
1. Introduction
Electrons in the radiation belts can cause both internal and surface charging of spacecraft (e.g., Lam et al., 2012; 
Loto'aniu et al., 2015), with internal charging mainly due to >100 keV (kiloelectronVolt) electrons and surface 
charging to electrons below 100 keV. However, while daily averaged >100 keV electron fluxes can be reasonably 
well predicted because they often result from geomagnetic storms (e.g., Balikhin et al., 2016; Glauert et al., 2014; 
Pakhotin et al., 2014; Simms et al., 2016; Subbotin & Shprits, 2009), the same is not true of <100 keV electrons. 
Not only do these lower energy electrons result in the more damaging surface charging, they are also much more 
difficult to forecast (e.g., Choi et al., 2011; Koons et al., 2000; Matéo-Vélez et al., 2018). For LANL (Los Alamos 
National Laboratory) satellites, for example, it is the energy range of ∼10–50 keV that is most important for 
surface charging (Matéo-Vélez et al., 2018; Thomsen et al., 2013). These lower energy electrons vary on time 
scales of minutes with their distribution depending on location in the magnetosphere, so daily/orbit averaging is 
not possible. Moreover, geomagnetic storms are not always predictive of keV electron enhancements, and surface 

Abstract We screen several algorithms for their ability to produce good predictive models of hourly 
40–150 keV electron flux at geostationary orbit (data from GOES-13) using solar wind, Interplanetary 
Magnetic Field, and geomagnetic index parameters that would be available for real time forecasting. 
Value-predicting models developed using ARMAX (autoregressive moving average transfer function), RNN 
(recurrent neural network), or stepwise-reduced regression produced roughly similar results. Including magnetic 
local time as a categorical variable to describe both the differing levels of flux and the differing influence of 
parameters improved the models (r as high as 0.814; Heidke Skill Score (HSS) as high as 0.663), however 
value-predicting models did a poor job at predicting highs and lows. Diagnostic tests are introduced (cubic fit to 
observation-prediction relationship and Lag1 correlation) that better assess predictions of extremes than single 
metrics such as root mean square error, mean absolute error, or median symmetric accuracy. Classifier models 
(RNN and logistic regression) were equally able to predict flux rise above the 75th percentile (HSS as high as 
0.667). Logistic regression models were improved by the addition of multiplicative interaction and quadratic 
terms. Only predictors from 1 or 3 hr before were necessary and a detailed description of flux time series 
behavior was not needed. Stepwise selection of these variables trimmed non-contributing parameters for a more 
parsimonious and portable logistic regression model that predicted as well as neural network-derived models. 
We provide a logistic regression model (LL3: LogisticLag3) based on inputs measured 3 hr previous, along 
with optimal probability thresholds, for future predictions.

Plain Language Summary As high levels of electrons in the radiation belts can damage satellites, 
accurate forecasting would be a useful tool. Electron levels can be predicted using information from the solar 
wind, the interplanetary magnetic field, and indices measuring disturbances in Earth's magnetic field. We 
compare several algorithms to produce such models: regression and neural networks that depend on predictors 
at one or many previous time steps. We find that dependable predictions can be made from a regression model 
using predictors from only a single previous time step. More sophisticated neural network techniques are not 
necessary if interaction and nonlinear terms are introduced to the regression.
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charging events have been detected during even weak to moderate substorm activity (Ganushkina et al., 2021; 
Matéo-Vélez et al., 2018).

Electron fluxes at keV energies have been modeled with several techniques, including a first principle kinetic 
approach in several ring current simulations (e.g., Chen et al., 2015; Fok et al., 2014; Ganushkina et al., 2014; 
Jordanova et  al.,  2016), empirical models using different fittings (e.g., Denton et  al.,  2015,  2016; Ginet 
et al., 2013; Roeder et al., 2005; Sicard-Piet et al., 2008; Sillanpää et al., 2017), and multivariate approaches 
including conditional mutual information (Stepanov et al., 2021) and Nonlinear AutoRegressive moving average 
(MA) with eXogenous (NARMAX) inputs (Boynton et al., 2013, 2016, 2019). However, these empirical models 
may depend on only a few parameters. A wider array of input parameters could improve predictions of keV 
electron fluxes. Solar wind and IMF (Interplanetary Magnetic Field) parameters alone may produce reasonable 
predictive models, with the advantage that these would be readily available for real time forecasting.

Several studies have examined the response of geosynchronous keV electron flux to solar wind parameters, 
with electron enhancements associated with pressure increases (Shi et  al.,  2009) or higher solar wind speed 
(Hartley et al., 2014; Kellerman & Shprits, 2012; Li et al., 2005). A combination of solar wind speed and the 
IMF Bz has been found to be predictive as well (Sillanpää et al., 2017), with lesser influence from the other two 
IMF components and solar wind density, temperature, and pressure (e.g., Ganushkina et al., 2019; Kellerman & 
Shprits, 2012; Li et al., 2005). This suggests that combinations of parameters, whether multiplicative or additive, 
may best predict flux, reflecting multiple driving parameters (Denton et al., 2016). As keV electrons levels fluc-
tuate on time scales of hours, better models may come from prediction parameters at a similar cadence.

Higher energy electrons (MeV; MegaelectronVolt), when daily averaged, have shown high correlations with solar 
wind parameters (wind speed and density either individually or in combination) (e.g., Balikhin et al., 2011; Blake 
et al., 1997; Li et al., 2001; Lyatsky & Khazanov, 2008; Paulikas & Blake, 1979; Reeves et al., 2011). However, 
the hourly response may be much lower (Simms et al., 2022), and the physical influence of many solar wind 
drivers on even MeV electron flux may not be as high as these correlations suggest. Much of the solar wind influ-
ence may not be direct but instead mediated by waves and electron injections following substorms (e.g., Simms, 
Engebretson, Clilverd, Rodger, Lessard, et  al.,  2018), and simple correlations of solar wind parameters with 
electrons may be inflated by common cycles and trends if these commonalities are not removed via such methods 
as a differencing transformation or ARMAX modeling (Simms et al., 2022). However, for prediction purposes, 
it may not be important that variables physically drive keV electron flux, nor that the correlations are only due 
to mutual cycles. Highly correlated proxies may be sufficient for prediction, and more practical given their real-
time availability. For keV electrons, the strongest solar wind correlates are some combination of velocity, density 
and pressure (Ganushkina et al., 2019; Simms, Ganushkina, et al., 2022). IMF Bz, while it does not show as high 
a correlation as solar wind velocity, may still be a useful addition as it provides further information not present 
in the solar wind parameters alone. (The southward component of IMF (Bs) may appear to be a more targeted 
version of this parameter and therefore likely of more predictive use, but we have found that Bs does not correlate 
better with flux than Bz itself, at least in hourly data (Simms, Ganushkina, et al., 2022)).

Geomagnetic indices are easy to obtain measures that have often been used in prediction models. Although there 
may be concern that ground-based indices (measured at ground magnetometers), may not represent conditions in 
the magnetosphere well, they are worth testing as possible predictors that contain, at least, some information that 
we do not have access to otherwise. Bearing in mind that they may be proxies of pertinent physical processes that 
all manifest as magnetic perturbation in a single number, we can still use these for prediction purposes. However, 
although the AE (Auroral Electrojet) index may be a reasonable measure of substorm activity that correlates well 
with keV electrons (Ganushkina et al., 2021) due to its ability to indicate electron injections, it is not useful for 
real time predictions because it is not published immediately. If we cannot use AE, two other indices, Kp (Plan-
etarische Kennziffer) and SymH (symmetric H-component of the ground magnetic field, or Dst (Disturbance 
Storm-Time), show similarly high simple correlations with flux. Neither Kp nor SymH show as much association 
with flux as AE does when all three of these indices are included in the same analysis, but they may be a practical 
second choice for prediction purposes. Kp correlates well with 1–40 keV flux (e.g., Denton et al., 2015, 2016; 
Freeman, 1974; Korth et al., 1999; Thomsen et al., 2013). Its 3 hr cadence may make it too slow to measure 
quick changes in geomagnetic activity that may be associated with fast electron enhancements, but its inclusion 
in a prediction model may be helpful to measure the general background level of disturbance. SymH would be 
the obvious choice as it is reported at a 1-min cadence, but it is not currently available in real time for prediction 
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purposes. Given this problem, Dst may be the best geomagnetic index parameter to include in a prediction model 
as it is available in real time and at an hourly cadence (improving over the 3 hr Kp cadence). As SymH is essen-
tially the Dst index at finer time resolution (minute vs. hourly), the choice of Dst over SymH should make no 
difference in the prediction of hourly electron flux (Iyemori et al., 2010). It also may be useful to incorporate the 
solar energy flux (f10.7) even though it changes relatively slowly.

Previous work has also explored the effect of polynomial (Balikhin et al., 2011) and polynomial and multiplica-
tive interaction terms (Simms, Engebretson, Clilverd, Rodger, & Reeves, 2018). The quadratic (square) and cubic 
terms of predictors can account for possible nonlinear effects that are not dealt with by log transformations, while 
multiplicative interaction terms describe the synergistic effects of variable pairs. Polynomial and multiplicative 
terms such as this will either be incorporated automatically by a neural network approach, if the algorithm finds 
them useful, or can be included as additional terms in ARMAX or regression models.

In this study, we explore the ability of several multivariable prediction model types to predict electron flux 
that have been used at various electron energies: neural networks (e.g., Chu et al., 2021; Freeman et al., 1998; 
Katsavrias et al., 2022; Koons and Gorney, 1991; Ling et al., 2010; Ma et al., 2022; Simms and Engebretson, 2020; 
Smirnov et al., 2020; Swiger et al., 2022), autoregressive MA time series transfer functions (ARMAX) (Balikhin 
et al., 2011; Boynton et al., 2013, 2015; Simms & Engebretson, 2020; Simms, Engebretson, Clilverd, Rodger, 
Lessard, et al., 2018), conventional regression (value-predicting) (Simms et al., 2014, 2016), and logistic regression 
(which classifies predictions into groups) (Capman et al., 2019; Neter et al., 1990; Simms & Engebretson, 2020).

In the present paper, we explore the capabilities of three approaches, namely, recurrent neural networks (RNN), 
ARMAX and conventional and logistic regression, to model hourly electron fluxes with energies of 40–150 keV 
as observed at geostationary GOES-13 satellite using solar wind, IMF, and geomagnetic indices as parameters. 
Models may be either value-predicting (RNN, ARMAX, conventional regression), or predict the probability of 
being over a given threshold value (RNN, logistic regression). Either ARMAX or conventional regression values 
output can also be categorized as above or below a threshold (although they do not predict probability). We also 
take the opportunity to briefly compare the power of several single-value metrics to distinguish between model 
prediction ability. (However, for a more comprehensive comparison see Liemohn et al.  (2021).) We note that 
these single-value metrics are heavily weighted by mid-range values and are not well suited to assessing how 
well a model predicts the high electron fluxes that are of most interest. We propose several other assessment 
techniques, but this is not the main focus of this study which, instead, seeks to determine whether or not model 
predictions can be improved by various methods.

Section 2 gives a brief description of the GOES-13 MAGED data used in this study. Section 3 outlines the steps 
for building the models used in the study. Assessing and validation results of the three models' outputs over the 
GOES-13 MAGED data are presented in Section 4 including predictions above the threshold for model compar-
ison. Section 5 is devoted to the building of probability prediction models which can give more accurate predic-
tions than models predicting flux values. The obtained results are discussed in Section 6 and the conclusions are 
drawn in Section 7.

2. Data
We use hourly averaged electron fluxes (centered at midpoints of 40, 75, and 150 keV) from the geostationary 
GOES-13 satellite. Directional differential electron fluxes (cm −2 ⋅ s −1 ⋅ sr −1 ⋅ keV −1) from the nine collimated 
solid state telescopes of the MAGED instrument (e.g., Rowland and Weigel (2012)) each have a 30° full-angle 
conical field of view. We compute one omnidirectionally averaged flux (flight direction-integrated differential 
electron flux) for each of the energies using pitch angles calculated from the GOES Magnetometer 1 data follow-
ing the method presented in Sillanpää et al. (2017) and Ganushkina et al. (2019). The GOES-13 MAGED data 
of electron fluxes and the data for the pitch angles of each telescope are available at https://www.ncei.noaa.gov/
data/goes-space-environment-monitor/access/full/.

We use data covering 10 June 2013–6 August 2016 to build the models (the training set) and the 7 August 
2016–12 December 2017 period for validation (the test set). There were minimal data gaps of only several hours 
during these time periods. These gaps were filled using linear interpolation between existing observations. This 
was necessary for the ARMAX models which require complete time series. Because the ARMAX models require 
a continuous time period for each of both the training and validation sets, cross-validation using a number of 

https://www.ncei.noaa.gov/data/goes-space-environment-monitor/access/full/
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randomly selected sets out of the data is not possible. Therefore, to compare 
model performance on the same data, models were all built on the same train-
ing set and validated on the same withheld test set. Due to data availability, 
the models are built on observations from the solar cycle peak moving into 
the declining phase, but validation is performed on a withheld test set from 
further in the declining phase. This could potentially reduce the effectiveness 
of predictions if electron flux response to solar wind, IMF, and geomagnetic 
parameters were to vary over the solar cycle. While the average levels of 
these parameters vary over the solar cycle, we are unaware of any evidence 
suggesting that the flux response to a given level changes. However, given 
this possibility, further work should attempt validation of these models with 
periods during different phases of the solar cycle.

Solar wind parameters (solar wind velocity V, number density N, pressure 
P, the solar flux f10.7 index (SolarFlux), IMF Bz and electric field Ey, and 
magnetic indices (Kp and Dst) were obtained from OMNIWeb (https://omni-
web.gsfc.nasa.gov/form/dx1.html) with 1 hr resolution with data time-shifted 
to the bow shock nose.

We take log10 of all variables ≥0. Variables containing zero values which 
cannot be logged without creating missing values (i.e., Kp) were trans-

formed by adding 1 to all values before the log transformation. Bz and Ey, as they have both positive and negative 
values, were not logged. A log transformation of electron flux data linearizes the relationship between predictors 
and response, allowing the use of techniques that assume this such as regression and neural networks (Simms, 
Ganushkina, et  al.,  2022). This transformation reduces skewness, inequality of variances among groups, and 
the non-normality of residual errors, all of which would make the use of linear models invalid. Examination of 
residual plots of the linear ARMAX and regression models (not shown) showed that this transformation fixed all 
these problems.

Because the dependent variable (electron flux) is log-transformed, these models will describe a nonlinear rela-
tionship between flux and all the variables: a power function relationship for those predictor variables that are 
also log-transformed, and an exponential function relationship for those predictor variables that are not logged. 
Subsequent to the log transformation, all variables were standardized by subtracting that series mean and dividing 
by its standard deviation. This creates unitless variables (Z-scores) for which regression coefficients (slopes) can 
be directly compared (Neter et al., 1990) but is also necessary for both efficient convergence and accuracy of 
prediction in neural networks (Alpaydin, 2014). An additional benefit is that scaling all output variables to the 
same standard deviation allows direct comparison of metrics such as the RMSE between models and output vari-
ables that might otherwise show differences in the metrics only due to different scaling. The means and standard 
deviations are given so that readers can backtransform to the actual flux and predictor values if desired (Table 1).

ARMAX models were developed in IBM SPSS Statistics (formerly known as the Statistical Package for the 
Social Sciences). RNN and regression (as well as logistic regression) models were developed in MATLAB.

3. Building Value-Predicting Models: ARMAX, RNN, and Regression
One of the more popular classes of prediction model algorithm are neural networks. As we are working with time 
series data, we have chosen a type specific to this type of data: an LSTM RNN model (Long Short Term Memory- 
Recurrent Neural Network) (Hochreiter & Schmidhuber, 1997). This type of model uses an input sequence (e.g., 
we use the 48 hr previous of each predictor variable), with the LSTM layer “learning” the long term time depend-
encies between time steps. Pathways can also be “forgotten” if they are determined to contain little information, 
giving a more parsimonious and less overfitted model. This model type can produce either values or classification 
output depending on the output layer chosen. This allows us to compare output validation to either a value-output 
model (such as ARMAX or conventional regression) or to a probability (classification) model such as logistic 
regression (see below). RNN models (or any neural network) automatically test more than just the main effects of 
each predictor variable. The algorithm will also test multiplicative interactions between variables and polynomial 
terms, describing the nonlinear relationships more completely. We also attempt to refine the predictions from the 
RNN models by creating a different model for each MLT.

Table 1 
Means and Standard Deviations Used to Calculate Z Scores

Mean Std dev

log 40 keV Flux 4.5066 0.4152

log 75 keV Flux 4.2019 0.3954

log 150 keV Flux 3.6587 0.4241

log B 0.7458 0.186

Bz 0.0393 3.1674

Ey −0.0186 1.3692

log N 0.7906 0.2826

log V 2.611 0.0868

log P 0.2362 0.2691

log (Kp + 1) 0.4017 0.1995

Dst −11.4803 17.4235

log Solar Flux 2.0805 0.0963

https://omniweb.gsfc.nasa.gov/form/dx1.html
https://omniweb.gsfc.nasa.gov/form/dx1.html
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ARMAX models incorporate terms to describe the time series behavior of the dependent variable (autoregres-
sive (AR) and MA terms), as well as exogenous predictor variables, the transfer function (represented by X) 
(Hyndman & Athanasopoulos, 2018; Simms et al., 2019). The AR and MA terms are chosen to represent the 
cyclical behavior such as the daily variations in flux due to the satellite orbit. Predictor variables can be limited 
to the standard main effect of each parameter, or, additionally, include terms to describe the polynomial response 
(such as in the NARMAX models of Balikhin et  al.  (2010) and Boynton et  al.  (2011)), or synergistic action 
between predictors (multiplicative interaction effects), or decay terms to describe the influence from time steps 
in the past. The response variable can also be differenced, a transformation where each observation is subtracted 
from itself (e.g., yt − yt−1), in which case the model would be called an ARIMAX model. However, we did not find 
this to be a necessary transformation for this data once the time series was described with appropriate AR and 
MA terms. The ARMAX or ARIMAX model formulation is useful for removing cycles that can result in spuri-
ous correlations between variables and therefore avoiding erroneous conclusions about the physical driving of a 
system (Simms et al., 2022). However, the method has also been suggested as a means to better predict electron 
flux (Balikhin et al., 2011; Boynton et al., 2013, 2015). The output of an ARMAX model will be values, although 
these can be categorized if classification is desired. In the ARMAX models, we include both an influence term 
(from 1 hr previous) and a decay term for each solar wind, IMF, and magnetospheric input variable (Hyndman & 
Athanasopoulos, 2018). This incorporates the continuing effect of each variable over previous hours.

Multiple regression can also be used to predict electron flux. In the simplest case, regression models can be 
a model of main effects. However, polynomial terms for each predictor, and the multiplicative terms between 
them, can also be entered to describe the variation more fully. There is also the possibility of entering predictors 
from many previous time steps, similar to the RNN procedure. This may lead to overfitting and an unnecessarily 
complicated model, but, similar to the RNN “forgetting” of inessential pathways, stepwise regression can be 
applied to a logistic regression model to remove predictors that do not contribute explanatory power. In this 
method, predictors are added or removed one by one, checking whether this improves the model at each step. The 
stepwise procedure is an improvement over backward elimination used previously by Camporeale et al. (2022) 
as it also incorporates forward selection, giving variables the opportunity to be selected at a later stage if they 
were eliminated prematurely. While the indiscriminate use of stepwise procedures to identify physical drivers is 
problematic (Smith, 2018; Whittingham et al., 2006), the same concern does not apply when developing predic-
tive models. With a prediction model we are only concerned with the result (the prediction) and not whether the 
variables used to make that prediction are physically meaningful. Logistic regression, if given the same variables 
to work with and if reduced by stepwise regression, may find essentially the same relationships as RNN and thus 
be just as good at prediction. However, a regression model will be the most portable of these three model types 
as the coefficients can be easily printed or coded without the need for the end user to have access to the particular 
software the model was developed in.

Both ARMAX and RNN empirical models would appear to have an advantage over more conventional multiple 
regression models. RNN has the ability to incorporate predictor values from many previous time steps while with 
ARMAX models the time behavior of the dependent variable is modeled using AR and MA terms. This modeling 
of past behavior or associations would, hopefully, improve the predictions. However, it is possible that electron 
flux, particularly below 200 keV, is not dependent on the long term states of the magnetosphere or solar wind, or 
that these states are long lasting enough that correlation to just a few previous time steps holds enough informa-
tion to create an accurate prediction. If that is the case, then conventional regression models should perform just 
as well for predictions.

We incorporate a number of solar wind, IMF, and magnetospheric variables, the only constraint being that they 
must be available in real time for predictions. We also, to some of the ARMAX and regression models, add a vari-
able to identify MLT. In previous work, ARMAX models have been built for each MLT (Boynton et al., 2019). 
We modify this approach by providing a model for the entire time series, but with MLT as a categorical variable. 
In practice, this is actually a set of 23 indicator variables (0 or 1), one less than the number of hours. The coef-
ficients of these add or subtract to the constant term of the model to describe variations in flux related to MLT. 
We also add multiplicative interaction terms between each of the other (continuous) variables and these indicator 
variables. These interaction coefficients describe how the slope or association of that continuous variable with 
flux changes over the 24 hr of the day. The use of indicator variables essentially creates a different model for each 
level of the categorical variable but makes more effective use of the available information in the data.
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We train each of the model types above to predict electron flux values 
(value-predicting models). These can be validated by correlating predictions 
with observations in the test data set. Another method of evaluation is to 
identify flux events (e.g., ≥75th or 90th percentiles) and categorize output 
predictions into above or below these cut offs. The ability of the model to 
distinguish event from non-event can then be assessed with a Heidke skill 
score (see below for calculation details) which compares predictions to a null 
hypothesis of random assignment to classes.

4. Assessing the Value-Predicting Models
4.1. Assessing the 40 keV ARMAX Models

We start our analysis with predictions of 40 keV electron fluxes. Figure 1 
presents the predictions of the observed (shown in blue) 40  keV electron 
fluxes using the base ARMAX model over the training set (shown in green) 

and the validation period (shown in orange). (To facilitate comparison of the influence of predictors with widely 
different units, we use Z-scores obtained by subtracting the mean of each series and dividing by its standard 
deviation.) The base ARMAX model validation r = 0.731 appears to give a reasonable fit to observations in the 
validation (test) set. The training set r = 0.819, when squared, gives an R 2 = 0.670, showing that a reasonable 
fraction (67.8%) of the variability is captured by the ARMAX model. (The R 2 is mathematically equivalent to 
the prediction efficiency, or PE, used in some other work.) However, a timeplot of observed and expected points 
reveals that the model does a poor job of predicting the high and low extremes in the validation set compared to 
the training set (Figure 1).

Figure 2 shows a more detailed view of just the validation period. Predicted values from the base ARMAX model 
do follow the general rise and fall of observed flux (Figure 2a; further metric scores are given in Figure 4 and 
Table 2. However, this expanded view shows more clearly that the base model has more trouble predicting high 
values than low values. Adding Lag 1 flux (40 keV flux from the previous hour) as a predictor provides some 
improvement (Figure 2b; validation r = 0.822), but we will discuss below why this is not an optimal approach.

The model is improved in both validation correlation (0.804) and apparent ability to predict highs and lows by 
adding MLT as a categorical variable to account both for the differing levels of flux and the differing response of 
flux to the other predictors throughout the diurnal period (Figure 2c; ARMAX-MLT model). An improvement in 
validation correlation (0.859) can be achieved by adding 40 keV flux from 1 hr previous (Lag 1 flux) as a predic-
tor to the ARMAX-MLT model (Figure 2d). Less improvement (validation r = 0.814) is seen if 40 keV flux 6 hr 
previous (Lag 6 flux) is added instead (Figure 2e).

However, further assessment of these models at a finer scale reveals that adding previous flux from an hour before 
as an explanatory variable, while increasing the validation correlation, causes predictions to lag behind obser-
vations. Figure 3 shows the predictions over 1 week of the validation period (6–12 December 2016). The base 
ARMAX model prediction tracks the pattern of the observations, although always lower at the peaks (Figure 3a). 
Adding the Lag 1 flux to the base ARMAX model appears to track the height of the peaks better and to improve the 
validation correlation (0.822), but visually we can see that these predictions lag behind by 1 hr (Figure 3b). This 
results in predictions that appear very good, but only an hour after we already know what the flux was. More quan-
titatively, we can assess models for this delay problem by comparing the same time versus the Lag 1 validation 
correlation. In the model including Lag 1 flux, the correlation between observations and the prediction 1 hr later 
(0.978) is much higher than between observation and prediction from the same time step (0.822). In contrast, the 
Lag 1 validation for the base ARMA model is lower than the same time validation. Note that this delay in predic-
tion is only due to the introduction of Lag 1 flux, as all other parameters are the same between these two models.

Over this 1  week, the ARMAX-MLT model tracks the observed peaks somewhat better, without a delay 
(the overall Lag 1 validation is lower than the same time validation) (Figure  3c). Adding Lag 1 flux to the 
ARMAX-MLT model does not as obviously introduce a delay in this 1 week, but over the entire test period, 
the Lag 1 validation correlation is still slightly higher than the same time validation (Figure 3d). Although the 
ARMAX-MLT+Lag1Flux model does appear to somewhat improve the ability to reproduce the peaks, we 
cannot guarantee that flux from 1 hour previous would be available for real time forecasting. However, the more 

Figure 1. Predictions from the Base ARMAX model (40 keV) over the 
training set (predictions in green) and the validation period (predictions in 
orange). Flux is converted to unitless Z-scores.
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Figure 2. Predictions over the validation period (40 keV) from (a) Base ARMA model, (b) ARMAX-MLT, (c) ARMAX-MLT 
with flux at lag 6 added as a predictor, (d) ARMAX-MLT with flux at lag 1 added as a predictor, (e) ARMAX-MLT with flux 
at lag 6 added as a predictor. Flux is converted to unitless Z-scores. Further metrics are given in Figure 4 and Table 2.

Table 2 
Median Symmetric Accuracy and Symmetric Signed Percentage Bias Metrics for the Value-Predicting Models (Built on 
Z-Score Transformed Data)

40 keV 75 keV 150 keV

MSA SSPB MSA SSPB MSA SSPB

Base ARMAX 5.70% −0.20% 4.10% −0.70% 4.00% −1.50%

ARMAX-MLT 5.00% −0.80% 3.80% −1.20% 3.70% −1.40%

ARMAX-MLT+Lag6 5.00% −0.80% 3.80% −1.20% 3.70% −1.90%

REG-MLT 5.10% −0.40% 3.90% −0.80% 4.00% −1.10%

Base RNN 5.40% −0.70% 3.70% −0.10% 3.30% −0.80%

RNN-MLT 4.90% −0.10% 3.70% −0.004% 3.20% −0.10%
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important shortcoming is that we are likely most interested in those occasions when flux rises sharply and unex-
pectedly. The very predictions we are most interested in are the ones that will fail to be predicted until an hour 
after the occurrence.

We consider a compromise model, the ARMAX-MLT+Lag6Flux model (Figure  3e), in hopes that this will 
predict peaks better but without the disadvantage of a delay. However, while this does not show a delay in predic-
tions (same time validation r = 0.814 vs. Lag 1 validation r = 0.765), the overall validation correlation of 0.814 
is not much above the ARMAX-MLT model alone (0.804), and peak prediction is not improved.

Thus, of the ARMAX models at 40 keV, the ARMAX-MLT is the best model in that it correlates reasonably well 
with observations and does not show a delay. However, we would hope for a model that is able to predict the 
peaks better.

Figure 3. Predictions over 1 week of the validation period (40 keV) showing how the models incorporating Lag 1 flux 
lag behind observations. (a) Base ARMA model, (b) Base ARMA with lag 1 flux, (c) ARMAX-MLT, (d) ARMAX-MLT 
with flux at lag 1, (e) ARMAX-MLT with flux at lag 6. Flux is converted to unitless Z-scores. Lag 1 validation r correlates 
current observations with the prediction 1 hour previous. Models with Lag 1 flux as a predictor have higher Lag 1 validation 
correlation than same time validation correlation.
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4.2. Validation of 40–150 keV ARMAX Models

Scatterplots of observations versus predictions from several ARMAX models give more information (Figure 4). 
We use scatterplots, rather than 2-D density plots, because the most important information (the over and under 
prediction of the low and high flux) is contained in the areas of lowest point density. Using 40 (column of three 
plots in Figure 4a), 75 (column of three plots in Figure 4b) and 150 keV (column of three plots in Figure 4c) elec-
tron fluxes, only over the validation period, we show a number of diagnostics. In each plot, the red line shows the 
ideal 1:1 relationship between prediction and observation. Many of the scatterplots not only show a great deal of 
scatter around this idealized 1:1 line, but also non-linearity between observed and predicted values. Points above 
the red line in the lower left or below the red line in the upper right represent predictions that failed to reach the 
lows and highs, respectively, in the observed data. The orange line is the cubic fit to these deviations and can be 
used to roughly assess how serious this problem is for each model. In the best case, the orange cubic line would 
lie  on the 1:1 line, showing a model that reproduced the peaks and valleys well. The base ARMAX model at 
40 keV is a model that does particularly poorly at this task. The orange cubic fit in this case veers radically from 
the 1:1 red line. Both valley and peak magnitudes are severely under-predicted.

We report RMSE (root mean square error, or the standard deviation of the prediction vs. observation residu-
als over the test set), and the MAE (mean absolute error, or the average of the absolute differences between 
prediction and observation). The MAE is less sensitive to outliers, as the differences are not squared. (It is the 
same measure as the MAD, or mean absolute deviation.) Bias is the average of the differences of prediction and 
observation, without taking the absolute value. This measures whether predictions tend to lie above or below 
the observations. All these measures will indicate better fit when they are lower in magnitude (Hyndman & 

Figure 4. Scatterplots of predictions versus observations over the full validation period and all three energies (a. 40 keV, b. 
75 keV, c. 150 keV). Row 1: Base ARMA model, Row 2: ARMA model split by magnetic local time (ARMAX-MLT), Row 
3: ARMAX-MLT with lag 6 flux added as an additional predictor. Red line shows the ideal 1:1 correspondence between 
predictions and observations. Orange line gives the cubic fit to the actual prediction-observation relationship. Flux is 
converted to unitless Z-scores.
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Athanasopoulos, 2018). Note that the standard deviation of the datasets is the same for all models as all use the 
same data (with standard deviation = 1 as these are Z-scores). Additionally, we calculate median symmetric 
accuracy (MSA) and symmetric signed percentage bias (SSPB) metrics (Table 2) (Morley et al., 2018). These two 
metrics appear to improve on the commonly used MAPE (mean absolute percentage error, which we do not use) 
by reducing the influence of outliers. However, this assumes that outliers do not carry relevant information, and 
in the case of our models, it is the points lying outside the main cloud that are of most interest to us, both because 
they lie in the regions of most interest (high or low flux) and because it is important to flag these areas where the 
predictions fail. Metrics based on the median of the error (MSA) reduce the influence of the error outliers, the 
rarer situations where the model performs the worst. RMSE, based on the mean of the errors, is more influenced 
by outliers and is therefore the more appropriate metric for assessing model failures. As MSA and SSPB use the 
ratio of prediction to observation rather than the difference, they may be better for data where the error variance 
increases or decreases with magnitude (heteroscedasticity) (Tofallis, 2015). However, as we have already dealt 
with the increasing error variance problem by taking the log and then the Z-score of the variables, the use of these 
metrics is redundant in that regard.

We should also point out a potential difficulty of MSA and SSPB with our particular data set. As these two metrics 
take the log of the ratio between observation and prediction, which can be negative if the data is transformed by 
log or Z-score, it was necessary to further transform the data by moving both observation and prediction above 
zero by adding the magnitude of the lowest observation. It is unclear to us if this transformation changed the 
behavior of this metric. However, the inability of the MSA and SSPB to distinguish between our value-predicting 
models (see Table 2) mean that these metrics are of limited use in this situation beyond demonstrating that the 
mid-range bulk of observation-prediction pairs are forecast well.

At all three flux energies, the ARMAX-MLT model, with higher validation correlation (0.769 − 0.804) and 
slightly lower RMSE, MAE, and MSA, improves on the base ARMAX models (r = 0.731 − 0.749). However, the 
ability to predict highs and lows correctly (comparing orange cubic line to red 1:1 line) is only slightly improved. 
The differences between ARMAX-MLT and ARMAX-MLT+Lag6 are not appreciable. The clear choice, for 
simplicity, would be the ARMAX-MLT model.

4.3. Validation of the Value-Predicting RNN Models

We would hope that a neural network model, by efficiently utilizing all available information in the data, would 
produce a prediction that both improved on the validation correlation and was more successful at predicting 
highs and lows. By building a time series dependent model using RNN (which we base on the previous 48 hr of 
predictor values), we also expected this would model the behavior of flux over time as well the ARMAX models. 
However, despite how the RNN model should include both this time dependent behavior and possible nonlinear 
information, we find no or, at best, only modest improvements in validation r (0.751 − 0.753), compared to the 
ARMAX models (Figure 5). Creating a separate model for each MLT does result in a small improvement over 
the base RNN model, but the metrics (validation r, RMSE, MAE, and MSA) are not much different from those 
of the ARMAX-MLT model.

4.4. Validation of the Reduced Polynomial/Interaction Regression Models

We are also interested in whether a parsimonious, more portable model, could be produced by ignoring the time 
series behavior of flux and focusing solely on the linear and nonlinear associations of flux with the predictors. 
This could work well if the time behavior of electron flux was highly dependent on the time behavior of the 
predictors. Nonlinear associations could take the form of multiplicative interactions (flux responding to each 
predictor differently depending on the levels of the other predictors), or some sort of polynomial response (quad-
ratic, cubic, etc.). The possibility also exists that a long time stretch of predictors is not needed to produce a 
reasonable model. Predictors from a single or several hours before may be sufficient.

We created models containing all multiplicative interaction terms between predictors from 1 hour previous, as 
well as linear, quadratic, and cubic terms for each. We also included MLT as a categorical variable, including its 
interaction terms with the continuous variables. We label these as the REG-MLT models. However, adding all 
these terms resulted in unstable models that would be unsuitable for predictive purposes, so we further used step-
wise regression (Neter et al., 1990) to trim the models down to the terms that best described flux. The stepwise 
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process removed all cubic terms, leaving only linear, quadratic, and multiplicative interaction terms. These 
models, with validation correlation of r = 0.745–0.777, do only slightly worse at prediction, comparing the vali-
dation correlations, than the ARMAX-MLT models (Figure 6). As with the ARMAX-MLT models, there is also 
a tendency to underpredict the highs and over predict the lows, as evidenced by the cubic fit (orange line). RMSE, 
MAE, MSA, and bias measures are also similar to the ARMAX-MLT model. The advantage of this REG-MLT 
approach, however, is that these models would be more easily implemented by other users as all that is needed, 
after converting the data to standardized Z-scores, are the coefficient terms of the regression. While a neural 
network is also just a set of coefficients, the number of terms needed will be much lower for the stepwise-reduced 
REG-MLT model if statistically non-significant parameters are removed. This means that future prediction would 
be dependent on fewer inputs. Extraction of these coefficients is also easier as the output from a regression model 
in most statistical packages is simply the labeled coefficients. In the specific models we present here, there also 
appears to be little predictive advantage in including terms that describe time behavior, either the AR and MA 
terms of the ARMAX models or the 48 hr measurements leading up to the flux prediction in the RNN models.

The validation correlation coefficients of the value-predicting models are all fairly close, but at 40  keV, the 
ARMAX-MLT model has the highest correlation with observations in the test set (Figure  7). At 150  keV, 

Figure 5. Scatterplots of predictions versus observations for RNN models over the full validation period and all three 
energies (40–150 keV). First row: Base RNN model, second row: RNN-MLT. Red line shows the ideal 1:1 correspondence 
between predictions and observations. Orange line gives the cubic fit to the actual prediction-observation relationship. Flux is 
converted to unitless Z-scores.

Figure 6. Scatterplots of predictions versus observations for the REG-MLT model over the full validation period and all 
three energies (a. 40 keV, b. 75 keV, c. 150 keV). Red line shows the ideal 1:1 correspondence between predictions and 
observations. Orange line gives the cubic fit to the actual prediction-observation relationship. Flux is converted to unitless 
Z-scores.
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however, the 95% confidence intervals overlap so closely that there is no 
statistical difference between the models.

Using the REG-MLT models, we take the opportunity to compare metrics for 
standardized (Z-score of log10 flux) and backtransformed non-standardized 
(Log10 flux), and the completely backtransformed flux data (Table 3). First, 
the RMSE is strongly influenced by the standard deviation of the response 
variable. The standard deviation of the three (log10) electron energies are 
all near 0.4 while that of the Z-score fluxes are roughly 1. (The standard 
deviation of the standardized test set is close to but not exactly 1 because 
the original standardization values were calculated from the training set.) 
Because the RMSE scales with the standard deviation, the unstandardized 
RMSE metrics are less than half the RMSE of the standardized output. This 
gives the erroneous impression that the unstandardized flux produces a better 
prediction. However, the untransformed flux data, with standard deviation in 
the 10 4 range, has a similarly large RMSE. This clearly demonstrates that we 
should not directly compare the RMSE metric between models using differ-
ently scaled data. We can standardize the RMSE by dividing by the standard 
deviation, as shown in the table (Liemohn et al., 2021). The other metrics 
are also affected by the scaling difference. The MSA, although it does not 
scale strictly linearly with the standard deviation, still shows a huge differ-
ence among the same predictions that merely differ in units, but the MSA is 
not as easily scaled to the standard deviation. Only the validation correlation 
is unaffected by changes in standard deviation or units. However, all these 

metrics are weighted heavily by the accurate prediction of mid-range values, missing the high and low values that 
are of most interest.

4.5. Prediction Above a Threshold

Another method of comparing model accuracy is to determine how often models correctly predict a flux rise 
over a certain threshold, with correct predictions being true positives (TP) and true negatives (TN) and incorrect 
predictions being false positives (FP) and false negatives (FN). These four categories can be used to calculate an 
accuracy rate:

ACC =
TP + TN

TP + TN + FP + FN
 (1)

The true positive rate (TPR  =  TP/(TP  +  FN)) gives the rate at which surpassing the threshold is correctly 
predicted. The true negative rate (TNR  =  TN/(TN  +  FP)) is the proportion of the time the model correctly 

Figure 7. Validation correlation coefficients of the value-predicting models 
(base ARMAX, ARMAX-MLT, base RNN, RNN-MLT, and REG-MLT). 
Although 95% confidence intervals around each correlation are small, there is 
little practical difference between the models using this metric.

Table 3 
Metrics of the REG-MLT Models Calculated From a. Z-Score Standardized Flux, b. log10 Flux, and c. Original Flux Units

a. Z-Score of Log10 Flux b. Log10 flux c. Untransformed Flux

40 keV 75 keV 150 keV 40 keV 75 keV 150 keV 40 keV 75 keV 150 keV

RMSE 0.65 0.66 0.66 0.27 0.26 0.28 70,944 33,235 7,118

MAE 0.49 0.47 0.47 0.19 0.19 0.2 30,997 13,314 3,320

Bias 0.0 0.07 0.06 0.02 0.03 0.02 16,719 7,590 1,640

MSA 5.10% 3.90% 4.00% 3.20% 3.30% 4.00% 39.00% 37.90% 40.70%

SSPB −0.40% −0.80% −1.10% −0.30% −0.60% −1.00% −0.01% −0.10% 0.13%

Validation r 0.777 0.766 0.746 0.777 0.766 0.746 0.777 0.766 0.746

Flux Std Dev 1.026 1.023 0.983 0.426 0.405 0.417 95,060 40,636 9,025

RMSE/StdDev 0.6335 0.6452 0.6714 0.6338 0.6421 0.6715 0.7463 0.8179 0.7887
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predicts that the flux will stay below the threshold. The false positive rate 
(FPR = 1 − TNR) is the misses due to  predicting over the threshold when 
the observation stays below, and the false negative rate (FNR = 1 − TPR) the 
rate at which it is predicted flux will stay below the threshold when, in fact, 
it goes above it (Yerushalmy, 1947).

The TP, TN, FP, FN, and ACC can be compared directly, or used to calculate 
the HSS (Heidke, 1926). A score below zero will be obtained if the model 
predicts less well than chance alone. Scores closer to 1 show greater accuracy 
in prediction, with a score of 1 representing a perfect prediction:

HSS =
2(TP × TN − FP × FN)

[(TP + FN)(FN + TN) + (TP + FP)(FP + TN)]
 (2)

We calculate the HSS for several of the above models, predicting above either 
the 75th or 90th percentile (Table  4). Based on the HSS, the REG-MLT 
model appears to be more accurate than any of the ARMAX models, but 
less accurate than the RNN models this is a different ranking of models than 
that obtained from the validation correlations where the ARMAX models did 
better. However, these differences are small and are likely not of much conse-
quence. In general, but not always, these models perform somewhat better 
in predicting flux above the 75th percentile than above the 90th percentile.

These skill scores are higher than those obtained by Ganushkina et al. (2019) for flux events predicted by the 
IMPTAM (Inner Magnetosphere Particle Transport and Acceleration Model), the highest skill score being 0.17 
for the 40 keV electrons at roughly the 75th percentile. Although, this previous study was predicting events at 
10 min, a more difficult task, much of this difference in skill scores may be due to our use of a strictly empirical 
model and the incorporation of MLT both as a predictor in its own right and as a modifier of the other variables 
which may behave differently at different times or locations. A NARMAX model predicting daily averages of 
higher energy electron flux (≥2 MeV) achieved a HSS of 0.738 (Balikhin et al., 2016). Our ARMAX, REG-MLT, 
and RNN results for hourly lower energy electrons are somewhat lower than this, reflecting that the prediction of 
both hourly flux and lower energy flux are more difficult tasks.

5. Building Probability Prediction Models: RNN and Logistic Regression
If we are interested in predicting above a threshold (e.g., a certain percentile) we may find that a probability 
model, rather than a value-predicting model, may give us more accuracy. Both regression and neural network 
models, such as RNN, can be made to output the probability of being above a threshold rather than a specific 
value. A regression of this sort is called logistic regression (Berkson, 1944; Neter et al., 1990). We classify flux 
observations and predictions ≥75th percentile as an event. Those less than this cut off are a non-event. (Note 
that this percentile is not the same as the probabilities discussed in the next paragraph.) Previously, this approach 
(used for daily predictions) was found to be more accurate at predicting events than value-predicting multiple 
regression or ARMAX models (Simms & Engebretson, 2020). We create several models using these algorithms: 
RNN-MLTclass (a series of RNN models, one for each MLT, classifying predictions into the event and non-event 
groups); LogisticLag1, LogisticLag3, and LogisticLag6 (all including MLT and each using predictors from 1, 3, 
or 6 hr before the flux measurement).

But at what probability do we forecast an event? A threshold of probability = 0.5 can be used as a default value 
(equal probability of either outcome), but there is generally a more optimal cut off point which can be deter-
mined from either a ROC (receiver operating characteristic) curve (Fawcett, 2006; Liemohn et al., 2020, 2022), 
or from a precision-recall curve, which is thought to often provide better accuracy for rare events (Saito & 
Rehmsmeier, 2015). A ROC curve plots TPR versus FPR and highlights the ability of the model to distinguish 
between the two classes. Alternatively, precision (TP/(TP + FP)) versus recall (TPR) plots better highlight the 
ability to accurately detect events, particularly if they are rare. The threshold point of either curve can be “tuned” 
to find the optimal cut off for distinguishing between classes by finding the maximum accurate separation 
between the classes.

Table 4 
Heidke Skill Scores for the ARMAX, Stepwise Regression (Including 
Magnetic Local Time), and RNN Regression Models Evaluated for Their 
Ability to Predict Flux Above the 75th and 90th Percentiles

40 keV 75 keV 150 keV

Base ARMAX 75th %ile 0.586 0.597 0.622

90th %ile 0.386 0.488 0.535

ARMAX-MLT 75th %ile 0.615 0.626 0.635

90th %ile 0.521 0.541 0.562

ARMAX-MLT+Lag6 75th %ile 0.613 0.624 0.634

90th %ile 0.518 0.546 0.566

REG-MLT 75th %ile 0.625 0.636 0.619

90th %ile 0.570 0.591 0.549

Base RNN 75th %ile 0.527 0.613 0.654

90th %ile 0.276 0.499 0.546

RNN-MLT 75th %ile 0.602 0.638 0.663

90th %ile 0.589 0.569 0.609
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RNN naturally incorporates past values of predictors if needed (we have chosen to use up to 48 hr from past predic-
tor values). If these past values are important, we expect that a logistic regression based on only one previous time 
step would not do as well as an RNN model. Although we could enter many time steps into the logistic regression, 
we found that more than one either resulted in a model that could not converge, or provided very little further expla-
nation of the variance. Using a stepwise procedure, as in the REG-MLT model above, cubic terms were not found to 
be useful. The variables in the logistic models, therefore, included only a single previous time step (Lag 1, 3, or 6), 
and whichever main effects, interactions, and quadratic terms were chosen as influential by the stepwise procedure.

We report the usual true and false positive rates (TPR or hit rate, and FPR or false alarm ratio), true and false 
negative rates (TNR and FNR), along with the AUC (area under the ROC curve), the HSS, Matthews corre-
lation coefficient (MCC), and the critical success index (CSI) all at the optimal threshold determined from a 
precision-recall curve (Table 5). (See Chakraborty and Morley (2020) for CSI and MCC calculations.) The AUC 
is often used to compare models. A larger area under the ROC curve corresponds to a model that better differen-
tiates between  classes, with a value of 1 being completely accurate discrimination. All the AUC values, for both 
logistic and RNN models, are similar (0.850–0.907). Based on the AUC values alone, we could conclude that 
all models are performing well and roughly equally, but other metrics may also be considered. The HSS, MCC, 
and CSI measure somewhat different attributes: the improvement over random forecasts (HSS: Heidke (1926)), a 
measure of correlation of classes unaffected by unbalanced data (MCC: Chicco and Jurman (2020)), or a measure 
weighted to give more value to warnings for rare events (CSI: Schaefer (1990)). The Heidke skill scores lie within 
a small range (0.557–0.667), so although the 95% confidence intervals from 10,000 bootstrap resamplings of the 
data (of size 7,000 points) of the HSS for each of these models is small, there is still considerable overlap between 
models (Figure 8). (Overlap of the 95% confidence intervals is equivalent to finding no difference between means 
in a t-test.) The ranges of MCC (0.558–0.673) and CSI (0.537–0.684) are similarly narrow and therefore also 
do not provide much discrimination between models. We do not show the bootstrap assessments of the MCC 
and CSI variation as they were also very small. (Bootstrapping randomly resamples, with replacement, from the 
original sample to obtain a standard error needed to create confidence intervals or perform hypothesis tests for 
statistics for which the underlying distribution is not otherwise known (Efron & Tibshirani, 1986)).

Although the LogisticLag6 model consistently performs worse in all these metrics, there is no particular advan-
tage to the RNN-MLTclass models over the LogisticLag1 or LogisticLag3. Again, this suggests that the RNN 

Table 5 
Accuracy Metrics for the Classification Models: Logistic and RNN-MLTclass

Model TPR FPR TNR FNR AUC HSS MCC CSI

40 keV

 RNN-MLTclass 0.777 0.173 0.827 0.223 0.904 0.580 0.583 0.564

 LogisticLag1 0.813 0.154 0.846 0.187 0.907 0.632 0.636 0.606

 LogisticLag3 0.822 0.167 0.833 0.178 0.900 0.623 0.628 0.600

 LogisticLag6 0.716 0.151 0.849 0.284 0.85 0.557 0.558 0.537

75 keV

 RNN-MLTclass 0.846 0.193 0.807 0.154 0.877 0.627 0.633 0.629

 LogisticLag1 0.847 0.184 0.816 0.153 0.891 0.638 0.644 0.637

 LogisticLag3 0.828 0.155 0.845 0.172 0.903 0.657 0.659 0.647

 LogisticLag6 0.817 0.195 0.805 0.183 0.875 0.600 0.605 0.605

150 keV

 RNN-MLTclass 0.875 0.192 0.808 0.125 0.773 0.667 0.673 0.684

 LogisticLag1 0.846 0.197 0.803 0.154 0.871 0.636 0.639 0.657

 LogisticLag3 0.873 0.215 0.785 0.127 0.882 0.639 0.646 0.664

 LogisticLag6 0.855 0.191 0.809 0.145 0.883 0.650 0.654 0.668

Note. TPR: True Positive Rate (accurate prediction of event); FPR: False Positive Rate (false prediction of an event); TNR: 
True Negative Rate (accurate prediction of non-event); FNR: False Negative Rate (false prediction of non-event). AUC: Area 
under the ROC curve.
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algorithm is not adding anything more than what we have incorporated into 
the logistic models. We may as well use the more portable model (the logistic 
model). Given that the LogisticLag1 and LogisticLag3 perform much the 
same, we would choose the LogisticLag3 (referred to as LL3 from now on) as 
the more practical model. Predictions could be made up to 3 hr ahead instead 
of the 1 hr required by all the other models we present.

For this one model (LL3; 150 keV) we show the determination of the optimal 
probability threshold using both the ROC curve and the precision-recall curve 
(Figure 9). With the ROC curve, the optimal point on the curve is closest to 
the upper left corner (9a). (We determined this using the perfcuve function 
in MATLAB.) This gives an optimal probability threshold of 0.480, close to 
the “default” of 0.5. For the precision-recall curve, the optimal threshold is 
chosen by maximizing (Saito & Rehmsmeier, 2015):

2 ×
Precision × Recall

Precision + Recall
 (3)

This gives an optimal threshold of 0.313 (Figure 9b). Although the overall 
accuracy (ACC of Equation 1) is slightly higher with the ROC optimal thresh-
old (0.832 (Figure 9c) versus 0.821 (Figure 9d)), the ACC can be quite high 
only because it identifies TN correctly without any correct identification of 
true events. For this reason, the ACC is often not the best measure. The HSS 
shows no improvement using the optimal threshold. It is 0.639 at the optimal 
point chosen by the precision-recall curve, but 0.646 at the point chosen by 
the ROC curve. There is some advantage in using the precision-recall curve 

Figure 8. Heidke skill scores of the classifier models (LogisticLag1, 
LogisticLag3, LogisticLag6, and RNNclass-MLT). There is little difference 
between the models using this metric. Bootstrap confidence intervals (95%) 
are small.

Figure 9. Determining the optimal probability threshold (red circle) for the logistic Lag 3 (150 keV) model. (a) ROC curve, 
(b) precision-recall curve, (c) classification of test set using the optimal threshold from ROC curve, (d) classification of test 
set using optimal threshold from the precision-recall curve. Model predicts whether observation will be above or below the 
75th percentile. AUC = area under the ROC curve, TPR = true positive rate, FPR = false positive rate, TNR = true negative 
rate, FNR = false negative rate.
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point as there is an improvement in both the correctly predicted events (TPR) 
and a reduction in the number of missed events (FNR). There may be some 
tolerance for the increased FP if it improves the true positive rate.

5.1. Predicting High Flux After Periods of Low Flux

If we choose the LL3 model as the most practical, predicting when flux will 
be above the 75th percentile 3 hr later, there is one further test of its abilities 
we should make. As all these models are based on a data set dominated by 
one quiet hour leading into another quiet hour, it would not be surprising if 
the ability to predict sudden rises were limited by the overwhelming number 
of quiet data points. Furthermore, all our identified models predict whether 
high flux will occur in the future without regard to the current status (low vs. 
high flux). It is a different task to predict a sudden rise in flux from a low 
level versus a persistence of high flux. This model type should be assessed 
for its ability to do that. In fact, we may find that a model made specifically 
for this situation would do a better job.

We created one more model (LogisticLag3red) which uses as its training set 
only those hours preceded by low flux. This removes all times when a high 

flux hour is preceded by high flux and gives us a method of predicting the specific case where flux rises from 
a lower level. We also test the ability of the original LL3 model to perform this same task by validating it only 
on the hours of the test set data which are preceded by low flux. This is a more difficult task: less than 7% of 
this reduced test set are hours of high flux following low flux. However, we find that these two models behave 
similarly, with the original LL3 model performing better (at 40 and 150 keV) or not much worse (150 keV) as 
measured by the HSS if the optimal threshold is moved to account for the lower percentage of observations in the 
event class (Table 6). The coefficients of the original LL3 (or LogisticLag3) model (Tables 7–9) can therefore be 
used to predict this particular situation, if the revised optimal threshold coefficients are used (Table 10b), without 
the need for a specialized model for this situation. As expected, the HSS for these predictions are lower than the 
overall HSS from the LL3 model.

5.2. Using the LL3 Model for Prediction

We report the coefficients of the LL3 models (Tables 7–9) for use in future predictions. Inputs into these models 
must be Z-scores of the solar wind, IMF, and geomagnetic index predictors, with logs taken as described above. 
For future reference, we use the LL3 (LogisticLag3) acronym for this model.

The MLT variable set consists of 23 indicator variables, one less than the number of MLT values 
(MLT_0 − MLT_22). The variable is discretized such that, for example, MLT = 0 includes all observations where 
MLT = 0–0.99. An indicator variable is given the value of 1 for the hour it represents and 0 for all other hours. In 
other words, an observation at MLT 0 will have MLT_0 = 1, with all other MLT_variables = 0. An observation 
at MLT_23 is 0 in all MLT_indicator variables.

The multiplicative interaction terms are produced by multiplying the relevant variables. Any multiplication 
between a numeric variable and an MLT indicator variable will result in 0 for all cases except the hour of the  MLT.

Predictions are made with the usual regression equation:

𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑏𝑏0 + 𝑏𝑏1𝑋𝑋1 + . . . + 𝑏𝑏𝑛𝑛𝑋𝑋𝑛𝑛 (4)

where b0 is the constant term and each variable is multiplied by its corresponding coefficient (b1, …, bn), but the 
output must be converted back to probabilities:

Prob =
𝑒𝑒(𝑏𝑏0+𝑏𝑏1𝑋𝑋1+. . .+𝑏𝑏𝑛𝑛𝑋𝑋𝑛𝑛)

1 + 𝑒𝑒(𝑏𝑏0+𝑏𝑏1𝑋𝑋1+. . .+𝑏𝑏𝑛𝑛𝑋𝑋𝑛𝑛)
 (5)

Once these probabilities are calculated, assignment to classes (above or below the 75th percentile) is accom-
plished by comparing to the optimal thresholds of Table 10a (Neter et al., 1990).

Table 6 
Classification Model Accuracy Metrics When Limited to Periods When Flux 
Could Increase Above the 75th Percentile

Model TPR FPR TNR FNR AUC HSS

LogisticLag3red

  40 keV 0.728 0.190 0.810 0.272 0.854 0.357

  75 keV 0.791 0.190 0.810 0.209 0.866 0.372

  150 keV 0.611 0.075 0.925 0.389 0.886 0.412

LogisticLag3

  40 keV 0.653 0.139 0.861 0.347 0.900 0.395

  75 keV 0.716 0.141 0.859 0.284 0.903 0.410

  150 keV 0.743 0.163 0.837 0.257 0.882 0.361

Note. LogisticLag3red training set limited to starting low flux hours. 
LogisticLag3 training set includes all hours.
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6. Discussion
Our exploration of various algorithms for creating predictive models shows that value predicting models (multiple 
regression, ARMAX, and RNN) have difficulty predicting the more extreme high and low fluxes of keV electrons at 
geostationary orbit. These models can be improved by including MLT, both as a term that describes the differing levels 
of flux over the 24 hr period as well as how the influence of other predictors varies at each hour (by the use of multi-
plicative interaction terms with the MLT variables). The addition of multiplicative interactions between inputs and of 
quadratic terms is helpful in the regression model. (Presumably, these are also added by the RNN algorithm although it 
takes some effort to determine this.) However, even with these additional terms highs and lows are still under reported. 
Adding Lag 1 flux as a predictor may appear to rectify the issue, but this results in predictions that lag an hour behind. 
This problem has also been found in a Kp predictive model. While adding historical Kp as a predictor improved the 
model, it resulted in missing rapid changes (Chakraborty & Morley, 2020). The addition of Lag 6 flux to our model, 
while it does not cause predictions to lag, also does not solve the problem of under-predicted highs and lows.

The prediction of high flux following low flux is the most challenging task, but also of the most practical impor-
tance. Models trained on these full datasets can give excellent prediction of the status quo (either the common 
mid-range values or persisting flux) because they tend to predict best what they are most heavily trained on. To 
better predict just the start of high flux events, models can be built just on those days or hours when low flux 
could potentially rise to high flux (Simms & Engebretson, 2020). However, an increase from low to high flux is 
still a somewhat rare event (much less than 50%: 3,049 out of 28921 hr or 10.5% of this subset) and without larger 
training sets, these empirical models may still struggle with predicting high flux events unless the relationship 

Table 7 
Coefficients of the 40 keV LL3 (Logistic Lag at 3 hr) Prediction Model

Coefficient

MLT associated coefficients

MLT Bz × MLT V × MLT Kp × MLT

Constant −1.482 MLT_0 0.275 −0.009 0.046 0.047

B −0.104 MLT_1 0.375 0.040 0.040 −0.052

Bz −0.542 MLT_2 0.963 0.158 0.142 −0.088

V 0.418 MLT_3 1.081 0.022 −0.014 0.121

P 0.036 MLT_4 1.316 −0.185 −0.037 0.137

Kp 1.297 MLT_5 1.079 −0.200 −0.145 0.500

Dst −0.359 MLT_6 1.254 −0.586 0.098 0.932

Bˆ2 −0.092 MLT_7 1.203 −0.496 0.322 0.374

Vˆ2 −0.117 MLT_8 1.029 −0.591 0.112 1.035

B × Bz 0.065 MLT_9 0.650 −0.417 0.176 0.944

B × V −0.096 MLT_10 0.679 −0.485 0.022 0.480

B × P −0.065 MLT_11 0.359 −0.214 −0.318 0.896

Bz × V −0.083 MLT_12 −0.291 −0.093 −0.133 0.973

Bz × Kp 0.229 MLT_13 −0.387 −0.237 −0.080 0.288

V × Kp 0.272 MLT_14 −0.752 −0.127 −0.366 0.347

P × Kp −0.224 MLT_15 −1.182 −0.113 −0.335 0.571

Kp × Dst 0.184 MLT_16 −1.319 −0.050 −0.304 0.282

MLT_17 −1.973 −0.225 −0.292 0.360

MLT_18 −2.563 −0.301 −0.198 0.753

MLT_19 −2.169 −0.274 −0.176 0.538

MLT_20 −1.632 −0.070 −0.067 0.614

MLT_21 −1.572 0.111 0.079 0.635

MLT_22 −0.473 −0.060 0.231 0.016
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between flux increase and predictors is very strong. In fact, the high variability in flux response to the variables 
most often used for prediction might suggest that we are missing important parameters or processes that drive 
high flux events. One obvious candidate in our particular models is substorm activity as we cannot include the 
AE index if we intend to use a model for real time prediction. However, studies that have included the AE (see 
below) do not achieve better prediction.

The regression models (both conventional and logistic) are able to include main effects, multiplicative interactions, 
and quadratic and higher polynomial terms as needed. Thus, they could potentially produce a model very similar to 
that chosen by the RNN algorithm, with the exception that only a limited number of previous lags can be included 
before the model becomes intractable and too burdened with overly correlated predictors. The RNN models we 
created could, potentially, use up to 48 hr of previous information, but limiting the number of previous hours in 
the regression models did not lower their predictive ability below that of the RNN models. We therefore conclude 
that the relevant prediction information is contained in the variables measured just an hour or up to 3 hr before.

While cycling behavior may obscure the physical relationships of various processes, this may not be an issue 
with prediction models. For example, the nuisance diurnality of flux measurements from geosynchronous 

Table 8 
Coefficients of the 75 keV LL3 (Logistic Lag at 3 hr) Prediction Model

Coefficient

MLT associated coefficients

MLT B × MLT Bz × MLT V × MLT Kp × MLT

Constant −1.986 MLT_0 0.061 0.141 −0.34 0.33 −0.397

B −0.438 MLT_1 0.21 −0.07 −0.053 0.036 −0.149
Bz 1.961 MLT_2 0.488 −0.153 0.048 0.093 0.127
Ey 2.104 MLT_3 0.863 −0.077 −0.114 −0.1 0.179
V 0.787 MLT_4 1.199 0.167 −0.332 0.07 −0.074
P −0.085 MLT_5 1.355 0.17 −0.397 −0.111 0.201
Kp 1.432 MLT_6 1.545 0.045 −0.485 0.037 0.689
Dst −0.797 MLT_7 1.663 0.118 −0.485 0.229 0.463
SolarFlux −0.081 MLT_8 1.526 0.134 −0.579 −0.057 1.32
Bˆ2 −0.07 MLT_9 1.29 0.422 −0.388 0.023 0.501
Vˆ2 −0.236 MLT_10 1.131 0.495 −0.494 −0.103 0.32
Pˆ2 −0.081 MLT_11 0.793 0.318 −0.328 −0.046 0.991
Kpˆ2 0.499 MLT_12 0.727 0.253 −0.103 −0.032 0.551
B × Bz 0.118 MLT_13 0.456 0.444 −0.256 −0.024 0.164
B × V −0.18 MLT_14 0.269 0.323 −0.028 −0.253 0.325
B × Kp −0.349 MLT_15 0.086 0.348 0.042 −0.266 0.16
B × Dst −0.156 MLT_16 −0.011 0.482 −0.056 −0.262 −0.168
B × SolarFlux 0.084 MLT_17 −0.342 0.483 0.032 −0.476 −0.043
Bz × V 0.399 MLT_18 −0.611 0.451 −0.147 −0.211 −0.298
Bz × P −0.325 MLT_19 −0.484 0.215 −0.02 −0.234 −0.161
Bz × Dst −0.17 MLT_20 −0.621 0.446 −0.072 0.113 −0.193
Ey × P −0.263 MLT_21 −0.838 0.358 0.044 0.03 0.152
Ey × Dst −0.124 MLT_22 −0.592 0.392 0.026 −0.07 −0.114
V × P 0.071
V × Kp 0.226
V × SolarFlux −0.12
P × Kp −0.183
P × Dst 0.133
P × SolarFlux −0.093

Kp × Dst 0.506
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satellites may create misleading correlations. Models seeking to understand 
the physical drivers should account for this behavior, by such methods as 
ARMAX (autoregressive moving average transfer function) modeling or, at 
least, differencing of data to remove cycles (Simms et al., 2022), but perfectly 
serviceable prediction models can be produced even if these spurious corre-
lations are not removed. Consequently, if ARMAX models are not needed 
to remove the cycling behavior, predictive models can be built from neural 
networks or simply from regression models. However, we must not make 
the mistake of interpreting an influential parameter in these latter methods 

Table 9 
Coefficients of the 150 keV LL3 (Logistic Lag at 3 hr) Prediction Model

Coefficient

MLT associated coefficients

MLT Bz × MLT Kp × MLT

Constant −1.865 MLT_0 −0.395 −0.039 −0.105

B −0.533 MLT_1 −0.400 0.305 0.045
Bz 0.773 MLT_2 −0.048 0.246 0.086
Ey 0.718 MLT_3 0.166 0.273 0.189
N −0.146 MLT_4 0.656 0.078 0.282
V 1.130 MLT_5 0.954 −0.053 0.250
Kp 0.309 MLT_6 1.400 −0.242 0.556
Dst −1.098 MLT_7 1.603 −0.097 0.579
SolarFlux −0.260 MLT_8 1.674 −0.095 0.676
Bˆ2 −0.121 MLT_9 1.619 −0.066 0.699
Bzˆ2 −0.186 MLT_10 1.562 0.073 0.778
Nˆ2 −0.094 MLT_11 1.474 −0.010 0.786
Vˆ2 −0.164 MLT_12 1.260 0.072 0.574
Kpˆ2 0.522 MLT_13 1.086 0.106 0.445
Dstˆ2 −0.057 MLT_14 0.819 0.223 0.461
SolarFluxˆ2 0.009 MLT_15 0.552 0.230 0.398
B:Ey −0.111 MLT_16 0.287 0.281 0.366
B:N 0.093 MLT_17 0.219 0.426 0.342
B:V −0.098 MLT_18 −0.174 0.276 0.091
B:Kp −0.102 MLT_19 −0.363 0.240 0.258
B:Dst −0.155 MLT_20 −0.380 0.152 0.146
B:SolarFlux 0.185 MLT_21 −0.598 0.200 0.207
Bz:Ey −0.121 MLT_22 −0.705 0.225 0.194
Bz:Kp −0.652
Bz:Dst −0.325
Ey:Kp −0.325
Ey:Dst −0.228
N:Kp −0.225
N:Dst 0.303
N:SolarFlux −0.073
V:Kp −0.182
V:Dst 0.182
V:SolarFlux −0.183
Kp:Dst 0.403

Dst:SolarFlux 0.147

Table 10 
Optimal Thresholds for the LL3 Prediction Models

Test set: a. All hours b. Starting low flux hours

40 keV 0.34 0.17

75 keV 0.308 0.235

150 keV 0.326 0.351

Note. a. Using Entire Test Set, b. Using Only Low Flux Hours That Could 
Rise Above 75th Percentile.
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as evidence that it is a physical driver of flux. We must recognize that the high correlation seen between some 
variables and flux in models that do not correct for co-cycling behavior and trends can only be interpreted as that 
parameter being a good proxy for the physical environment, not that particular variable is the physical influence 
that drives electron flux. Bearing this in mind, when creating prediction models, we can choose an algorithm for 
model construction based on such constraints as predictive ability, ease of determination, and portability to other 
users rather than considerations of which parameters are physically responsible for driving flux.

We do want to introduce as many variables as needed to describe the behavior of flux, not merely choose the few 
that are most important. It is true that we are not interested in a cluttered model where there are many essentially 
duplicate variables, but previous work on drivers suggests that most available variables have some statistically 
significant association with flux even when other parameters are accounted for. Even if this apparent influence is 
small, there is little reason to discard a statistically significant variable. (The same does not hold true for a model 
seeking to answer questions about which variables are most likely to be drivers. As competition between variables 
can have large effects on both coefficient estimation and statistical testing, there are some sets of variables that 
should not be considered together in the same model.)

Model diagnostics should be geared to investigating the most important model failures. For value-predicting 
models, single metrics may not be the best choice. RMSE, MAE, bias, MSA, and SSPB showed only small differ-
ences and therefore were not able to differentiate between models well. Heavy weighting on the most numerous 
prediction-observation pairs in the middle range leads these metrics to discount serious errors in the more impor-
tant, but less abundant, low and high flux ranges. This is the reason why we do not present 2-D density plots 
as they overlook the rarer, but more important, deviations from the model. Single metrics that seek to discount 
values farther from the predictions of the model, particularly if they are rarer, are even more misleading. The very 
low MSA values that we obtain (compared to RMSE and MAE) show that this outlier-protected metric is missing 
much of the reduced prediction ability that we need to assess. We also show that both the mean-based RMSE 
and the median-based MSA are highly influenced by the  standard deviation of the response variable. Comparing 
these metrics over variables of different standard deviations is therefore meaningless. Response variables should 
be normalized to the same standard deviation before metric comparisons are made.

In this study, we have developed several techniques for assessing poor fit of the value-predicting models that focus 
on the areas of most interest: the high and low fluxes. The first, the cubic fit line to the prediction-observation 
relationship, is a visual technique. Inspection of this line immediately tells us that the fit to highs and lows is much 
worse, for example, in the base RNN model than in the RNN-MLT model. The validation correlation only tells us 
that the fit is slightly worse and gives no indication of where the problem lies or how serious it is for our particular 
needs. Our second diagnostic, the Lag1 validation correlation, assesses whether the predictions lag behind the 
observations. While lagging in the mid-range values is not as problematic, the missing of large changes in flux 
until the hour after they have happened is more troubling. If the predictions correlate better with observations 
from the hour before than with the hour being predicted, this tells us that the model will be missing the events 
that we are most interested in. While including persistence (Lag1 flux) as a predictor creates an extreme case, 
it is possible that other predictors could produce the same behavior so this should be checked in future models.

Validation correlations of the 3 value-predicting model types are reasonable and all of about the same magnitude 
(ARMAX-MLT: 0.731–0.814; RNN-MLT: 0.683–0.753; REG-MLT: 0.745–0.777). There is no apparent advan-
tage to any of these model building algorithms over the others in predictive ability. This suggests that each of 
these algorithms is accessing similar information from the predictors and that the choice of algorithm to build a 
model could depend mainly on accessibility. For a value-predicting model, a regression equation (the REG-MLT 
model) would be the obvious choice as there would be no need to transport the more complicated coefficients of 
an ARMAX or RNN model if the model were to be placed on another system.

The validation correlations we obtain are higher than the 0.67 validation correlation found for a previous hourly 
40 keV ARMAX model (averaged over the individual MLT models) (Boynton et al., 2019). Reasons for this 
improvement in our ARMAX model may be that we include a decay term and that we create one, more efficient, 
model with indicator variables to identify the individual MLTs instead of a series of models for each MLT.

However, validation correlations are not the only way to assess such models. We may be interested in a model's 
ability to predict when flux will go over a certain threshold, such as the 75th percentile. In this case, we could 
evaluate models with the HSS, comparing the classification success against that of random assignment to 
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categories. Using this metric, all 3 of these value predicting models perform similarly (Heidke skill scores at the 
75th percentile of 0.615–0.635 (ARMAX-MLT), 0.602–0.663 (RNN-MLT), and 0.619–0.636 (REG-MLT)). All 
do better than random assignment and all are better than the output of the IMPTAM model where the highest skill 
score was 0.17 for 40 keV electrons at roughly the 75th percentile ((Ganushkina et al., 2019)). Although, this 
previous study was predicting events at 10 min, a more difficult task, much of this difference in skill scores may 
be due to our use of a strictly empirical model and the incorporation of MLT.

An ARMAX model (SNB 3GEO) predicting daily averages of higher energy electron flux (≥2 MeV at L = 6.6) 
achieved a HSS of 0.738 (Balikhin et al., 2016). Our hourly models achieved a lower HSS, in part because hourly 
prediction is a more difficult task (Simms et al., 2022), and in part because correlations between predictors and 
lower energy flux are weaker. In our results, the 150 keV flux was usually somewhat better predicted than the 
40 keV flux, so it is not surprising that 2 MeV electrons would be more easily predicted than the lower energies.

Another daily regression model (at L = 5.2) using several solar wind parameters gave a correlation between 
model prediction and observation of 0.854 at >900 keV, although it is not clear if this is a true validation correla-
tion (on a reserved test set) or a correlation on the training data which would naturally be quite high (Katsavrias 
et  al., 2022). In this same study, a daily prediction neural network model built on data over a wide range of 
energies and L shells (33 keV–4.062 MeV; L 2.6–5.6) visually showed good correspondence with observations 
from a test set, while prediction at L = 6.6, on an out of sample data set, appeared considerably worse. The same 
problem we have experienced of under predicting the high values appears at low electron energies, along with 
over prediction of the low values at >0.8 MeV.

The MERLIN model, a neural network model predicting 120–600 keV electrons, shows a Spearman's rho vali-
dation correlation of 0.8 (at 120 keV), however this model incorporates AE as a parameter, making it less useful 
for real time prediction (Smirnov et al., 2020)). This model also shows some difficulties with under predicting 
the highs and over predicting the lows. Although the validation correlation is reasonably high, this mostly repre-
sents accurate predictions in the less critical middle range. The ORIENT-M model, a neural network model for 
50 keV–1 MeV electrons, uses AE as a predictor as well (Ma et al., 2022). The R 2 of 0.45 − 0.7 on the withheld 
test data set (1 month of data near L 6 for the 54 keV electrons) is therefore also not a good comparison to our 
model which does not incorporate the real time unavailable AE.

Predictions above or below a threshold can also be obtained from a dedicated classifier model such as logistic 
regression or a classifier RNN model. Our classifier models provided little improvement to the HSS metric 
above that of the value-predicting models and were also not much different from each other (RNN-MLTclass: 
0.580–0.667; LL3: 0.623–0.657).

While the RNN models were given 48 hr of previous variables to work with, the logistic regression models 
were given only predictors from 1, 3, or 6 hr before. (Various combinations of 1 with 2, 3, 6 did not provide any 
improvement.) While the RNN models could, in principle, have used any combination of polynomial and inter-
action terms from any of the 48 hr, we found that the stepwise procedure on the logistic models did not choose 
any polynomial terms above a quadratic. Thus, while we did not investigate the details of which terms the RNN 
models chose, we feel confident that a single predictor lag (Lag 1 and Lag 3 worked best) and no polynomials 
above a squared term are sufficient to describe this data.

Classifier models may be a better choice if the goal is to predict when an event (flux above a threshold) will occur. 
Classifier neural networks may predict as well as logistic regression models, but the latter provide the most port-
ability. The LogisiticLag3 model is preferred only because it would allow a 3 hr lead in prediction time while not 
sacrificing any predictive power (as would be the case for the Lag 6 model). We therefore present the coefficients 
for the LL3 models (40–150 keV) in Tables 4–6 for future predictions.

We provide probability thresholds for classification using the LL3 model (Table 7) determined from optimizing 
precision versus recall for two possible prediction scenarios: (a) predicting a flux over the 75th percentile from 
any flux level (high or low), and (b) predicting a rise in flux over the 75th percentile from a lower flux level. We 
found that it was not necessary to produce another model for predictions in the second scenario, that the optimal 
prediction could be obtained simply by moving the probability threshold. We assumed equal costs of missing the 
prediction of an event (a false negative) versus predicting an event that did not happen (a false positive).

Finally, we note that what we have produced here are prediction models, not models showing physical depend-
ence. Although there is overlap between which variables (and in what form) best predict flux and which may be 
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physical drivers of flux, the variables chosen by the optimal prediction models are not necessarily those that have 
a physical influence on flux. First, we have limited our variables to those that can be accessed in real time so as to 
obtain useful predictions. While substorms (represented by the AE index) may correlate well with flux this is not 
a useful variable for a working prediction model as AE is not available in real time. Second, as much of the corre-
lation between predictor variables and flux is the result of common cycles (e.g., the diurnal cycle due to satellite 
position and the 27 day solar cycle; Simms et al. (2022)), a good predictor may not be a driver at all. (For an 
investigation into the driving role of various parameters see Simms, Ganushkina, et al., 2022) That the ARMAX 
models produced no better predictions than models derived by other means (RNN and regression) suggests that 
the description of the time behavior of flux can be accomplished either with AR and MA parameters or simply 
by using the co-cycling predictor variables, just so long as we have no reason to separate out the time behavior 
independent of these other variables. ARMAX modeling, therefore, is best suited to exploring actual physical 
relationships between flux and possible drivers, but does not give this model type any advantage in producing 
a predictive model. By the same argument, the coefficients of the regression models presented here are not any 
more interpretable in a physical sense than the hidden coefficients of a neural network, as we have not accounted 
for inflated correlations due to common cycles.

However, there is a more fundamental problem in confusing prediction models with models used to test hypoth-
eses about physical relationships. If the model selection method depends on sorting through many possi-
ble models to find the “best” (this includes techniques such as neural networks and stepwise regression), the 
probability of rejecting a true null hypothesis becomes almost 100% and any conclusions based on this will 
be meaningless (Hurvich & Tsai, 1990; Mundry & Nunn, 2009; Whittingham et al., 2006). The result of this 
“many-models-choose-best” approach is that we have no firm basis to say anything about the probability that a 
particular variable chosen by this type of model is actually influential. This means that any attempt to determine 
the drivers of electron flux from the terms chosen by a many-models-choose-best approach is misguided. Even if 
the model predicts well, there is no basis for inferring that the particular variables chosen in the model selection 
phase have an actual physical influence.

7. Conclusions
1.  We screen several algorithms for producing value-predicting models of hourly 40–150 keV electron flux 

at geostationary orbit: ARMAX, RNN, and regression. These methods produce roughly similar models, as 
measured by validation correlations and the HSS.

2.  Classifier models (RNN and logistic regression) are somewhat better at predicting a flux event (flux rising 
above the 75th percentile) than value-predicting models. A model built by logistic regression using only 
variables from one previous time step predicts as well as one built by a neural network using 48 hr of previ-
ous data. We choose the LL3 model because it is more parsimonious and more portable than an RNN model.

3.  Although the prediction of high flux following a low flux hour is both the most difficult task as well as 
the most important, we were able to produce a reasonable prediction model for this special case merely by 
changing the probability threshold of the LL3 model.

4.  Two new diagnostic tests are introduced to assess value-predicting models: the cubic fit to the 
observation-prediction relationship, to visually assess the degree to which high and low flux is under or over 
predicted, and the Lag1 correlation which determines the degree to which predictions may lag behind and 
miss rapid changes in flux. Additionally, to focus attention on the model failures instead of successes, we 
plot observations versus predictions as scatterplots instead of 2-D density plots, the latter of which tend to 
discount the rarer but more important deviations from the model.

5.  A “good” metric is one which focuses attention on the ability of a model to predict the cases of most inter-
est, not simply one which produces a low value. We find that single metrics such as RMSE, MAE, bias, 
MSA, and SSPB are all too influenced by the bulk of well-predicted, mid-range values to differentiate 
between models that do better at predicting extreme values of flux. However, median-based metrics, such 
as the MSA, may be even less useful as they weight large deviations less heavily, giving an unreasonably 
reassuring picture of model effectiveness at predicting the outliers we are most interested in. We note that 
RMSE uses the prediction error mean, while the MSA (and SSPB) use the prediction error median. Use of 
the median in the MSA reduces the influence of prediction error outliers in the metric, thus it is of less use 
in identifying model failures than the RMSE is.
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6.  Single-value metrics such as RMSE (or MSA) which use the difference (or ratio) between observation and 
prediction are highly influenced by the standard deviation of the response variable. It is therefore mean-
ingless to compare the RMSE or MSA across variables with different standard deviations. The Z-score 
transformation (obtained by subtracting the mean and dividing by the standard deviation) normalizes varia-
bles to a standard deviation of 1, making a comparison across models or datasets more useful.

7.  Parameters are chosen for their availability, not solely due to their high correlation with flux. This is because 
we are interested in a useful model, rather than a model with the highest validation correlation. Some highly 
correlated variables (such as the AE index) are not used because they would not be available in real time 
when predictions are needed.

8.  The addition of MLT to these models, describing both the changing level of flux over the 24 hr period as 
well as the change in predictor influence at each hour, improves predictions.

9.  Value-predicting models do a poor job at predicting the highs and lows although mid-range prediction is 
very good. The relative rarity of data points in the areas of most interest (very high flux) results in models 
that will miss these events much of the time. The addition of flux from the previous hour as an input variable 
appears to fix this problem, but produces predictions that lag behind observations.

10.  The addition of multiplicative interactions between the predictor variables, as well as quadratic terms, 
improves predictions. Cubic terms had no effect.

11.  Predictors from a full 48 hr before are not needed. Variables measured in a single hour (1–3 hr before the 
flux observation) are sufficient for a reasonable prediction. The time behavior of flux does not need to be 
described (i.e., with an ARMAX model) to produce reasonable predictions.

12.  We provide coefficients and optimal probability thresholds to predict a flux rise above the 75th percentile 
3 hr in advance using a logistic regression model. (LL3) The logistic regression model was chosen for its 
portability to other systems. The 3 hr time frame was chosen to provide a good balance between early warn-
ing and best prediction.

13.  The best predictive model does not necessarily tell us anything about the physical relationship of each solar 
wind, IMF, or geomagnetic parameter with flux. If hypotheses about these relationships are to be explored, 
the model approach should be targeted to that goal instead of merely improving prediction scores.

Data Availability Statement
The GOES-13 MAGED data and GOES Magnetometer 1 data used in the present study are available at https://
www.ngdc.noaa.gov/stp/satellite/goes/dataaccess.html. Solar wind parameters and magnetic indices were 
obtained from OMNIWeb: https://omniweb.gsfc.nasa.gov/form/dx1.html. All models developed for this paper 
are available at https://doi.org/10.5281/zenodo.7520424.
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