
TRASH.PY - A SMART SYSTEM ENSURING PROPER WASTE SORTING AND
ELIMINATING USER DECISIONS

Ethan Davis and Marcela Lebrija
Academic Advisor: Prof. Steven Skerlos

INTRODUCTION

For proper waste processing, the trash cans at the University of Michigan need to separate waste into
different categories. These categories include landfill and recycling, and sometimes some others. The
current burden for separating this waste is placed on the trash can user, with different labeled receptacles
being provided for the user to decipher and manually separate their waste between. Relying on users to
properly classify their waste causes problems. For instance, some users do not care enough to throw their
waste into the proper receptacles, resulting in the recyclables becoming contaminated, and potentially
recyclable items being taken to a landfill. Additionally, one of the receptacles could become overfull,
resulting in the users just throwing all their waste into the only available receptacles. The recycling
system at the university also differs from that in Ann Arbor and leads to confusion. Since most students
and faculty live off campus, they are used to doing their household recycling for the Ann Arbor standard.
We aim to address these problems by redesigning the trash cans at the University with an autonomous
waste separation system. Removing the decision from the user on whether their item is recycling or
landfill and therefore reducing the contamination in the bins. The bin will be able to detect whether an
item dropped into the bin by a user is meant for landfill or recycling, and then navigate that item to the
proper storage receptacle contained within the bin. This system will be based on a computer vision model
that will be trained to understand the proper sorting standards at the university. We aim to have a trash can
that yields more valid/clean recyclables than the current system at the University.

Contaminated recycling in public bins is a problem. At the university, recycling is collected and then sent
to the Washtenaw County Materials Recovery Facility (MRF). There, items in the recycling stream are
sorted through both by machine and by hand. These sorted items are then bundled together and sold off to
different specialized recycling centers to then be reused into new products. If there are contaminants in
the recycling stream, the MRF is where they are dealt with. Contaminants cause two main issues at the
MRF. Firstly, the items that cannot be recycled clog up the system, taking additional time and energy to
remove. The removed contaminants then have to be dealt with by shipping to a landfill. Secondly,
contaminants can contaminate actual recyclable items, and reduce the total number of items that are
actually recycled. An example of this would be liquids and other food items getting on paper products.
The University is looking at changing to the Ann Arbor MRF in the next coming years. This will cause a
shift in the recycling standards at the university since the MRFs have different rules and regulations.

Over the course of semester WN2022, we designed the trash.py bin prototype. It has a latch system to
allow the intake of items, a staging area to hold the items for classification, and two internal bins for
disposing of trash and recyclable waste, respectively. We built a physical prototype of the staging area and
camera system –which works with a computer vision model and web server– to simulate a working
prototype of a trash.py bin. In this simulation the web browser facilitates mechanical triggers in the bin,
and the results from the model are displayed in the browser to simulate the bin sorting an item.

1

METHODS

Stakeholders
In order to start understanding the recycling process at Michigan we met with program managers at the
Office of Campus Sustainability (OCS) in order to get more insight on the problem. OCS has a zero-waste
initiative that is focused on cutting back the amount of waste getting sent to landfills by the university.
They are looking at cutting back the amount of waste by 40% by 2025. Through this initiative they have
gathered a lot of data on what are the root causes of bad recycling. From the data collected we were able
to conclude that 40% of the recycling on campus is contaminated [1]. This contamination comes from
dirty recyclables along with items that should not go into the recycling in the first place and can be broken
down in figure 1. The University of Michigan’s recycling program is different from the city of Ann Arbor
and therefore causes confusion. The university is planning on moving towards sending their recyclables to
the Ann Arbor MRF that deals with separating the recycling and getting it sent back for reuse. But for
now, the university sends their recycling to a different MRF that has distinct rules for recycling such as no
glass. Most university students don’t live on campus and therefore reside in Ann Arbor, making their
daily recycling at home different from when using University bins. For that reason, having an autonomous
recycling system that can be updated from just retraining a model is a good solution for the vast amounts
of different recycling systems to keep track of.

Figure 1. The different contaminants of recycling at the university by
type. [1]

User Experience. When interacting with the trash.py bin there are two sets of main users. The front end
being the students, faculty, and anyone else on campus that is throwing things into the bin. The back end
user is the janitorial staff who services the bins and empties them out. Both of these groups are crucial to
the success of the project.

In order to gain input from students, we developed a survey for the front end users in order to get some
insights on their daily interactions with the current university bins. The anonymous survey featured 17
questions ranging from “How often do you use waste bins inside the university buildings to dispose waste
in a day?” to yes or no questions like “It is less stressful if all waste is disposed in one waste bin
receptacle”. The survey was sent out to students of whom 59 filled it out. From these results we learned
that only 10% of students feel strongly confident that they dispose of waste in the correct receptacles. As
well, 62% of students say they use the other bin if the recycling or landfill one is full. And 60% of the

2

students are happy if they are not expected to make any decisions while disposing of waste. This led us to
conclude that most students are not aware of the right steps to dispose of their waste properly and is a
large issue.

We also talked with some of the janitorial staff in charge of the LSA building on campus along with the
Union. These informal conversations were meant to get the main ideas of how one goes about changing
the bags on the trash cans as well as any downfalls to the current designs. On the janitorial staff carts that
are used to carry their supplies, they currently have three different sized bags for the most common trash
cans on campus. We wanted to make sure that we don’t add a different bag from anything they already
carry. As well, they service a lot of different locations and trash cans in one day. Therefore the interaction
that they have with the trash.py bin should not add substantial time to their route. Having the bins
accessible and the system easy to use and understand is crucial in order to not make their jobs any harder.

Design Brainstorming
In order to explore the design space for our solution we started off with large brainstorming sessions as
teams to develop different concepts. Some example concepts from these sessions can be seen in figure 2
and 3. We wanted to make sure that we were able to come up with the best designs possible but get
creative. As we went through different iterations of brainstorming such as small individual, group, and
design heuristics, we ended up with around 45 different design ideas for the trash.py bin.

Figure 2. Example concept #1 showing an open latch deposit
system sling with a converter belt that the waste would fall onto.
The conveyor belt would then move left and right depending on the
decision made by the system whether it was trash or recycling.

3

Figure 3. Example concept #2, showing two bins that are then pushed into the
middle of the bin in order to receive the item thrown away.

Initial Filter. The first filtering step was a gut check for ideas that were not possible in the time frame of
the semester-long project as well as things that couldn’t be done within our current knowledge and
expertise. This then led to the morphing of ideas and left us with 10 final design concepts that
encompassed all the unique ideas we had come up with. For the concepts, the main goal was to make sure
that the design was not limited but that we kept some basic ideas in check. This is when the filtering
criteria became important.

Final Filter Criteria. The criteria used was robustness, ease of use, complexity of parts, and affinity for
taking pictures. Each of the criteria was then given a weight based on the importance of meeting this
criteria which ranged from 1-5. Robustness, which we took to mean the robustness of the sorting
mechanism ensuring less failure, was given a weight of 5 due to its inherent relationship with the bin
completing the task. Ease of use, which we took to mean how intuitive was it for someone like the
janitorial staff as well as the students to use on both the front and back end, got a weight of 3. Complexity
of parts got a weight of 2 due to being important in the context of the time frame we have as well as
wanting to keep the design as simple as possible. And affinity for taking pictures, which we took to mean
how likely will the design result in a good quality image for the system the majority of the time, got a
weight of 5 since without a good clear picture, the system won’t be able to make the correct distinctions.
From these criteria then each design was given a ranking of 0-3 in regards to how closely they meet the
criteria. With 0 meaning the criteria is not met/supported and 3 meaning that it is strongly supported. As a
team we ranked the final 10 designs in each of the criterias leading to a unanimous decision for the final
design.

Software
After designing the trash.py bin, we needed to design a system of software packages that the bin would
use to perform its tasks. We knew that the bin needed to be able to operate mechanical systems, which
necessitated a bin operating system. We also knew that the bin had to be able to classify waste with a
camera, so a computer vision system was needed. We decided after some brainstorming that all of the
computation should be done separately from the bins via the cloud, minimizing the computing systems in
the bins and lowering e-waste. This decision, however, meant that there was an additional need for a
cloud-based server system to communicate with the bins and perform computer vision tasks. Over the
course of the semester we were able to implement both the web server and the computer vision model, but
did not create a bin operating system because we did not build a fully-functioning bin and did not know

4

what features the operating system would need. In the future, an operating system for the bin would need
to be developed.

Computer Vision. The problem of extracting objects from images is called Computer Vision (CV). Our
goal for the trash.py CV system was to be able to have a computer classify an image as either trash or
recycling. This is typically accomplished using convolutional neural networks (CNNs). A CNN is a
function that takes an image’s data as input and gives data as output. The data and its protocol can be
arbitrarily designed by the programmer, but it typically consists of a vector of numbers, each from zero to
one, representing the CNN’s confidence that the input image contains a certain class of object. For
example, if the CNN is confident that the input image is of an object of class 0, the output vector might
look like [0.99, 0.01, 0.00].

CNN Architecture. Both CNNs and regular neural networks perform their tasks of turning inputs into
outputs through a series of layers. A layer is an object that takes in an array of inputs, performs some
transformation on those inputs, and outputs said transformation. When training data is passed through the
network, the outputs are compared to the correct outputs and a gradient descent is performed on the
weights and biases of the layers to minimize an objective function. The objective function is usually the
sum of some loss function with respect to the outputs and the magnitude of the weights [2]. Figure 4 gives
an example of a loss function commonly used known as binary cross entropy

Figure 4. Formula for binary cross-entropy. yi is the truth value for class
i, and p(yi) is the model’s predicted value

A CNN differs from a traditional neural network because it contains Convolutional Layers, or
convolutions. Instead of just performing a matrix multiplication on the input data, a convolutional layer
contains a series of filters. Filters are matrices that operate on small portions of the input, moving across
the input a specified step size/stride, and performing a matrix operation at each step. The resulting output
diagrammed in figure 5 is the concatenation of the outputs from all of the filter operations [3]. During
training filters generally become grayscale images which represent certain features of the objects we wish
to classify. For example, a filter in a network meant to recognize dogs may begin to look like a nose or ear
after training.

5

Figure 5. Visual explanation of a convolutional filter operating on an
input and producing output [3]

The advantage of the convolutional layer is that the target object can be anywhere in the image and the
filters will operate on all parts of the image. During a convolution the filter will be matched up with the
object in the image at some point. Conversely, in a traditional neural network an image that was correctly
classified by the model would likely be classified incorrectly if the image were to shifted, scaled, or
rotated.

Data. A CNN requires a large amount of data for training. This data comes in the form of input images
and output labels. For a prototype of our model, we opted to not generate our own training dataset. Also,
the image-taking portion of gathering data would be done automatically for us if we installed a working
prototype on campus. In order to find a good pre existing dataset, we first defined our CV problem to be
as follows:

Input images are taken from the camera in the trash.py bin. The camera is stationary so the distance from
the holding platform and the camera is constant. The background is a v-shape to hold the waste items, and
is all white. The camera has a flash installed to consistently illuminate the scene. There is only one object
in each image and the object is either trash or recycling.

From these invariants of our problem we were able to define a set of criteria for our training dataset. We
wanted our dataset to be a set of labeled images of public bin waste taken relatively close up at a
top-down angle against a white background with flash. Luckily for us, we found the TrashNet dataset.

The TrashNet dataset contains 3000+ images of trash and recycling. The images are relatively close with
flash against a white background. The dataset differed from our specification in that the images were not
taken from directly overhead and were instead at an angle, but we decided to use it for our model
prototype anyway as the images were good enough to establish a baseline. Figure 6 gives an example of
an image of a food wrapper from the TrashNet dataset.

6

Figure 6. Example of a food wrapper labeled as trash from the TrashNet
Dataset. Consistent with the rest of the images, the photo angle is not
top-down.

The problem that the TrashNet dataset was created to solve was slightly different than trash.py’s. The
classes of the dataset were allocated such that the number of images for trash was equal to the number of
images for each category of recycling. This resulted in there being very few images of trash compared to
recycling. In ML, this is known as a class-imbalance.

Class Imbalance. As shown in figure 7, there were far too many images of recycling compared to trash.
This created a problem for training a neural network, as a model trained on this imbalanced data could
learn to just guess that every image is recycling and get a greater than 90% training and validation
accuracy. Such a model wouldn’t actually learn the problem that trash.py is trying to solve, and in practice
would default to throwing all items in the recycling bin.

Figure 7. Pie chart showing class-imbalance of the TrashNet dataset for
the trash.py CV problem.

7

There are a few methods that can be utilized to combat the class-imbalance problem. The following are
from [4]

Random Over-Sampling (ROS) is the process of adding bias toward the under-represented class (UC) and
away from the over-represented class (OC) during training. It is accomplished in the training function.
When creating a batch of training data, instead of choosing randomly from the entire training set the
function will choose an equal number of each of the classes. This results in the classes being balanced
while training despite the dataset being imbalanced ROS does require more training time, however, as
there is effectively more data to train on.

Random Under-Sampling (RUS) is the counterpart to ROS. Instead of adding more of the UC to each
training iteration, it adds less of the OC, undersampling from the OC. The class balance during training is
the same as ROS, but training takes less time. This method is also less liable to overfit the model, as it
isn’t being trained on several identical copies of the UC.

Data Copying and Data Deleting are methods similar to ROS and RUS, but instead of being implemented
in the training algorithm they involve making physical changes to the dataset. These methods are faster to
implement, but take more storage as a copy of the original dataset should always be saved separately. The
new datasets either contain additional copies of the UC or fewer images from the OC, respectively.

trash.py opted to use the Data Copy method to address the problem of Class-Imbalance, as there are
additional methods available to this solution that can make it more powerful. The copies of the UC were
not identical copies to the original trash data. Instead, each of the fifteen copies of the trash images were
rotated by a multiple of 24 degrees using OpenCV . This made each image of a specific trash item unique
to prevent overfitting. Figure 8 shows the architecture for the trash.py model prototype.

8

Figure 8. Output of calling model.summary(). There are three convolutional
layers that are pooled afterward, followed by dropout and dense layers for
just over eight million trainable parameters.

Cloud server. trash.py opted to use an external server to host the model, rather than host the CV system
on the bin. There are several advantages to this method, and some disadvantages. The main advantage is
less energy and waste. If the bin doesn’t need to do mass computation on site, then it can be outfitted with
less powerful onboard electronics and draw less power. This is more sustainable as less e-waste is
generated per bin. There is also more modularity with this approach. If the computation is abstracted to
the cloud, then the bin’s interface with the cloud only includes sending image data (along with some
metadata) through a web api and receiving a classification decision back. The actual model can then be
altered at will separately from the bin and no change is necessary to the bin itself. A new model can also
be trained faster on the cloud than it could on an onboard computer. trash.py could also theoretically host
multiple models on the cloud that correspond to multiple recycling schemas for bins in different locations.

There are some downsides to the cloud approach, though. There is additional latency in the system as the
bin has to make an API call and wait for a response. We believe that this latency is mitigated by the
cloud’s faster computation time. The bins also need to have wifi connectivity, and cannot function
properly if they lose connection. We believe this can be fixed if the bin also keeps a copy of its current
model onboard as backup. In the case of a wifi crash, the bin could still perform its task, just slower.

We built a flask server in python to act as the brain for the trash.py bins. The server is relatively simple,
and only contains necessary functionality, such as model training, data collection, interactive web applet,
and the trash.py API. When the server receives a call from a bin, it takes image data as input, and returns
a classification. Flask is a python framework that runs a server that along with sending and receiving API

9

calls, can also serve templated html pages to a web browser. We utilized this functionality to show how
the model works by developing a web applet that interacts with the model and camera.

Web Applet. Because trash.py did not yet build a fully-functional prototype bin, we needed to have a way
to test the web systems and interact with the model. The web applet we developed does just this and
simulates what goes on in the bin. It combines the functionality of the web server, model, camera, and
staging area prototype (figure 9). On the landing page (figure 10), the user is greeted with the trash.py
logo and has the option to click a button to classify an image. There is also an optional filename input box
for trash.py internal testing.

Figure 9. Prototype of the trash.py staging area. Items are held in
the v-shaped area to be photographed by the camera, which points
down from the top. The camera connects to a computer running
the flask web server to simulate the bin’s functions

10

Figure 10. Landing page for trash.py web applet. If no filename is given,
the image is saved in the database as item_default.jpg which is overwritten.
Giving a unique filename allows the image to persist in the database.

When the user clicks the ‘Classify’ button, the camera takes an image of the staging area. Next that image
data is sent through a post request to the web server, which then feeds it through the model. The server
then interprets the model’s output and returns the classification of the image back to the browser for
display. The browser then redirects to the display page (Figure 11), and shows the user the image taken,
the classification of the image, and the confidence values for each of the classes.

Figure 11. Classify page. The image displayed is the real time state of the
staging area prototype when the classify button was clicked

The web applet acts as a simulation of the actual bin, with the web browser and camera/staging area
acting as the bin to interface with the server. It does well to demonstrate the system working. If the user
wishes to classify another item, they can exchange the items in the staging area and click on the classify
button again.

11

RESULTS

Final Design
Our final design, as seen in figure 12, for the trash.py bin has an open latch deposit system that intakes the
item and deposits it into the staging area. The staging area is where the system takes the image of the item
thrown into the bin to then run through our model and conclude whether it is trash or recycling.
Therofere, the system then goes through two scenarios. In scenario one as depicted in figure 13, the
system concludes that the item is recyclable and the right latch swings open to deposit the item in the
recycling bin. In scenario two as depicted in figure 14, the system concludes that the item is trash and the
left latch swings open, depositing it in the trash bin. The open latch has a slight angle to the opening
meaning that whatever is thrown into the receptacle won’t fall into the staging area unless the latch is
closed all the way. The time that the system takes to classify the image as well as move the flaps open and
closed on the desired side is the time eaten up by having to fully open the latch and close it all the way.
This inherently reduces the amount of time that the user feels like they are standing around for the bin to
work. The only requirement here is that the user throws one item in at a time so that the image depicts one
item and it is sorted out correctly.

Figure 12. Final design concept for the trash.py bin.

12

Figure 13. Scenario 1 in which the item
detected by the sorting system is recyclable

Figure 14. Scenario 2 in which the item
detected by the sorting system is trash

Design Features. The solution is also fitted to the existing michigan bins in order to allow for easier
integration and use of items that the university already has available. In the conversations we had with the
janitorial staff, they already carry the right size bag for the michigan bins found in figure 15. By using
these bins in the design we use resources already allocated at the university and don’t increase plastic
consumption. As well as making the integration for the janitorial staff equipment as smooth as possible.

Figure 15. Current bins found on the campus of the
University of Michigan that fit into the trash.py bin.

Since the design has a top, the best way to change the bags on the bins is to pull the bins out and change
them where there is room to remove the bags up and out. To make this simpler, the design has a slide out
rack on wheels that holds both of the bins and can be seen in figure 16. This allows the staff member to
easily pull the bins out no matter the weight of the trash inside. Then changing the bags takes on the exact
same process as the bins used everywhere else on campus.

13

Figure 16. Door on the back of the bins which after opened reveals the slide out
rack for easy removal of filled bags.

LED lights were also added to the front of the bin in order to help signify the status of the bin. The lights
can be seen depicted in figure 17 below. If the lights are green, that would signify that the bin is working
properly and isn’t in need of any service. Orange would signify that the respective side is full. Meaning
that if the left side shows orange then the recycling bin is full and would need replacing. And lastly, red
would signify that the trash.py bin is not working properly and is in need of maintenance. By having the
LED light, it allows for an easy check of the bins status at just a quick glance.

In order to know if the bin is full and needs to be changed, we added a weight sensor to the slide out rack
and can be seen in figure 18. Weight can vary when it comes to trash and recycling and therefore the
sensor is set to different weights for fullness detection. Other systems like the trash.py bin have used
weight sensors before in order to know when the bins are full. This is something that would have to be
tested to see if it is reliable information. If not, a sensor can be added to the bins to see how high the
trash/recycling is piling up. We wanted to first stick to weight sensing to make sure that bins inside would
not have to be modified so that we could keep the use of the Michigan bins. The detection of when the bin
is full would be paired with an app that would let the janitorial staff know that the bin is at capacity. For
each building’s staff handling the waste, one would be able to choose the required campus and the
building to reach their own setup. Each building could have views showing the real-time status of all bins
a staff member is responsible for, along with statistics comparing recyclables vs general waste in the
bins.These are some basic features of the app that will keep evolving in the future.

14

Figure 17. LED lights found on the front top corners of
the bin to help signify the bins status.

Figure 18. Slideout rack on the trash.py
bin which features a weight sensor on the
bottom between the bin and the holding
rack.

Model Performance
Figures 19 and 20 show the accuracy and log loss of our final trained model, with a final test accuracy on
the TrashNet data of 98%.

Figure 19. Graph of the training and validation accuracy at each epoch.

15

Figure 20. Graph of the log of training and validation loss at each epoch.

Impact
As mentioned earlier, around 40% of waste in UMich bins is classified incorrectly by the users. Our
model has a very high accuracy, and we have reason to believe that a working prototype would have a
high accuracy when sorting actual waste. Thus, given that the university campus produced about 9,000
tons of waste in 2021, we estimate that with trash.py systems we could intercept over 3,000 tons of waste
annually that previously would have ended up in the wrong bins. This has a widespread impact, as more
recycling can be sent off to MRFs, less time and energy can be spent sorting through recycling at MRFs,
and more CO2 can be saved as a result of this increased recycling.

DISCUSSION/CONCLUSION

What we learned
Throughout the project the need for change of the recycling and trash system at the university was largely
emphasized. There is a large margin for improvement when it comes to how we deposit waste at the
university and how we can reduce this number. We chose one very specific way to tackle this issue but
there are many other ways to make this change. As the world progresses we need to make sure that we are
using the new technology and knowledge to better the environment and help reduce the amount of waste
going into landfills. Focusing on issues of reducing all sort of single use plastics and other waste would
help reduce the amount of waste needed to be sorted in the first place.

Proof of concept
The trash.py project has shown signs of viability, but more problems still need to be solved in order to
prove that trash.py is a viable concept. The web systems and camera all work correctly, but the embedded
system of microcontrollers and microprocessors still needs to be built and tested. We anticipate it would
take a lot of work and some design changes to build a fully-functioning prototype, but we believe that the
trash.py concept is sound and can be viable

16

What we would change
The project was successful in terms of what we hoped to learn and accomplish in the short time span that
we had. If anything were to change it probably would have been getting in contact with OCS a lot sooner.
Going forward in the project we learned how valuable their input and data was in understanding not only
the problem but the behavior of people’s relationships with trash cans. Some of the design ideas could
have been influenced by more pointed data on exactly what goes through a normal bin in one day to make
sure that edge cases have been taken care of. In terms of changing things in our actual design the main
area of focus would be the staging area. As far as we have concluded it should work within its intended
purpose but there are things we didn’t consider until later on. For one, any liquids that were to be tossed
into the bin would probably contaminate the recycling by leaking through the flaps forming a v shape.
This is something that would have to be redesigned for that purpose. As well, thinking about very large
waste items and what to do with them. If it is ok to limit the size of the items being thrown in like we
have, or if this will actually cause a bigger issue.

Moving Forward
We would like trash.py to be more than just a bin that separates trash from recycling. According to the
OCS [5] the chief opportunity for a more sustainable campus is in the form of composting. We would like
to add the ability for the trash.py system to handle compostable material and divert it from the
trash/recycling stream. Additionally, were trash.py adopted by the university, students would no longer
need to know the difference between trash and recyclable materials on campus, but would still produce
and dispose of waste off campus, possibly incorrectly. This is why we would also like to partner with the
university in the future to design and employ a waste classification education campaign in order to make
sure all waste is disposed of properly by everyone in the university no matter where they are.

17

REFERENCES

[1] B. Rose, “U-M Waste Bin Checks Tracking February-April 2022.” Michigan, Ann Arbor, 2022.

[2] C. Green, “Cross Entropy,” Cross entropy, 2016. [Online]. Available: https://heliosphan.org/c
ross-entropy.html. [Accessed: 24-Apr-2022].

[3] M. Panwar, “(PDF) modified distributed arithmetic based low complexity CNN Architecture Design
methodology,” ResearchGate, 2017. [Online]. Available:
https://www.researchgate.net/publication/321237881_Modified_distributed_arithmetic_based_low_co
mplexity_CNN_architecture_design_methodology#pf2. [Accessed: 24-Apr-2022].

[4] Y. Wu and R. Radewagen, “7 techniques to handle imbalanced data,” KDnuggets, 2022. [Online].
Available: https://www.kdnuggets.com/2017/06/7-techniques-handle-imbalanced-data.html.
[Accessed: 24-Apr-2022].

[5] “Environmental metrics,” University of Michigan - Office of Campus Sustainability, 02-Nov-2021.
[Online]. Available: https://ocs.umich.edu/resources/sustainability-data/environmental-metrics/.
[Accessed: 24-Apr-2022].

18

