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Abstract
Indoor scenes such as rooms, kitchens and other areas of houses are pre-dominantly
composed of planar surfaces. These surfaces may thus be used to generate high-quality
scene reconstructions. Previous approaches in this domain are generally optimization-
based and use an expensive bundle adjustment step. We propose the PlaneFormer, a
transformer-based approach, that takes in 3D-aware plane tokens as inputs and can
reconstruct scenes using planar surfaces. Our experiments show that our method
outperforms baselines on most metrics, can be extended reasonably to multiple views
and requires several 3D-specific choices to perform effectively on the task.
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1 Introduction
Given a set of views of a scene, humans can easily use information from images to
reason about the scene’s 3D layout. For instance, given the two views of a scene in
Figure 1.1, humans are able to reason about how the cameras that took the two images
are positioned relative to each other and find matching surfaces such as the door and
cupboard to reason about the depicted scene’s 3D layout. Existing computer vision
systems find it challenging to do the same. In this paper, we propose a novel method,
the PlaneFormer, that can reconstruct scenes using planar surfaces and thus contribute
to progress in this task.

PlaneFormerExtracted Planes

Extracted Cameras

Refined Cameras

Refined Planes

Figure 1.1: Given sparse views of a scene, our method matches extracted planes across
views and improves the predicted camera pose to create a coherent scene
reconstruction. Figure taken from submitted paper.

We consider the wide-baseline case in scene reconstruction. This refers to the chal-
lenging case where there are a few input views with limited overlap (i.e., there might
only be a few common surfaces between the input views) and the cameras that took
the images are relatively far apart. Existing computer vision systems generally focus
on the task of single-view ([1]–[3]) and multiview scene reconstruction ([4]–[6]).
In the single-view case, we see that learning-based models are used to create scene
reconstructions but merging individual single-view reconstructions to create a scene
reconstruction remains challenging. In the multiview case, we see that models often
try to use triangulation in order to create scene reconstruction. However, triangulation
is challenging in the wide-baseline case because of limited overlap between the input
views.

In multiview work for scene reconstruction, methods often assume that they are
given the relative camera pose between two images as an input which simplifies the
problem. Furthermore, there is limited work in examining how such systems perform
in the sparse view, wide-baseline case. Existing work in the sparse view, wide-baseline
case includes [7], [8]. We see that [7] uses a complex RANSAC-like search to find
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1 Introduction

object correspondences and camera pose, while [8] uses a hand-designed optimiza-
tion problem which includes an expensive bundle adjustment step where viewpoint
invariant features [9] are used while optimizing the camera pose and plane parameter
predictions.

We propose a simpler transformer-based approach, the PlaneFormer, which takes in
3D-aware plane tokens from planes across two-views as an input and outputs planar
correspondences across the views and a correction to the initial camera pose estimate.
The planar correspondences and the refined relative camera pose can then be used to
generate a scene reconstruction. Our method can be extended to multiple views and
remains competitive against baselines.

We train and evaluate the effectiveness of ourmodel on theMatterport3Ddataset [10]
which contains RGB-D scans contains of indoor scenes. The sets of images used during
training and evaluation have a wide-baseline (mean 53◦ rotation, 2.3m translation, 21%
overlap). Across multiple metrics, our experiments show that our proposed method
outperforms the state-of-art before its bundle adjustment step [8]. The proportion of
predicted camera translation within 1m of the ground-truth increases from 56.5% to
66.8% before the expensive continuous optimization step in [8] and the image pairs
where more than 90% of planes are associated correctly increases from 28.1% to 40.6%
compared to [8]. Our method remains competitive against [8] even after its continuous
optimization step.
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2 Approach
In our approach, we take in two images with an unknown relationship as an input and
output a full planar reconstruction of the underlying scene. In order to reconstruct a
scene, we need to detect planes in each image, find correspondences between planes
across images and estimate the relative camera pose transformation between images
that helps us understand how the images are related to each other.
The main contribution of this paper is the PlaneFormer, a standard transformer-

encoder, that can jointly reason about planes across a pair of input images to find
planar correspondences across views and predict a correction to the relative camera
pose. The PlaneFormer takes in a planar reconstruction of each view as an input along
with their hypothesized relative camera transformation in a world coordinate system
and predicts if the camera hypothesis is correct, a residual to improve the relative
camera transformation and the correspondences between planes across the input pair
of images. The complete approach thus consists of twomain parts namely the backbone
plane detector and the PlaneFormer.
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Figure 2.1: Model Architecture. The backbone plane detector detects planes and esti-
mates the relative camera pose between a pair of input images. The detected
planes are passed through the PlaneFormer which predicts which planes
correspond across views, if the hypothesized relative camera pose is correct
and how to make the relative camera pose hypothesis more accurate. Figure
taken from submitted paper.
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2 Approach

2.1 Backbone Plane Detector
The PlaneFormer is built on a backbone plane detector that detects planes indepen-
dently for each input view and estimates the relative camera transformation between
the pair of views. For fair comparison with the existing state-of-art and to show that
improvements in performance are due to the use of our proposed approach, we use
the same backbone as [8] which consists of a plane branch and a camera branch.

2.1.1 Plane Branch
The plane branch from [8] consists of a modified Plane R-CNN [1] which takes in
a single image as an input and detects planes in the image. For each detected plane
j in image i, the modified Plane R-CNN predicts the plane parameters πi,j ∈ R4,
segmentation mask Si,j and appearance feature ei,j ∈ R128. The plane parameters
indicate the position and orientation of the plane in space, the segmentation masks
tells us the shape and location of the plane in the input view and the appearance
features summarises appearance information such as texture and color. The appearance
features have been trained using the triplet loss in [8] which makes plane with similar
appearances have appearance features that have a small Euclidean distance between
them. For instance, if plane i′ in image i and plane j′ in image j have a similar appearance
then the Euclidean distance between the appearance features ||ei,i′ − ej, j′||2 would be
small.

2.1.2 Camera Branch
The camera branch from [8] takes in two images with an unknown relationship as an
input and estimates the relative camera pose transformation between the two views.
The relative camera pose transformation prediction (R, t) consists of two parts namely
the relative rotation R and the relative translation t between the cameras that took the
two views.

The relative camera pose prediction from the camera branch in [8] is in the form of
independent multinomial distributions over 32 rotation and translation bins that were
found by clustering on their validation set. The predicted relative camera pose is thus
a product of the two distributions and gives a good estimate of the relative camera
pose. It is important to note that there will likely be some error in this estimate since as
noted before the camera branch tries to estimate the relative camera pose as a rotation
and a translation cluster.
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2 Approach

2.2 PlaneFormer
The main component of our approach is a plane transformer which we called the
PlaneFormer. The PlaneFormer is built on top of the backbone plane detector from
[8] and consists of a standard transformer encoder [11] that takes in single-view
planar reconstructions from two views along with a hypothesized relative camera pose
between the views. The outputs of the PlaneFormer are correspondences between
planes across views, if the provided relative camera pose hypothesis is correct and an
update to improve the camera pose hypothesis. The inference for our model comprises
multiple forward passes of the PlaneFormer on a fixed number of camera hypotheses
allowing us to select the most accurate hypothesis from our search space. A complete
description of the model architecture can be found in Table 2.1.

2.2.1 PlaneFormer Inputs
The PlaneFormer operates on a set planes from a pair of input views. As seen in Figure
2.1, let us say we detect M1 planes in image 1 and M2 planes in image 2 for a total of
M = M1 + M2 planes, and a relative camera pose estimate (R, t) between the image
pairs by passing the images through the backbone plane detector. Each of the M
planes is represented as a 899D token that comprises of the following features that
were detected by the backbone plane detector:

1. Appearance feature (R128): The appearance feature for each plane captures how
the plane looks and would give the PlaneFormer information that may allow it
to discriminate between planes that are located in a similar location but have
different appearances.

2. Plane parameter (R3): We represent the plane parameter as a 3D vector that is
found by scaling the detected plane normal by the offset in the plane equation.
The plane parameters of all planes input to the PlaneFormer are converted to
the same world coordinate system using the relative camera pose detected from
the camera branch seen in section 2.1.2. This feature tells the PlaneFormer about
the location of planes in 3D and may allow the plane transformer to reason
that planes with the same location and orientation in space that have similar
appearance across views are likely to be the same plane (i.e. in correspondence
with each other).

3. Plane Mask (R768): The plane mask is the segmentation mask of the detected
plane which has been flattened into a vector. The plane masks of all planes
are mapped to a common view using a standard homography transformation
H = Ri + (tt

i ni,j)/oi,j [12] so that the model can see the positions, size and shape
of all planes from a common view and use that while reasoning about plane
correspondence and the camera pose update. The plane segmentation mask
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2 Approach

in the common reference frame is downsampled to a 24 × 32 image and then
flattened into a 768D vector which is included in the plane token provided to the
PlaneFormer.

2.2.2 PlaneFormer Outputs
The PlaneFormer operates on the M input planes across a pair of input images and
predicts the following:

1. Plane Correspondence (Π ∈ RM×M): This matrix gives a score between each
possible pair of planes across the input images with planes that are likely to be
in correspondence having a higher pair-wise score. The plane correspondence
head is trained using a binary cross-entropy loss.

2. Camera Correspondence (C ∈ R): This value tells us if the PlaneFormer believes
that the hypothesized relative camera pose input to the model is correct or not.
A high value indicates that the model is confident that the working hypothe-
sis seems to be accurate while a low value would indicate that it is likely that
the input relative camera pose hypothesis is not a good estimate. The camera
correspondence head is trained using a binary cross-entropy loss.

3. Camera Residual (∆ ∈ R7): The camera residual comprises of an update to the
relative rotation and translation. The rotation residual (∆R ∈ R4) and translation
residual (∆t ∈ R3) are added to the relative camera pose hypothesis provided
to the PlaneFormer in order to make them more accurate after considering the
context provided by the plane tokens. The camera residual is trained using a L1
loss.

2.2.3 Model Architecture
The backbone plane detector gives us M = M1 + M2 planes from a pair of input views
and a relative camera pose hypothesis. We build plane tokens for each of the detected
planes as discussed in Section 2.2.1. The M input planes are passed through a 5-layer
transformer encoder which has 1 head, dropout probability of 0.1 and a feedforward
network dimension of 2048. Using the output of the transformer, we create a pair-wise
feature tensor of dimension M × M × 4D and pass this tensor through 4 separate
multi-layer perceptron (MLP) heads that estimate plane correspondence, camera
correspondence, rotation residual and translation residual. We then mask out entries
in the MLP outputs such that only pairwise predictions between planes across views
are considered during average pooling in the camera correspondence and camera
residual heads. Finally, we apply a sigmoid function to the plane correspondence and
camera correspondence, and extract planes correspondences across views. A detailed
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2 Approach

Table 2.1:Model Architecture. We define the number of planes from view i to be Mi,
M = M1 + M2 and dimension D = 899. The table describes the inputs,
operations and outputs of different parts of our model (note: the shape after
masking in the table represents non-zero entries). Table and caption taken
from submitted paper.

Index Inputs Operation Output Shape

(1) Inputs Input Embedding M × D
(2) (1) 5-Layer Transformer Encoder M × D
(3) (2) Create Pair-wise Feature Tensor M × M × 4D

(4) (3)

Plane Correspondence: Linear(4D → 2D),
Linear(2D → D), Linear(D → D/2),
Linear(D/2 → D/4), Linear(D/4 → 1),
Sigmoid(M × M),
Extract Submatrix(M × M → M1 × M2)

M1 × M2

(5) (3)

Camera Correspondence: Linear(4D → 2D),
Linear(2D → D), Linear(D → D/2),
Linear(D/2 → D/4), Linear(D/4 → 1),
Mask Matrix(M × M → M1 × M2),
AveragePool(M1 × M2 → 1), Sigmoid(1)

1

(6) (3)

Rotation Residual: Linear(4D → 2D),
Linear(2D → D), Linear(D → D/2),
Linear(D/2 → D/4), Linear(D/4 → 4),
Mask Matrix(M × M × 4 → M1 × M2 × 4),
AveragePool(M1 × M2 × 4 → 4)

4

(7) (3)

Translation Residual: Linear(4D → 2D),
Linear(2D → D), Linear(D → D/2),
Linear(D/2 → D/4), Linear(D/4 → 3),
Mask Matrix(M × M × 3 → M1 × M2 × 3),
AveragePool(M1 × M2 × 3 → 3)

3

description of the architecture with input and output shapes can be found in Table 2.1.
Text taken from submitted paper.

2.2.4 Model Training
The backbone plane predictor is taken from [8] and thus does not need to be trained
for our approach. The PlaneFormer model is trained on pairs of input views from the
same dataset as [8]. We train on balanced batches that contain an equal number of
correct and incorrect camera hypothesis. A camera hypothesis is considered correct
if it consists of the closest rotation and translation cluster from the codebook of [8]’s
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2 Approach

camera branch to the ground-truth relative camera pose. This helps ensure a balanced
training for the camera correspondence head of our model. Losses are updated for the
plane correspondence head and the camera residual head only when a training sample
uses a correct camera hypothesis to ensure that training is not affected by spurious
relationships arising from incorrect camera pose.

We train the model for 40,000 iterations using a batch size of 40, stochastic gradient
descent with momentum of 0.9 and learning rate of 0.01 as the optimizer and a cosine
annealing learning rate decay schedule. All losses are weighted equally except the
translation residual loss which has a weight of 0.5. The weights of the losses were set
such that all the individual losses are on a similar scale at the beginning of training.
The model takes about 36 hours to train on 4 RTX 2080 Ti GPUs.

2.2.5 Model Inference
After the training procedure, the PlaneFormer model can be used to reconstruct scenes
in two main cases namely the two-view case and the multiview case.

Two-View Case

Given two views of a scene, we detect planes in each image and estimate the relative
camera pose using the backbone from [8]. We take the top h = 9 relative camera
pose hypotheses from [8]’s camera branch and run the PlaneFormer on each of the
h camera hypotheses. We choose the hypothesis with the highest camera correspon-
dence score and use it for scene reconstruction. We update the camera pose from
the selected hypothesis using the predicted camera residuals and get binary planar
correspondences after applying the Hungarian algorithm with thresholding on the
planar correspondence matrix. The binary planar correspondences are used to merge
corresponding planes. Finally, the updated camera pose and the merged planes allow
us to generate a planar scene reconstruction of the two input views.

Multiview Case

Given more than two views of a scene, we first make an acyclic view graph connecting
all the views. For the multiview case, we apply the two-view approach on each edge
in the graph and generate a scene reconstruction.
The view graph is greedily created using a connectivity score that we calculate

between each pair of views. This connectivity score represents the number of planes
that seem to correspond together across two views based on the appearance features.
We compute the score dj = minj′ ||ei,j − ei′,j′ || which represents the minimum distance
from the appearance feature of plane j in image i to any plane in image i’. We then
accumulate this score across all planes in image i to get ∑j dj and repeat this process
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from view i’ to i to get ∑j′ dj′ and sum the two to get a symmetric score between views
i and i’.
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3 Experiments
We want to see how the PlaneFormer performs in the wide-baseline case for scene
reconstruction. We thus ran experiments to evaluate how our approach performs in
the wide-baseline two view case and the wide-baseline multiview case and compare it
to existing methods. To gain insight into how the different parts of our plane tokens
and network contribute to 3D reasoning by our model, we also performed a feature
and network ablation study. We now introduce the metrics, datasets and baselines we
use in our experiments.

Metrics To evaluate our model in these settings, it is important to define metrics
that can measure how well we perform in the various tasks we perform using our
model, namely plane correspondence, relative camera pose prediction and entire scene
evaluation. We use the following metrics for evaluating our model:

• Plane Correspondence: We measure plane correspondence using IPAA-X from
[13]. This metric measures the percentage of image pairs where the model gets
at least X% of plane correspondences correct.

• Relative Camera Pose: We measure the relative camera pose prediction from our
model using mean and median error, and measure the percentage of pairs where
we have a translation error of ≤ 1m and rotation error of ≤ 30◦ similar to [8].

• Overall scene reconstruction: We measure overall scene reconstruction using
average precision (AP). Similar to [8], we consider true positive planes to be
planes whose mask IoU is ≥ 0.5, surface normal distance is ≤ 30◦ and offset
distance ≤ 1m. This metric thus measures if all detected planes in the scene have
been predicted correctly and are close to the ground-truth planes, and accounts
for factors including plane detection quality, relative camera pose prediction and
plane correspondences.

Datasets For evaluation, in the two-view setting we use the same dataset as [8]. For
evaluation in the 3- and 5-view cases, we generate a wide baseline dataset using the
same procedure as [8]. The two-view dataset consists of 31392 training image pairs,
4707 validation image pairs and 7996 test image pairs. The three-view dataset contains
258 test image sets and the five-view dataset contains 76 test image sets. The images in
these datasets have a wide-baseline with a mean overlap of 21% pixels, relative rotation
of 53◦ and relative translation of 2.3m.
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3 Experiments

Input Views ReconstructionPlane Correspondence

Figure 3.1: Sample Outputs on the Test Set. PlaneFormer produces jointly refined
plane correspondences and cameras, from which it reconstructs the input
scene. It can produce high-quality reconstructions in cases of moderate
view change (top 2 rows), and coherent reconstructions in cases of large
view change (bottom two rows). Figure and caption taken from submitted
paper.

Baselines We also use several baselines to compare our model to and evaluate its
performance. We compare against the full model from [8] and also compare against [8]
without its bundle adjustment step which is referred to as No Continuous in all settings
we consider. Although the full model from [8] is our strongest baseline, we consider
[8] without its continuous optimization step as a more appropriate baseline since in the
continuous optimization step, [8] extracts viewpoint invariant SIFT features [9] and
optimizes the scene prediction which we do not do in our method. We also consider
the following baselines:

• Plane Correspondence: In addition to the Sparse Planes baseline [8], we compare
against an appearance feature baseline where we compute the pairwise distance
between the appearance features of detected planes and run the thresholded
Hungarian algorithm on the resultant cost matrix.

• Relative Camera Pose: Apart from [8], we compare against the Camera Branch
from [8]. This baseline is the most important baseline for us since any perfor-
mance gain over this baseline can be attributed to the PlaneFormer since the
PlaneFormer is built on top of the backbone from [8] and uses it camera corre-
spondence and residual heads to improve the camera pose estimate from the
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Input Views ProposedSparse Planes Ground Truth

Figure 3.2: Reconstruction Comparison. Sparse Plane reconstructions are a good
baseline, but PlaneFormer yields superior results. It produces both better
stitched planes (top 2 rows), and more accurate camera (bottom two rows).
Figure and caption taken from submitted paper.

camera branch. We also compare to other methods including odometry meth-
ods [14] with GT depth and with predicted depth from [15], and also to [16]
which uses learned feature-matching to estimate the essential matrix. Since [16]
estimates the essential matrix, it cannot predict translation scale [4].

• Full scene reconstruction: We compare against [8] and [8]’s top performing
baselines which use the plane R-CNN outputs along with a relative camera pose
estimation method to generate a scene reconstruction. For [16], we also provide
the ground-truth translation scale to allow it to perform scene reconstruction.

3.1 Wide-Baseline Two-View Case
We show qualitative results of our approach in Figure 3.1 and also show a qualitative
comparison of our approach with [8] in Figure 3.2. We compare against [8] and the
top-performing baselines from [8] quantitatively. We compare each aspect of the

12
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Table 3.1: Two View Plane Correspondence. IPAA-X [13] measures the fraction of
pairs with no less than X% of planes associated correctly. Ground truth
bounding boxes are used. Since the Sparse Planes continuous optimization
does not update correspondence, there is not a separate entry for Sparse
Planes without continuous optimization. Table and caption taken from
submitted paper.

IPAA-100 IPAA-90 IPAA-80

Appearance Only 6.8 23.5 55.7
Sparse Planes [8] 16.2 28.1 55.3
Proposed 19.6 40.6 71.0

Table 3.2: Two View Relative Camera Pose. We report median, mean error and %
error ≤ 1m or 30◦ for translation and rotation. Table and caption taken from
submitted paper.

Translation Rotation
Method Med. Mean (≤1m) Med. Mean (≤30◦)

Odometry [14] + GT Depth 3.20 3.87 16.0 50.43 55.10 40.9
Odometry [14] + [15] 3.34 4.00 8.3 50.98 57.92 29.9
Assoc. 3D [7] 2.17 2.50 14.8 42.09 52.97 38.1
Camera Branch [8] 0.90 1.40 55.5 7.65 24.57 81.9
Sparse Planes [8] (No Continuous) 0.88 1.36 56.5 7.58 22.84 83.7
Proposed 0.66 1.19 66.8 5.96 22.20 83.8

Sparse Planes [8] (Full) 0.63 1.25 66.6 7.33 22.78 83.4
SuperGlue [16] - - - 3.88 24.17 77.8

system including: plane correspondences, relative camera pose estimation and full
scene reconstruction quality.

Plane Correspondences We report plane correspondence results in in Table 3.1.
PlaneFormer substantially outperforms [8] and the appearance feature baseline across
all reported IPAA-X metrics. We also evaluate plane correspondences qualitatively
with [8] and show results in Figure 3.3.

Relative Camera Pose Estimation We now evaluate relative camera pose estimation
from the PlaneFormer in Table 3.2. We see that our approach outperforms baselines that
do not use bundle adjustment across all metrics. Whenmethods use bundle adjustment
such as [8] with its continuous optimization step, we still perform competitively. Our
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Table 3.3: Two View Evaluation. Average Precision, treating reconstruction as a 3D
plane detection problem. We use three definitions of true positive. (All) re-
quiresMask IoU≥ 0.5, Normal error≤ 30◦, and Offset error≤ 1m. (-Offset)
removes the offset condition; (-Normal) removes the normal condition. Ta-
ble and caption taken from submitted paper.

Methods All -Offset -Normal

Odometry [14] + PlaneRCNN [1] 21.33 27.08 24.99
SuperGlue-GT Scale [16] + PlaneRCNN [1] 30.06 33.24 33.52
Camera Branch [8] + PlaneRCNN [1] 29.44 35.25 31.67
Sparse Planes [8] (No Continuous) 35.87 42.13 38.8
Proposed 37.62 43.19 40.36
Sparse Planes [8] (Full) 36.02 42.01 39.04

Input Views Sparse Planes Proposed Ground Truth Ground TruthProposedInput Views Sparse Planes

Figure 3.3: Plane Comparison. Matching surfaces across large view changes is chal-
lenging. Multiple surfaces may be similar in appearance, causing corre-
spondence mixups like bed footboards (top left) or paintings (top right).
By jointly refining planes across images via a transformer, the proposed
method better associates across images. It can also reduce inconsistent out-
lier detections (bottom). Figure and caption taken from submitted paper.

method also performs competitvely against [16], which does not report a translation
scale.

Full Scene Reconstruction We compare our method to the baselines reported in
the relative camera pose case with respect to full scene reconstruction evaluation. We
see that our method performs the best across all baselines for full scene reconstruction.
This being said, we see that the relative gains in performance in AP is not as substantial
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Table 3.4:Multiview Evaluation: Plane Correspondence We report IPAA-X for 3-
and 5-view datasets. Our approach continues to substantially outperform
baseline methods (but overall performance drops due to the increasing
difficulty of the task). Table and caption taken from submitted paper.

3-view IPAA-X 5-view IPAA-X
IPAA-100 IPAA-90 IPAA-80 IPAA-100 IPAA-90 IPAA-80

Appearance 5.94 20.28 52.97 1.45 13.68 52.37
SparsePlanes [8] 9.95 23.77 51.16 4.87 16.58 41.45
Proposed 14.60 32.69 66.15 5.92 20.66 55.92

Table 3.5:Multiview Evaluation: Relative Camera Pose Estimation We report the
same metrics as the two view case, while running on the 3- and 5-view
dataset. Table and caption taken from submitted paper.

3-view 5-view
Transl. Error (m) Rot. Error (deg) Transl. Error (m) Rot. Error (deg)

Med. Mean ≤ 1m Med. Mean ≤ 30◦ Med. Mean. ≤ 1m Med. Mean ≤ 30◦

Camera [8] 1.25 2.21 41.47 9.40 37.08 71.71 1.69 2.80 29.61 13.72 48.07 63.55
No Cont. [8] 1.15 2.02 43.67 8.97 30.89 75.97 1.62 2.73 31.58 12.08 44.99 64.08
Proposed 0.83 1.81 56.69 7.88 32.22 74.94 1.10 2.33 47.24 9.52 43.22 67.5

Full [8] 0.84 1.74 54.91 8.83 30.19 75.58 1.13 2.29 47.37 11.35 44.16 64.21

as the improvement in plane correspondences as reported in Table 3.1 and this may
be because AP measures all aspects of scene reconstruction and even plane detection
quality from the backbone would impact the score.

3.2 Wide-Baseline Multiview Case
We evaluate our approach in the multiview case with 3 and 5 views. This task is
substantially more challenging than the two-view case since the approach must be able
to create coherent scene reconstruction leveraging information from all the views. We
show qualitative results in the multiview case in Figure 3.4 and see that our method
can generate high-quality scene reconstructions even in the multiview case.

For the multiview case, we quantiatively compare against the full method from [8]
and [8] without continuous optimization. For the plane correspondence evaluation,
we also report the appearance feature baseline and for relative camera pose evaluation,
we report the camera branch from [8].

Similar to the two-view case, we see that our method substantially improves plane
correspondences over [8] and the appearance feature baseline as seen in table 3.4. We
also see that our method performs competitively with the full method from [8] and
often surpasses it on a few metrics with regards to relative camera pose estimation
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3 Experiments

Input Views Proposed Ground Truth Proposed Ground Truth

Figure 3.4:Multiview Test Results. With 3 views, our approach model can often
construct extensive reconstruction of rooms (top 3 rows). With 5 views, the
model continues to stitch larger sets of planes together effectively (bottom
row). Figure and caption taken from submitted paper.

as seen in Table 3.5. We also always improve upon the camera branch from [8] and
generally perform better than [8] without its continuous optimization step.

3.3 Ablations
We performed ablation studies to see the importance of features we used and our
network architecture. For the ablation studies, we report IPAA-90 as a measure of
plane correspondences, and mean rotation and translation errors as a measure of the
relative camera pose estimation as seen in Table 3.6. We train all ablations till validation
metrics plateau for fair comparison.

Feature ablation We perform a feature ablation to test the importance of various
features included in our plane tokens in Table 3.6 (left). For fair comparison, we project
input features to the transformer to the same dimension using an MLP during this
ablation study. We see that the appearance features seem to be the most important con-
tributor to plane correspondences in our approach. Without appearance information a
system might find it hard to match planes at similar locations that look very different
from one another. We see that the biggest contributor to the relative camera pose esti-
mates are the plane parameters, and thus the position and orientation of planes seems
to be a very useful cue to the network in determining relative camera pose between
images. Lastly, we see that the mask features contribute to plane correspondences but
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3 Experiments

Table 3.6: Ablations. We perform ablations of input features (left) and network design
(right). We report IPAA-90 and relative camera pose translation and rotation
error. Table and caption taken from submitted paper.

Feature Plane Trans. Rot.
Ablation IPAA-90 ↑ Mean ↓ Mean ↓
Proposed 40.6 1.19 22.20
- Appearance 26.9 1.23 22.78
- Plane 35.2 1.32 25.92
- Mask 34.5 1.26 21.21

Network Plane Trans. Rot.
Ablation IPAA-90 ↑ Mean ↓ Mean ↓
Proposed 40.6 1.19 22.20
- Transformer 32.7 1.48 26.43
- Residual 40.6 1.34 22.38

does not impact camera estimates as much. We see that the overall model that uses all
the features performs the best in the ablation.

Network ablation Weperform a network ablation to test the importance of the various
components of our network in Table 3.6 (right). We see that allowing the planes to
interact with each other through the transformer network contributes substantially
to performance for both plane correspondence and relative camera pose estimates.
We also see that the camera residual contributes to substantial improvements in the
relative camera pose estimates. Thus, we see that the proposed network with all its
components is necessary in effectively estimating planar correspondences and relative
camera pose.
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4 Conclusion
We propose the PlaneFormer, a transformer-based approach, that can reconstruct
scenes given images separated by a wide-baseline (i.e. limited overlap). Our method
performs better than the state-of-art [8] acrossmultiplemetricswhile not using complex
optimization steps or bundle adjustment. Our method remains competitive against
the state-of-art [8] or often surpasses it even when it does bundle adjustment. We also
extend ourmethod towork onmultiple views and evaluate it on 3- and 5-views, and see
that our method continues to often generate high quality scene reconstructions while
remaining competitive on plane correspondence and relative camera pose estimation
metrics in the multiview setting.
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