
Background Volume Prediction

User Interface Design

One of the major goals of JP Morgan is to build a follow the sun
scheduling model that leverages their global workforce to meet
demand as it comes. However, supervisors in charge of staffing
certain tasks do not have the necessary line of sight into short-
term changes in request volume to schedule flexibly. As such,
scheduling is done statically across multiple offices during US
working hours. In particular, Our scope was restricted to
considering three offices in Chicago, Manilla, and Bengaluru all
working during Central Time standard working hours.

In this project we had to make multi-step ahead time
series predictions using relatively limited data. In our early
testing, two models showed promising results. Long Short
Term Memory (LSTM), and Gradient Boosted Regression
Trees (GBRT). Eventually we went with the latter,
because it had lower error metrics.

Our GBRT based model had a Mean Absolute Error of 4.6
which was about 26.7% of the percentage of hourly work
volume. Since our target to be production ready was
20%, this was a viable proof of concept.

Proposed Solution

Improving Long-Range 3D Object Detection Methods for Autonomous Box Trucks using Sensor Fusion
Jeremy Flics (Honors Capstone), Nisarg Polra (Honors Capstone), Claire Wan, Claire Tinker, Kristen Worden, Herbert Li, Kayvan Najarian (Faculty Mentor), Collin Peterson (Sponsor Mentor)

Our solution is two pronged. We first conducted a one-time
statistical analysis of historical data to recommend a new
baseline schedule that adheres to the follow the sun model. We
then built and ML driven tool to predict changes in request
volume and recommend adjustments to the base schedule up to
two weeks in advance.

Follow the Sun Schedule and Work Volume

System Design

Once volumes were predicted, we had to serve our
insights to stakeholders in an interpretable manner. To
do this, we got feedback from UI/UX designers at the
firm and came up with the following design. This frontend
was implement using React/Typescript and deployed to
AWS on a Kubernetes cluster.

Since our product is targeting only a few key users, and
only needs to be accessed a few times a day, paying for
dedicated server uptime did not seem worth it. As such,
we leveraged AWS services to design an event driven
system.

Throughout designing our system, we emphasized
principles of strong separation of concern between tasks
to improve interoperability. This was done because many
legacy systems in the firm are in the process of being
modernized, and we did not want to add complexity to
that process. Below is a, partially redacted, systems
diagram of our architecture.

