
Project Title: MDP Industry-Sponsored Big Data Backbone for Advanced
Analytics

Sponsoring Organization: Union Pacific Railroad Company
Sponsor Mentor: Gena Van Osdel

Faculty Mentor: Bill Arthur
Team Member Names: Ann Stone, Celina Pan, Neil Kim, Ken Mahattanadul,

Conan Wu
Date: December 16th, 2022

Section 1: Project Introduction

Sponsor’s Information and Project Scope
Our sponsor, Union Pacific (UP), is the largest freight-hauling railroad company in the

world, operating 8,300 locomotives over 32,200 miles of rail track in 23 U.S. states. They own or
lease approximately 18,000 railcars. UP has several data pipelines that process messages on the
activity of their railcars into the Main Equipment Event Table. The Main Equipment Event Table
contains all of UP’s railcar event data. The Finance Team within UP uses the data in this table to
audit revenue and find missing billings. Currently, UP doesn’t receive messages on the activity
of their railcars after they move onto a different railroad company’s rail tracks, called going
“offline”. This lack of offline visibility hinders the efficiency of revenue auditing because the
Finance Team has to manually search Railinc, the provider of rail data to the North American
railroad industry, for missing billings and revenue. The goal of the UP MDP Cohort of 2022 is to
help solve this problem by providing UP with a more complete picture of their railcars’ activity,
including when it goes offline. To accomplish our goal, our solution strategy is to bring more
data pertaining to offline railcar activity from Railinc into UP’s database. To implement this
solution strategy, the main objective of our team will be to build a new pipeline capable of
automatically extracting, transforming, and loading (ETL) approximately 6-10 million offline
messages from Railinc per day. We will be working specifically with SWRPY87 messages,
which are a type of Railcar Tracing (RCT) message that detail the offline activity of a railcar,
including railcar location, timestamps, on road, to the road, and other railcar-specific data.
Another objective of our team is to produce a data analytics report complete with measurable
numbers that show the benefits of the SWRPY87 messages and their ability to increase railcar
visibility.

Project Background
To create such a pipeline for the massive amount of data UP has, Hadoop, a data framework

that was designed specifically to work with Big Data will be used. More specifically, the team
worked with two technologies within the Hadoop ecosystem: Hive and Apache Spark. The team used
Hive tables to store data to stay in line with common practices done at UP and make full use of our
mentor’s expertise. Simultaneously, the team used Apache Spark to read and write from our Hive
tables as well as complete data processing. Once data is stored and processed, HiveQL and Spark
SQL are used to query and analyze our data in a time and memory-efficient manner. While Spark is
compatible with many languages, the team used Scala for its conciseness and ability to combine the
best of both functional programming and object-oriented programming.

Project Organization and Management
The team is made up of five student members, a faculty mentor, and 4 sponsors. We have

decided to work together as a team on this project without subteams. We will be using JIRA to keep
track of short and long-term tasks while maintaining a record of the previous and current code on Git.
Weekly, our team will hold meetings to discuss individual and overall project progress.

Each week, student members have responsibilities that are rotated amongst each other. The
scribe of the week has the responsibility of writing down all the notes we talk about during our
meetings to be able to reflect on them afterward. The leader of the week has to take on the
responsibilities of creating an organized agenda and leading the meeting while making sure to stay on
agenda. Since the scribe took notes on everything said during the meeting, they are most prepared to
be the leader of the next meeting. This creates a rotation where the scribe becomes the leader and a
new scribe is chosen for the following meeting. We have chosen to meet over Zoom for both the
sponsor/faculty and full student team meetings. We have created a student and mentor Google Drive
for all weekly agendas, follow-ups, slides, weekly roles, and scribe notes. To share files and
communicate with the team and sponsors, we will primarily be using Microsoft Teams.

Project Deliverable
We coded a data pipeline that obtains the raw SWRPY87 messages from Railinc, extracts

the required information, transforms the data, and loads it into the Main Equipment Event Table.
Below is a diagram showing the 6 primary steps in our data pipeline. The cylinders represent the
data tables used in our project. Please note that step 7 is our stretch goal and will be covered later
in this section. The numbering of steps in the below diagram also corresponds to the
Requirements in Section 2: Detailed Discussion of Requirements.

The process of taking in messages sent by Railinc and storing them in a receiver table has
already been completed by our sponsors. Therefore, this step is considered out of scope. The 7
numbered steps within the diagram, on the other hand, are all within the scope of this project.

The implementation for steps 1-5 has been completed and our code has passed a set of
test cases and preliminary audits. This means we have completed our first two deliverables:
complete code for the pipeline and documentation on our project. To officially validate these

steps, our code needs to pass a set of audits for 6 months of January 2022 - June 2022 data.
Validation progress and details can be found in Appendix B and C. Step 6: Data Analysis
corresponds with our third expected deliverable: a Data Analytics report on the benefits of
SWRPY87 messages. Out of the tasks required to complete this step, the cohort has learned
Tableau, met with the Finance Team to gain a basic understanding of what is expected in the data
analytics report, and created a startling report.

As detailed in the above paragraph, we have delivered all three of the expected
deliverables for our ETL pipeline. After this, the UP MDP Cohort moved on to our stretch goal:
creating an additional queue of railcar data for specific railcars to run on the same pipeline. We
can receive data more frequently from Railinc if we specify only a few specific railcars. Due to
this, creating an additional queue for specific railcars allows us to provide the Finance Team with
more real-time data, which can expedite the revenue auditing process. The two deliverables for
the stretch goal are the code for the queue and appropriate documentation for the code. We have
completed the portions of our stretch goal, by creating an architecture that connects the Finance’s
backend system to the queue that would send the specific railcar request message. However, we
were not able to fully code up a pipeline that would automate the request of the interested
railcars. We did document our progress and findings and handed them off to the engineers at
Union Pacific.

Section 2: Outline of the Project Requirements

Since this was a year-long project where the team worked with the sponsored company
Union Pacific. The team has developed a set of requirements to ensure the understanding of the
project’s expectations between the sponsors and the student team. In addition, the set of
requirements also helps confirm that the team was able to achieve the goals the sponsors had.
Following the structure of our data pipeline, we split our requirements into three subsections:
Original Data Pipeline, Data Analytics, and Real-Time Data Queue. This is the table that details
our requirements:

TABLE 2: Complete List of Requirements

Requirement
Number

Requirement
Section

Requirements Target &
Units Origin of Validation Method

1

Data Pipeline

100% raw messages parsed Sponsor Developed

2

100% of non-ghosted
messages have a unique
eqmt_init, eqmt_nbr, and

main_date_time

Sponsor Developed

3 > 98% messages with the
correct city and state names Student Developed

4

For each of the 6 matching
cases, find 2 random

examples of successful
matching

Sponsor Developed

5 All Audits on each day run
successfully Student Developed

6a

Data
Analytics

20% new messages everyday Student Developed

6b Find 5 most frequently offline
railcar carriers Sponsor Developed

6c 5% of new messages are from
tank cars Sponsor Developed

7 Real-Time
Data Queue

100% of requested messages
received Sponsor Developed

Section 3: Data Collection, Analysis Methods, and Requirements Validations

Due to a large number of requirements, we will only select the top three most critical
requirements and present how we collect and analyze data to validate them. The top three
requirements as indicated by the sponsors are requirement 3 (> 98% messages with the correct city
and state names), requirement 5 (all message audits on each day run successfully), and requirement 6a
(20% new messages every day). The tables below illustrate the team’s approach to each requirement.

Requirement 3: Correct City and State Names

Title: Data Pipeline Requirement 3 – Correct City and State Names

Specific User
Objective/Project
Requirement:

At least 98% of daily messages between January 2022 to June 2022 have
city and state names that match UP’s location data table (Data Pipeline
Subsection; Requirement 3)

Pass/Fail Definition: Pass: For all the days between January 2022 to June 2022, each daily
messages have >= 98% correct and matched city names

Fail: For any day between January 2022 to June 2022, each daily messages
have < 98% correct and matched city names

Validation Method: 1. Log in to UP’s virtual machine with the given credentials.

2. Navigate to (http://go/hue4test).

3. Login with UP’s credentials to access Hue4 for the test server.

4. Enter this SQL script into the Hive console.

http://go/hue4test

Title: Data Pipeline Requirement 3 – Correct City and State Names

select t3.load_date as load_date, t3.city_null as city_null, t4.city_not_null as city_not_null,
(t4.city_not_null / (t4.city_not_null + t3.city_null)) * 100 as correct_city_messages
from (select load_date, count(*) as city_null from
ede_train2_swrpy87_tmp_3_backlog_new as t1
where t1.load_date >= '2022-01-01' and t1.load_date <= '2022-06-30' and t1.city_crt is
null
group by load_date) t3
join
(select load_date, count(*) as city_not_null from
ede_train2_swrpy87_tmp_3_backlog_new as t2
where t2.load_date >= '2022-01-01' and t2.load_date <= '2022-06-30' and t2.city_crt is not
null
group by load_date) t4
on (t3.load_date = t4.load_date)
order by correct_city_messages asc;

5. Click the blue run button on the bottom left of the console to start the
query.

6. Wait for the query to return results (should return within 10 - 15
minutes depending on the availability of the server).

7. Once the query finishes running, results should show up under the
query console.

Title: Data Pipeline Requirement 3 – Correct City and State Names

8. Verify that for that date the number of messages with correct city
names is greater than 98% by observing the last column
(correct_city_messages). Because the results are sorted with ascending
values of correct_city_messages, if the results of the first few rows
return statistics that are greater than or equal to 98%, then the team has
successfully passed the requirement. Otherwise, if any of the statistics
is less than 98%, then the team has failed to meet the requirement.

Data Collected: There are four columns in the query results: load_date, city_null,
city_not_null, correct_city_messages.

Load_date is the date on which the messages were loaded into the data
pipeline. We often use this field to categorize the input messages.

City_null is the number of messages that the developed algorithm cannot
find a match with a correct city name in UP’s database.

City_not_null is the number of messages that the developed algorithm has
found that matches the correct city name in UP’s database.

Correct_city_messages is calculated by dividing city_not_null by the
summation of city_null and city_not_null. This gives the percentage of the
number of messages in which the algorithm was able to match with correct
city names.

Data Analysis: Since the query sorts the result with ascending values of
correct_city_messages, we would only need to check the first few rows of
our result as the number of messages with less correct_city_messages
percentage would show up first. The 98% target value is firm, meaning
that if any load_date has correct_city_messages that are less than 98%, we
would need to talk with our sponsors on re-evaluating the design algorithm
design for better data accuracy.

Requirement 5: All Audits run successfully for 6 months straight

Title: Data Pipeline Requirement 5 - All Audits run successfully for 6 months of
historical data

Specific User
Objective/Project
Requirement:

All of the audits run correctly and there is no failure in the pipeline with
that daily messages between January 2022 to June 2022

Pass/Fail Definition: Pass: For all the days between January 2022 to June 2022, all of the audits
run successfully. All messages that are processed in, equal the messages in
the end.

Fail: For any day between January 2022 to June 2022, one of the audits
fails in the pipeline.

Validation Method: 1. Log in to UP’s virtual machine with the given credentials.

2. Log in to the Test server on Superputty with UP’s credentials.

3. Navigate to /upapps/hdp/prede/ede-event-rct/bin to access the audit
scripts.

4. Run runSWRPY87ParserAudit.sh, specifying the load_date_start and
load_date_end as the arguments.

Command: ./runSWRPY87ParserAudit.sh “2022-01-01” “2022-06-30”

5. Document the application ID and wait for the audit to finish running.

Title: Data Pipeline Requirement 5 - All Audits run successfully for 6 months of
historical data

Here the application ID is application_1663599181433_2251.

6. Navigate to Hadoop Scheduler (http://go/hscheduler) and use the
application ID to look up the application.

7. Select the application log and scroll down to stdout section.

8. Check if there is a log output indicating a mismatched number of
messages, specifically "Mismatch source and dest message count. Sending
an email to the CORE team". If the error log message exists, then the team
has failed to achieve this requirement.

9. Repeat the process by running three other command line inputs on the
Superputty Test server at /upapps/hdp/prede/ede-event-rct/bin. These
inputs will include the start load date, end load date, source table, and
destination table:

Command 1: ./runSWRPY87AuditUtility.sh “2022-01-01” “2022-06-30”
"prede.src_rlc_eqmt_evnt_rct"
"prede.ede_train2_swrpy87_tmp_2_backlog"

Command 2: ./runSWRPY87AuditUtility.sh “2022-01-01” “2022-06-30”
"prede.ede_train2_swrpy87_tmp_2_backlog"
"prede.ede_train2_swrpy87_tmp_3_backlog"

Command 3: ./runSWRPY87AuditUtility.sh “2022-01-01” “2022-06-30”

http://go/hscheduler

Title: Data Pipeline Requirement 5 - All Audits run successfully for 6 months of
historical data

"prede.ede_train2_swrpy87_tmp_3_backlog"
"prede.ede_train2_swrpy87_stg_backlog"

10. Check the application’s output log after it finishes running for
mismatched messages error. If an error message is identified in any of
these applications, then the team has failed to meet this requirement.

Data Collected: The output log of each four audit applications.

Data Analysis: To validate this requirement, one would need to search through each of the
audit application’s output logs for a mismatched message error ("Mismatch
source and dest message count. Sending an email to the CORE team").
The target value for this requirement is that the number of messages
processed by the pipeline remains constant. Hence, any one mismatched
message error would indicate that our pipeline is either losing messages or
generating duplicate ones and would indicate a failure to meet the
requirement. If no error messages are found, then the requirement passes.

Requirement 6: 20% new messages every day

Title: Data Pipeline Requirement 6 - 20% new messages every day

Specific User
Objective/Project
Requirement:

20% of the messages processed each day between January 2022 to April
2022 is new

Pass/Fail Definition: Pass: For all the days between January 2022 to April 2022, 20% of the
messages in a given day must be new to the Main Equipment Event Table

Fail: For any day between January 2022 to June 2022, one of the days
have less than 20% new messages to be Main Equipment Event Table

Validation Method: 1. Log in to UP’s virtual machine with the given credentials.

2. Open up Tableau.

3. In your desired folder, or “Personal Space”, click “Create Workbook”.

4. Find the RCT data tables in the “Connect Data” pop-up. If the data is
not yet a source, ask a manager at UP to import it for you. Due to the high
volume of data, messages should be imported month by month (so each
data source is one month).

5. The column cycl_seq_nbr is what we use to determine if a message is

Title: Data Pipeline Requirement 6 - 20% new messages every day

new to the Main Equipment Event Table or not. In step 4, we match the
Main Equipment Event Table messages to our SWRPY87 messages.
Matched messages are given the Main Equipment Event Table
cycl_Seq_nbr. Messages that could not be matched with a message in UP’s
main equipment event table, aka a new message, are given the default
cycl_seq_nbr 999999999. That means matched messages will have a
non-default cycl_seq_nbr.

6. To calculate the number of new messages, we are going to create a new
field to our data by clicking “cycl_seq_nbr”, then “Create”, then
“Calculated Field”.

7. In the popup, name this new field “new_col”. The calculation is:
IF [cycl_seq_nbr]=999999999
THEN 1
ELSE 0
END

8. If the column “main_date” was not imported, you need to create another
“Calculated Field”, this time clicking “main_date_time”, then “create”,
then “Calculated Field” to create it.

9. In the popup, name this new field “main_date”. The calculation is:
SPLIT(STR([main_date_time]), ' ', 1)

10. The messages need to be grouped by the “main_date” to find the
overall percentages for each day. To do so, click “main_date” then
“Create” then “Group”.

Title: Data Pipeline Requirement 6 - 20% new messages every day

11. Click each main_date then click “Group”.

10. Now we have all the fields so it is time to create the graph. In the
“Columns” section, drag and drop the “new_col” field. We need to
calculate the percentage of new messages here by clicking “Edit in Field”.

Title: Data Pipeline Requirement 6 - 20% new messages every day

11. Edit the shelf to read:
SUM([new_col]) / (COUNT([cycl_seq_nbr]))

12. In the “Rows” section (below “Columns”), drag the grouped main_date
field we created.

13. Repeat this same process for every single month.

Data Collected: We will be analyzing the dates and cycl_seq_nbr of every SWRPY87
message from January 2022 to April 2022. We will also need some
messages from 90 days after March 31st, 2022. This is because there is at
most a 90-day delay between the date the message occurred and the date
the message is received by our pipeline. In order to run our check of 20%
new messages on a given day, we must process the 90 days following that
date to ensure we are running the check on all messages from that day.

Data Analysis: If our process fails to meet this 20% requirement on a given day, we need
to review how we determine matching messages and find messages that
were incorrectly classified as matching or not matching. We use Railinc as
our truth source to determine the correct classification. Since we get 6-10
million messages per day, it would be infeasible to validate the
classification of every single message on a given day. Instead, we are
going to check the messages that are on the border of the classification
line. In our project, we match 8 fields or message values, so perfectly
matched messages get a score of 8. We drew the classification line at a
matching score of 5, so messages with a score of 5-8 were considered
matched and messages with a score of 0-4 were considered not matched. If
our project fails to bring in 20% new messages on a given day, we will go

Title: Data Pipeline Requirement 6 - 20% new messages every day

through matching indicators 4 and 5 to evaluate if our classification line
needs to be shifted.

If our process succeeds, there is no further evaluation needed. We need to
present the findings to the Finance Team for their feedback.

Section 4: Project Impact and Concluding Remarks

Union Pacific initiated this project with the goal of giving the Finance team data that is
not currently available in their main data table. With this goal, the MDP team uses data
engineering to extend UP’s current data pipeline for raw data from Railinc Corporation (the
provider of rail data for the entire North American rail industry), specifically, the project will be
dealing with the rail car tracing (aka RCT) data from Railinc, which is a data set about offline
train car events. Offline train car events refer to events that happen to individual UP train cars on
a non-UP rail track. UP currently has a data pipeline that continuously steams raw RCT data into
a table. The team has converted this current table of unprocessed RCT data into a new table of
processed data in the EDE database, which is a UP database of all railcar-related data. For the
data analytics part, our team has performed data analysis on the offline event data that we
pipeline, putting our findings into an analytical report.

Outcome: Exceeded Finance Team’s Requirement of 20% New Messages Everyday

Achieved Average:
5.5 million new messages/day

This graph shows the proportion of new messages the team pipelined into the EDE
system. As you can see, the project really had a significant impact on the data that is available to
Union Pacific’s Finance team. Initially, the sponsors and the Finance team wanted at least 20%
of the messages that we pipelined into the main data table each day to be new messages that are
about rail cars that have gone onto another rail company’s tracks and are not currently anywhere
in the main data table. However, about 75% of the messages we are pipelining in are new
messages to the main data table, meaning that each day, the team provides the finance team with
about 5.5 million new messages that can help them find missing billings. This makes their work

much faster as they don’t need to manually look for the same data on Railinc’s website anymore
and can instead just query from the main data table.

