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Figure 1: Tactile-Guided Image Stylization (TGIS). We present a method for manipulating the
appearance of an object to match its material property indicated by the tactile signal.

Abstract

Unlike how humans perceive the world from associations between senses and1

through a series of inanimate objects, contemporary research on robot perception2

problem mainly rely on vision units or visual inputs to teach the robots interact3

with the world. We identify that this is due to the lack of real-world multisenory4

rich object dataset. To tackle this challenge, we present TOUCH and GO, a5

multisensory dataset containing real-world synchronized high-quality video and6

tactile data containing 12600 object instances over 37800 touches and 30 hours of7

video captured from egocentric viewpoint, greatly exceeding the size of existing8

real-world multisensory datasets. All objects in our dataset are originated from9

real environments with fine-grained textures retained. We propose and apply our10

dataset on two novel tasks, tactile-guided image stylization and multi-modal video11

prediction on tactile images.12

1 Introduction13

Humans perceive the world not using a single modality. Instead, we have access to many sensory14

streams and learn from associations between senses. When a child eats an apple, for instance, she’ll15

not only taste it—she’ll also hear it crunch, see its shiny skin, and feel its smooth surface [48]. In16

addition, humans perceive the world not as a single giant entity but often through a series of inanimate17

objects, which exist as bounded wholes and move on connected paths. We interact with these objects18
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through an array of different sensory systems–vision, touch, audition, smell, taste, and proprioception.19

These multisensory inputs shape our daily experiences.20

It is so nature for humans to learn knowledge through interactions with different objects with multiple21

senses. Cognitive science studies [49, 48] show that both object representation and multisensory22

perception play a crucial role in early human cognitive development. However, for robots, it may23

not be the case. Contemporary research on robot perception problem mainly rely on vision units or24

visual inputs to teach the robots perceive and interact with the world. This focus on learning from25

vision alone makes the perception problem harder because some of the most important spectrum of26

physical object properties and sensory modes — such as touching — are lost.27

We identify that this is due to the lack of real-world multisenory rich object dataset. Several works28

have been done regarding simulated multisensory dataset [16, 17, 14]. However, we argue there29

are two fundamental differences between the quality and utility of simulated and real-world dataset.30

First, simulated data fail to perfectly represent reality. Models trained purely on synthetic data do not31

generalize to the real world due to the discrepancy between simulated and real environments, in terms32

of both visual and physical properties. In fact, the more we increase the fidelity of our simulations,33

the more effort we have to expend in order to build them, both in terms of implementing complex34

physical phenomena and in terms of creating the content (e.g., objects, backgrounds) to populate these35

simulations. This difficulty is compounded by the fact that powerful optimization methods based36

on deep learning are exceptionally proficient at exploiting simulator flaws: the more powerful the37

machine learning algorithm, the more likely it is to discover how to "cheat" the simulator to succeed38

in ways that are infeasible in the real world [4]. Second, "reality gap" exits by transferring simulated39

experience into the real world. While simulated data continue to improve in fidelity, the peculiar and40

pathological regularities of synthetic data, and the wide, unpredictable diversity of real-world objects,41

makes bridging the reality gap particularly difficult when the robot use its sensors to perceive the42

world, as is the case for example in many manipulation tasks [4, 29].43

Therefore, our goal is to establish a real-world multisensory dataset contraining rich objects that are44

1) easily accessible to the community as a standard benchmark, 2) high-quality in terms of visual45

textures, and 3) augmented with real data from the perspective of human beings. To this end, we46

introduce TOUCH and GO — an egocentric multisensory dataset of synchronized video and tactile47

sensing. We take inspiration from the way infants explore the physical properties of a scene by poking48

and prodding at the objects in front of them [3, 46], a process that may help them learn an intuitive49

theory of physics. The egocentric viewpoint enables our dataset to contain enough details to observe50

the fine-grained texture of objects, and mimics the perception of a real human.51

More specifically, we collect over 30 hours of real-world synchronized high-quality video and52

tactile data containing 12600 object instances over 37800 touches. Our dataset contains rich objects53

categories from both indoor and outdoor scenes (none of the existing real-world multi-modal dataset54

contains data from outdoor scenes). TOUCH and GO enables many applications. We present a55

method for manipulating the appearance of an object to match its material property indicated by the56

tactile signal, a problem we term Tactile-Guided Image Stylization (TGIS), as shown in Figure 1. We57

also propose a novel multi-modal video prediction problem on tactile image deformation. For the58

first task, We design a deep neural network based on CUT [44], which fuses data from video and59

tactile streams. For both tasks, experimental results suggest better results are achieved by leveraging60

our TOUCH and GO dataset.61

Our main contributions can be concluded as the followings: 1) We introduce TOUCH and GO, a62

real-world dataset that makes multisensory learning with vision and touch easily accessible to the63

research community. 2) All objects in our dataset are originated from real environments and will64

be made publicly available as a standard testbed for robotic multisensory learning. 3) We propose65

and apply our dataset on two novel tasks including tactile-guided image stylization and multi-modal66

video prediction on tactile images.67
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2 Related Work68

Multisensory Datasets There is a mixture of real and simulated data across different single-modal69

datasets. ImageNet [12], MS COCO [35], ObjectNet [1], and OpenImages [30] focus on the collection70

of large-scale real 2D images. ModelNet [56] and ShapeNet [9] contain synthetic 3D CAD models,71

emphasizing on geometry of 3D objects but pay less attention to fine-grained visual textures. BigBIRD72

[47], YCB [8], and ABO [10] model real-world 3D objects with limited object instances. The majority73

of multi-modal datasets incorporate simulated data. Pix3D [51], IKEA Objects [34], and Object3D74

[57] match synthetic 3D CAD models to objects in real images. OBJECT-FOLDER 1.0 [16] contains75

multisensory simulated data as implict neural representations. Built upon it, OBJECT-FOLDER76

2.0 [17] is ten times larger than the previous version with encoding of more realistic data. A few77

real-world multi-modal datasets exist. VisGel [33] comprises real-world data of videos and touches78

collected by robotics arm, thus has very restricted scenes and bias introduced by the arm. Greatest79

Hits [43] contains high-quality egocentric videos of humans probing environments with a drumstick,80

but its goal is not on scale expansion and generalization. Our TOUCH and GO dataset contains81

high-quality synchronized RGB video and tactile data, with over 30 hours of videos, 37800 touches,82

and 12600 object instances, which greatly exceeds the size of existing real-world egocentric datasets.83

Touch and Vision Researches are conducted on the types of haptic, force, and tactile sensors to84

give robots tactile sensing ability [11, 25, 32, 31]. GelSight [23, 22, 59, 7] is widely adapted as a85

high-resolution tactile sensor for computer vision and robotics applications, which includes improving86

grasp stability with rotation measurement [28], the study of the physical and material properties of87

fabrics [60], predicting the grasping success through both vision and tactile sensing [7], and cloth88

texture recognition [38]. Here we introduce the novel application of tactile-guided image stylization.89

Image-to-Image Stylization Image stylization (translation) translates an input image from one90

domain to a photo realistic output in the target domain [20, 36, 61]. The key to the success of this91

task is due to the emergence of generative adversarial networks (GAN) [18, 41], which have been92

vigorously researched in the last several years with many applications including generating photos93

from sketches [20, 45], changing time of a day [20, 63], and translating semantic meanings into94

scenes [20, 55]. While most of the image stylization tasks have paired image-to-image translation,95

in certain cases, the corresponding examples from domains are unavailable, resulting in unpaired96

image-to-image stylization. Cycle consistency [26, 58, 62], as one of the approaches, enforce the97

correspondence between the input and output image domain by adopting the underlying bijective98

assumption, which may be too restrictive in cases when images from one domain contain additional99

information compared to the other domain. CUT [44] adapts contrastive learning to make each100

patch in the output reflect the content of the corresponding patch in the input by maximizing mutual101

information between the two. We propose a new model based on CUT, which receives multi-modal102

data as inputs and learns to build the tactile-visual style associations without any human supervison,103

for our proposed novel task of tactile-guided image stylization.104

Video Prediction Approaches for video prediction are diverse, evolving from the modeling of long-105

range dependencies recurrent networks [24, 40, 42, 50, 52, 5] to photorealistic video prediction using106

large convolutional neural networks [37, 54, 39]. Time-agnostic prediction [21], which enables model107

to predict any future frames in a video, is also proposed. In addition, methods based variational108

autoencoders (VAEs) [27, 2, 15, 13, 53] are introduced to tackle the challenges of uncertainty in video109

prediction. Our approach uses VAE-based video prediction model [13, 53] to combine multi-modal110

data as inputs and predict the next frame tactile images.111

3 TOUCH and GO Dataset112

We collect a real-world vision-tactile dataset that contains egocentric videos of human (the authors)113

pressing environments using a tactile sensor, Gelsight, and the tactile information from the Gelsight114

that is simultaneously recorded with the RGB video. The touch of the environment contains useful115

information about an object associated with the visual information, including hardness, shape,116
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Figure 2: TOUCH and GO Dataset. What do these objects feel like when they are touched? Here, we
show some images from a selection of videos from our dataset for a subset of the object instances.

Table 1: Comparison of touch datasets.

Hours Touches Object Inst. Real-World Indoor Outdoor

More Than a Feeling [6] - 6450 65 ✓ ✓ %

VisGel [33] 20-30 12000 195 ✓ ✓ %

The Feeling of Success [7] - 9269 106 ✓ ✓ %

Object Folder [16] - - 100 % - -
Object Folder 2.0 [17] - - 1000 % - -

TOUCH and GO (Ours) >30 >37800∗ >12600∗ ✓ ✓ ✓

material etc, which can be useful in various downstream tasks. Unlike traditional scene-centric117

datasets focusing on the full scene, our dataset is taken from an egocentric viewpoint which contains118

enough details to observe the fine-grained texture of an object.119

3.1 Dataset Description120

We collect over 30 hours of videos consisting of over 37800 touches from over 12600 objects under121

both indoor (58%) and outdoor (42%) scenes. In total, there are 1.89M frames containing touches122

of an object and each touch is composed of 50 frames on average. Our dataset contains daily seen123

objects, both hard and deformable, from indoor and outdoor scenes including rock, grass, road, brick,124

carpet, chair, table and so on. All the touch frames are annotated with the name of the object.125

3.2 Comparison with other datasets126

We compare TOUCH and GO with existing multisensory datasets in Table 1. Compared to the largest127

real-world dataset collected by robot, VisGel [33], our dataset comprises of longer hours of video,128

more touches, and most importantly much more diverse of object instances, where the total object129

instances is 65 times larger. It is worth noting that VisGel [33] and other robot collected datasets only130

contain indoor scene and the background is mostly fixed to the robotic operating station, which is far131
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from the place where the object actually exists in the real world. Our dataset is collected by human132

from exact the real world where each object is recorded under the natural environment. With respect133

to the largest object-centric multisensory dataset Object Folder 2.0 [17], our dataset contains object134

instances 10 times larger and all tactile inputs are completely recorded by touching the actual object,135

which provides more realistic tactile data compared to the synthetic or simulated images.136

3.3 Data Collection Setup137

As shown in Figure 2, we utilize a webcam to record the RGB video and a GelSight sensor to capture138

the tactile signals, which are both connected to our PC. We record the timestamp of each frame to139

synchronize visual and tactile images. GelSight sensor [23, 22, 59, 7] is an optical tactile sensor that140

enables high spatial resolution measurement of the texture and geometry of a contact surface. The141

sensor consists of a 1.5cm × 1.5cm surface of a soft elastomer painted with a reflective membrane,142

which deforms to the shape of the object upon contact. There exists an ordinary camera beneath the143

elastomer so that we can view the deformed gel. The gels are illuminated by colored LEDs from144

different directions, producing a three-channel surface normal image. Thus, we can observe the145

texture of a surface undergoing the deformation process via consecutive 2D images. We can then146

treat the tactile images as normal 2D images, and pass them to visual backbone network to extract147

tactile information.148

3.4 Detecting Touch Onset149

According to our dataset, we have approximately 1/3 of the video frames that the GelSight sensor150

is not touching the object. This is because our dataset is collected by human moving around and151

touching objects seen during the movement. Thus the GelSight sensor has no deformation during the152

interval when human is moving from one object to another. However, at the mean time, the RGB153

camera still records the scene during the video. Under this circumstance, the scenes captured by RGB154

camera will be incorrectly linked to the tactile signal of no deformation, which will negatively impact155

the downstream tasks. Thus, to alleviate this issue, we train a binary classifier to classify whether the156

frame is at touch onset. We hand label 10,000 frames from the dataset and finetune ResNet-18 [19]157

initialized by weights pretrained on the ImageNet [12] on our dataset as our classifier. We report a158

97% accuracy on our test set that is 20% of our labeled frames.159

4 Applications160

4.1 Tactile-Guided Image Stylization161

The sense of touch conveys useful information about an object, including hardness, shape, material162

etc., which creates an inherent association with the visual input in the video. This connection between163

visual and tactile signals is embedded in our dataset and the neural network is able to build the164

tactile-visual style associations without human supervision. Moreover, tactile signals may provide us165

subtle distinction about objects that visual input can not capture. As shown in Figure 3, even when166

objects of different materials share similar visual appearance, the tactile signals are able to reveal167

their subtle difference. Given the unique properties of tactile signals and its association with visual168

input, we propose Tactile-Guided Image Stylization (TGIS) application on our dataset, which, to the169

best of our knowledge, is firstly considered in the current literature.170

4.1.1 Proposed Method171

Given an source domain X ∈ RH×W×C, our goal in TGIS is to learn the translation from X to look172

visually similar to an image from the target domain Y that is corresponded to the tactile domain T .173

During the training time, we randomly sample two visual images from X , Y and a tactile image174

from T corresponding to the target image Y . It is worth noting that our training requires no human175

annotation and it can be done under self-supervision.176
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Figure 3: Subtle distinction from gelsight. Although it is hard to distinguish some object instances
from visual appearance, tactile signals may convery enough information.

Figure 4: Pipeline of tactile-guided image stylization.

As shown in the Figure 4 about our pipeline, our model consists of a multi-modal generator, a tactile-177

visual texture discriminator, and a patch-wise structure discriminator. We can further break up our178

multi-modal generator into three components, an image encoder Genc_I, a tactile encoder Genc_T, and179

a decoder Gdec. Given our dataset that contains unpaired instances X = {x ∈ X}, Y = {y ∈ Y}180

and tactile input Ty = {ty ∈ T }, the output image ŷ can be expressed as ŷ = G(x, ty) =181

Gdec(concat(Genc_I(x),Genc_T(ty))).182

Tactile-Visual Adversarial Loss To leverage the association between visual input and tactile input,183

we propose a tactile-visual adversarial loss between ŷ and ty. In formal terms:184

LGAND(GX→Y ,DY ) = Ey∼Y logD(y, ty) + Ex∼X log(1−D(G(x, ty), ty)) (1)

where D is the discriminator. For the discriminator D, we adopt the early fusion where we first directly185

concatenate the generated image ŷ with the tactile input ty and then feed into the discriminator D.186
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Structure Preservation via Contrastive Learning Our goal in this tactile-guided image stylization187

is to restyle the source image with the textures that are associated with the target tactile input while188

preserving the source structure. However, structure and texture of an image are often entangled189

with each other. With only tactile-visual adversarial loss, it becomes a trivial solution to completely190

transfer the source image to the target domain without preserving the original structure. Thus, we191

introduce an additional constraint called noise contrastive estimation (NCE) [44] to preserve the192

structural information between the visual input x and the generated image ŷ.193

4.2 Multi-modal Video Prediction194

This section is still in progress. We are in the process of conducting more experiments and ablation195

studies. Explanations and results will be completed very soon.196

5 Experiments197

5.1 Tactile-Guided Image Stylization198

5.1.1 Experimental Setup199

Implementation Details Our image encoder and decoder of the generator are fully convolutional200

neural network consisting of 9 blocks of ResNet-based CNN bottlenecks. The first convolution layer is201

set to 7 × 7 and the rest are set to 3 × 3. For the tactile encoder, we adopt a ResNet-18 [19] backbone202

pretrained on the ImageNet [12]. For the discriminator we adopt the PatchGAN architecture [20].203

To compute the NCE loss, we extract features from five different layers: the input image layer, the204

first and second downsampling convolution layer and the first and fifth residual blocks. We set the205

hyperparameter λ and µ equal to 0.5. We train our model on 4 Nvidia 2080-Ti GPUs for 100 epochs206

with the batch size of 8 and the learning rate of 0.0002. For input visual images, we employ a random207

crop and an horizontal flip.208

5.1.2 Results209

We show the qualitative results in the Figure 5. All of the results are generated from the single model210

(i.e., by one-to-many relation). With input of tactile signals, our model is capable to distinguish and211

capture the subtle distinction between the input category and the output category without any label.212

5.2 Multi-modal Video Prediction213

This section is still in progress. We are in the process of conducting more experiments and ablation214

studies. Explanations and results will be completed very soon.215

6 Conclusion216

We introduce TOUCH and GO, a multisensory dataset containing real-world synchronized high-217

quality video and tactile data captured from egocentric viewpoint. Compared to existing real-world218

multisensory datasets, our work contains much greater hours of videos, object instances, and touches.219

We propose two novel applications including tactile-guided image stylization and multi-modal video220

prediction. Leveraging TOUCH and GO dataset, experimental results indicate our designed models221

outperform label-based counterparts in both quantitative and qualitative evaluations. We hope our222

dataset, which is easily accessible to the community, will drive more multisensory applications and223

serve as a standard benchmark.224
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Figure 5: Qualitative results our model on tactile-guided image stylization. For reference, we show
guided tactile signals as well as their corresponding images in the last column.
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