
Schedule Recommender Tool for Servicing Express
Jeremy Flics and Nisarg Polra

Wholesale Lending Services (WLS) is a large division within JPMorgan Chase (JPMC) that
services thousands of loans every year. With about 2,200 WLS employees across the world,
having an analytics tool that monitors and evaluates the task work assignments using current
and historical data will increase the overall productivity of the organization. As part of the
Multidisciplinary Design Program (MDP), our team provided a machine learning model
integrated with a stand-alone application that predicts future workload and recommends work
assignment to improve on-time delivery. Currently, supervisors have limited visibility of the data
and do not have access to any tools to support this decision-making. We aim to provide better
access to crucial information for allocating work, such as the volume of tasks, and number of
available employees with a certain skill set to assist supervisors in making strategic decisions.

Our model was integrated with a data pipeline and a user-friendly front-end application to assist
supervisors in assigning cases to processors. The machine learning model was trained on data
from an internal database which holds long-term historical data. After training, the model runs in
the back-end using recent short-term data to make predictions while the supervisors access the
user-friendly GUI where statistics and graphics based on the predictions are displayed. We
provided additional functionality for supervisors to be able to configure the tool to display
information according to their specific needs.

Success was measured based on model performance and reliability, seamlessness of
integration into existing user interfaces, and usability testing to determine how useful the tool is
for supervisors in making strategic work allocation decisions. We selected metrics to assess
performance, including accuracy, AUC, precision, recall, specificity, and F1 score. Ultimately, our
“North Star Metric” was the average completion time of loan processing, as aligned with the
business-wide intention of WLS.

Overall, the main goal of the project was fixed by our mentors. This goal is to support
supervisors in the WLS division in making strategic decisions about allocating work to
processors across the world. Moreover, the technology and the database used to implement our
ideas both come from internal sources. A joint responsibility of the sponsor mentors and our
team was to decide the primary use cases that our model will target: forecasting the volume of
tasks, making recommendations about allocating work, etc. Our team had the authority to make
decisions regarding the implementation of the model, while being informed by our faculty and
sponsor mentors.

Features Offered:

1) Machine Learning model for forecasting the volume of loan servicing requests 3 weeks
in advance.

2) Permanent schedule for the “follow the sun” model.
3) Data Pipeline built using AWS services
4) User Tool built using React and TypeScript

Initially, we divided ourselves into four sub-teams: analysis, machine learning, user tool design,
and data pipeline architecture. Substantial progress was made on a statistical analysis of our
data to recommend a baseline schedule. Insights generated from the analysis informed our end
of summer presentation to the WLS leadership team, who are now using our work to continue
generating a baseline schedule. With our analysis in production, we are now able to direct our
full focus to iterating on our user tool.

From a machine learning perspective, we compared the performance of several models before
developing one. Of our early prospects, long short-term memory (LSTM), and decision trees of
various types were the most promising. After comparing the models using walk forward
validation, we determined that gradient boosted regression trees (GBRT) were the best choice.
This is because they had the lowest error on our dataset which we think is due to the fact that
they tolerate a combination of categorical and numerical variables better than the other models.
Our GBRT model had a mean absolute percent error of 26.9%. While this is above our target
value, we have currently deprioritized model optimization in favor of completing our system
architecture. When we do return to modeling in the latter half of the semester (weeks 24 - 29),
we think our goal can be achieved by using hyperparameter tuning techniques like grid search.

For the user tool we worked iteratively on designing and mocking up a user interface (UI),
getting feedback from our product owner and a user experience designer along the way. Based
on our final mockup, we completed this interface using React as well as UI Toolkit, an internal
user interface library that adheres to JPMC style conventions. In fact, one stretch goal that we
think we will hit close to the end of the semester is giving the user the option to look at volume
predictions for payments and advances separately. The team working on the user application
are now transitioning their focus to writing the algorithm that transforms volume predictions into
schedule recommendations.

Figure 1. Landing page of the user application. An alert count is on the top with a date selector
underneath. Two graphs are shown. The left shows the hourly loan servicing request volume

prediction of the selected day. The right shows the schedule recommendation for that day.

In order to connect our application to the model, we had to design a data pipeline. Given that
our tool is designed to only be used by senior management, we thought running a server would
be costly and wasteful. Instead, we developed an event-driven serverless solution that hosts our
tool as a single page application (SPA). In line with firm standards, this architecture was
designed using Amazon Web Services.

Development Process

In this project we intended to create a predictive tool to assist JPMC processors with their tasks.
Specifically, we leveraged large amounts of historical data to inform a tool that performs the
desired task independently. Broadly, machine learning is a branch of artificial intelligence in
which systems can learn from data, identify patterns and make decisions, largely independent of
human intervention. In the following section, we will discuss the machine learning workflow,
model methods, feature selection, and success evaluation.

The Workflow of Building a Machine Learning Product
Like any project, product management strategies are important to the development of a
machine learning model. Before getting wrapped in the weeds of massive databases and
intense algorithms, it’s important to establish the key steps of creating your model. Below, we
find an example outline of a machine learning workflow, sourced from Yael Gavish’s Medium
article, “Developing a Machine Learning Model from Start to Finish.” This is the workflow that
our team committed to, and the project management style with which we have become familiar.

1. Ideation
a. Align on the problem
b. Choose an objective function of the model
c. Define quality metrics
d. Brainstorm inputs/features

i. Determine Phase #1 Features
ii. Determine Phase #2 Features

e. Create a backup plan + product.
2. Data Preparation

a. Data collection
b. Data cleanup and normalization

3. Prototyping and Testing
a. Build prototype
b. Validate and test prototype
c. Iterate

4. Productization
a. Increased data coverage
b. Scale data collection
c. Refresh data
d. Scale models
e. Check for outliers

5. Build Out + Delegate Fulfillment of System Requirements
a. Real time requirements.
b. Data and model dependencies.
c. Data collection frequency.
d. Data collection methods.
e. Pipeline Dependencies

6. Presenting Results to Stakeholders
a. Backdating
b. Explaining your methods and inputs
c. Exposing some of the underlying data
d. Simplifying and only showing select results to facilitate decision making
e. Defining the new metric (ie uplift, or whatever the model outputs)
f. Precision doesn’t always matter.
g. Strategically providing access to raw data.

7. Future
a. Ensure sustainability of the model
b. Share further product ideas

Feature Selection
In machine learning, feature selection is the process of selecting features (also called
“characteristics” or “variables”) to be factored into your model. Any machine learning problem
starts with massive amounts of data, with each datapoint having a multitude of features to its
identity. If you’re trying to answer or predict a certain feature of a datapoint, it is reasonable to
only take related features into account while training your model.

As a simplified example: let’s say we have a massive historical database of fruit that has been
sold in a grocery store. Each datapoint has a fruit name, weight, color, shape, flavor, farming
region, time of sale, date of sale and grocery store location. Now, we want to train a model on
this historical data to classify new data points. These new data points have all the same
features as listed before, but without the fruit name. This is what the model is trying to predict. In
building this model, we would want to include features so that the model can learn, for example,
that if a fruit is 70 grams, red, round, grown in washington, and sweet, it is likely called an
“apple.” However, we do not want to include time of sale, because it is likely largely irrelevant to
the fruit name. Also, we do not want to include both farming regions and grocery store locations,
because these features might contribute the same insights to the model.

This was a simple example about how a data scientist may approach feature selection for a
model. However, there are many more considerations and strategies when it comes to feature
selection. As a general rule, adding more features makes models more complex, and thus
increases the chance of overfitting. When overfitting happens, the model is suited to give ideal
output on the training dataset, but the model fails to generalize to data it has not seen. To allow
for simpler models and better generalizations – especially with high-dimensional datasets – it’s
wise to cut out all features except for the most useful ones. To do this, there are three basic
supervised methods.

First, and often the simplest of the three: Univariate Statistics. This method computes whether
there is a statistically significant relationship between an individual feature and the target (ie, the
thing we’re trying to predict). The features related with the highest confidence are selected.
Though this method is simple and quick, it fails to consider multivariate relationships in which

two features may contribute to the model when combined, but not when independent (Müller,
2018).

Next, Model-Based Feature Selection uses a supervised machine learning model to determine
the importance of each feature, and rank by the same. This method considers all features at
once, and is capable of capturing relationships between features that may contribute to the
model (Müller, 2018).

The final method is Iterative Feature Selection. With the highest computational cost, this tactic
involves a series of models, with each model containing varying feature subsets. As a model is
run, it determines the least important feature, creates a new model without that feature, and
runs the model again until a predetermined number of selected features has been reached
(Müller, 2018).

Beyond these three computational methods of feature selection, it is important to consider
expert knowledge – the heuristics and intuitions that people working in the field of application
often have and depend on. Returning to our apple example, a grocer may be able to recognize
that pineapples sell much more before on the first day of summer vacation. This is an insight
that a computational feature selection method may be unable to identify. But, if we add a
boolean feature indicating that a fruit was or was not sold on the first day of summer, we may be
able to factor that information into our model. Adding a feature does not force a machine
learning model to use it, and even if the first day of summer information turns out to be
noninformative for fruit names, augmenting the data with this information doesn’t hurt. With the
correct combination of these strategies and methods, feature selection can be an important
contributor to the construction and success of your model.

Training the Model
The first step in training a model is to split the dataset into three different categories: training,
validation, and testing. This is to ensure that we reserve some data for evaluating the model
performance on data that it has not seen yet. Testing the model on the same data it was trained
on does not accurately reflect its true performance. As a starting point, the dataset can be split
by randomly assigning 80% of the data in the training set, 10% in the validation set, and 10% in
the test set (Prasanna, 2020).

To establish a useful machine learning model, a model that can turn an input into a desired
output, we first need to conduct training. Training a model involves analyzing a training dataset,
which is a set of input data with the corresponding correct output data. Through training, the
model tries to learn the optimal parameter values that can generate the ideal output. However, it
is important to not train the model on the entire dataset because that makes it difficult to
evaluate the performance of the model.

Following the training dataset, we apply the validation dataset to tune the hyperparameters,
such as the number of hidden units in each layer for the Neural Network, or the regularization
factor to minimize overfitting, etc. Moreover, the validation dataset can help obtain some

performance characteristics. For example, for the classification models, the validation dataset
can provide performance measures such as accuracy, sensitivity, specificity, etc. (Prasanna,
2020).

Evaluating Success
The final stage is to apply the testing dataset to evaluate the performance of the model with its
final parameters and hyperparameters. This is done by first feeding each individual datapoint
from the test set into the model and recording the prediction. Then depending on the problem
and the model, different performance metrics can be used. For our project, these are the metrics
that best reflect the success of the model:

● Forecasting model to predict the volume of tasks in the future:
○ Mean Squared Error (MSE)：This metric measures the average squared

difference between the model prediction and the actual value across all data
points in the test set. A lower MSE indicates a better forecasting model (Jordan,
2018).

○ Root Mean Squared Error (RMSE)：RMSE is basically the square root of the
MSE. In some cases, it is beneficial to report the RMSE as opposed to the MSE
since the units of RMSE are the same as the desired output data (Brownlee,
2021).

● Classification model to assign tasks to processors (Jordan, 2018):
○ For binary classification (classifying as either A or B) or checking the presence of

a condition
■ True Positive: number of data points correctly predicted as having the

condition or belonging to category A
■ False Positive: number of data points predicted as having the condition or

belonging to category A but actually have the condition or belonged to
category B

■ True Negative: number of data points correctly predicted as not having
the condition or not belonging to category A

■ False Negative: number of data points predicted as not having the
condition or not belonging to category A but actually have the condition or
belonged to category A

■ Sensitivity (True Positive Rate): True Positive / (True Positive + False
Negative). Sensitivity measures among all the points classified as having
a condition or belonging to category A, how many were predicted
correctly

■ Specificity (True Negative Rate): True Negative / (True Negative + False
Positive). Specificity measures among all the points classified as not
having a condition or not belonging to category A, how many were
predicted correctly

○ For multi-class classification (Verma, 2021):

■ Accuracy: the number of points predicted correctly / total number of
predictions conducted

■ Weighted Accuracy: For a particular class, it receives more weight,
meaning if classified correctly, weighted accuracy would be higher than
the regular accuracy, or vice versa.

Machine Learning Methods
When constructing a machine learning product, it’s extremely important to select the correct
model method. If your selected model does not fit your data and problem space, any results
produced will be trivial and inaccurate. Most models fall under two categories: Regression or
Classification.

Regression
Regression is applying quantitative inputs to derive a linear relationship among the different
features to predict a final quantitative output. Below is an example of a regression model:

.𝑓(𝑥) = β
0
 + β

1
𝑒

𝑥
1 + β

2
ln(𝑥

2
) + β

3
𝑥

1
𝑥

3

Essentially, the goal of training for regression is to find the optimal values for β, so that f(x) on
average is as close as possible to the true value . The individual x values represent the
corresponding values of the particular features of one case. For example, if we are interested in
the number of species on an island, the predicted number of species can be considered as f(x).
We choose to use geographic information to predict the number of species. Hence, x1 can be
the area of the island, x2 can be the elevation, x3 can be average temperature, and we get the
following model:
Species Area Evaluation Temperature.= β

0
+ β

1
· + β

2
· + β

3
·

The goal of training will be finding the optimal values for β0, β1, β2, and β3, which describes the
relationship between number of species and the area, elevation, and temperature of the island.

Classification
Classification is the process of predicting the class given the input data. For example, predicting
whether an email belongs to the spam folder or not, predicting the correct animal in the image,
or predicting the type of loan given some information.

Typical classification algorithms include Decision Trees, k-Nearest Neighbors (kNN), Neural
Network.

Decision trees conduct binary classification, which is classifying something as either A or B.
From training, decision trees derive rules that divide the input into a subsection and ultimately to
either A or B (Asiri, 2018). For example, to classify if a fruit is a grape or an apple, you can first
ask if the color of the fruit is green or not, then ask if the fruit has greater than 5 seeds, then if
the fruit is greater than 1 pound, etc. The training process will decide the questions and order to
ask the questions to derive the answer efficiently and accurately.

k-Nearest Neighbors tries to find ways to group the different clusters, and inputs in the same
cluster are considered in the same category. The training process involves minimizing the
distance between input in the same temporary clusters and adjusting which cluster an input data
belongs to minimize the distances among input data in the same cluster. The number of clusters
is set by the user (Brownlee, 2020).

Neural network tries to find non-linear relationships between the features to find a value to
conduct classification. Often, neural networks conduct multi-class classification, which is that the
model can conduct prediction on more than 2 objects. For example, given a picture of an
animal, the model can predict whether or not it is one of a hundred animals it was trained on.

Figure 1. The first layer, made up of green nodes, is the input layer. The green nodes are
the values of each feature selected for a particular data point. The layer(s) in the middle
are the hidden layers. The final layer, shown as p in the above figure, is the output layer

(Verma, 2021).

The lines connecting nodes from different layers represent the weight assigned to each feature
feeding into the next layer. For example, the values going into the first red node in Figure 1 will
be the sum of all the input node values multiplied by their respective weights. After going
through the next layer, an activation function, a nonlinear function will be applied. For example,
an activation function could be Relu, where negative numbers become 0 and positive numbers
stay constant. The number of hidden layers can be set by the user. The output layer will have
the same number of output nodes as the number of different classes it was trained on. Each
output node in the output layer represents the probability that the data point belongs to a class,
and the output node with the greatest probability is the final prediction for the datapoint (Verma,
202). The training process involves some sort of gradient descent as described in the
optimization section.

Results and Discussion

Overall, our project was able to address several problems and inefficiencies with the scheduling
policy used by supervisors on a daily basis. The permanent schedule produced as a result of
our analysis was a starting point for the “follow the sun” model that has been desired by our
sponsor mentor. The analysis also provided a stable benchmark for our schedule
recommendations to be compared against. In the future, the permanent schedule can be
modified to increase focus on factors like processor happiness and consistency.

Moreover, our work on the data pipeline in AWS resulted in a valuable example for JPMC as our
team was one of the first teams to adopt the public cloud that the company desires to move to in
the future to save costs and reduce complexity. As a team, we faced several challenges due to
the lack of documentation and resources for this method within our sponsor organization.
However, this facilitated increased communication and collaboration with full time engineers to
get help in the office when needed. We reached out to the data scientist on our team on
countless occasions to understand the machine learning training process within JPMC. In
return, we shared valuable information with him when we understood how to host the machine
learning model on the cloud as that was a relatively new procedure at the time.

Finally, we were able to deliver an integrated user tool and API to our sponsor which received
immense approval from senior management. During the development process, we had a tight
feedback loop with our manager and product owner to ensure that we were meeting
requirements. This increased clarity and even though our project scope changed some times, it
prevented any differences in expectations during the concluding phases. This project was an
interesting learning experience and our team enjoyed implementing our classroom learnings to
an industry project.

Bibliography

Asiri, S. (2018, June 11). Machine learning classifiers. Medium. Retrieved January 30, 2022,
from https://towardsdatascience.com/machine-learning-classifiers-a5cc4e1b0623

Brownlee, J. (2020, August 19). 4 types of classification tasks in machine learning. Machine
Learning Mastery. Retrieved January 30, 2022, from
https://machinelearningmastery.com/types-of-classification-in-machine-learning/

Brownlee, Jason. (2021, February 15) “Regression Metrics for Machine Learning.” Machine
Learning Mastery. Retrieved January 30, 2022 from
https://machinelearningmastery.com/regression-metrics-for-machine-learning/

Gavish, Yael. “The Step-By-Step PM Guide to Building Machine Learning Based Products | by
Yael Gavish | Medium.” Medium, Medium, 25 July 2017,
https://medium.com/@yaelg/product-manager-pm-step-by-step-tutorial-building-machine-learnin
g-products-ffa7817aa8ab.

Jordan, J. (2018, August 25). Evaluating a machine learning model. Jeremy Jordan. Retrieved
January 30, 2022, from https://www.jeremyjordan.me/evaluating-a-machine-learning-model/

Müller, Andreas Christian, and Sarah Guido. Introduction to Machine Learning with Python: A
Guide for Data Scientists. O'Reilly Media, 2018.

Prasanna, S. (2020, September 24). A quick guide to managing machine learning experiments.
Medium. Retrieved January 30, 2022, from
https://towardsdatascience.com/a-quick-guide-to-managing-machine-learning-experiments-af84
da6b060b

Verma, S. (2021, October 5). Multi-label image classification with neural network: Keras.
Medium. Retrieved January 30, 2022, from
https://towardsdatascience.com/multi-label-image-classification-with-neural-network-keras-ddc1
ab1afede

https://towardsdatascience.com/machine-learning-classifiers-a5cc4e1b0623
https://machinelearningmastery.com/types-of-classification-in-machine-learning/
https://medium.com/@yaelg/product-manager-pm-step-by-step-tutorial-building-machine-learning-products-ffa7817aa8ab
https://medium.com/@yaelg/product-manager-pm-step-by-step-tutorial-building-machine-learning-products-ffa7817aa8ab
https://www.jeremyjordan.me/evaluating-a-machine-learning-model/
https://towardsdatascience.com/a-quick-guide-to-managing-machine-learning-experiments-af84da6b060b
https://towardsdatascience.com/a-quick-guide-to-managing-machine-learning-experiments-af84da6b060b

