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Study Overview

• System Identification Task

• Learn delayed differential dynamics of electric propulsion data, 

interpret noise

• Parameter determination using Bayesian Inference (parameters 

govern dynamics)

• Characterize posterior of parameters using Markov Chain Monte 

Carlo (MCMC) variation → Adaptive Metropolis Hastings

• Estimated posterior used to predict various trajectories under 

different conditions, with uncertainty
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• Wish to learn model term coefficients for synthesized data

unknown parameters → scaling term, coefficient values

• Wish to learn coefficient relationship for synthesized data

unknown parameters → coefficient placement

• Single trajectory case → single set of inputs
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• Samples centered around distribution mean – generated 

randomly – accurately samples entire distribution

- mimics white noise

• Parameter posterior distribution matches truth

• Parametric case → multiple trajectories (multiple sets of inputs)
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• Allows for Bayesian Inference techniques to be applied to 

datasets containing multiple trials (various initial conditions, 

various stages in times, etc…)

Mass-Spring-Damper System Setup

Future Work/Continuations

• Implement noise learning with Inverse Gamma distribution prior

• Prior:

• Likelihood:

• Delay-differential state model, data/neural network optimization 

• Delayed Rejection MHMCMC variation (DRAM) optimization

Adaptive Metropolis Methodology

• Probabilistic model defined → represents posterior of parameters

• Posterior sampled via MCMC, begins with initial sample 

(preliminary guess of unknown parameters)

• Samples proposed, centered around adapting mean and 

covariance (update equations shown below)

• Accepted with some probability based on accept-reject criteria 

relating to density of sample within distribution

• After several sampling iterations, parameter distribution created

Truth Sampled 1D Marginal

Electric Propulsion Application

• Data generated by Plasmadynamics and Electric Propulsion 

Laboratory (PEPL)

• Had to develop model that governs data through handtuning →

actual relationship unknown

- double hidden layer, state-delay neural network

• Partial characterization, parameter approximation

*unable to share full model generation, data labels (PEPL’s work)

• Autocorrelation needs work → lots of lag, samples closely 

related → trace doesn’t not appear random

• Oscillations matched, correct order of magnitude, amplitude 

peak/amplitude variation requires finetuning


