Connected Automated Vehicles
Analysis of Control Barrier Function Framework for Safety-Critical Control

John Yu, B.S.E. MechE 2023
Dr. Tamas Molnar, Anil Alan, Dr. Gabor Orosz

Dec. 09 2022
Agenda

1. Background, V2V Connected Vehicles
2. Methods, Control Barrier Functions and Models
3. Results, Characteristic Limiting Behaviors
4. Significance and Next Steps
5. Acknowledgements

Vehicle-to-Vehicle (V2V) connectivity is a form of vehicle automation

- Refers to when nearby vehicles exchange data to inform driving
- Nearby vehicles are thus ‘connected’

(V2V) connectivity has the potential to:

- Mitigate traffic congestion
- Increase fuel economy
- Improve vehicle safety

https://blog.rgbsi.com/what-to-know-about-v2v-technology
Connected Automated Vehicles

Problem:
Current lack of control framework with provable safety guarantees for V2V vehicles

Project Objectives:
1. Implement V2V safety-critical controller via control barrier function (CBF) framework
2. Apply CBF framework to vehicle models of higher fidelity
3. Simulate and evaluate controller in MatLab with varying models and parameters
Control Barrier Function Framework

Define CBF Safety Function:

\[h(x) = d - r \]

- \[d\] = distance from vehicle to obstacle center
- \[r\] = radius of obstacle

Vehicle safe if \(h(x) > 0 \)
Control Barrier Function Framework

$h(x)$ implemented into the model through velocity/acceleration inputs.

Controlling velocity/accel. is not always enough for safety-critical behavior. In this case, must “extend” safety function:

$$h_e(x) = \frac{\partial h(x)}{\partial x} f(x) + \alpha(h(x))$$

Vehicle safe if $h_e(x) \& h(x) > 0$
Need to apply the safety function to a vehicle model.

Cars are very complicated.

The vehicle can be more simply modeled as:

1. A point
2. A unicycle
3. A bicycle
Vehicle Models

- Integrator (point) (unconstrained movement)
- Unicycle (pivot in place)
- Bicycle (front wheel steer)

Methods

Integrator (point) (unconstrained movement):

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\end{bmatrix} =
\begin{bmatrix}
0 \\
0 \\
\end{bmatrix} +
\begin{bmatrix}
1 \\
0 \\
\end{bmatrix} \begin{bmatrix}
k_{s1} \\
k_{s2} \\
\end{bmatrix}
\]

Unicycle (pivot in place):

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\dot{x}_3 \\
\dot{x}_4 \\
\end{bmatrix} =
\begin{bmatrix}
x_3 \cos (x_4) \\
x_3 \sin (x_4) \\
0 \\
0 \\
\end{bmatrix} +
\begin{bmatrix}
0 \\
0 \\
1 \\
0 \\
\end{bmatrix} \begin{bmatrix}
k_{s1} \\
k_{s2} \\
\end{bmatrix}
\]

Bicycle (front wheel steer):

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\dot{x}_3 \\
\dot{x}_4 \\
\end{bmatrix} =
\begin{bmatrix}
x_3 \cos (x_4) \\
x_3 \sin (x_4) \\
0 \\
0 \\
\end{bmatrix} +
\begin{bmatrix}
0 \\
0 \\
1 \\
0 \\
\end{bmatrix} \begin{bmatrix}
k_{s1} \\
k_{s2} \\
\end{bmatrix}
\]

https://www.statebicycle.com/products/delfin-core-line
Vehicle Models

Integrator (point) (unconstrained movement)

Unicycle (pivot in place)

Bicycle (front wheel steer)

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\dot{x}_3 \\
\dot{x}_4
\end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} k_{s1} \\ k_{s2} \end{bmatrix}
\]

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\dot{x}_3 \\
\dot{x}_4
\end{bmatrix} = \begin{bmatrix} x_3 \cos (x_4) \\ x_3 \sin (x_4) \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} k_{s1} \\ k_{s2} \end{bmatrix}
\]

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\dot{x}_3 \\
\dot{x}_4
\end{bmatrix} = \begin{bmatrix} x_3 \cos (x_4) \\ x_3 \sin (x_4) \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \\ x_3 \end{bmatrix} \begin{bmatrix} k_{s1} \\ k_{s2} \end{bmatrix}
\]

\(k_s (x) = \text{“Safe controller” inputs, dependent on } h(x) \)

https://www.statebicycle.com/products/delfin-core-line

8
Characteristic Controller Behavior

Results

Integrator Model Trajectory

Unicycle Model Trajectory

Bicycle Model Trajectory

Obstacle

Obstacle

Obstacle
1. Initial Conditions That Do Not Satisfy the Safety Condition

- If $h_e(x), h(x) > 0$ initially, safety guaranteed for all time. If $h_e(x), h(x) < 0$, may have collision.
- $h(x) < 0$ only if vehicle occupies same space as obstacle.
- Initial velocity can cause $h_e(x) < 0$, violating safety condition.
Characteristic Limiting Behaviors

2. Controller Switching Position

- At some point, vehicle switches from nominal control $k_n(x)$ to safety control $k_s(x)$. $k_n(x)$ optimal in non-safety-critical situation.
- Case shown: vehicle wants to drive to $x = 10$, but must stop at barrier at $x = 5$.
2. Controller Switching Position

- The controller switches later with increasing α.
 - Large α could pose problem for real world vehicles, which cannot react immediately.
- For $h(x)$ barrier, switching position only depends on position.
- For $h_e(x)$ barrier, switching position depends on position and velocity (time derivative).
2. Controller Switching Position

- The controller switches later with increasing α.
 - Large α could pose problem for real world vehicles, which cannot react immediately.
- For $h(x)$ barrier, switching position only depends on position.
- For $h_e(x)$ barrier, switching position depends on position and velocity (time derivative).
3. Controller Freezing Case

- Freezing case = vehicle stops at obstacle instead of driving around it. Safe but undesirable.
- Freezing is prominent when obstacle case is severe.
- Freezing is prominent when angular gain is high and lateral gain is ~0.1 to 0.2.
Characteristic Limiting Behaviors

3. Controller Freezing Case

- Freezing case = vehicle stops at obstacle instead of driving around it. Safe but undesirable.
- Freezing is prominent when obstacle case is severe.
- Freezing is prominent when angular gain is high and lateral gain is ~0.1 to 0.2.

\[k_n^1 = k_3 (x_{3g} - x_3) \]
\[k_n^2 = k_2 (x_{2g} - x_2) - k_4 \sin(x_4) \]
Significance

Identification of parameter conditions under which control barrier function (CBF) framework is/isn’t desirable is useful for engineering V2V safety guarantees.

Key Findings:
- Results are largely general, not model-based.
- For extended barrier, initial velocity may cause violation of safety condition.
- Higher α causes later switch to safety-critical control.
- High angular gain and ~0.1 to 0.2 lateral gain may cause freezing.
Next Steps

- Apply CBF framework to models beyond bicycle model
- Characterize behavior for multiple and dynamic obstacles
- Analytical characterization of switching and freezing surfaces for higher fidelity models
- Investigate why certain lateral gain is conducive to freezing

Acknowledgements

Prof. Gabor Orosz | Mentor & Advisor
Anil Alan | Mentor
Dr. Tamas Molnar | Mentor

Dr. Eric Johnsen & RISE Faculty
Rachel Armstrong-Ceron, Dr. Jason McCormick & Engineering Honors Faculty
References

Vehicle can be modeled in the state space form:

\[\dot{x} = f(x) + g(x)k_s(x) \]

\[\dot{x} \] = Time derivative of “states” (position, heading angle, etc)

\(k_s(x) \) = “Safe controller” inputs, dependent on \(h(x) \)

\[k_s(x) = k_n(x) + \max\left\{0, \frac{-a(x)}{||b(x)||^2}\right\} b^T(x) \]

\(a(x) = \frac{\partial h(x)}{\partial x} (f(x) + g(x)k_n(x)) + \alpha(h(x)) \)

\(b(x) = \frac{\partial h(x)}{\partial x} g(x) \)

\(k_n(x) \) is nominal controller (when safety control is unnecessary)
Control Barrier Function Framework

\[k_s(x) = k_n(x) + \max \left\{ 0, \frac{-a(x)}{||b(x)||^2} \right\} b^T(x) \]

\[a(x) = \frac{\partial h(x)}{\partial x} (f(x) + g(x)k_n(x)) + \alpha(h(x)) \]

\[b(x) = \frac{\partial h(x)}{\partial x} g(x) \]

If \(b(x) = 0 \), then \(k_s(x) = k_n(x) \)!

- In this case, safe controller has no effect
- Need to “extend” the barrier in this case

Characterization of Vehicle
\(k_{s2} = \tan(\delta) \)

Model:

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\dot{x}_3 \\
\dot{x}_4
\end{bmatrix} = \begin{bmatrix}
x_3 \cos(x_4) \\
x_3 \sin(x_4) \\
0 \\
0
\end{bmatrix} + \begin{bmatrix}
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & \frac{x_3}{l}
\end{bmatrix} \begin{bmatrix}
k_{s1} \\
k_{s2}
\end{bmatrix}
\]