

Infrastructure-based Detection and Localization of Road Users for Cooperative Autonomus Driving Lance Bassett (Honors Capstone), Advisor: Henry Liu, Rusheng Zhang UMTRI, University of Michigan, Ann Arbor, Michigan

Figure 1: Example of missing vehicle missing corner and subsequent completed result.

 $c_2 = c_0 + 2\vec{d}$

Simple augmentation makes second stage robust to imperfect centers in first stage

Missed come from corner overlap and mismatches, which limits benefits of corner

• Second stage can refine first

- maps
- stage

- Real intersection data
- Comprehensive Comparison
- Refining Predictions
- Multi-scene crop training
- Crop-size index map

X. Zhou, D. Wang, and P. Krähenbühl, "Objects as points," arXiv.org, 25-Apr-2019. [Online]. Available: https://arxiv.org/abs/1904.07850v2. [Accessed: 19-Oct-2021].

Advantages

Second stage crop more universally deployable

Figure 4: Comparison demonstrating low variability in crop of scene, despite high variability of actual scene.

False positive \longrightarrow

→ Not a vehicle

Capitalizes on fixed scene with preprocessed location

 Subpixel accuracy on cropped corners due to resize • Avoids corner overlap and mismatches seen in single

Future Work

References

we use to improve results.

ntrocuction

Detection and localization of all road users is a difficult task to do well from a single on-road perspective (a vehicle's on-board sensors), but roadside units mounted in the infrastructure can provide a few distinct advantages. This project describes our detection pipeline and results, as well as some methods

Stage 1: Center Prediction and Classification

Stage 2: Corner Prediction

Cropped Input

Encoder-Decoder + FPN

Corner Head

2D Conv HxWx4 out

Stage 2.1: Pixel to World Coordinate Translation

Index location map at vehicle centers/corners to get world coordinates

Stage 2.2: Corner Completion

Figure 1: Example of missing vehicle missing corner and subsequent completed result.

$map(x_{pixel}, y_{pixel}) = (x_{world}, y_{world})$

Simplified Pipeline

Predict centers and class

Sample Results

Performance Metrics

	Method	Ce	enter Pixel Error (px)	Corne Erro	er Pixel r (px)	Cor
	Two Stage	(2.	657, 1.239)	(0.984	, 1.776)	(0.1
	Single Stage	(3.	546, 1.197)	(1.471	, 3.559)	(0.1
able 1: Errors for our two different methods of detection. Single stage predicts cor						ers and
	Method		Missed (n =	= 1936)	Detec	tion

Method	Missed (n = 1936)	Detection
Two Stage	26	.987
Single Stage	48	.975
I wo Stage Single Stage	26 48	

Results and Discussion

Crop at enters

Figure 2: Sample results from two stage model. Center stage trained on 4.2k examples, crop stage trained on 35k examples.

Table 2: Detection rate for our two different methods of detection.

72

25

Missed come from corner overlap and mismatches, which limits benefits of corner completion

allows for subpixel accuracy and lower error in both pixel location and global location

Predicting corners on crops

Figure 3: Example of jitter augmentation. Center shift changes resulting crop.

Vehicles Fixed with Corner

Corner Location Error (in px) for Noisy Centers

St. Dev. for Gaussian noise (in px)

 $N(0,\sigma^2)$

Corner Global Error (in m) for Noisy Centers

St. Dev for Gaussian noise (in px)

New center $x_{jitter} = x_{center} + N(0, \sigma^2)$ $y_{jitter} = y_{center} + N(0, \sigma^2)$

Second stage crop more universally deployable

maps

stage

Figure 4: Comparison demonstrating low variability in crop of scene, despite high variability of actual scene.

VS.

Second stage can refine first

Subpixel accuracy on cropped corners due to resize Avoids corner overlap and mismatches seen in single

Capitalizes on fixed scene with preprocessed location

Not a vehicle

 \approx

Real intersection data Comprehensive Comparison Refining Predictions Multi-scene crop training Crop-size index map

X. Zhou, D. Wang, and P. Krähenbühl, "Objects as points," arXiv.org, 25-Apr-2019. [Online]. Available: https://arxiv.org/abs/1904.07850v2. [Accessed: 19-Oct-2021].

Future Work

