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I. The Problem 

The supply chain has experienced more stress than ever before due to driver shortages and 

increased demand of e-commerce due to the COVID-19 pandemic [1]. Thankfully, autonomy is 

showing to be an increasingly prevalent solution to this problem [2]. Automating delivery 

vehicles allows for operation of supply routes without a driver and allows for more deliveries 

over a given amount of time. There are several companies competing in the “long-haul” stage, 

automating 18-wheeler trucks carrying goods across interstate lines from manufacturers to 

warehouses, and several companies competing in the “local delivery” sector, autonomously 

delivering goods from retailers to consumers’ residences with cars or smaller bespoke robots. 

However, nobody has automated the transportation logistics from warehouse to retailer, 

otherwise known as the “middle mile”. That is, until Gatik AI was founded in 2017. 

Gatik AI is the first autonomous trucking startup to focus on automating “middle mile” 

business-to-business delivery with driverless box trucks. They are currently operating with 

multiple partners such as Walmart in Arkansas, Sam’s Club in Dallas, and Loblaw in Toronto, 

frequently travelling on urban and suburban streets. Because other autonomous vehicle 

companies are either focused on automating large trucks primarily on highway driving or smaller 

autonomous vehicles for local delivery in urban and suburban areas, Gatik is the first company to 

bring autonomous trucks into regular operation within urban and suburban areas, and this comes 

with a unique challenge that this team was asked to help solve. 

 

II. The Problem 

Trucks are large. They require more space and time to perform the same actions that a car 

would do (lane changes, turns, etc.). As such, it is important that the driver of the truck is able to 



see far ahead to provide more time to make these decisions and then execute them, especially if 

there are vulnerable road users, or VRUs, in the vicinity of the truck. VRUs are entities that can 

be encountered on or near roads that do not have the protection of a motor vehicle or other form 

of protection in the event of an accident; these include pedestrians, cyclists, skateboarders, 

wheelchair users, traffic conductors, and road workers, to name a few examples [3].  

This translates over to Gatik’s autonomous box trucks. Because they operate in urban and 

suburban areas, they must be able to detect VRUs at a longer range than a smaller autonomous 

vehicle would due to their large size. Long-range 3D object detection methods to date have been 

used in the context of autonomous trucks mostly for detecting cars and not necessarily VRUs due 

to said trucks operating primarily on highways. Therefore, long-range 3D object detection with a 

focus on VRUs has not been a heavily explored topic within research; Gatik is one of the first 

companies to tackle this unique problem within autonomy.  

Over the course of the Winter 2022 and Fall 2022 semesters, this team worked on 

researching 3D object detection methods that can be applied to long ranges, specifically focusing 

on improving detection of VRUs (primarily pedestrians and cyclists) in the hopes of finding 

better ways for Gatik’s autonomous box trucks to detect VRUs sooner and have an appropriate 

amount of time to make and execute decisions as a result, improving the efficiency, and more 

importantly, the safety of their autonomous box truck operations. 

 

III. Solution Approach 

The key to detecting 3D objects, especially at long range, is sensor fusion. It is important to have 

multiple modalities of sensing, in order to have high fidelity data that can withstand inclement 

conditions. In the context of this project, the sensor fusion is between LiDAR sensors and 



monocular cameras. LiDAR uses laser projections to provide incredibly high-quality data about 

precise locations and distances of objects in an autonomous vehicle’s surroundings. However, at 

long ranges, the point clouds generated by LiDAR become very sparse, and thus less information 

can be garnered from it. This is where monocular cameras come in: data from RGB images are 

rich with features that can be extracted to “fill in” the gaps of the LiDAR data and provide a 

more complete picture of what is happening around the vehicle. 

 The general idea of LiDAR and sensor fusion techniques is to “enhance” one of the 

sensors’ data with the data of the other sensor and then pass that enhanced data into a processing 

method to produce bounding boxes for the objects in the scene to be detected, such as cars, 

pedestrians, and bicyclists. For the purposes of this experiment, the selected method enhanced 

the LiDAR point cloud with features of the image and then the point cloud is processed to 

generate bounding boxes for pedestrians, bicyclists, and cars for the 2D images in the test 

dataset.  

 

 

This was done through the PointPainting technique (visualized above), which first separates the 

different classes (cars, pedestrians, etc.) in the image through semantic segmentation, and then 



“paints” that information onto the LiDAR point cloud points, hence the name “PointPainting”. 

This enhanced LiDAR point cloud is then processed and bounding boxes are generated. 

 Due to the complexity of the codebase, however, we migrated about halfway through the 

project to MVXNet, a sensor fusion architecture that fuses camera and LiDAR data similarly to 

PointPainting, but with a codebase far easier to understand and modify.  

 

The MVXNet architecture is similar to PointPainting in that it uses a neural network to extract 

features from the 2D RGB image, enhance the point cloud with that information, and then 

process the improved point cloud to get bounding boxes as a result. With this architecture, we 

intended to attain our goal of improving detection of pedestrians and cyclists at long range by 

modifying this baseline architecture to perform better at this task. The MVXNet architecture is 

available in the MMDetection3D repository, which hosts a collection of object detection 

architectures that can be experimented with, trained, and tested on any dataset the user desires.  

 



IV. Setup For Development and Augmentation 

The computational setup involved a high-power Amazon Elastic Cloud Computing (EC2) 

instance, which had a GPU for improved training and testing performance for our architectures, 

so that anyone could access the computer and develop code, train, and test at any time. To make 

the MMDetection3D setup easier to move around and/or duplicate for experimentation, it was 

containerized via Docker. One Docker container was used for “control” setup, which contained 

the stock MVXNet architecture within MMDetection3D, and an experimental container was used 

for experimentation, where the augmented MVXNet architecture would be developed. 

 

V. Evaluating Architectures 

While using Gatik AI’s data recorded from routes run on their vehicles would be a better choice 

of dataset for this project, it was not properly packaged for training and testing usages (ground 

truth labels, etc.), so in the interest of time the best choice was a publicly available dataset. We 

elected to use the KITTI dataset for training, validation, and testing of our architectures.  

The KITTI dataset is one of the most popular datasets in the computer vision field in the 

subcategory of detecting objects in road scenes, and it contains 7,424 images split across three 

difficulty levels: easy, medium, and hard, where an increased difficulty corresponds to objects in 

scenes further away from the vehicle’s sensors, increased occlusion between the sensors and the 

objects in the scene, and increased truncation of objects. To focus on the “long-range” aspect of 

this project, we focused on performing well in the “hard” difficulty for 3D detection.  

 

 

 



VI. Evaluating Architectures: Training and Testing 

The KITTI dataset has 7,424 images in its training set to train architectures such that they can 

“learn” patterns and be able to make their own decisions (in this case, predicting agents in road 

scenes). It also has 3,769 unique images for its testing set, for evaluating the architecture’s 

performance after it “learns” from the training set on images that the architecture has not seen 

yet. When training, the architecture trains on the training set multiple times, and each iteration is 

known as an “epoch”. MMDetection3D by default setting trains its architectures for 40 epochs. 

This process on our EC2 instance would take approximately 30 hours as the architecture would 

train on an image 300,000 times in total. Testing only requires predictions to be made on the test 

set once, and this process would take approximately five minutes. 

 

VI. Evaluating Architectures: Performance Figures 

How can the performance of an object detection architecture be quantified? One of the most 

popular methods is calculating how well prediction bounding boxes overlap with ground truth 

bounding boxes. A measure for this IoU, or “Intersection Over Union”, which, as the name 

implies, equals the volume of the bounding boxes’ intersection divided by the volume of their 

union. The IoU is calculated by comparing a number of points between the prediction and 

ground truth bounding boxes; 11 points and 40 points are commonly used, we chose to use 40 

points in our calculations. If the IoU is greater than or equal to a certain threshold value, it can be 

considered a correct classification. For this experiment, we chose a threshold value of 0.5. From 

these values, an overall mean average precision can be calculated, denoted as mAP; this is a 

common figure chosen to represent object detection networks on a scale of 0-100. 

 



Augmented vs. Stock MVXNet Results 

Augmentations were made to the MVXNet architecture. Details of the augmentations made 

may not be discussed due to NDA.  

 After testing a trained stock MVXNet architecture and a trained augmented MVXNet 

architecture, below is a comparison of their performance scores. Note that these are performance 

figures for the 3D/Hard detection performance subsection of the KITTI dataset, using 40 points 

for calculating IoU, with an IoU greater than or equal to 0.5 counting as a correct classification. 

 

TABLE I. Performance Comparison of Stock/Augmented MVXNet Architectures 

 

Class 

Stock MVXNet mAP Augmented MVXNet mAP 

Ped. 61.69 73.28 

Cyclist 51.60 53.94 

Car 87.60 90.09 

 

As can be seen from Table I, there is an improvement of detection performance across all 

classes, but especially so with pedestrians. Approximately two points of improvement are 

observable across the Car and Cyclist classes, and the Pedestrian class sees an improvement of 

over 11 points, a significant improvement. One question that may arise is why cyclist detection 

does not see as significant improvement as compared to pedestrian detection. There are a number 

of factors that could contribute to this; the two most prevalent are likely the quantity of cyclists 

in the dataset compared to pedestrians and bounding boxes being larger with cyclist detection; 

while this decreases mAP it can be seen as providing an increased “safety margin” for planning. 



Below are three example scenes for visual results, with a base image, the stock MVXNet 

architecture’s predictions, and the augmented MVXNet architecture’s predictions. All prediction 

bounding boxes are shown in blue. 

 

Scene I. Intersection 

    Base Image                       Stock MVXNet                        Augmented MVXNet 

 

The base image of this scene on the left details an intersection with several pedestrians and 

cyclists crossing the street as well as a stopped car at said intersection. The stock MVXNet 

architecture only detects the stopped car, and none of the vulnerable road users. However, the 

augmented MVXNet architecture detects each of the pedestrians and cyclists. It is crucial the 

VRUs are detected such that the autonomous truck running this software can stop sooner and 

leave a greater margin of safety.  

Using the augmented MVXNet architecture would result in detection of these VRUs and 

safer behavior of the truck, whereas the stock MVXNet architecture would not detect them, 

resulting in potentially riskier behavior and possibly increased danger to the VRUs in the 

intersection. 

 

 

 



Scene II. Lone Cyclist 

    Base Image                      Stock MVXNet                         Augmented MVXNet  

The base image of this scene on the left depicts nothing in front of the vehicle on the road aside 

from a lone cyclist on the side of the road. The stock MVXNet architecture does not detect the 

cyclist, but the augmented MVXNet architecture does.  

With the stock architecture not detecting the cyclist, the truck believes it is free to drive 

however it wants in a legal manner, much like a human would. However, if there is a VRU 

detected, it must behave safer (i.e. slowing down, larger margin between the vehicle and VRU) 

to maximize the safety of the VRU. As the augmented MVXNet architecture ensures this 

happens but the stock architecture does not, this helps prove the augmented MVXNet 

architecture is better for long-range VRU detection. 

 

Scene III. Parked Cars w/ Pedestrian in Street 

    Base Image                 Stock MVXNet                       Augmented MVXNet 

       

The base image of the above scene depicts several parked cars and a pedestrian in the street. 



The stock MVXNet architecture detects the parked vehicles, but not the pedestrian. The 

augmented architecture detects both the parked cars and the pedestrian.  

 Similarly to the previous scenario, a lone VRU is present in this scene and the 

autonomous vehicle detecting said VRU plays a critical role in their safety. The stock 

architecture, not detecting the VRU, would lead the truck into thinking there is nothing in front 

of it except for parked cars, potentially resulting in not enough time to detect and stop for the 

pedestrian as it gets closer. The augmented architecture’s detection of the pedestrian further 

away allows more time for the truck to slow down, increasing safety margins for the VRU. 

 

Challenges 

These promising results did not come without challenges. A number were encountered over the 

course of the project, but two stand out as the most significant. First was our immense difficulty 

finding adequate computational resources during the first half of this project. Initially, we were 

provided a GPU laptop to develop these architectures on, but training a network on this 

architecture once would take several days, which was absolutely not practical. We searched for 

other sources of higher computational power. One option we looked at was the University of 

Michigan Great Lakes service, which although powerful, was shared among university clubs, 

classes, and so on, resulting in immense queues and limited time for individual jobs. Thankfully, 

Gatik provided a high-power Amazon EC2 instance with a GPU to use freely for training, 

testing, and development. Even still, however, it was not perfect. Complexity of the augmented 

network had to be reduced in some areas to fit the augmentations such that the architecture could 

still be trained and tested with GPU memory constraints, and even with powerful computing 

instance, training these large architectures on the KITTI dataset took ~30-36 hours on average. 



Secondly, the KITTI dataset itself is not perfect. Many scenes look quite similar in terms 

of background and have different elements in the environment, so it could benefit from diversity. 

More importantly, however, the dataset is missing some ground truth labels. 

 

    Ground Truth Labels          Augmented MVXNet Predictions 

          

 

Above is a scene from the visual results presented previously; the orange labels are ground truth 

and in blue are the augmented MVXNet predictions. The ground truth labels do not have all 

cyclists and pedestrians nor do they have one of the parked cars to the right side included. 

However, the augmented MVXNet detects all these. These predictions that visually are correct 

are not included in ground truth and thus may be reported as extraneous during evaluation, 

therefore the performance figures previously shown may in truth be underreporting the true 

performance of the architecture. 

 

Future Work 

This is only the first step to solving the long-range VRU detection problem. Next steps for future 

work into this include modifying different parts of the architecture, increasing the computational 

power of the host machine to reintroduce more complexity and learning ability to the model, and 

even porting this software to hardware in the loop to simulate performance on an actual truck. 
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