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Abstract  
Autonomous vehicles offer a wide variety of benefits for the transportation sector, including 
increased efficiency, lower costs and wider access to transportation. Current research at the 
Automotive Research Center at the University of Michigan aims to extend autonomous capabilities 
to off-road vehicles. Military vehicles operating in a priori unknown environments stand to realis 
gains in combat effectiveness and personnel safety through enhanced autonomous capabilities. 
 
A number of approaches have been developed for path planning of autonomous vehicles, which 
select the vehicle's trajectory toward its objective. These algorithms must consider obstacle 
avoidance, path optimization under various metrics, and computational limits for embedded 
hardware. Reachability Based Trajectory design offers a particularly promising approach for 
mathematically provable safe navigation that can work with limited on-board real-time 
computational resources. However, existing implementations do not account for the unique 
dynamics of off-road vehicles, which are affected by variations of terrain, as well as tire-soil 
interactions. The focus of this work will be to adapt Reachability Based Trajectory Design 
algorithms to off-road applications. We will aim to extend the mathematically proved safety 
guarantees offered by Reachability Based Trajectory Design to be compatible with more complex 
dynamics models that capture the behavior of off-road vehicles in working in a priori unknown 
landscapes. We will work to factor in effects of terrain gradients, as well as tire-soil interactions to 
the algorithm, while ensuring feasible implementation with limited real-time processing 
capabilities. 
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I. Introduction 
 
The overall goal of this project is to extend effective, and safe autonomous navigation and control 
capabilities for off-road vehicles. This section will provide an overview of the motivations for the problem, 
the approach adopted, the key challenges overall and the nuances in this specific context.  
 
Motivation  
 
Autonomous vehicles have the potential to offer significant benefits to the transportation sector. These 
include increased efficiency and reduced operating costs. Further, increased intelligence of vehicle control 
systems offers the opportunity to take full advantage of improved digital technologies. Multiple streams of 
information can be made available to a connected vehicle, including  

1) Onboard sensors: Such as multiple cameras, LiDAR sensors, distance sensors among others  
2) Central information sources: GPS routing networks, command centers  
3) Other connected vehicles  

 
This opens the possibilities of making the driving safer, more efficient as well as more optimized based on 
the user's definition of optimality.  
 
Automation of military off-road vehicles holds a multitude of benefits. The most significant of which is 
increased personnel safety. Automating vehicles traversing through hostile regions, especially those 
performing non-combat operations like reconnaissance, and resupply would reduce the number of soldiers 
placed in the line of fire. A study by the Rand Corporation [1] estimates that up to 78 US soldiers would be 
removed from danger if a single US Army convoy were to operate fully autonomously. Even if full 
autonomy is difficult, current research [1] into follower vehicles (a single, crewed lead vehicle, followed 
by multiple autonomous follower vehicles) would greatly reduce the number of troops required for frontline 
non-combat operations. Further autonomous capabilities would eliminate human error as a source of 
accidents or other incidents in military operations. This is especially true in the case of certain algorithms 
that offer safety guarantees.  
 
In addition to safety, autonomous operations allow the integration of advanced digital capabilities. An 
autonomous connected vehicle could receive information from multiple on-board sensors (including 
multiple cameras, and LiDAR sensors). It would be able to connect to and receive information from multiple 
other sources, such as a central command center, satellite and GPS data, as well as any other information 
relevant to the operation. This could allow for better optimization of the vehicle's operation integrating 
multiple teams of data to make informed decisions better than a human driver could process.  
 
Navigation Algorithms Overview  
 
To develop autonomous capabilities for military vehicles, we consider the following breakdown of tasks 
required to guide a vehicle to its destination. This is the approach used by several studies, including the 
work of the ROAHM lab at the University of Michigan whose work this project is based off [2][3]. The 
external inputs required for this breakdown are a map of the area of operation (although there are no specific 
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constraints on what information, or how much information this map should contain), and a user-
specification of the destination (i.e. where does the operator want the autonomous vehicle to go)  
 

1) High Level Planner: Given a destination, the high-level planner breaks down the path towards the 
destination into a series of way-points. These way-points act as intermediate destinations.  

2) Trajectory Planner: The trajectory planner selects a path that vehicle should follow towards each 
successive way point. 

3) Low Level Planner: The low-level planner is the one that directly interacts with the vehicle 
hardware. By applying actuation to the vehicle (e.g. throttle input or steering input), the low level 
planner makes the vehicle actually follow the path suggested by the trajectory planner.  

 
Our work in this project focuses on the trajectory planner. The trajectory planner is the software component 
that interacts directly with the vehicle dynamics, as it must factor in the behavior of the vehicle in its 
selection of trajectories that are both feasible (i.e. can be achieved by the low level planner while adhering 
to actuation and dynamic limits) as well as safe (i.e. do not lead the vehicle into unsafe positions or collide 
with obstacles). We discuss this aspect, as well as the RTD paradigm, which we use for trajectory planning.  
 

II. Trajectory Planning Algorithms and Reachability Based Trajectory Design  
 
For the purposes of trajectory planning, we make use of Reachability Based Trajectory Design (RTD), 
developed at the University of Michigan's ROAHM Lab [4]. Reachability Based Trajectory Design 
describes a class of trajectory planning algorithms that make use of Reachable Sets to select safe trajectories 
for vehicles.  
 
RTD makes use of a construct called the Forward Reachable Set (FRS). Given a system characterized by a 
set of states, 𝑥 		∈ 	ℛ%	, the FRS describes the set of all points in state space that the system (in the present 
context, a vehicle) can reach in a certain finite time window.  
 
Using the FRS, the RTD algorithms complete their path planning in a five-step-process. The paths are 
planned for a fixed (and usually small) time horizon, known as the planning horizon 𝑡'()%. The paths are 
planned in succession - each path is executed by the low level controller while the next one is being planned. 
The five step-process is as follows 
 
1) Parametrize trajectories of the system (for example, by constant control input required to achieve it)  
2) Compute the FRS for a time interval equal to 𝑡'()%  
3) Intersect the set with the set of known obstacles. Identify a subset of the FRS excluding the points that 

lie in or near an obstacle (see Note A)  
4) Map the safe subset from (2) to the trajectory parameter space; this yields a set of "safe" trajectory 

parameters that correspond to safe trajectories  
5) Optimize over the remaining safe trajectories to pick the one that best suits the needs of the overall task  
6) Repeat steps 3-5 for each planning window  
 
This effectively makes RTD a form of receding horizon planning. In addition to this key algorithm, there 
are a few other key components of RTD based algorithms that we discuss briefly.  
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Note A: To ensure safety, the footprint of the obstacles can be scaled by a safety factor to ensure that the 
vehicle will not collide with the obstacles even in case of sensor uncertainty and/or model imperfections.  
 
Forward Reachable Set Computation  
The computation of the Forward Reachable Set is a complex problem. The FRS must be computed both 
accurately as well as efficiently Further, it must be guaranteed that the FRS is, in the worst case and 
underapproximation of the true vehicle behavior (i.e. there must be no points that the actual vehicle is able 
to reach that are not included in the FRS). This is important to ensure the safety guarantees. This project 
focuses on the computation of the FRS, and this is discussed in more detail in the subsequent sections.  
 
Optimization over safe trajectories  
The optimization method can depend on the exact application of the algorithm, and what metrics are desired 
to be optimized. A common approach is to define a cost variable as a function of the trajectory parameters 
and/or paths. The definition of the cost variable can be used to indicate to the algorithm both undesirable 
and desirable characteristics by associating with them high or low costs respectively. The optimization 
process then simply consists of finding the trajectory with the lowest value of the cost variable. Another 
similar approach is to define an objective function, which functions opposite to a cost. The optimization 
then finds the trajectory with the maximum objective function. As an example, a cost function can be used 
to account for the amount of actuation a trajectory requires, distance from the waypoint, and proximity to 
obstacles (all of which are undesirable).  
 
Error in Reachable Sets  
The Reachable Set computed in the above algorithm is likely to not be a complete representation of the 
vehicle's actual reachable set for a number of reasons. The main reason is that systems like road vehicles 
are complex dynamic systems, and high fidelity models of their behavior are complex, and higher-
dimensional. This makes computing the FRS a slow process (we will discuss the reasons for thin the next 
section). Therefore, there exists a tradeoff between how accurate the FRS computation is and how much 
time and processing power it requires. Even though the FRS can be computed offline, due to practical limits, 
simplified, lower dimensional models are used, which leads to some error between the actual dynamics of 
the vehicle and ones upon which the FRS is computed.  
 
In addition, parameter uncertainty must be taken into consideration. Models for complex systems, such as 
vehicles, can contain numerous parameters, whose values must be identified either by tuning or 
experimentation and measurement on the actual vehicle. This gives rise to uncertainty in the model 
parameters, which could result in even high fidelity models not being entirely accurate.  
 
III. Forward Reachable Sets  
 
A rigorous definition of the Forward Reachable Set can be found in [4]. A formal definition is as follows.  
 
Definition 
Given a system characterized by a state vector 𝑥(𝑡) and dynamics given by  

,	
,-
	𝑥	 = 	𝑓(𝑥, 𝑢),  
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where 𝑢 represents the control input.  
 
Further, given a set of initial states ℒ and a time horizon 𝑡'()%, the forward reachable set is a set 
𝐹(𝑡'()%)	such that  

𝐹(𝑡'()%	) 	= 	 {𝑥5	|	∃	𝑢, 𝑥0		𝑠. 𝑡. 𝑥(•) 	= 	𝑓(𝑥, 𝑢), 𝑥	(0) 	∈ ℒ, 𝑥	(𝑡'()%	) 	= 	𝑥5}.  
 
The FRS therefore defines all the points in state space that the system can reach, starting from a set of initial 
states ℒ over a finite time horizon 𝑡'()%.  
 
Computation  
Computation of the Forward Reachable Set is a central problem in the development of RTD based 
navigation algorithms. The most common method described in the literature on this subject is the Hamilton-
Jacobi Reachability method.  
 
The Hamilton-Jacobi Reachability method can be illustrated using a construct analogous to the FRS, called 
the Backwards Reachable Set (BRS). The BRS defines the set of states that, when propagated forward could 
lead the system into a given set of states ℒ over a time horizon 𝑇.  
 
The Hamilton Jacobi Method sets up the system as a two-player game. The system is taken to have 
dynamics as follows  

,
,-
𝑥(𝑠) = 	𝑓(𝑥(𝑠), 𝑎(𝑠), 𝑏(𝑠))	𝑠 ∈ [𝑡, 0], 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵,  

Where 𝑎(𝑠) and 𝑏(𝑠) are the control inputs for Player 1 and Player 2 respectively. We also denote 
trajectories starting from state 𝑥 at time 𝑡 using control 𝑎(•) and 𝑏(•) as follows:  

𝜁(𝑠; 𝑥, 𝑡, 𝑎(•), 𝑏(•)) ∶ 	 [𝑡, 0] 	→ 𝑅% ,  
where 𝑛 is the dimension of the state space.  
 
The backwards reachable set is therefore given by  

𝐺(𝑡) 	= 	 {𝑥|	∃𝛾	 ∈ 	𝛤(𝑡), ∀	𝑎(•) 	 ∈ 	𝐴, 𝜁(0; 𝑥, 𝑡, 𝑎(•), 𝛾[𝑎]) 	 ∈ 	𝐺0},   (A) 
where 𝛤(𝑡) denotes all feasible input options for Player 2, and A denotes all the possible input options for 
Player 1. This problem formulation defines the set of all states from which the system can be "driven" into 
the target set 𝐺0 within some finite time 𝑡. Note that the setup of the two-player game is such that Player 1 
(whose control input is 𝑎(•)) will try to steer the system away from the target set, while Player 2 (whose 
control input is 𝑏(•)) will try to steer the system towards the target state.  
 
Note that in Eqn. (A), player 2's input is denoted as 𝛾 which belongs to the set of feasible strategies 𝛤(𝑡). 
Here, 𝛤(𝑡) is the set of all non-anticipative strategies. This means that Player 2 responds to player 1's control 
inputs, and cannot change her response to Player 1 until Player changes their control first. This restriction 
is applied only to Player 2 - hence Player 1's control input can come from 𝐴 - the set of all valid control 
input functions. This restriction gives Player 2 the advantage of factoring in Player 1's control, which is 
important to establish Safety Guarantees.  
 
A cost function is now defined over the time interval [𝑡, 0] assuming Player 1 plays control 𝑎(•) and Player 
2 plays control 𝑏(•). The cost is defined as 𝐽N(𝑥, 𝑎(•), 𝑏(•)) 	= 	𝑔(𝑥(0)).  
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The minimum cost can be found as 

 
where 𝑔(𝑥) is a function such that  

𝑥	 ∈ 	𝐺0 	⇔ 	𝑔(𝑥) ≤ 0.  
 
The BRS is thus written as 𝒢(𝑡) 	= 	 {𝑥|	𝐺(𝑡, 𝑥) 	≤ 	0}, and it can be shown that the function 𝐺(𝑡, 𝑥) is the 
solution of the following PDE 𝐷-𝐺(𝑡, 𝑥) 		+ 	𝐻(𝑡, 𝑥, 𝜆) 	= 	0, 𝐺(0, 𝑥) 	= 	𝑔(𝑥), where  

 
 
The FRS can be analogously defined as  

𝒲(𝑡) 	= 	 {𝑦:	∃𝛾 ∈ 𝛤(𝑡), ∀𝑎(•) 	∈ 	𝐴, 𝜁(𝑡; 𝑥, 0, 𝑎(•), 𝛾[𝑎](•)) 		= 	𝑦, 𝑥 ∈ 𝒢0},  
where 𝒢0 denotes the set of initial states from which reachability is being computed. Here instead of tracing 
back states 𝑥 from which a destination state 𝑦	 ∈ 	𝒢0 can be reached, we are looking to define all the 
destination states (each destination state denoted by 𝑦) that can be reached from an initial state 𝑥	 ∈ 	 𝒢0.  
 
This problem can be solved very similarly to the procedure for computing the BRS. The only difference is 
the resulting PDE is an initial value Hamilton-Jacobi PDE instead of a final value Hamilton Jacobi PDE.  
 
Challenges in FRS Computation  
 
Although a popular method for computing Forward Reachable Sets, Hamilton Jacobi Reachability is not 
ideal for many applications. This is primarily because the Hamilton Jacobi Reachability suffers acutely 
from the curse of dimensionality. As the number of states (i.e. the dimension of the state space) increases, 
the computational complexity of the calculations involved in Hamilton Jacobi Reachability grows 
exponentially [5]. This is especially problematic for the application this project is based on - off road 
autonomous vehicles. Owing to the complex dynamics of an off-road vehicle, and its interactions with 
terrain (in terms of both the gradient and shape of the terrain and the interaction between the soil and the 
tires), the overall system could end up having several states, which would make Hamilton Jacobi 
Reachability impractically slow.  
 
Another approach noted in literature is to employ the Minkowski sum of zonotopes. In this method, the 
Reachable Sets are represented by objects called Zonotopes. Zonotopes make for efficient computation of 
the FRS. However, the method assumes the linearity of the system dynamics in question. In our application, 
this is difficult to ensure since the dynamics of the vehicle are complex, coupled dynamics, which have 
multiple inputs and can be distinctly non-linear.  
 
In addition to these challenges, our application must also account for the fact that the dynamics of off-road 
vehicles can be more complex than those developed for passenger vehicles. Notably, we anticipate having 
additional inputs (or disturbances) in the form of the interactions of the vehicle with the terrain, including 
both the effects of the terrain gradient and the shape of the terrain (e.g., the vehicle accelerates faster when 
moving downhill) as well as the effects of the interactions between the tires and the soil (e.g., the vehicle 
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has less traction to accelerate and turn when driving on ice than on compacted soil). Further, we must 
consider the dynamics of the vehicle itself - owing to the nature of the environment, we cannot assume 
effects like load transfer, which can be ignored for passenger vehicles in some conditions, are negligible.  
 
IV. Proposed Solution  

 
Overview  
The proposed solution is an algorithm for computing the forward reachable set of a complex system. It aims 
to adapt RTD algorithms for application to off-road autonomous vehicles. Specifically, it is hoped that this 
method allows the integration of significantly more complex dynamics directly into the RTD framework. 
This will allow the algorithm to provide the mathematically proven safety guarantees that RTD promises, 
while considering the dynamics of the off-road vehicle, as well as the terrain that it crosses.  
 
We also recognize the importance of ensuring that the FRS computation remains computationally feasible. 
Our method aims to ensure that the computational complexity of the FRS computation, despite a potentially 
large number of states and little opportunity for model reduction, does not grow exponentially with the 
number of states, as is known to happen for the Hamilton-Jacobi Method.  
 
The method adopted will be based on differential geometry, and will consider the dynamics of the vehicle. 
The current aim is to account for other effects (such as terra-mechanics, and effects of slope) as 
disturbances. The method will also provide a modified means to compute the intersection of the Reachable 
Set with the set of known obstacles, thus ruling out unsafe trajectories. The current plan is for the method 
proposed to output a set of feasible, safe trajectories. Existing optimization methods will have to be adapted 
somewhat to work with the trajectories as their representation is likely to be slightly different, but the 
difference will not be significant. The optimal trajectory selected will then be passed on to the low level 
controller as specified in the RTD framework.  
 
A few changes will likely be made to the overall framework. Most notably, it might be necessary to re-
compute at least some parts of the reachable set as more information on the soil and terrain shape becomes 
available to the vehicle from its sensors. The exact details will depend on the amount of information the 
vehicle can be presumed to have beforehand, and how the soil and terrain shape affect the reachability. 
However, the hope is that the method proposed enables the smooth integration of complex dynamics into 
the RTD framework, thereby allowing an extended set of applications to take advantage of the 
mathematically proven safety guarantees offered by RTD algorithms.  
 
Current State  
 
As described earlier, an algorithm based on differential geometry has been proposed to efficiently compute 
the FRS for a specific situation relevant to the intended application in off road autonomous vehicles. The 
first step was to develop the algorithm based on a simplified vehicle model as a test case. For this purpose, 
we used a kinematic bicycle model. A system has also been found to correlate the FRS computation with 
trajectory parameters - in this steering and engine input - that can be passed to a lower level controller to 
execute a certain trajectory.  
 

Deleted: will 

Deleted: ve considerably

Deleted:  
Deleted: offroad

Deleted: taking into account

Deleted: offroad

Deleted: take into account

Deleted:  

Deleted: L
Deleted: L
Deleted: C

Deleted: M
Deleted: P
Deleted: S
Deleted: G

Deleted: Forward Reachable Set

Deleted: ARC's 

Deleted: the

Deleted: K
Deleted: B
Deleted: M



The work with the kinematic bicycle model was intended as a proof of concept to demonstrate the 
mathematical feasibility of the proposed approach. The next step will be to implement the algorithm in code 
to verify its working against the simplified model used (it has been verified mathematically, this step will 
verify the numerical steps in the processing). Further work will also consist of expanding the formation of 
the algorithm. Primarily, this will be to include a more complex vehicle dynamics model, but we also hope 
it might be later extended to more general abstractions of complex system behavior. 
 

V. Highlights of Literature Review  
 
In this section, we highlight a few notable efforts to address the challenges of computing the FRS in contexts 
similar to ours.  
 
FRS Computation using Neural Networks  
 
Paper: Learning Approximate Forward Reachable Sets Using Separating Kernels [6] 
 
Overview of Method  
The authors in this study propose a new method of estimating the reachability of systems where the 
dynamics are either not well known, or too complex for traditional FRS methods. Their method first 
identifies as identification function 𝐿(𝑥) 𝑅% → 𝑅 such that, for the FRS represented by 𝒢 

𝐿(𝑥) 	= 	1	 → 	𝑥	 ∈ 	𝒢 
 
The proposed method then sets up a neural network classifier to classify data in the form of points in the 
state space into whether or not they are reachable. Parameters include the initial state 𝒢0 and the time 
horizon.  
 
Analysis for present application  
The method presented does show promising results. It also holds two distinct advantages. First, it greatly 
reduces the computational complexity that might otherwise have been required for complex systems. This 
is because the specific dynamics relevant to the problem are captured by the much simpler structure of a 
neural network. In addition, the network is able to capture nonlinear dynamics through the structure of the 
network itself, without the need for model reduction. This is useful in the case of complex systems where 
the dynamics may not be fully understood, such as the case of the off-road vehicle.  
 
However, this method would not directly suit our application for two key reasons. The main reason is that 
the neural network based approach loses the safety guarantees offered by the RTD framework, which 
motivated the use of the RTD Framework, and this project to adapt it for off road autonomous vehicles. 
There is no way, in this method, to guarantee that the FRS is a conservative approximation of the 
reachability of the vehicle, or that the vehicle will never enter an unsafe trajectory. This would depend on 
the nature and quality of the training data made available to the neural network. Given that models do 
currently exist to model and simulate the behavior of off-road autonomous vehicles at the ARC, this method 
would not provide any notable advantages. Further, the success of this method is dependent on the 
availability of a large amount of training data. Given that the vehicle model consists of several states 
coupled together with complex dynamics, the state space is quite extensive, and obtaining enough data to 
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train the model will be a challenging task for us. Live testing is also not a feasible source of this data since 
it would not be practical to collect enough data to properly train the classifier for an application like ours.  
 
FRS Computation using efficient implementation of optimal control  
 
Paper: A computational method for non-convex reachable sets using optimal control  
 
Overview of Method  
The authors of this study propose a new method for computing the reachability of non-convex reachable 
sets using optimal control.  
 
The paper recognizes the challenges of ensuring that Hamilton Jacobi based calculations remain 
computationally feasible. The method proposed works on the principle of dividing the state space evenly 
into a grid, with each element of the grid representing a smaller subset of the state space. Then, the optimal 
control problem is formulated to include only the subsets. The resulting computation projects the FRS onto 
the grid. The aim is to solve a number of smaller optimal control problems as opposed to a large optimal 
control problem. This is somewhat analogous to the Divide and Conquer class of efficient algorithms that 
divide a large problem into smaller problems that are collectively easier to solve.  
 
Analysis for present application  
This method is also quite promising, and does represent a significant improvement over Hamilton Jacobi 
reachability. The method offers greater flexibility as well, since there is a tradeoff between the grid 
resolution, and the number of optimal control sub-problems to solve. A finer grid giver more accurate 
results, but includes more overhead.  
 
However, this method would not be ideal for our application. This is because the method, being an optimal 
control problem, cannot guarantee globally optimal solutions. This means that there might exist optimal 
paths that the algorithm cannot find. It also poses a risk of non-optimal local minima confusing the 
algorithm resulting in a sequence of paths that do not achieve the overall goal. In addition, research along 
similar lines of optimization of a trajectory is currently ongoing at the ARC, and to our best knowledge, 
would be just as well if not better suited to our needs.  
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