
RecipEZ Final Capstone Report
Cooper Hickmott

Table of Contents
Introduction ... 1

Outline .. 2

Web Hosting Investigation ... 2

Shared Web Hosting ... 3

Dedicated Web Server Hosting ... 5

Virtual Private Server Hosting ... 6

Serverless Hosting ... 7

Web Host Investigation Results .. 8

Front-End Implementation .. 9

User Interface Workflow ... 9

Technologies Used and Implementation Logic ... 10

Back-End Implementation ... 10

Technologies Used .. 10

Implementation Logic ... 11

Conclusion ... 12

References .. 12

Introduction

How do you share recipes with your friends and family? You might write them down on paper

and exchange them in person, maybe you have a shared google drive storing them all… how

much nicer would it be if you could use a website for that! RecipEZ will provide a place for

users to create, share and view their friend’s food and drink recipes from all around the world!

Users will login to their account using their Gmail, where they will then be able to upload

individualized food/drink recipes. A user’s profile page will act as their Cookbook where they

can browse their own recipes. Users will be able to view each other’s cookbooks through

following/follower requests.

As a computer science major in the College of Engineering, I knew I wanted to develop a web

application for my capstone project. Thus, I chose to create RecipEZ.

Outline

From my CSE education, I have experienced the beginning and middle stages of the software

development lifecycle many times (requirements definition/initial plannings to developing and

debugging the code). An area of the software development lifecycle I was lacking experience in,

however, is the final stage of deploying the software service for production use. This report will

investigate the different strategies and technologies available for deploying and hosting web

services on the internet as well as determine the desirable option for hosting RecipEZ.

Additionally, this report will explain the tools and thought process I used for implementing both

the front end (user interface) and the back end (data storing and fetching logic) of the website.

Web Hosting Investigation

RecipEZ requires reliable performance, meaning the website does not crash due to

server/network errors. An additional requirement for RecipEZ is the hosting service being low

cost, as this project is self-funded. RecipEZ should be secure; the website does not deal with

sensitive data per say, but having a secure server is always best practice. An additional desire of

recipe is scalability, meaning the website performs reliably as the user base grows and shrinks.

Upon investigation into the deployment of web services for production use, I found four distinct

hosting strategies to choose from: shared, dedicated server, virtual private server and serverless.

Shared web hosting is a hosting practice where multiple web services run on a single server.

Each user is given a certain portion of the servers resources and it is one of the most used forms

of web hosting. Dedicated server hosting consists of a web service running on a server that is

only hosting a single website/application. The server is completely dedicated to the

person/service that owns it, so there is no sharing of computing resources with other applications.

Like shared hosting, virtual private server hosting involves many different services running on a

single server machine; however, resources will not be shared in a first come first serve format.

Instead, specific resources are assigned to a specific web service, providing certain advantages

over shared hosting while not being too expensive ($10-$20 more per month than shared).

Finally, serverless architectures allow one to build and deploy web applications and services

without having to manage the physical server infrastructure. The programmer is responsible for

defining which services they are using, then the actual implementation of hosting is abstracted

away.

Shared Web Hosting

Shared web hosting is when a single server is the host for multiple websites. Each user is

allocated a portion of the server’s resources like disc space, databases, and operating system

accounts. In an article titled ‘Advantages and Disadvantages of Shared Web Hosting’ written by

the company Monster Host, the author discusses some of the advantages and disadvantages that

are encountered when using shared web hosting. The article explains how “Shared hosting is less

expensive than other types of hosting… because the physical server is being shared by many

people” (Monster Host, 2019). When a developer uses shared web hosting, they outsource the

heavy lifting aspects of setting up and maintaining a website to the service provider they choose.

This is beneficial as lots of developers are not interested in the heavy lifting aspect of

maintaining a server for a website. Shared hosting is also efficient. A website’s performance is

determined by several factors such as disk space and bandwidth. Shared hosting gives users the

option to buy more resources without having to go through a technical support team. Thus,

developers can scale and optimize their website as desired. The final advantage discussed in the

article is the ability to customize a website to suit one’s needs and desires through a control panel

interface provided by most web hosting providers.

However, shared hosting comes with its own set of disadvantages. The main disadvantage for

shared web hosting is security concerns. Hundreds, sometimes thousands of websites are using

the same physical server. Thus, a cyber-attack can affect all those websites relying on this shared

server. The issue is further propagated with the restriction of installing antivirus or firewall

software for your website, as shared hosting provides you with a platform on a server, not the

server itself. An additional disadvantage of shared hosting is that the resources are limited. A

physical server does not have unlimited resources, thus each website using the server is allocated

a set amount of those resources. If one website gets a lot of traffic, it will draw lots of the

server’s resources and other website’s performance can be negatively impacted, meaning users

would have difficulty accessing the application or the system could crash.

The affordability and convenience provided by shared web hosting are its main advantages,

while security concerns and performance unreliability are its main disadvantages. Shared web

hosting meets RecipEZ’ need of being low cost but fails to meet RecipEZ’ hosting need of

reliable performance.

Dedicated Web Server Hosting

Dedicated web server hosting uses a server that hosts a single website/application. This server is

completely committed to the individual who owns it and does not share any computing resources

with another site such as bandwidth and processing power. In an article titled “Pros & Cons of

Dedicated Server Hosting: Is It Worth To Get One?”, the author describes the advantages and

disadvantages encountered when using dedicated web server hosting. The article begins by

declaring “One of the advantages of dedicated hosting is no security threat from neighboring

sites as they don’t have (any neighbors)” (Yadav, 2022). When comparing dedicated hosting to

shared, it is clear dedicated has an advantage when it comes to security threats from neighboring

sites (sites on the same server), as there are not any neighboring sites on a dedicated server.

Additionally, dedicated servers allow for extensive control over the server as the user is paying

for sole ownership of the resource. Users are free to install any software or applications they

desire to fulfill their business needs or current demand of work. The final major advantage for

dedicated servers is performance reliability. Unlike shared hosting, traffic fluctuations do not

impact your website performance, as well as not having to share resources with any other

website.

However, dedicated web server hosting comes with its own set of disadvantages. Dedicated

servers are expensive, as they are exclusively owned by an individual. Additionally, using a

dedicated server requires the technical knowledge to set up, run and manage the server as these

responsibilities now fall on the developer. Finally, dedicated servers are not meant to scale. The

dedicated server is already a large machine, so if your web application needs to grow, it may

require moving to a larger server rather than simply allocating more computing resources.

The security and reliable performance provided by dedicated web hosting are its main

advantages, while the high cost and technical knowledge required are its main disadvantages.

Dedicated web hosting meets RecipEZ’ need of having reliable performance but fails to meet

RecipEZ’ hosting need of low cost.

Virtual Private Server Hosting

Virtual private server (VPS) hosting, like shared web hosting, consists of multiple websites using

a single physical server. However, unlike shared web hosting, resources are not allocated in a

first come first serve format. Instead, specific resources are assigned to an account, and that

account can use them however they desire. In an article titled “What is VPS? Pros & Cons of

VPS hosting”, the author describes how “virtual private server hosting offers a middle option

(between shared and dedicated) with some of the benefits of dedicated hosting without the high

cost” (Ehinger, 2020). VPS hosting can be either managed: the hosting company handles all

server related issues, or unmanaged: the responsibility of server administration is handled by the

developer. One of the advantages to VPS hosting is increased security compared to shared

hosting. Users can secure their partition of the server however they choose, and their application

will not be in a vulnerable position due to someone else’s actions on the server. Additionally,

VPS hosting allows for scalability, as an individual can upgrade to a larger set of resources.

Finally, VPS hosting offers reliable performance, as web applications are allocated a set amount

of resources. VPS does not have higher performance than dedicated server hosting though. Some

of the cons for VPS hosting are the cost, limited resources, and security concerns as described in

the previous paragraphs. These cons are expected however, as VPS is the middle ground between

shared and dedicated hosting, thus it will fall in between for cost, resource availability and

security protocols.

The security customizability, reliable performance and scalability provided by VPS web hosting

are its main advantages, while the medium/high cost, limited resources and neighboring site

security concerns are its main disadvantages. VPS web hosting meets RecipEZ’ need of having

reliable performance but fails to meet RecipEZ’ hosting need of low cost.

Serverless Hosting

Serverless hosting architectures allow one to build and deploy web applications and services

without having to manage the physical server infrastructure they run on. In a book titled “Hands-

On Serverless Applications with Kotlin” written by Hardik Trivedi and Ameya Kulkarni, the

authors describe serverless computing as “allowing (one) to build and run applications and

services without thinking about servers… everything required to run and scale your application

with high availability is handled for you” (Kulkarni, 2018). This paradigm allows developers to

focus more on the front-end functionality of a website or app, without worrying about back-end

administration functionality. Developers are still required to write all the logic they require for

their backend system; however, they do not manage how or where this code is executed on

physical servers. In an article titled “Serverless Computing: Uses, Advantages, and

Disadvantages”, the author defines four attributes all true serverless applications have: “Variable

in price, Self-maintaining, Scalability and Reliability” (Okta, 2019). Variable in price refers to

serverless architectures only charging the user for what resources they consume (when the code

is triggered by an event request), unlike a dedicated server which might charge by the hour.

Self-maintainability refers to the user not having to worry about server maintenance. Scalability

refers to how serverless architectures are designed to scale up and down continuously with no

client programming intervention. Finally, this technology is reliable as the products have built-in

high availability and fault tolerance features. Some of the disadvantages associated with

serverless technologies are Security/Privacy. You are entrusting another company to manage the

resources your application uses; thus, the security and privacy protocols used are inherently up to

that company. Additionally, it can be technically challenging to debug serverless architectures as

there are multiple distinct places to look for a bug.

The variability in cost, reliable performance, scalability, and self-maintainability provided by

serverless architectures for web hosting are its main advantages, while outsourcing the security

and data privacy implementations to a third party are its main disadvantages. Serverless web

hosting meets RecipEZ’ need of having reliable performance and meets RecipEZ’ hosting need

of low cost. Additionally, serverless web hosting meets RecipEZ’ desire of scalability.

Web Host Investigation Results

Below is a table summarizing the hosting options discussed previously. Some of the key columns

to note are Cost, Performance, Security Provided and Scalability. As stated before, RecipEZ

requires a web hosting option with low cost and high performance. Additionally, RecipEZ

desires a scalable and secure platform.

Type of Hosting Cost Performance Security
Provided

Scalability Technical
Knowledge
Required

Customizability

Shared Low Low/Medium Low Low Low High
Virtual Private Server Medium Medium Medium High Low High

Dedicated High High High Low High High
Serverless Depends

on resource
usage

High High High High High

Table 1: Serverless Hosting Desirable Option for RecipEZ

Figure 1: RecipEZ User Interface

Thus, RecipEZ will be implemented using Serverless technologies, as this option provides

reliable performance while being low cost. At this point, the next step for RecipEZ is developing

the website.

Front-End Implementation

User Interface Workflow

RecipEZ has three main pages: feed, explore and profile. The feed page acts at the “homepage” for

RecipEZ. Here, recipes posted by the logged in user or users that they follow will appear, that they can

then scroll and view as desired. The explore page will show other users on the website that the logged in

user is not currently following, providing them with a clickable button to follow said users. Finally, the

profile page will display user information, as well as the titles and images for recipes uploaded by that

user. A preview of these pages can be seen in the images below (Feed – left, Profile – top right, Explore –

bottom right).

Technologies Used and Implementation Logic

The front-end user interface for RecipEZ was developed using React with Redux-Sagas. React is a

JavaScript library for building user interfaces based on reusable components. Redux is a JavaScript

library for managing and centralizing application state. Redux-Sagas is a JavaScript middleware library

that allows the redux store to interact with resources outside of itself asynchronously. The Redux store is

a JavaScript object that contains the requested data for the web application. User interface components are

able to “subscribe” to the store, re-rendering whenever there is an update made to the store. This allows

the developer to have fine grain control over how the components on the website interact with each other

and the user. All data fetching and manipulation logic makes use of redux store and redux-sagas

middleware.

I chose to store session information in local browser storage. This allows a logged in user to close and

reopen their browser without having to login to the website again.

To deploy the front-end so it can be publicly accessible via the internet, I used AWS Amplify serverless

service. This service prompted me to simply connect the GitHub repository containing all the RecipEZ

code, and then upon any new commits to the repo, Amplify updates and redeploys your code to a server.

Thus, users are able to access your website at a given URL.

Back-End Implementation

Technologies Used

The back-end system for RecipEZ was implemented entirely using AWS serverless technologies.

I used a total of five services, that when combined together form a complete back-end for a

website. The services used were API Gateway, Lambda, DynamoDB, S3, and IAM. API

Gateway is a service for developers to manage RESTful APIs. This service handles all tasks

involved with accepting and processing HTTP requests, as well as provides a clean user interface

to see the various methods you have defined for a given resource. Lambda is a service where

developers organize code into functions, that are then invoked from other AWS services. An

example would be API Gateway calling a Lambda function on an HTTP request event, where the

lambda function handles the necessary logic for that specific endpoint. DynamoDB is a NoSQL

database service that provides fast and predictable performance, with seamless scalability.

DynamoDB record entries are in a <Key, Value> format, thus querying logic is handled in

lambda functions using pure JavaScript. S3 is a cloud object storage service that provides fast

and predictable performance with seamless scalability. I used S3 to store images uploaded by

users for their recipes. Finally, IAM is a service that helps secure control access to AWS

resources.

Implementation Logic

I chose to outsource session management with Google Sign-In, as I trust their security protocols

more than any system I would have developed myself for this project. Sign-In provides a session

token to the user, which lambda functions are then able to use to perform session management

logic with DynamoDB tables. All API requests are passed through an Authorizer function, which

verifies an authentic session exists for the given request in the database. All API request logic is

handled in Node.js lambda functions. These functions access DynamoDB table (key, value) pairs

to query desired request information. Finally, I implemented an independent file upload API

using API Gateway, Lambda, and S3 AWS services to store user uploaded images. CI/CD was

handled through GitHub actions, where pushes to the Main branch triggered the serverless API

to redeploy.

Conclusion

The main goal/focus of this capstone project, besides creating a fun recipe sharing website, was

exploring and learning how to use serverless technologies to implement a websites backend.

Serverless hosting architectures allow one to build and deploy web applications without having

to manage the physical server infrastructure they run on. Developers are still required to write all

the logic they require for their backend system; however, they do not need to worry about how or

where this code is executed on physical servers as that is the point of cloud computing. I have

found that all serverless technologies have four main properties: Variable in price, Self-

maintaining, Scalability and Reliability. Variable in price refers to serverless architectures only

charging the user for what resources they consume (when the code is triggered by an event

request), unlike a dedicated server which might charge by the hour. Self-maintainability refers to

the user not having to worry about server maintenance. Scalability refers to how serverless

architectures are designed to scale up and down continuously with no client programming

intervention. Finally, this technology is reliable as the products have built-in high availability

and fault tolerance features. Throughout this project, I have found the AWS serverless

technology to be extremely pleasant to work with, and I am confident I will use serverless

architectures in the future to deploy web applications.

References

Ehinger, B. (2020, October). What is VPS? Pros & Cons of VPS Hosting. Retrieved from
hostingjournalist: https://hostingjournalist.com/what-is-vps-pros-cons-of-vps-hosting/

Kulkarni, H. T. (2018). Applications with Kotlin - Develop scalable and cost-effective web
applications useing AWS Lambda and Kotlin. Packt Publishing.

Monster Host. (2019). Advantages And Disadvantages Of Shared Web Hosting. Retrieved from
Monster Host: https://monsterhost.com/advantages-and-disadvantages-of-shared-hosting/

Okta. (2019). Serverless Computing: Uses, Advantages, and Disadvantages. Retrieved from
okta: https://www.okta.com/identity-101/serverless-computing/

Yadav, S. (2022, September). Pros and Cons of Dedicated Web Server Hosting. Retrieved from
netforchoice.com: https://www.netforchoice.com/blog/pros-and-cons-of-dedicated-server-
hosting/

	Introduction
	Outline
	Web Hosting Investigation
	Shared Web Hosting
	Dedicated Web Server Hosting
	Virtual Private Server Hosting
	Serverless Hosting
	Web Host Investigation Results

	Front-End Implementation
	User Interface Workflow
	Technologies Used and Implementation Logic

	Back-End Implementation
	Technologies Used
	Implementation Logic

	Conclusion
	References

