
Introduction

Technological innovation has outpaced our privacy protection. As a result, companies

and organizations have more ways than ever to track our data. While we enjoy the convenience

of technology, we give up more of our personal information, such as our biometric identifiers,

behavior patterns, and preferences. Organizations sometimes misplace or exploit collected users’

information, rendering such users vulnerable. With unbounded data collections around us

extracting our information faster than ever, we lose track of where our data end up. Subsequently,

our data becomes more susceptible to unintended uses by those unknown to us.

My research aims to develop different mediators allowing users to control the amount of

information they provide when using technology. The starting point of my research will be

analyzing voice assistants such as smart speakers. A smart speaker is a loudspeaker connected to

the internet with an integrated virtual assistant controlled by spoken commands, activated by a

wake word. 94.9 million smart speakers, such as Amazon Alexa Echo and Google Home

Assistant, are installed in the US [1]. This massive scale of smart speaker usage makes people’s

preferences, voices, and daily activities accessible to other companies and open to unwanted

exploitation. To combat such an issue, I propose placing a mediator such as a chip with privacy

preservation interventions inside devices to protect more of customers’ data. I intend to apply my

research in coordination with the National Institute of Standards and Technology (NIST) to

motivate systemic changes in business behavior. The mediator can help NIST determine

reasonable criteria to set a benchmark for their NIST Privacy Framework that “helps

organizations answer fundamental questions: How are we considering the privacy impacts to

individuals as we develop our systems, products, and services [2].” Products with mechanisms

implemented to preserve privacy following the discovered benchmark should receive privacy

labels issued by NIST. As a result, when customers purchase products with privacy labels from

NIST in the future, they know that such products have approved methods to retain more of their

data.

In terms of broader impact, there has not been an accepted mediator placed between users

and voice-assistant devices, and this research aims to be the first one that sets a precedent.

Suppose the mediator can carry out the discussed solutions in an efficient manner. In that case,

NIST can apply our mediator to establish a benchmark for a privacy label that indicates the

product conducts reasonable privacy preservation. Subsequently, customers can discern products



that protect their privacy better. As a result, incentivized to obtain the privacy label from NIST,

companies are more likely to implement privacy-protection mechanisms similar to the mediator.

The starting point of my research is analyzing smart speakers, as I aim to create a paradigm for

establishing a benchmark for privacy preservation in the space of audio. However, I believe this

paradigm of analyzing how devices collect users’ information, finding ways to minimize

information released to the device, and maintaining functionality can extend to other spaces. For

example, devices that involve visual information, such as Ring Video Doorbell, can also improve

how they protect users’ privacy. Nutrition facts labels tell us what invisible ingredients we take

in when consuming foods. Similarly, privacy labels intend to inform users how their information

will be used and provide an essential guarantee of some data preservation. If we gradually extend

this privacy label to more spaces, privacy will no longer be just a bonus but a requirement and a

human right.

Outline of questions/problems addressed:

1. How to allow people to control when devices collect their information

2. Hide users’ information but still be able to interact with smart speakers’ virtual assistants

3. Mimic functionalities such as personalization in a safer way

Step 1: Allow people to control when devices collect their information

Evidence shows that a smart device’s actions do not match the user’s mental model. For

example, most people believe that smart speakers such as Alexa Echo only listen after people

activate them with a wake word [3]. However, there has been evidence indicating that Alexa

Echo starts listening before being activated or always listens to users despite the mute button [4].

The mismatch between users’ expectations and how the devices collect users’ information

revolves around when the device begins collecting users’ data. Therefore, the first step in the

mediator’s development is creating a mechanism that lets users know precisely when the device

is listening.

Step 1: Results

The approach I will investigate is loading an ML wake-word model on the mediator that

controls when the smart speakers’ microphones receive signals. Users can choose a unique wake



word that is unlikely to be mistaken for a word used in common speech, thus reducing the

chances of the smart speaker being unintentionally activated. Also, unless our wake word is

given, the smart speakers’ microphones will be shut. As a result, users will know that when they

do not intend to use the smart speaker, the smart speaker is not listening.

Step 1: Results

Figure 1. Illustration of implementation of an independent wake word detection implementation

An ESP can be utilized to conduct our own wake word detection. A wake word detection

model is loaded onto the ESP, shown at the bottom right of the diagram. The two available wake

words are “Sheila” and “Marvin” to activate the process of delivering a command to Alexa

(shown on the left hand side). Otherwise, by default, all microphones on Alexa will be shut, so

that Alexa will not be able to receive any audio information. Once the wake word is given, the

ESP will use GPIO to send signals to the Raspberry Pi to record the users’ command. If given

the wake word “Marvin”, no additional voice obfuscation will be conducted on the recorded

audio. On the other hand, if the wake word Sheila is given, a simple voice obfuscation method,

such as changing sampling rates, will be conducted. Once the users’ command is recorded, the

Raspberry Pi will send two signals to Alexa: one for unmuting an Alexa microphone, and the



other for activating Alexa, so that Alexa will be activated without giving the wake word “Alexa.”

Alexa will only be receiving audio information after the Raspberry Pi sends signals to Alexa. In

the current example, the recorded/altered user’s command is outputed outloud to Alexa. For

future work, the recorded/altered user’s command will be delivered through the microphone

stream, so that they do not need to be outputed outloud. As a result, the process of using a smart

speaker will be the same as before, except that users will use a different wakeword. This process

allows users to control precisely when smart speakers are listening. For future work, I will try to

find a microprocessor that is robust enough to conduct the wake word model, audio recording,

and voice obfuscation all in one. Hence, as a proven concept, with reasonable computational

power and affordable hardware, users will be able to know exactly when smart speakers are

listening.

Step 2: Hide users’ information but still be able to interact with smart speakers’ virtual

assistants

Smart speakers send users’ spoken commands to the cloud without informing users

explicitly. Also, additional functionalities developed by third-party platforms, such as Alexa

Skills, could exploit users’ command messages and voices for their purposes. In step 2, I will

analyze interventions to minimize information released to smart speakers while interacting with

their virtual assistants.

Step 2: Results

One approach is loading an ML speech-recognition model onto the mediator to transcribe

users’ spoken commands, and then output transcribed messages in a different synthetic voice to

the smart speaker. This first method preserves the most privacy: it hides the users’ original voice

(timbre), speech intonation, and emotions. I will analyze the computational power and accuracy

of varying speech-recognition models since they will decide if virtual assistants can understand

the given command properly. The process is shown in the diagram below.



Another way will be using a voice conversion model, such as Gaussian-Mixture Model

(GMM), to output the users’ commands in a different voice directly. This second method retains

users’ speech patterns. However, direct voice conversions can more likely allow people with

different accents to interact with virtual assistants. That is because virtual assistants’

speech-recognition model is more robust than a lite version of a speech-recognition model likely

placed on the mediator. I will apply a speech-recognition model to evaluate the intelligibility of

the commands in the converted voices. Furthermore, I will use speaker recognition models on the

original and converted voice commands to check how similar they are. Hence, I can choose an

optimal voice conversion model by comparing the intelligibility and how different the converted

voices are from the original voices. To test the feasibility of the GMM voice conversion model,

we applied two existing audio datasets, M1 and F1. M1 includes voice samples from a typical

male, while F1 includes voice samples from a typical female.

Figure 3. The differences between M1 voice converted from F1 compared to the original M1 voice.



I utilized a one-hot encoded speaker recognition model. In essence, the model uses cosine

similarities of the audio samples to check if audio samples are from the same person. From the

above diagram, I illustrated that the converted M1 audio samples and the original M1 audio

samples have mean distances below the threshold. Hence, the machine considers that converted

M1 audio samples and original M1 audio samples are from the same person. This provides

evidence that GMM voice conversion can conduct personalization, where users can consider

registering a converted voice. Subsequently, each time the user interacts with Alexa, their

command will be converted to the registered voice and can hide their original voice.

Figure 4. The differences between M1 voice converted from F1 compared to the original F1 voice.

The above diagram showcases that the converted audio samples are very different from their

original audio samples. The machine is not able to tell where the converted audio samples came

from. Once F1 audio samples are converted to M1’s voice, the machine considers that the

converted M1 voice drastically different from the original F1’s voice. This illustrates that

machine learning voice conversion algorithms can reasonably hide users’ original voices.

The third approach is conducting randomized pitch shifts on the users’ voice command,

using methods such as Wavelength Similarity Overlap-Add (WSOLA). WSOLA requires much

less computational power and maintains great intelligibility. From my testing, Alexa could not

tell the correct speaker from the pitch-shifted voices, indicating some potential to conceal users’



identities through WSOLA. However, it might be relatively easy for companies to reverse the

pitch-shifted voices back to the original voices, thus exposing users’ original voices. Hence, I

will use speaker recognition models on the original and converted voice commands to check how

similar they are.

Figure 5. The differences between pitch shifted voices and original voices.

I recorded the audio samples of answers needed to register a user’s voice to Alexa. Subsequently,

I pitch shifted the original voice sample at different magnitudes, between 0.5 and 2.0.

The lower the magnitude, the lower the pitch, and vice versa. 1.0 represents the original voice and

original pitch. Similarly, I applied YOSO, the one-hot encoded speaker recognition model to check how

different the pitch shifted voices are from the original voices. Below a certain pitch shift magnitude, 0.75,

Alexa will not recognize human voice due to lack of intelligibility. Gradually, as intelligibility increases,

mean differences decrease. Once the pitch shift magnitude increases beyond 1.0, the mean differences

increases again. However, once the pitch shift magnitude surpasses 1.6, the increase in pitch shift

magnitude does not make increase mean difference. Above the pitch shift magnitude of 1.8, Alexa

considers the audio sample as inaudible. This approach shows that if we can pitch shift at random

magnitudes within reasonable ranges, Alexa might not be able to tell the speakers’ original pitch.

Step 3: Mimic functionalities such as personalization in a safer way

The mediator should still be able to process personalized requests. For example, users can

provide commands such as “play my song playlist,” and Google Home Assistant will know to

play the playlist from the correct speaker’s account, given the speaker’s voice. One way to set up



personalization and preserve privacy is to have the mediator create a one-to-one mapping

between a user’s voice and another voice. As a result, whenever someone talks to the smart

speaker, the mediator will automatically map that person’s voice to a different voice. This

requires the mediator to contain an ML speaker recognition model to identify the speaker and

correctly output the corresponding voice. Another approach is to have different wake words,

where each wake word matches a different voice. For example, “Alexa-one” is designated for the

first family member and matches a voice. Whenever “Alexa-one” is used to activate Alexa Echo,

it will receive the voice for the first family member and provide personalization.

Step 3: Results

Figure 6. Range of pitch shifts Alexa associates with each registered user

In the beginning, I registered my original voice to Alexa. Subsequently, I registered my voice at different

pitch shifts, 0.8, 1.3, and 1.5 to Alexa as well.

Using Alexa Developer Console and auto-clicker, I was able to automate the process of testing pitch

shift’s personalization capabilities. Using the Alexa Developer Console, all the Alexa responses will be

recorded on the web page. Applying the auto-clicker will open the microphone for recording by clicking

the microphone button on the Alexa Developer Console web page. There were 332 randomly pitch shifted

audio samples: randomly pitch shifted the audio between magnitude of 0.8 and 1.75. The original audio

sample includes the text, “Alexa, who am I,” which triggers Alexa to respond with the registered users

that Alexa thinks said the message. Syncing the Alexa Developer Console recording time and response

with the auto-clicker allows for generation of responses on the web page that can be easily analyzed.

Subsequently, the analysis indicates that there is very overlap between the pitch shift range associated



with each pitch-shifted registered user. Therefore, registering pitch shift voices can be a reasonable

method of concealing users’ original voices and maintaining personalized functionalities. As a reminder,

giving the wake word “Sheila” conducts voice obfuscation. A user applying the registered pitch shifted

voices can still conduct personalized requests, as each time they talk to the smart speaker, the mediator

will conduct pitch shift automatically to a designated registered voice, if given the wakeword “Sheila.”

Conclusion

The goal is to have a mediator in the form of a chip or embedded device placed within smart

speakers that preserve privacy in some form, as discussed. To make the mediator compact, the

wake word, speech recognition, speaker recognition, and voice conversion models will have to

be efficient for them to work together. Therefore, analyzing the different ML models will be

extensive, and field-programmable gate array (FPGA) will be used to speed up the ML models.

The results discussed above show promising solutions to allow users control when smart

speakers collect their information, how to conceal their original voice, and still maintaining

existing functionalities that depend on them registering their voices. Subsequently, we will try to

discover more powerful microprocessors that can do all three things together. In addition, I will

conduct user testing for each discussed method. The final mediator will find the balance between

privacy preservation, computational power, and usability. As a result, when manufacturers create

such a mediator on a large scale, because of economies of scale, the cost of developing such a

mediator will be very low. Hence, we will be able to make a convincing argument that it is

reasonable for companies to create and implement such mediators in their devices to better

protect users’ information. As a result, such devices will receive privacy labels, and consumers

can better discern products that protect their privacy.

Citations

[1] US: Smart speaker installed base 2018-2022, Statista. 2022.



[2] NIST PRIVACY FRAMEWORK, Nist.gov, 2020.

[3] J. Lau, B. Zimmerman, F. Schaub, ACM on Human-Computer Interaction, 2018.

[4] U. Iqbal. et al. Arxiv, 2022.


