in 2D space, and the xg vector
gives a goal position. The objective of the nominal controller is to reach the goal
position - as shown through the equation, it will command a non-zero velocity
towards the goal until it reaches the goal and velocity becomes 0. Because the
controller is commanding velocity here, the units of kn(x) are [m/s]. The kp is a
dimensionless gain parameter that defines the convergence rate of the controller
- i.e. larger kp results in a higher vehicle velocity and faster convergence.
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A visual representation of desired safe behavior for the safety-critical con-
troller implemented through this model is shown in Figure 3.

Figure 3: Simulation result from MatLab of integrator model ’vehicles’ in a
safety critical scenario. Obstacle of radius = 20 m is centered at (50,0). Vehicles
start from x1 = 0, x2 = −4, 4, 12. Goal point is set at (125, 0), α = 1, and
kp = 1. The controller exhibits desirable behavior, with vehicles driving around
the obstacle and then to the goal point.

4.2 Unicycle Model: Pivot in Place Constraint

A level of complexity higher than the integrator model is the unicycle model.
In this case, the vehicle is approximated as a single wheel that is constrained
in the sense that it can no longer move freely in the direction transverse to the
wheel- instead, the vehicle must turn to change direction. However, because the
unicycle is modeled as a single wheel, the vehicle can pivot in place. Therefore,
a heading angle state, representing the angle the vehicle makes with the longi-
tudinal axis, must be defined and controlled. A diagram of the model is shown
in figure 4.
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Figure 4: Diagram of the unicycle single wheel model case. As shown, the
direction of the wheel can be represented via heading angle φ [rad]. The velocity
v of the wheel can be separated into velocity in the longitudinal and lateral
directions.

4.2.1 Introduction of Heading Angle and The Need for an Extended
Barrier Model

As mentioned above, a heading angle state must be introduced into the unicycle
model to define the unicycle’s direction. Just as vehicle position is controlled
by velocity, the heading angle can be controlled by angular velocity, ω [rad/s].
Therefore, a simplistic approach would be to define the system as (14).ẋ1

ẋ2

ẋ3

 =

00
0

+

cos(φ) 0
sin(φ) 0

0 1

[
v(x)
ω(x)

]
(14)

Here, (x1, x2) is the vehicle position and x3 is the heading angle φ. The
(x1, x2) states are controlled by the longitudinal and lateral components of v,
velocity, respectively and the x3 state is controlled by angular velocity ω. How-
ever, an outcome of this approach is that the x3 component of b(x) as defined
in (9) will be 0. Therefore, the safety critical angular velocity input of the ve-
hicle will be identical to the nominal angular velocity input of the vehicle. This
results in a system that can stop at an obstacle, but cannot swerve to avoid an
obstacle, as shown in figure 5.
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Figure 5: Diagram of the unicycle single wheel model with system defined in
(14). As shown, vehicles move to the goal point as expected and break to prevent
obstacle collision, but the vehicles do not change their direction to avoid the
obstacle.

There are two shortcomings of this model. The first shortcoming is that the
angular velocity input in this case does not have any effect on vehicle safety- i.e.
the car is unable to safety steer. This problem can be resolved by extending the
safety barrier function. The second is that the controller is directly commanding
the vehicle velocity. This is not really achievable in the real world vehicle case.
Acceleration (which can be controlled via force) can thus be used instead as a
controller input to increase the accuracy of the model, as shown in (15).

ẋ1

ẋ2

ẋ3

ẋ4

 =


x3 cos(φ)
x3 sin(φ)

0
0

+


0 0
0 0
1 0
0 1

[
a(x)
ω(x)

]
(15)

In (15), x3 is now the vehicle velocity and x4 is the heading angle. Note that
the states now under direct command of the controller are x3 via a(x) [m/s2],
the vehicle’s acceleration, and x4 via ω(x), the vehicle’s angular velocity. Note
that in this new model case there is no direct control over the velocity, which
is why velocity components are now in the model f(x) matrix. Implementing
an extended barrier with this model will allow the vehicle to both break and
swerve when encountering an obstacle.

4.2.2 Shift from Controller ‘Goal Point’ to ‘Goal State’

Another necessary change when transitioning from the integrator to the unicycle
model was in the nominal controller: the shift from reaching to a ‘goal point in
2D’ to reaching to a ‘goal velocity and lateral position’. This change was needed
because unlike with the integrator, the unicycle is not capable of omnidirectional
movement. Therefore, if the unicycle misses the goal point even slightly, it is
very difficult to correct for this trajectory, which will cause the unicycle to have
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some infinite periodic motion about the goal point. To address this problem,
the unicycle nominal controller was developed as shown in (16).[

kn1
kn2

]
=

[
k3(x3g − x3)

k2(x2g − x2)− k4 sin(x4)

]
(16)

As shown, kn1 [m/s2] is the acceleration input. The input will change the
vehicle velocity until the velocity, x3, becomes the goal velocity, x3g, at which
point the input will become 0. Similarly, kn2 [rad/s] is the angular velocity
input. The input will change the vehicle lateral position, x2, until it reaches
the lateral goal, x2g, and will change the heading angle until it reaches 0. The
heading angle goal is defined to be 0, as anything else would conflict with the
lateral goal. The parameters k2, k3, k4 are dimensionless gain parameters that
define the weight that the controller places in pursuing each goal. A higher gain
means that the controller will pursue the corresponding goal more heavily.

A visual representation of desired safe behavior for the safety-critical con-
troller implemented through this model is shown in Figure 6.

Figure 6: Simulation result from MatLab of unicycle model outlined in eq.16,17
in a safety critical scenario. Obstacle of radius = 20 m is centered at (50,0).
Vehicles start from x1 = 0, x2 = −4, 4, 12. Goal state is set to x2g = 0 and
x3g = 5, α = αe = 0.2, k2 = 0.01, k3 = 1, k4 = 0.5. The controller exhibits
desirable behavior, with vehicles driving around the obstacle and then moving
towards the goal state.

4.3 Bicycle Model: Front Wheel Steer Constraint

The third vehicle model examined in this project was the bicycle model - i.e. two
wheels joined by a beam - which is one level of fidelity higher than the unicycle
model. Compared to the unicycle, the bicycle has the additional kinematic
constraint that it cannot pivot in place. Instead, the front wheel of the bicycle
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will steer by making some steering angle, γ [rad], relative to rest of the vehicle.
This front wheel steering along with a nonzero velocity is what changes the
direction of the vehicle, which is still expressed as heading angle, φ, relative to
the longitudinal direction. A diagram of the model is shown in figure 7.

Figure 7: Diagram of the bicycle two wheel model case. The direction of the
vehicle can be represented via heading angle φ while the direction of the front
wheel relative to the rest of the vehicle can be represented via steering angle γ.
The velocity v of the vehicle can be separated into velocity in the longitudinal
and lateral directions. The length of the bicycle is l, and the position of the
vehicle is measured from the center of the back wheel.

The bicycle model can be expressed mathematically as (18).
ẋ1

ẋ2

ẋ3

ẋ4

 =


x3 cos(φ)
x3 sin(φ)

0
0

+


0 0
0 0
1 0
0 x3

l

[
a(x)
tan(γ)

]
(17)

Where x1 and x2 denote the position of the rear wheel, x3 is the vehicle
velocity, x4 is the heading angle, γ is the front wheel steering angle relative to
the rest of the vehicle, and l is the vehicle wheelbase. Note that the bicycle
model in (17) is identical to the unicycle in (16) except in the definition of x4.
This difference is to account for the fact that the vehicle can no longer pivot in
place, and turning will now be dependent on vehicle speed, length, and steering
angle.

Similarly, the nominal control implemented for the bicycle model is identi-
cal to the nominal control implemented for the unicycle model given in (16),
substituting tan(γ) [rad] for ω(x).

A visual representation of desired safe behavior for the safety-critical con-
troller implemented through this model is shown in Figure 8.
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Figure 8: Simulation result from MatLab of the bicycle model outlined in
(17),(16) in a safety critical scenario. Obstacle of radius = 20 m is centered
at (50,0). Vehicles have a wheelbase of l = 2.5 m and start from x1 = 0,
x2 = −4, 4, 12. Goal state is set to x2 = 0 and x3 = 5 [m/s], α = αe = 0.2,
k2 = 0.01, k3 = 1, k4 = 0.5. The controller exhibits desirable behavior, very
similar to the analogous case for the unicycle model.

5 Characteristic Limiting Behaviors of Controller

An important result of this project is the identification of general limiting be-
haviors of the controller, in order to characterize when the controller both is
and is not effective in delivering desirable safety-critical driving. In particular,
three behaviors of interest were of interest. First, initial conditions that do not
satisfy the safety goal are examined to identify what conditions can cause unsafe
behavior in the controller. Second, controller switching position between nom-
inal and safety control as a function of parameters is examined to characterize
what parameter conditions are suitable for real world scenarios. Third, vehicle
freezing as a function of parameters is examined to identify what conditions
cause this safe but undesirable behavior.

5.1 Initial Conditions That do not Satisfy the Safety Goal

Recall that the controller will guarantee safety if x remains within the safe set
S as defined in (4) for all time, and this is true if x(0) ≜ x0 is within the safe
set. Simply put, this means that there must be h(x0) and he(x0) ≥ 0. If this
condition is not satisfied, the controller will misjudge the obstacle, and there
will be a collision. A sample scenario that shows simulated vehicle trajectories
when the condition is not satisfied is given in figure 9.
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Figure 9: Simulation result from MatLab showing unsafe vehicle trajectories of
vehicles under bicycle model. The projected trajectories show that the controller
misjudges the obstacle and the top two vehicles would collide with the obstacle.
This situation is identical to the desirable case in figure 8, except for vehicle
initial velocity, v0. Unlike in figure 8 where v0 = 0, in this figure v0 is 15 m/s,
which is an initial condition that violates he(x0) ≥ 0.

Notice that this limiting behavior should never be a problem in the unex-
tended barrier case. This is because h(x0) will only ever be negative if the vehicle
starts inside of the obstacle, and this should not happen as it would mean that
the vehicle is already in a collision. The more relevant case is with the extended
barrier case, he(x). Note from (11) that the α(h(x)) portion of he(x) should
always be positive, as α is a positive constant. Therefore, the portion of the

equation of concern is ∂h(x)
∂x · f(x). Solving analytically, this expression can be

written as (18) for the unicycle and bicycle models.

∂h(x)

∂x
· f(x) = x3(cos(x4)(x1 − xo1) + sin(x4)(x2 − xo2))

d
(18)

Here, d [m] is the distance from the vehicle to the obstacle as defined in (3).
Based on the goal state for the unicycle and bicycle model, it makes sense that
the relevant safety-critical case is when the vehicle approaches an obstacle in the
x1 direction and x4 [rad] is closer to 0 than π

2 . Therefore, the sum of the cosine
and sine term in the parentheses should be negative at initial time. Finally,
from this it can be seen that if vehicle initial velocity is sufficiently large, this
can cause he(x0) < 0.

5.2 Controller Switching Positions

Recall that the controller is engineered such that the model will operate under
nominal control when the vehicle is not in a safety critical scenario and will
switch into safety-critical control when it approaches an obstacle. This switching
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position is useful because it characterizes the aggressiveness of the controller and
helps define what parameter conditions are appropriate for a safety situation.
The switching position will also put bounds on what can be a feasible controller
input for real world vehicles. Note from (10) that the switch will occur when
−c(x)

||b(x)||2 = 0. Contours of controller switching position can be characterized by

solving the inequality and plotting in MatLab.
A simple situation can be used to characterize the dependency of controller

switching position on parameters and vehicle states. Consider a 1D version
of the case of the integrator model defined in eq.13,14, where there is only
driving in the x1 direction. Assume that the nominal controller wants to drive
the vehicle to x1g = 10 [m] but there is a wall at x1 = 5 [m], so safety-critical
control must take over to prevent the vehicle from colliding with the wall. The
vehicle switching position can be characterized by figure 10.

Figure 10: Pictured is the switching position of the integrator with respect to
tuning parameter α. The general result is that as α increases, the controller
switches to safety-critical control later. This places bounds on what α can be,
as it takes time for a real vehicle to break. When α < 1, the vehicle will operate
under safety-critical control for all relevant space (x1 < 5).

Compared to the unextended barrier case in figure 10 where the only state
that switching position is dependent on is position, extending the barrier will
place an additional dependency on the velocity state. This is shown in figure
11, which examines the same simple situation as described at the top of this
subsection.
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Figure 11: The figure shows that the switching position for the unextended case
(h(x)) is only dependent on α parameter values. In the extended case (he(x)),
the switching position is dependent on both α parameter values and vehicle
velocity. This result is general to any of the controllers analyzed in this paper.

The switching case for 2D models is more complex but is dependent on the
same parameters and states as the analogous 1D case. In the 2D case, there will
be zones in 2D space where the safety control is active. Similar to the 1D case,
these zones will decrease in size as α increases, meaning that the controller will
be more aggressive. A characterization of switching in the 2D integrator model
case is shown in figure 12.

Figure 12: Switching position for the unextended 2D integrator case. Similar
to the 1D case, switching position for the 2D case is dependent only on α, with
higher α resulting in more aggressive control. This result is general to all 2D
controllers analyzed. At some α (1 in this case), there will be a transition from
most of 2D space being under nominal control to being under safety control.
This transition seems general to the 2D integrator case, but it has not been
determined whether this also extends to the unicycle and bicycle model case.
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The switching contours for the 2D unicycle and bicycle case are not char-
acterized in this project because it is difficult to find an analytical solution.
However, figure 13 gives a general idea of these contours by solving the in-

equality −c(x)
||b(x)||2 = 0 for the unicycle and bicycle model numerically in MatLab

for various initial conditions.

Figure 13: The figure shows switching position for the extended unicycle and
bicycle cases for multiple initial conditions under the same parameter conditions.
As shown, the switching positions for the unicycle and bicycle are very similar
and seem to match the switching curve given in figure 12. More switching
points or an analytical solution would be needed to fully characterize these
curves.

5.3 Vehicle Freezing Cases

Vehicle freezing describes the limiting behavior whereby the controller causes
the vehicle to drive to the obstacle and then freeze, instead of driving around
the obstacle. This behavior is still safe because the vehicle and obstacle do not
collide, but it is not desirable, as the goal is for the vehicle to be able to avoid
obstacle and then continue driving.

Freezing can occur in three cases. The first case is when the vehicle drives
exactly towards the center of the obstacle. In this case, it is not preferable
to swerve one way or the other, so the vehicle will simply freeze because the
controller does not know which way to turn. Mathematically, this happens
because the bT (x) vector from (10) will point in the exact opposite direction to
the vehicle’s velocity. Therefore, this vector will cancel out the vehicle’s velocity
instead of telling the vehicle to change direction.

The second case where freezing is prominent is when the obstacle case is
severe. This can either be when the vehicle’s initial position is very close to the
obstacle or when the obstacle is very large. In the first instance, a very large
turn would be needed to swerve around the obstacle (significant divergence from
heading angle goal). In the second instance, the vehicle would need to travel a
large lateral distance (significant divergence from lateral goal).

The third case where freezing is prominent is when the controller is engi-
neered with specific gain parameter conditions. Particularly, this project ex-
plored freezing as a function of angular gain k4 and lateral gain k2. Velocity
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gain k3 is held constant at 1, as this is representative of what is typical for a
real world vehicle and changing k3 has complex consequences on vehicle dynam-
ics. Generally speaking, increasing a gain value increases the weight that the
model puts into attaining the corresponding state goal and makes the model less
willing to deviate from that goal state. This third case is interesting because
it shows that whether freezing occurs is dependent on controllable parameters.
An instance of freezing caused by parameter conditions is shown in figure 14.

Figure 14: Bicycle model with vehicle starting at (0,1) and obstacle of radius
= 20 m centered at (30,0). For both trajectories shown, α = αe = 0.2, l =
2.5 m, and k3 = 1. The only difference between the two trajectory cases is
the tuning of k2 and k4 as stated in the figure. As shown, the red car exhibits
undesirable freezing at the obstacle while the green car exhibits desirable safety
critical driving.

Simulating the scenario in figure 14 for a range of k2 and k4 conditions
results in the freezing map shown in figure 15.
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Figure 15: This map corresponds to the same model and scenario as described
in figure 14. Vehicle freezing or lack thereof was recorded for k2 from 0 to 1
and k4 from 0 to 5. These ranges are meant to reflect reasonable bounds for a
real world vehicle. Freezing was more prominent for greater k4 and was most
prominent for k2 from 0.1 to 0.2. Freezing in the unicycle model followed these
same trends, but was less prominent due to the unicycle’s ability to pivot in
place. There was no freezing observed in the integrator model, perhaps because
the integrator is capable of omnidirectional movement.

The result that freezing becomes more prominent as k4 increases is intuitive
- a greater k4 means that the vehicle is less willing to turn. However, it was
less intuitive that freezing is most prominent when k2 is between a certain value
range. The shape of the freezing boundary in figure 15 was general to all cases
analyzed. As stated, freezing in the unicycle followed the same trends, but was
less prominent in comparison to the analogous bicycle case. This is shown in
figure 16.
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Figure 16: These maps compare freezing between the bicycle and unicycle for
an analogous case between the two models. As in figure 15, the vehicle started
at (0,1), with k3 = 1 and α = αe = 0.2. The wheelbase was 2.5 [m] for the
bicycle. However, unlike the case in figure 15, the obstacle of radius 20 [m] was
centered at (24,0). As shown, this is a very severe obstacle case for the bicycle,
and freezing occurs a majority of the time under these conditions. Conversely,
this is not a severe obstacle case for the unicycle and freezing occurs a small
fraction of the time.

6 Discussion of Findings

This paper has demonstrated that a CBF framework applied to integrator, uni-
cycle, and bicycle vehicle models can create desirable control with theoretical
safety guarantees for V2V connected vehicles. By simulating and evaluating
the controller under varying safety critical obstacle cases, initial state condi-
tions, and tuning and gain parameter conditions, limiting controller behaviors
are identified that characterize when the framework delivers desirable control, or
lack thereof. The hope is that these findings serve as a base for further investi-
gation of the application of control barrier functions on models of higher fidelity
beyond the bicycle case and complex obstacle cases beyond the stationary single
obstacle.

6.1 Limitations to Desirable Safety Critical Control

While the vehicle will by definition be safe if the system remains within the
safe set S, the safety goal defined in (5) may be violated if the system’s initial
conditions result in he(x0) < 0. Due to the dependence of he(x) on velocity,
this can occur if the vehicle is given a sufficiently large initial velocity. This
limitation can theoretically be offset by increasing α because the term α(h(x))
in he(x) is always positive, but this is not realistic as increasing α beyond
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a certain value range will make the controller too aggressive for a real world
vehicle. As mentioned, this is a limitation to simulating a more true to life
vehicle case.

Characterizing the vehicle’s switching position between nominal and safety
critical control via a simple 1D integrator case provides general insights on how
switching position is dependent on controller parameters and states. Within
the relevant control space, the controller will switch to safety control closer to
the obstacle given higher α and αe values. While switching position in the
unextended barrier case is only dependent on α, switching in the extended
barrier case is also dependent on the vehicle velocity. Higher velocity results
in earlier switching position. Results from this paper seem to suggest that
the switching zones for the unicycle and bicycle model are similar to those for
the integrator model, but more complete results for the unicycle and bicycle
models would be needed to verify this. Finding an analytical solution to the
switching position for these models would be needed to fully characterize this
behavior. Understanding switching behavior is important for engineering an
appropriate controller based on how aggressive or conservative the controller
should be. Further, while there is no theoretical upper bound for α, there are
upper bounds for a real world vehicle as a real vehicle cannot break or swerve
over a very short distance and thus may not react in time if given a large α.

Vehicle freezing is a behavior that is safe but not desirable. In the unicycle
and bicycle models, this behavior becomes more prominent when the controller
is engineered with specific parameter conditions. Particularly, freezing becomes
more prominent with higher angular gain and is most prominent when lateral
gain is between 0.1 to 0.2. No freezing behavior was observed in the inte-
grator model for the ranges of angular and lateral gains tested. This may be
because the integrator is capable of omnidirectional movement unconstrained
by real vehicle dynamics. More work is needed to understand mathematically
why freezing occurs in the unicycle and bicycle, and why the aforementioned
parameter conditions are particularly conducive to freezing. An analytical so-
lution to describe freezing boundaries such as the one seen in figure 14 would
be useful for fully defining this behavior.

6.2 Conditions for Desirable Safety Critical Control

The integrator model delivered theoretically desirable safety critical driving for
all cases tested. Freezing was not observed in the integrator model, even when
the vehicle was placed along the edge of a very large obstacle. This may be
because the integrator model’s motion is unconstrained by real vehicle dynam-
ics. In both the unicycle and bicycle case, the control barrier was extended to
enable safety critical control to command vehicle steering. Conditions in the
unicycle and bicycle case were engineered to be representative of a real world
car - namely, α = αe = 0.2, k2 = 0.01, k3 = 1, and k4 = 0.5. The goal velocity
is 15 m/s and the bicycle is defined as 2.5 m in length. Though a real car would
likely have nonzero initial velocity, the controller is given a zero initial velocity
because a sufficient initial velocity (beyond 5 m/s in this case) would cause ini-
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tial conditions to violate the safety goal. With these conditions, the controllers
delivered theoretically desirable safety critical driving where the vehicle success-
fully swerved around the obstacle for all cases tested except when vehicle initial
position was very close to the obstacle, which caused freezing. The behavior of
the bicycle and unicycle were very similar for analogous situations, except that
the bicycle was more prone to freezing because the bicycle is unable to pivot in
place.

7 Conclusions

This paper has examined the application of a control barrier function framework
to engineer safety-critical control for V2V connected automated vehicles. Par-
ticularly, a V2V safety-critical controller was developed via a CBF framework
and applied to models of increasing fidelity, namely an integrator, unicycle, and
bicycle vehicle model. This paper first demonstrated that a CBF framework ap-
plied to these three models can create desirable control with theoretical safety
guarantees for V2V connected vehicles. Then by simulating and evaluating the
controller under varying safety critical obstacle cases, initial state conditions,
and tuning and gain parameter conditions, several limiting controller behaviors
were identified that characterize when the application of this framework does
and does not deliver desirable control. It is shown that these limiting controller
behaviors place bounds on the scope in which the current CBF framework is
effective and have implications on what is achievable for a real world car. How-
ever, more work would be needed to better characterize these behaviors - namely
freezing and switching behaviors for the unicycle and bicycle model. This paper
is intended to serve as a stepping stone for future investigation into the imple-
mentation of control barrier functions in vehicle models of high fidelity under
more complex obstacle cases - such as multiple and dynamic obstacles.
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