

Overview

What does this accomplish?

O Design Generation

- Extrapolatable to other physics
- Non-traditional Designs
- O Design Exploration
 - Better electric vehicles

Project Scope

In Scope	Out of Scope	
 2D design Single battery module CAD file representation of the final design Thermal and fluid analysis Temperature uniformity Temperature range Fluid pressure drop Integrated generative design software 	 3D design Multiple battery modules Physical prototype Variable Battery material BTMS size/shape Cooling plate material Coolant substance Replacing current supplier (Diabatix) 	

No significant changes since DR3

Provided Geometry, Conditions

	Given Conditions				
ID	Condition	Value			
1.1	Coolant	Dexcool (1:1 ethylene glycol:water solution)			
1.2	Volumetric flow rate	1 L/min			
1.3	Inlet coolant temperature	25 °C			
1.4	Ambient temperature	25 °C			
1.5	Heat dissipation rate	Top: 83.33 W and Bottom:104.17			
1.6	Dimensions	CAD representation has been provided by sponsor mentor			

Properties of 50/50 Ethylene Glycol/Water Mixture at 25° C:

- Density = 1065 Kg/m³
- Specific Heat Capacity = 3488.219 J/(Kg.K)
- Thermal Conductivity = 0.42 W/(m.K)
- Viscosity = $6.9 * 10^{-3} \text{ kg/(ms)}$

TABLE 2: Complete List of User Requirements (Top 3 critical requirements are indicated by ***)							
#	Name	Priority (High-1, Low-3)	Target	Origin of Validation Method			
	0.0 Minimum temperature at any point on battery surface	Sponsor has noted not of concern					
1*** Single Battery Module Conditions	1.1 Maximum temperature at any point on battery surface (T_{max})	1	<i>T_{max}</i> ≤ 40°C	Student Developed Tests			
	1.2 Absolute difference between maximum and minimum battery surface temperatures (Δ <i>T</i>)	1	<i>ΔT</i> ≤ 2.4°C	Student Developed Tests			
	1.3 Pressure difference of coolant between inlet and outlet (ΔP)	2	∆ <i>P</i> ≤ 1 kPa	Student Developed Tests			

Validation for Requirement #1- Single Battery Module Conditions

- 1.1. Maximum Battery Surface Temperature ($T_{max} \le 40^{\circ}$ C)
- 1.2. Absolute Difference Between Maximum and Minimum Battery Surface Temperature ($\Delta T \le 2.4^{\circ}$ C)
- 1.3. Pressure Difference of Coolant Between Inlet and Outlet ($\Delta P \leq 1$ kPa)

Figure 1. Cooling Plate for One Battery Module

Figure 2. Cooling plate geometry with a sample path for coolant flow

Validation for Requirement #1- Single Battery Module Conditions

Figure 3. (a) Battery Surface Temperature Distribution; (b) Pressure Distribution for Normal mesh

 T_{max} = 27.8°C ≤ 40°C ΔT = 27.8 - 25.4 = 2.4°C ≤ 2.4°C ΔP = 980 Pa ≤ 1 kPa

Design Optimization subteam status (cont)

COMSOL topology optimization problem minimizing pressure loss

Objective function

min. $a\Delta T + b\Delta P$ st. $T_{max} \leq 40^{\circ}$ $\Delta P \leq 1kPa$ a+b=1

Optimization Function

Minimize: $\Delta T(\mathbf{d})$, $\Delta P(\mathbf{d})$ where $T_{\text{max}} \le 40 \degree \text{C}$ $\Delta T = |T_{\text{max}} - T_{\text{min}}| \le 2.4 \degree \text{C}$ $\Delta P = P_{\text{inlet}} - P_{\text{outlet}} \le 1 \text{ kPa}$ $f(\mathbf{d}) = a\Delta T(\mathbf{d}) + b\Delta P(\mathbf{d})$

Optimization function defined by the Design Optimization Subteam: f(d) is an objective function where a and b is a penalization factor and a + b = 1 and **d** is a design variable vector.

