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ABSTRACT
As machine learning algorithms become widely

used in society, certain subgroups are more at risk

of being harmed by unfair treatment. Fairness met-

rics have been proposed to quantify this harm by

measuring certain statistics with respect to an eval-

uation dataset. In this work, we seek to analyze

how robust these metrics are. That is, we are in-

terested in whether these metrics give the same

“fairness score” when measured on different sets

of samples from the same distribution. This is im-

portant because it gives us insight into how much

we can trust the conclusions given by a fairness

metric prior to deployment of a model. We design

a framework to conduct experiments to test the

robustness of a popular fairness metric. We find

that, when compared to more traditional perfor-

mance metrics, it is more sensitive to fluctuations

in the evaluation dataset in a variety of settings.

Additionally, our work provides a foundation for

studying the robustness of fairness metrics in gen-

eral.
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1 PROBLEM AND
MOTIVATION

Machine learning algorithms are increasingly used

to automate decision processes in society. Some-

times, these decisions are to the detriment of cer-

tain demographic groups due to historical biases in

human decisionmaking. After all, these algorithms

learn from data which is influenced by the human

decision making process. So, any existing bias in

a dataset may be amplified by a model that learns

from that dataset. For example, it has been shown

that STEM job advertisements typically show up

more for men than for women [23]. This imbalance

means less women are being given information

about available STEM jobs which could cause dis-

parities in gender representation in those types of

jobs down the line.

The study of fairness in machine learning seeks

to measure and mitigate biases in algorithms be-

fore deployment in society. However, there are cur-

rently many different fairness metrics proposed

[14, 17] and it has been shown to be impossible

to satisfy all of them at once [11, 22]. This can

lead to contradictory claims of fairness. Consider

a popular dataset in fairness analysis: The COM-

PAS dataset [2]. This dataset includes information

about parolees including demographic and crimi-

nal history features and it has been used to train a

recidivism risk assessment tool to drive the deci-

sion of allowing parole. The tool has been shown

to be both fair and unfair based on different met-

rics which leads to discussions of which metric is

actually appropriate in that context [2, 11, 12].

Taking a step back, there is perhaps a more fun-

damental questionwe should be asking about these

proposed fairness metrics before discerning which

one to use in different scenarios. Consider the sce-

nario represented in Figure 1. Suppose we train a

model on a dataset and evaluate our model on a

held-out test set as usual and find that it satisfies

the appropriate fairness metric. Now suppose we

create four more held-out test sets by sampling
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Figure 1: An example of a situation where
we would consider a fairness metric to lack
robustness.

points from the same distribution as our original

test set and get various conclusions of fairness with

respsect to the same fairness metric. A key thing to

note here is that the underlying distribution of data

points has not changed – we have simply sampled

a few more sets of points from this distribution.

We would say that this metric lacks robustness

and it is exactly this that we aim to formalize and

study in this work. For simplicity, we focus on one

popular fairness metric, equal opportunity [17],

in this analysis.

Specifically, in this work we aim to answer the

following questions [37]:

RQ1. How can we evaluate the robustness of fair-
ness metrics?

RQ2. Is equal opportunity a robust fairness met-

ric?

RQ3. How much do different choices of models

and features affect the robustness of the

fairness metric?

RQ4. Do we see the same trends across different

domains?

1.1 Related Work
There has been significant work in quantifying

fairness and designing techniques for achieving it

[21, 24, 28, 32] as well as in understanding the im-

plications of using fair predictors in practice [34].

The prevalence of bias in fields as wide-ranging

as Natural Language Processing [7, 31], vision [8],

and health [1] have led to domain-specific analyses

on bias detection and consequent work on both

building and evaluating fairer datasets [4, 39]. Fur-

ther, a survey of industry practitioners highlights

the need to understand the practical implications

of using fairness metrics [19].

There is no single agreed-upon measure of fair-

ness since different contexts may require differ-

ent criteria of measurement, including exogenous

concerns like privacy-preservation [5, 6, 38]. How-

ever, while there is no consensus measure of fair-

ness, some tests for evaluating group fairness that

have gained widespread acceptance include demo-
graphic parity [9], equalized odds and equal op-
portunity [17]. In the present work, we we focus

primarily on the equal opportunity fairness met-

ric since there has been significant exploration of

models that enforce this constraint [17, 24]. We

also use equalized odds to derive a fair predictor.

Recent work has analyzed the effects of statis-

tical and adversarial changes in the data distribu-

tion. Some of this work has focused on deriving

fair models when there is a distributional shift in

the data [33], when strategically acting adversaries

inject errors in the data [10] or when the data is

perturbed to negatively impact a particular sub-

group [3, 27].

2 BACKGROUND
2.1 Preliminaries
To learn a predictive model, we use logistic regres-

sion both with and without an ℓ2−norm regularizer

[18]. This involves solving the following optimiza-

tion problem:

min

\,𝑏
𝐶

𝑛∑︁
𝑖=1

log(exp(−𝑦𝑖 (𝑥𝑇𝑖 \ + 𝑏)) + 1) + 1

2

| |\ | |2
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where (𝑥𝑖, 𝑦𝑖) are labeled training datapoints, \ , 𝑏

are the learned parameters, and𝐶 is a hyperparam-

eter that controls the degree of regularization.

Each datapoint has a corresponding binary la-

bel ∈ {0, 1}. For instance, in the COMPAS dataset

(see Section 2.2) each datapoint corresponds to an

individual and a label of 1 indicates an individ-

ual who re-offends within two years. The features

that distinguish historically disadvantaged groups

are called sensitive attributes and the groups them-

selves are called protected groups [17]. Each data-

point includes a sensitive attribute 𝑧 ∈ {0, 1} that
indicates their membership in a protected group.

We train the base classifier both including and ex-

cluding these sensitive attributes.

We use group fairness measures to evaluate the

fairness of the predictor returned by the algorithm.

In this work, we focus primarily on analyzing the

equal opportunity fairness metric [17], which en-

forces equal true positive rates (TPR) across each

sensitive attribute group. This metric is a weaker

notion than the equalized odds fairness metric [17],

which enforces equal TPR and equal false positive

rates (FPR) across each sensitive attribute group.

We also experiment with post-processing the pre-

dictor by solving a constrained optimization pro-

gram with the constraints specifying the fairness

conditions [17, 29, 30]. A formal definition of the

fairness metrics used is given in Section 2.3.

2.2 Datasets
We use the COMPAS dataset [2], the Bank Mar-

keting dataset [26], and the South German Credit

(SGC) dataset [13] for our analyses. These datasets

are well-known benchmarks that have been fre-

quently used to study algorithmic fairness [24].

Further, the difference in domain and protected at-

tributes between the datasets allows us to analyze

the robustness of fairness metrics beyond a single

domain.

The COMPAS dataset contains 6150 datapoints

with 8 features. The features include demographic

information such as age, race, and sex as well as

criminal history information such as priors, juve-

nile offences, and degree of current crime. When

assuming a binary sensitive attribute, the dataset

is restricted to Caucasian American and African

American defendants; given the bias inherent in

the dataset, African American defendants are con-

sidered to be the protected group. The binary-

valued label indicates whether or not the individ-

ual has reoffended within two years after being

released from prison.

The Bank Marketing dataset [26] contains 45211

datapoints with 15 features. The features include

demographic information such as age, job, and

education, seasonal data such as day and month,

and financial data such as balance and whether an

individual has any personal loans. Following prior

work [40], the sensitive attribute is age where ages

between 25 and 60 are considered protected. A

positive outcome is when an individual subscribes

to a term deposit.

The SGC dataset [13] contains 1000 datapoints

with 20 features. The features of this dataset in-

clude demographic information such as age, sex,

and marriage status, financial standing informa-

tion such as credit history, savings account amount,

and homeowner status, and, finally, information

about the requested loan such as loan amount, pur-

pose of loan, and duration of loan. Consistent with

prior work [16, 20], we use age as the sensitive at-

tribute for this dataset where an age of 25 years or

younger are considered the protected group. The

outcome for this dataset is a binary variable indi-

cating whether or not the loan contract has been

fulfilled after the duration of the loan.

2.3 Metrics
Accuracy. For a givenmodel, wemeasure its perfor-

mance using accuracy defined
1
as𝐴𝑐𝑐 = 1

𝑁

∑𝑁
𝑖=1 [[𝑦𝑖 =

𝑦𝑖]] where𝑦𝑖 is the outcome predicted by themodel,

𝑦𝑖 is the true outcome and 𝑁 is the number of sam-

ples we are evaluating [18]. We use accuracy as a

1
We use [[]] to denote the Iverson bracket which returns

a value of 1 if the predicate contained within is true and 0

otherwise.
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benchmark to evaluate the robustness of our fair-

ness metric.

Equal Opportunity and Equalized Odds. A predic-

tor is said to satisfy equal opportunity if and only

if Pr(𝑦 = 1|𝑧 = 1, 𝑦 = 1) = Pr(𝑦 = 1|𝑧 = 0, 𝑦 =

1) where 𝑧 is a sensitive attribute. For example,

in the COMPAS dataset, this can be interpreted

as requiring the predictor to be agnostic to race

for individuals who reoffend. We also consider a

model where the predictor is modified to satisfy

the stricter measure of equalized odds [17], that ad-
ditionally enforces equal false positive rates. For-

mally, equalized odds requires the following to

hold: ∀𝑎 ∈ {0, 1} Pr(𝑦 = 1|𝑧 = 1, 𝑦 = 𝑎) =

Pr(𝑦 = 1|𝑧 = 0, 𝑦 = 𝑎).

Degree of Fairness and Direction of Unfairness. We

measure the extent to which a model deviates from

equal opportunity so that our fairness metric has

the same support as accuracy, our benchmark met-

ric. We define the degree of fairness of the predictor
as: 1− | Pr(𝑦 = 1|𝑧 = 1, 𝑦 = 1) −Pr(𝑦 = 1|𝑧 = 0, 𝑦 =

1) |. The range of this measure is the unit interval

[0, 1] where a higher value indicates a fairer model.

To identify the subgroup against which a predictor

is biased, we define the direction of unfairness as
sign[Pr(𝑦 = 1|𝑧 = 1, 𝑦 = 1) − Pr(𝑦 = 1|𝑧 = 0, 𝑦 =

1)]. For example, in the COMPAS dataset, 𝑧 = 1 in-

dicates an African American defendant and 𝑧 = 0

indicates a Caucasian American defendant. So, a

positive direction of unfairness corresponds to un-

fairness towards the protected group (in this case,

African American defendants).

2.4 Model Choices
We learn twelve different models on the training

data to evaluate their effects on both the mean and

variance of fairness and performance metrics. In

particular, we train a logistic regression classifier

both with and without an ℓ2-norm regularizer and

both including and excluding sensitive attributes

while training. In addition to these four models,

we learn modified models by post-processing each

of these models to separately satisfy first equal

opportunity and then equalized odds.

3 UNIQUENESS OF
APPROACH

3.1 Experimental Design
In order to split the datasets into training and held-

out sets, we first randomly shuffle each dataset.

For each dataset, we also ensure that the propor-

tion of positive examples, the proportion of pro-

tected class, and the proportion of positive exam-

ples within the protected class are all preserved

across the training and testing set. Then, we sep-

arately train the twelve models described in Sec-

tion 2.4. For models trained with regularization we

used 5-fold cross-validation to choose the hyper-

parameter that determines how much we penalize

model complexity.

For the COMPAS dataset, we trained each model

on 5000 points and held out 1150 for evaluation.

For the Bank Marketing dataset, we trained each

model on 25000 points and held out roughly 20000

points for evaluation. For the South German Credit

dataset, we trained each model on 600 points and

held out 400 for evaluation.

We evaluate the performance and fairness of

each model on multiple test datasets generated

from the held-out dataset using bootstrap sam-

pling. Bootstrap sampling allows us to approx-

imate the true distribution our test sample was

drawn from [15]. So, crucially, these experiments

are not evaluating robustness under a distribution

shift, but rather robustness when we simply take

multiple sets of samples from the same distribution.

Each sample set was the same size as the held-out

set and was created by uniformly picking a point

from the held-out set with replacement. We cre-

ated 800 such sampled datasets for each evaluation

and then measured accuracy and degree of fairness

on each sample dataset as described in Section 2.3.

A schematic of this approach is shown in Figure 2.

We compute both the mean and variance of the

degree of fairness and accuracy metrics. We then



Honors Capstone Report: Robustness of Fairness in Machine Learning

Figure 2: The flow of each of our experiments
using the COMPAS dataset as an example.
The same process is repeated for the SGC and
Bank datasets.

compare the variance of these metrics over these

800 datasets in multiple ways.

3.2 Robustness Evaluation
Technique

First, we numerically compute the variance achieved

by these metrics and tabulate it for comparison

across all twelve models (see Tables 3, 4, and 5).

Next, we create scatter plots and histograms of

the values of both metrics for each of the bootstrap

sampled datasets for a visual representation of the

distribution of thesemeasures. For the scatter plots,

we use the same scale for both axes. A larger spread

along a particular axis, therefore, indicates a larger

variance along that metric. See Figure 6 for the

scatter plots and see Figure 7 for the histograms

for two models on the COMPAS dataset.

Lastly, we translate bothmeasures from the [0, 1]
to the (−∞, +∞) interval by first centering to 0.5

mean and then applying the logit function to the

values so obtained
2
. We see that the mapped values

broadly follow a normal distribution. We then com-

pute the variance of thesemapped values and apply

2
Datasets with unit fairness were withheld in the F-test anal-

ysis to prevent degenerate cases. However, these accounted

for less than 1.5% of all 800 sample datasets.

Figure 3: Mean (and variance) values in per-
centage for accuracy and degree of fairness
for the COMPAS dataset reported for Logis-
tic regression (LogReg); postprocessing for
equal opportunity (EqOpp) and equalized
odds (EqOdds); L2 indicates regularization.

Figure 4: Mean (and variance) values in per-
centage for accuracy and degree of fairness
for the SGC dataset reported for Logistic re-
gression (LogReg); postprocessing for equal
opportunity (EqOpp) and equalized odds
(EqOdds); L2 indicates regularization.

the F-test [35] to determine the significance of the

difference in variances with high confidence
3
. The

results are shown in Table 1.

We describe our results in the next section. Not

all graphs and tables are included, but similar trends

were observed in those that were omitted. We felt

the included graphs best represented the trends

and patterns we observed.

4 RESULTS AND
CONTRIBUTIONS

4.1 Variance of Fairness and
Performance Metrics

As shown in Tables 3, 4, and 5 we note that the

variance in degree of fairness is higher than for

3
While the independence assumption does not strictly hold,

the F-test gives us one more means of comparison.
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Figure 5: Mean (and variance) values in per-
centage for accuracy and degree of fairness
for the Bank dataset reported for Logis-
tic regression (LogReg); postprocessing for
equal opportunity (EqOpp) and equalized
odds (EqOdds); L2 indicates regularization.

(a) COMPAS LogReg (b) COMPAS EqOpp

(c) SGC LogReg (d) SGC EqOpp

Figure 6: Scatter plot for degree of fair-
ness and accuracy. Orange diamonds indi-
cate unfairness towards protected group, blue
dots indicate unfairness towards the other
group. Plots shown for the COMPAS and SGC
datasets for Logistic regression (LogReg); post-
processing for equal opportunity (EqOpp)
trained with regularization and without sen-
sitive attributes.

accuracy. The blue boxes in these tables are the

variances values for accuracy and the red boxes

are the variance values for degree of fairness. The

difference is most apparent in Table 5 which we be-

lieve is due to the larger dataset size. We show that

this difference in variance is statistically significant

for various significance levels (given by 𝛼 values)

in Table 1. We report values for the logistic regres-

sion base classifier with regularization trained on

data with sensitive attributes both before and after

post-processing for fairness constraints
4
. This indi-

cates that the fairness metric of equal opportunity

is not as robust as accuracy across the sampled test

sets.

Once we post-process for fairness constraints,

we see that, as expected, mean degree of fairness

improves. We also note that the variance in degree

of fairness reduces significantly, especially for the

COMPAS dataset (see Table 3). This effect with the

COMPAS dataset can be seen visually in Figure 7.

We note, however, that the variance of degree of

fairness is still statistically significant higher than

the variance of accuracy for all models as seen in

Table 1.

When comparing the effect of incorporating dif-

ferent fairness constraints, we note that both equal-

ized odds as well as equal opportunity yield fairly

similar results for degree of fairness. Typically, we

observe that for models with post-processing for

fairness constraints, means of degrees of fairness

are within at most 1% of each other. We also ob-

serve that in most cases equal opportunity and

equalized odds have comparable magnitudes of

variance in degree of fairness. However, in the

case of unregularized base classifiers, equal oppor-

tunity has a smaller degree of fairness variance;

a likely explanation for this lies in our measure

of degree of fairness which explicitly checks for

deviation from the equal opportunity measure.

The effects of incorporating fairness constraints

on accuracy have been previously observed [25].

This is corroborated in our experiments as we ob-

serve a trade-off between accuracy and degree of

fairness. In all cases, adding a fairness constraint

reduced overall accuracy; however, the effect on

4
While we do not report results on all models due to space

constraints, the omitted results are similar to reported values
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𝛼 = 0.025 𝛼 = 0.001

Data set Model Ratio 1.1488 1.2446

COMPAS LogReg 9.722 ✓ ✓
SGC LogReg 8.648 ✓ ✓
Bank LogReg 61 ✓ ✓
COMPAS EqOpp 5.087 ✓ ✓
SGC EqOpp 4.196 ✓ ✓
Bank EqOpp 44 ✓ ✓
COMPAS EqOdds 5.585 ✓ ✓
SGC EqOdds 3.871 ✓ ✓
Bank EqOdds 90.2 ✓ ✓

Table 1: F-test for statistical significance of the
difference between performance and fairness
variances reported for Logistic regression (Lo-
gReg); postprocessing for equal opportunity
(EqOpp) and equalized odds (EqOdds). All
models include sensitive attributes and a reg-
ularizer term. ✓ indicates that the ratio is
higher than the F critical value, implying that
the difference is statistically significant

its variance was typically minimal and inconsis-

tent in direction indicating that adding fairness

constraints does not seem to affect stability of the

performance measure. Amongst models that were

optimized for fairness, we notice that their mean

accuracy is quite similar, beingwithin atmost 1% of

each other’s performance. This can be explained by

the relationship between the fairness constraints

and the degree of fairness measure. Another im-

portant trend we note is that higher mean degree

of fairness generally corresponds to lower degree

of fairness variance.

The effects of both including sensitive attributes

in training the model, and adding a regularization

term in the objective function, are mixed. The best

performing models for accuracy are logistic re-

gression models with access to sensitive attributes;

perhaps unsurprisingly however, these are often

among the worst performing with respect to the

mean and variance of degree of fairness. We also

want to acknowledge that non-sensitive attribute

features can be highly correlated with the sensitive

attribute features such that removing the sensitive

attribute feature does not mitigate bias. There are

proposed techniques that deal with this problem

which are worth exploring over naively removing

the sensitive attribute [41].

We also note that regularization has a signifi-

cant effect on variance of degree of fairness es-

pecially when post-processing for fairness in the

SGC dataset (Table 4) as compared to the COMPAS

dataset (Table 3). This can be likely explained by

the difference in sizes of the two datasets.

4.2 Direction of Unfairness
In addition to looking at the general trends of fair-

ness, we also explore the direction of unfairness in

these models for the SGC and COMPAS datasets.

In Figure 6, we show a scatter plot of the 800 boot-

strapped sampled test datasets (for both SGC and

COMPAS datasets) along the accuracy and degree

of fairness axes. As observable from the plots, gen-

erally the models are unfair towards the protected

groups. Fairness constraints help shift the entire

distribution to more fair outcomes, but we still see

that most of the unfairness is to the detriment of

protected groups. The plots for other models are

omitted, but they show similar results as well.

5 CONCLUSION
In this work, we have provided a framework for

evaluating the robustness of fairnessmetrics across

uncertainty in test data. To do this, we resample

test data using bootstrap sampling and compute

both the mean and variance of degree of fairness

and accuracy. This allows us to compare the vari-

ations across these metrics for different learning

models. We train a logistic regression model for bi-

nary classification with and without a regularizer,

as well as with and without sensitive attributes.

We also post-process these models to separately

satisfy two separate fairness constraints. We eval-

uate these twelve models separately on 800 boot-

strapped test datasets to measure the variability

as well as the mean of both a performance metric
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(a) LogReg, no regulariza-
tion,
no sensitive attribute

(b) EqOdds, no regular-
ization,
no sensitive attribute

Figure 7: Histogram showing the difference in
mean and variance of degree of fairness and
accuracy scores for different models on the
COMPAS dataset. Figure 7a includes scores
for logistic regression without regularization
and without sensitive attributes. Figure 7b is
trained on the same settings as Figure 7a, but
with the addition of post-processing for equal-
ized odds fairness constraint.

and a fairness metric. We show that the equal-

ity of opportunity fairness metric is less robust to

variations in the test data than the accuracy per-

formance metric. We highlight that current post-

processing methods for improving fairness can

affect mean fairness and reduce fairness variance;

by and large, however, the variance of fairness still

remains significantly higher than that of perfor-

mance. We show that variance in model fairness

is typically to the detriment of protected groups,

making fairness variance analysis an important

part of developing robust and fair machine learn-

ing models.

This lack of robustness conclusion is of signif-

icance for the machine learning community be-

cause such algorithms are used for making deci-

sions that affect people. A lack of fairness could

have detrimental consequences to historically dis-

advantaged groups. As such, machine learning

practitioners need to be confident in backing up

their claim of the fairness of a machine learning

model. Therefore, it is crucial to consider robust-

ness when figuring out how to evaluate a model’s

fairness.

6 FUTUREWORK
Since we have only analyzed one fairness metric

so far, we are interested in expanding this work to

evaluate other kinds of fairness metrics including

predictive parity rates or generalized entropy in-

dices [36], as well as individual fairness metrics,

such as Lipschitz conditions constraints [14]. From

there, we would be interested in doing a more in-

depth investigation as to why certain fairness met-

rics lack robustness. This will hopefully provide

insight as to how we might remedy a lack of ro-

bustness.

I am going to be starting a PhD in Computer Sci-

ence with a focus on fairness in machine learning

next semester, and I hope to answer these ques-

tions and more during this next phase of my aca-

demic career.
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