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Abstract18

We screen several algorithms for their ability to produce good predictive models of hourly19

40-150 keV electron flux at geostationary orbit (data from GOES-13) using solar wind,20

IMF, and geomagnetic index parameters that would be available for real time forecast-21

ing. Value-predicting models developed using ARMAX (autoregressive moving average22

transfer function), RNN (recurrent neural network), or stepwise-reduced regression pro-23

duced roughly similar results. Including magnetic local time (MLT) as a categorical vari-24

able to describe both the differing levels of flux and the differing influence of parame-25

ters improved the models (r as high as 0.814; Heidke skill score as high as 0.663), how-26

ever value-predicting models did a poor job at predicting highs and lows. Diagnostic tests27

are introduced (cubic fit to observation-prediction relationship and Lag1 correlation) that28

better assess predictions of extremes than single metrics such as RMSE, MAE, or MSA.29

Classifier models (RNN and logistic regression) were equally able to predict flux rise above30

the 75th percentile (Heidke skill score as high as 0.667). Logistic regression models were31

improved by the addition of multiplicative interaction and quadratic terms. Only pre-32

dictors from 1 or 3 hours before were necessary and a detailed description of flux time33

series behavior was not needed. Stepwise selection of these variables trimmed non-contributing34

parameters for a more parsimonious and portable logistic regression model that predicted35

as well as neural network-derived models. We provide a logistic regression model (LL3:36

LogisticLag3) based on inputs measured 3 h previous, along with optimal probability thresh-37

olds, for future predictions.38

Plain Language Summary39

As high levels of electrons in the radiation belts can damage satellites, accurate fore-40

casting would be a useful tool. Electron levels can be predicted using information from41

the solar wind, the interplanetary magnetic field, and indices measuring disturbances in42

Earth’s magnetic field. We compare several algorithms to produce such models: regres-43

sion and neural networks that depend on predictors at one or many previous time steps.44

We find that dependable predictions can be made from a regression model using predic-45

tors from only a single previous time step. More sophisticated neural network techniques46

are not necessary if interaction and nonlinear terms are introduced to the regression.47

1 Introduction48

Electrons in the radiation belts can cause both internal and surface charging of space-49

craft (e.g., Lam et al., 2012; Loto’aniu et al., 2015), with internal charging mainly due50

to >100 keV (kiloelectronVolt) electrons and surface charging to electrons below 100 keV.51

However, while daily averaged >100 keV electron fluxes can be reasonably well predicted52

because they often result from geomagnetic storms (e.g., Subbotin & Shprits, 2009; Pakhotin53

et al., 2014; Glauert et al., 2014; Balikhin et al., 2016; Simms et al., 2016), the same is54

not true of <100 keV electrons. Not only do these lower energy electrons result in the55

more damaging surface charging, they are also much more difficult to forecast (e.g., Koons56

et al., 2000; Choi et al., 2011; Matéo-Vélez et al., 2018). For LANL (Los Alamos National57

Laboratory) satellites, for example, it is the energy range of ∼10-50 keV that is most im-58

portant for surface charging (Thomsen et al., 2013; Matéo-Vélez et al., 2018). These lower59

energy electrons vary on time scales of minutes with their distribution depending on lo-60

cation in the magnetosphere, so daily/orbit averaging is not possible. Moreover, geomag-61

netic storms are not always predictive of keV electron enhancements, and surface charg-62

ing events have been detected during even weak to moderate substorm activity (Matéo-63

Vélez et al., 2018; Ganushkina et al., 2021).64

Electron fluxes at keV energies have been modeled with several techniques, includ-65

ing a first principle kinetic approach in several ring current simulations (e.g., Fok et al.,66

2014; Ganushkina et al., 2014; Chen et al., 2015; Jordanova et al., 2016), empirical mod-67
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els using different fittings (e.g., Roeder et al., 2005; Sicard-Piet et al., 2008; Ginet et al.,68

2013; Denton et al., 2015, 2016; Sillanpää et al., 2017), and multivariate approaches in-69

cluding conditional mutual information (Stepanov et al., 2021) and Nonlinear AutoRe-70

gressive Moving Average with eXogenous (NARMAX) inputs (Boynton et al., 2013, 2016,71

2019). However, these empirical models may depend on only a few parameters. A wider72

array of input parameters could improve predictions of keV electron fluxes. Solar wind73

and IMF (Interplanetary Magnetic Field) parameters alone may produce reasonable pre-74

dictive models, with the advantage that these would be readily available for real time75

forecasting.76

Several studies have examined the response of geosynchronous keV electron flux77

to solar wind parameters, with electron enhancements associated with pressure increases78

(Shi et al., 2009) or higher solar wind speed (Li et al., 2005; Kellerman & Shprits, 2012;79

Hartley et al., 2014). A combination of solar wind speed and the IMF Bz has been found80

to be predictive as well (Sillanpää et al., 2017), with lesser influence from the other two81

IMF components and solar wind density, temperature, and pressure (e.g., Li et al., 2005;82

Kellerman & Shprits, 2012; Ganushkina et al., 2019). This suggests that combinations83

of parameters, whether multiplicative or additive, may best predict flux, reflecting mul-84

tiple driving parameters (Denton et al., 2016). As keV electrons levels fluctuate on time85

scales of hours, better models may come from prediction parameters at a similar cadence.86

Higher energy electrons (MeV; MegaelectronVolt), when daily averaged, have shown87

high correlations with solar wind parameters (wind speed and density either individu-88

ally or in combination) (e.g., Blake et al., 1997; Paulikas & Blake, 1979; Li et al., 2001;89

Reeves et al., 2011; Lyatsky & Khazanov, 2008; Balikhin et al., 2011). However, the hourly90

response may be much lower (Simms, Engebretson, & Reeves, 2022), and the physical91

influence of many solar wind drivers on even MeV electron flux may not be as high as92

these correlations suggest. Much of the solar wind influence may not be direct but in-93

stead mediated by waves and electron injections following substorms (e.g., (Simms et al.,94

2018a)), and simple correlations of solar wind parameters with electrons may be inflated95

by common cycles and trends if these commonalities are not removed via such methods96

as a differencing transformation or ARMAX modelling (Simms, Engebretson, & Reeves,97

2022). However, for prediction purposes, it may not be important that variables phys-98

ically drive keV electron flux, nor that the correlations are only due to mutual cycles.99

Highly correlated proxies may be sufficient for prediction, and more practical given their100

real-time availability. For keV electrons, the strongest solar wind correlates are some com-101

bination of velocity, density and pressure (Ganushkina et al., 2019; Simms, Ganushkina,102

et al., 2022). IMF Bz, while it does not show as high a correlation as solar wind veloc-103

ity, may still be a useful addition as it provides further information not present in the104

solar wind parameters alone. (The southward component of IMF (Bs) may appear to105

be a more targeted version of this parameter and therefore likely of more predictive use,106

but we have found that Bs does not correlate better with flux than Bz itself, at least in107

hourly data (Simms, Ganushkina, et al., 2022)).108

Geomagnetic indices are easy to obtain measures that have often been used in pre-109

diction models. Although there may be concern that ground-based indices (measured110

at ground magnetometers), may not represent conditions in the magnetosphere well, they111

are worth testing as possible predictors that contain, at least, some information that we112

do not have access to otherwise. Bearing in mind that they may be proxies of pertinent113

physical processes that all manifest as magnetic perturbation in a single number, we can114

still use these for prediction purposes. However, although the AE (Auroral Electrojet)115

index may be a reasonable measure of substorm activity that correlates well with keV116

electrons (Ganushkina et al., 2021) due to its ability to indicate electron injections, it117

is not useful for real time predictions because it is not published immediately. If we can-118

not use AE, two other indices, Kp (Planetarische Kennziffer) and SymH (symmetric119

H-component of the ground magnetic field, or Dst (Disturbance Storm-Time), show sim-120
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ilarly high simple correlations with flux. Neither Kp nor SymH show as much associ-121

ation with flux as AE does when all 3 of these indices are included in the same analy-122

sis, but they may be a practical second choice for prediction purposes. Kp correlates well123

with 1-40 keV flux (e.g., Freeman, 1974; Korth et al., 1999; Thomsen et al., 2013; Den-124

ton et al., 2015, 2016). Its 3 hour cadence may make it too slow to measure quick changes125

in geomagnetic activity that may be associated with fast electron enhancements, but its126

inclusion in a prediction model may be helpful to measure the general background level127

of disturbance. SymH would be the obvious choice as it is reported at a 1-min cadence,128

but it is not currently available in real time for prediction purposes. Given this prob-129

lem, Dst may be the best geomagnetic index parameter to include in a prediction model130

as it is available in real time and at an hourly cadence (improving over the 3 h Kp ca-131

dence). As SymH is essentially the Dst index at finer time resolution (minute vs hourly),132

the choice of Dst over SymH should make no difference in the prediction of hourly elec-133

tron flux (Iyemori et al., 2010). It also may be useful to incorporate the solar energy flux134

(f10.7) even though it changes relatively slowly.135

Previous work has also explored the effect of polynomial (Balikhin et al., 2011) and136

polynomial and multiplicative interaction terms (Simms et al., 2018b). The quadratic137

(square) and cubic terms of predictors can account for possible nonlinear effects that are138

not dealt with by log transformations, while multiplicative interaction terms describe the139

synergistic effects of variable pairs. Polynomial and multiplicative terms such as this will140

either be incorporated automatically by a neural network approach, if the algorithm finds141

them useful, or can be included as additional terms in ARMAX or regression models.142

In this study, we explore the ability of several multivariable prediction model types143

to predict electron flux that have been used at various electron energies: neural networks144

(for example, Simms and Engebretson (2020); Koons and Gorney (1991); Ling et al. (2010);145

Freeman et al. (1998); Smirnov et al. (2020)); Ma et al. (2022); Katsavrias et al. (2022);146

Chu et al. (2021); Swiger et al. (2022)), autoregressive moving average time series trans-147

fer functions (ARMAX) (Balikhin et al., 2011; Boynton et al., 2013, 2015; Simms et al.,148

2018a; Simms & Engebretson, 2020), conventional regression (value-predicting) (Simms149

et al., 2014, 2016) , and logistic regression (which classifies predictions into groups) (Simms150

& Engebretson, 2020; Capman et al., 2019; Neter et al., 1990).151

In the present paper, we explore the capabilities of three approaches, namely, re-152

current neural networks (RNN), ARMAX and conventional and logistic regression, to153

model hourly electron fluxes with energies of 40-150 keV as observed at geostationary154

GOES-13 satellite using solar wind, IMF, and geomagnetic indices as parameters. Mod-155

els may be either value-predicting (RNN, ARMAX, conventional regression), or predict156

the probability of being over a given threshold value (RNN, logistic regression). Either157

ARMAX or conventional regression values output can also be categorized as above or158

below a threshold (although they do not predict probability). We also take the oppor-159

tunity to briefly compare the power of several single-value metrics to distinguish between160

model prediction ability. (However, for a more comprehensive comparison see Liemohn161

et al. (2021).) We note that these single-value metrics are heavily weighted by mid-range162

values and are not well suited to assessing how well a model predicts the high electron163

fluxes that are of most interest. We propose several other assessment techniques, but this164

is not the main focus of this study which, instead, seeks to determine whether or not model165

predictions can be improved by various methods.166

Section 2 gives a brief description of the GOES-13 MAGED data used in this study.167

Section 3 outlines the steps for building the models used in the study. Assessing and val-168

idation results of the three models’ outputs over the GOES-13 MAGED data are pre-169

sented in Section 4 including predictions above the threshold for model comparison. Sec-170

tion 5 is devoted to the building of probability prediction models which can give more171

accurate predictions than models predicting flux values. The obtained results are dis-172

cussed in Section 6 and the conclusions are drawn in Section 7.173
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2 Data174

We use hourly averaged electron fluxes (centered at midpoints of 40, 75, and 150175

keV) from the geostationary GOES-13 satellite. Directional differential electron fluxes176

(cm−2·s−1·sr−1·keV −1) from the nine collimated solid state telescopes of the MAGED177

instrument (e.g., Rowland and Weigel (2012)) each have a 30◦ full-angle conical field of178

view. We compute one omnidirectionally averaged flux (flight direction-integrated dif-179

ferential electron flux) for each of the energies using pitch angles calculated from the GOES180

Magnetometer 1 data following the method presented in Sillanpää et al. (2017) and Ganushkina181

et al. (2019). The GOES-13 MAGED data of electron fluxes and the data for the pitch182

angles of each telescope are available at183

https://www.ncei.noaa.gov/data/goes-space-environment-monitor/access/full/184

We use data covering 10 June 2013 - 6 August 2016 to build the models (the train-185

ing set) and the 7 August 2016 - 12 December 2017 period for validation (the test set).186

There were minimal data gaps of only several hours during these time periods. These187

gaps were filled using linear interpolation between existing observations. This was nec-188

essary for the ARMAX models which require complete time series. Because the ARMAX189

models require a continuous time period for each of both the training and validation sets,190

cross-validation using a number of randomly selected sets out of the data is not possi-191

ble. Therefore, to compare model performance on the same data, models were all built192

on the same training set and validated on the same withheld test set. Due to data avail-193

ability, the models are built on observations from the solar cycle peak moving into the194

declining phase, but validation is performed on a withheld test set from further in the195

declining phase. This could potentially reduce the effectiveness of predictions if electron196

flux response to solar wind, IMF, and geomagnetic parameters were to vary over the so-197

lar cycle. While the average levels of these parameters vary over the solar cycle, we are198

unaware of any evidence suggesting that the flux response to a given level changes. How-199

ever, given this possibility, further work should attempt validation of these models with200

periods during different phases of the solar cycle.201

Solar wind parameters (solar wind velocity V , number density N , pressure P , the202

solar flux f10.7 index (SolarF lux), IMF Bz and electric field Ey, and magnetic indices203

(Kp and Dst) were obtained from OMNIWeb204

(https://omniweb.gsfc.nasa.gov/form/dx1.html) with 1 h resolution with data time-205

shifted to the bow shock nose.206

We take log10 of all variables ≥ 0. Variables containing zero values which cannot207

be logged without creating missing values (i.e., Kp) were transformed by adding 1 to all208

values before the log transformation. Bz and Ey, as they have both positive and neg-209

ative values, were not logged. A log transformation of electron flux data linearizes the210

relationship between predictors and response, allowing the use of techniques that assume211

this such as regression and neural networks (Simms, Ganushkina, et al., 2022). This trans-212

formation reduces skewness, inequality of variances among groups, and the non-normality213

of residual errors, all of which would make the use of linear models invalid. Examina-214

tion of residual plots of the linear ARMAX and regression models (not shown) showed215

that this transformation fixed all these problems.216

Because the dependent variable (electron flux) is log-transformed, these models will217

describe a nonlinear relationship between flux and all the variables: a power function re-218

lationship for those predictor variables that are also log-transformed, and an exponen-219

tial function relationship for those predictor variables that are not logged. Subsequent220

to the log transformation, all variables were standardized by subtracting that series mean221

and dividing by its standard deviation. This creates unitless variables (Z-scores) for which222

regression coefficients (slopes) can be directly compared (Neter et al., 1990) but is also223

necessary for both efficient convergence and accuracy of prediction in neural networks224

(Alpaydin, 2014). An additional benefit is that scaling all output variables to the same225
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Table 1. Means and standard deviations used to calculate Z scores.

Mean Std Dev

log 40 keV Flux 4.5066 0.4152

log 75 keV Flux 4.2019 0.3954

log 150 keV Flux 3.6587 0.4241

log B 0.7458 0.186

Bz 0.0393 3.1674

Ey -0.0186 1.3692

log N 0.7906 0.2826

log V 2.611 0.0868

log P 0.2362 0.2691

log (Kp+1) 0.4017 0.1995

Dst -11.4803 17.4235

log Solar Flux 2.0805 0.0963

standard deviation allows direct comparison of metrics such as the RMSE between mod-226

els and output variables that might otherwise show differences in the metrics only due227

to different scaling. The means and standard deviations are given so that readers can228

backtransform to the actual flux and predictor values if desired (Table 1).229

ARMAX models were developed in IBM SPSS Statistics (formerly known as the230

Statistical Package for the Social Sciences). RNN and regression (as well as logistic re-231

gression) models were developed in MATLAB.232

3 Building Value-Predicting Models: ARMAX, RNN, and Regression233

One of the more popular classes of prediction model algorithm are neural networks.234

As we are working with time series data, we have chosen a type specific to this type of235

data: an LSTM RNN model (Long Short Term Memory- Recurrent Neural Network) (Hochreiter236

& Schmidhuber, 1997). This type of model uses an input sequence (e.g., we use the 48237

h previous of each predictor variable), with the LSTM layer “learning” the long term time238

dependencies between time steps. Pathways can also be “forgotten” if they are deter-239

mined to contain little information, giving a more parsimonious and less overfitted model.240

This model type can produce either values or classification output depending on the out-241

put layer chosen. This allows us to compare output validation to either a value-output242

model (such as ARMAX or conventional regression) or to a probability (classification)243

model such as logistic regression (see below). RNN models (or any neural network) au-244

tomatically test more than just the main effects of each predictor variable. The algorithm245

will also test multiplicative interactions between variables and polynomial terms, describ-246

ing the nonlinear relationships more completely. We also attempt to refine the predic-247

tions from the RNN models by creating a different model for each magnetic local time248

(MLT).249

ARMAX models incorporate terms to describe the time series behavior of the de-250

pendent variable (autoregressive (AR) and moving average (MA) terms), as well as ex-251

ogenous predictor variables, the transfer function (represented by X) (Hyndman & Athana-252

–6–



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to Space Weather

sopoulos, 2018; Simms et al., 2019). The AR and MA terms are chosen to represent the253

cyclical behavior such as the daily variations in flux due to the satellite orbit. Predic-254

tor variables can be limited to the standard main effect of each parameter, or, addition-255

ally, include terms to describe the polynomial response (such as in the NARMAX mod-256

els of Balikhin et al. (2010) and Boynton et al. (2011)), or synergistic action between pre-257

dictors (multiplicative interaction effects), or decay terms to describe the influence from258

time steps in the past. The response variable can also be differenced, a transformation259

where each observation is subtracted from itself (e.g. yt–yt−1), in which case the model260

would be called an ARIMAX model. However, we did not find this to be a necessary trans-261

formation for this data once the time series was described with appropriate AR and MA262

terms. The ARMAX or ARIMAX model formulation is useful for removing cycles that263

can result in spurious correlations between variables and therefore avoiding erroneous264

conclusions about the physical driving of a system (Simms, Engebretson, & Reeves, 2022).265

However, the method has also been suggested as a means to better predict electron flux266

(Balikhin et al., 2011; Boynton et al., 2013, 2015). The output of an ARMAX model will267

be values, although these can be categorized if classification is desired. In the ARMAX268

models, we include both an influence term (from 1 h previous) and a decay term for each269

solar wind, IMF, and magnetospheric input variable (Hyndman & Athanasopoulos, 2018).270

This incorporates the continuing effect of each variable over previous hours.271

Multiple regression can also be used to predict electron flux. In the simplest case,272

regression models can be a model of main effects. However, polynomial terms for each273

predictor, and the multiplicative terms between them, can also be entered to describe274

the variation more fully. There is also the possibility of entering predictors from many275

previous time steps, similar to the RNN procedure. This may lead to overfitting and an276

unnecessarily complicated model, but, similar to the RNN “forgetting” of inessential path-277

ways, stepwise regression can be applied to a logistic regression model to remove pre-278

dictors that do not contribute explanatory power. In this method, predictors are added279

or removed one by one, checking whether this improves the model at each step. The step-280

wise procedure is an improvement over backward elimination used previously by Camporeale281

et al. (2022) as it also incorporates forward selection, giving variables the opportunity282

to be selected at a later stage if they were eliminated prematurely. While the indiscrim-283

inate use of stepwise procedures to identify physical drivers is problematic (Whittingham284

et al., 2006; Smith, 2018), the same concern does not apply when developing predictive285

models. With a prediction model we are only concerned with the result (the prediction)286

and not whether the variables used to make that prediction are physically meaningful.287

Logistic regression, if given the same variables to work with and if reduced by stepwise288

regression, may find essentially the same relationships as RNN and thus be just as good289

at prediction. However, a regression model will be the most portable of these three model290

types as the coefficients can be easily printed or coded without the need for the end user291

to have access to the particular software the model was developed in.292

Both ARMAX and RNN empirical models would appear to have an advantage over293

more conventional multiple regression models. RNN has the ability to incorporate pre-294

dictor values from many previous time steps while with ARMAX models the time be-295

havior of the dependent variable is modeled using AR and MA terms. This modelling296

of past behavior or associations would, hopefully, improve the predictions. However, it297

is possible that electron flux, particularly below 200 keV, is not dependent on the long298

term states of the magnetosphere or solar wind, or that these states are long lasting enough299

that correlation to just a few previous time steps holds enough information to create an300

accurate prediction. If that is the case, then conventional regression models should per-301

form just as well for predictions.302

We incorporate a number of solar wind, IMF, and magnetospheric variables, the303

only constraint being that they must be available in real time for predictions. We also,304

to some of the ARMAX and regression models, add a variable to identify MLT. In pre-305
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vious work, ARMAX models have been built for each MLT (Boynton et al., 2019). We306

modify this approach by providing a model for the entire time series, but with MLT as307

a categorical variable. In practice, this is actually a set of 23 indicator variables (0 or308

1), one less than the number of hours. The coefficients of these add or subtract to the309

constant term of the model to describe variations in flux related to MLT. We also add310

multiplicative interaction terms between each of the other (continuous) variables and these311

indicator variables. These interaction coefficients describe how the slope or association312

of that continuous variable with flux changes over the 24 h of the day. The use of indi-313

cator variables essentially creates a different model for each level of the categorical vari-314

able but makes more effective use of the available information in the data.315

We train each of the model types above to predict electron flux values (value-predicting316

models). These can be validated by correlating predictions with observations in the test317

dataset. Another method of evaluation is to identify flux events (e.g., ≥ %75th or 90th318

percentiles) and categorize output predictions into above or below these cut offs. The319

ability of the model to distinguish event from non-event can then be assessed with a Hei-320

dke skill score (see below for calculation details) which compares predictions to a null321

hypothesis of random assignment to classes.322

4 Assessing the Value-Predicting Models323

4.1 Assessing the 40 keV ARMAX models324

We start our analysis with predictions of 40 keV electron fluxes. Figure 1 presents325

the predictions of the observed (shown in blue) 40 keV electron fluxes using the base AR-326

MAX model over the training set (shown in green) and the validation period (shown in327

orange). (To facilitate comparison of the influence of predictors with widely different units,328

we use Z-scores obtained by subtracting the mean of each series and dividing by its stan-329

dard deviation.) The base ARMAX model validation r = 0.731 appears to give a rea-330

sonable fit to observations in the validation (test) set. The training set r = 0.819, when331

squared, gives an R2 = 0.670, showing that a reasonable fraction (67.8%) of the vari-332

ability is captured by the ARMAX model. (The R2 is mathematically equivalent to the333

prediction efficiency, or PE, used in some other work.) However, a timeplot of observed334

and expected points reveals that the model does a poor job of predicting the high and335

low extremes in the validation set compared to the training set (Figure 1).336

Figure 2 shows a more detailed view of just the validation period. Predicted val-337

ues from the base ARMAX model do follow the general rise and fall of observed flux (Fig-338

ure 2a; further metric scores are given in Figure 4 and Table 2. However, this expanded339

view shows more clearly that the base model has more trouble predicting high values than340

low values. Adding Lag 1 flux (40 keV flux from the previous hour) as a predictor pro-341

vides some improvement (Figure 2b; validation r = 0.822), but we will discuss below342

why this is not an optimal approach.343

The model is improved in both validation correlation (0.804) and apparent abil-344

ity to predict highs and lows by adding MLT as a categorical variable to account both345

for the differing levels of flux and the differing response of flux to the other predictors346

throughout the diurnal period (Figure 2c; ARMAX-MLT model). An improvement in347

validation correlation (0.859) can be achieved by adding 40 keV flux from 1 h previous348

(Lag 1 flux) as a predictor to the ARMAX-MLT model (Figure 2d). Less improvement349

(validation r = 0.814) is seen if 40 keV flux 6 h previous (Lag 6 flux) is added instead350

(Figure 2e).351

However, further assessment of these models at a finer scale reveals that adding pre-352

vious flux from an hour before as an explanatory variable, while increasing the valida-353

tion correlation, causes predictions to lag behind observations. Figure 3 shows the pre-354

dictions over one week of the validation period (6-12 December 2016). The base ARMAX355
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Jul 2013 Jul 2014 Jul 2015 Jul 2016 Jul 2017
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40 keV Base ARMAX Model
>> Validation Set >><< Training Set <<
validation r=0.731

R2=0.670
training set r=0.819

Observed
Training Set Prediction
Test Set Prediction

Figure 1. Predictions from the Base ARMAX model (40 keV) over the training set (predic-

tions in green) and the validation period (predictions in orange). Flux is converted to unitless

Z-scores.

–9–



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to Space Weather

Oct 2016 Jan 2017 Apr 2017 Jul 2017 Oct 2017

-2

0

2

Validation Set (40 keV)
a. Base ARMAX                               validation r=0.731

Observed
Predicted

Oct 2016 Jan 2017 Apr 2017 Jul 2017 Oct 2017

-2

0

2

b. Base ARMAX + Lag 1 Flux         validation r=0.822

Oct 2016 Jan 2017 Apr 2017 Jul 2017 Oct 2017

-2

0

2

c. ARMAX-MLT                             validation r=0.804

Oct 2016 Jan 2017 Apr 2017 Jul 2017 Oct 2017

-2

0

2

d. ARMAX-MLT + Lag 1 Flux         validation r=0.859

Oct 2016 Jan 2017 Apr 2017 Jul 2017 Oct 2017

-2

0

2

e. ARMAX-MLT + Lag 6 Flux         validation r=0.814

40
 k

eV
 E

le
ct

ro
n 

Fl
ux

 (Z
 S

co
re

s)

Figure 2. Predictions over the validation period (40 keV) from a. Base ARMA model, b.

ARMAX-MLT, c. ARMAX-MLT with flux at lag 6 added as a predictor, d. ARMAX-MLT with

flux at lag 1 added as a predictor, e. ARMAX-MLT with flux at lag 6 added as a predictor. Flux

is converted to unitless Z-scores. Further metrics are given in Figure 4 and Table 2.
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model prediction tracks the pattern of the observations, although always lower at the356

peaks (Figure 3a). Adding the Lag 1 flux to the base ARMAX model appears to track357

the height of the peaks better and to improve the validation correlation (0.822), but vi-358

sually we can see that these predictions lag behind by 1 h (Figure 3b). This results in359

predictions that appear very good, but only an hour after we already know what the flux360

was. More quantitatively, we can assess models for this delay problem by comparing the361

same time vs. the Lag 1 validation correlation. In the model including Lag 1 flux, the362

correlation between observations and the prediction 1 h later (0.978) is much higher than363

between observation and prediction from the same time step (0.822). In contrast, the364

Lag 1 validation for the base ARMA model is lower than the same time validation. Note365

that this delay in prediction is only due to the introduction of Lag 1 flux, as all other366

parameters are the same between these two models.367

Over this one week, the ARMAX-MLT model tracks the observed peaks somewhat368

better, without a delay (the overall Lag 1 validation is lower than the same time vali-369

dation) (Figure 3c). Adding Lag 1 flux to the ARMAX-MLT model does not as obvi-370

ously introduce a delay in this one week, but over the entire test period, the Lag 1 val-371

idation correlation is still slightly higher than the same time validation (Figure 3d). Al-372

though the ARMAX-MLT+Lag1Flux model does appear to somewhat improve the abil-373

ity to reproduce the peaks, we cannot guarantee that flux from one hour previous would374

be available for real time forecasting. However, the more important shortcoming is that375

we are likely most interested in those occasions when flux rises sharply and unexpect-376

edly. The very predictions we are most interested in are the ones that will fail to be pre-377

dicted until an hour after the occurrence.378

We consider a compromise model, the ARMAX-MLT+Lag6Flux model (Figure 3e),379

in hopes that this will predict peaks better but without the disadvantage of a delay. How-380

ever, while this does not show a delay in predictions (same time validation r = 0.814381

vs Lag 1 validation r = 0.765), the overall validation correlation of 0.814 is not much382

above the ARMAX-MLT model alone (0.804), and peak prediction is not improved.383

Thus, of the ARMAX models at 40 keV, the ARMAX-MLT is the best model in384

that it correlates reasonably well with observations and does not show a delay. However,385

we would hope for a model that is able to predict the peaks better.386

4.2 Validation of 40-150 keV ARMAX Models387

Scatterplots of observations vs. predictions from several ARMAX models give more388

information (Figure 4). We use scatterplots, rather than 2-D density plots, because the389

most important information (the over and under prediction of the low and high flux) is390

contained in the areas of lowest point density. Using 40 (column of three plots in Fig-391

ure 4a), 75 (column of three plots in Figure 4b) and 150 keV (column of three plots392

in Figure 4c) electron fluxes, only over the validation period, we show a number of di-393

agnostics. In each plot, the red line shows the ideal 1:1 relationship between prediction394

and observation. Many of the scatterplots not only show a great deal of scatter around395

this idealized 1:1 line, but also non-linearity between observed and predicted values. Points396

above the red line in the lower left or below the red line in the upper right represent pre-397

dictions that failed to reach the lows and highs, respectively, in the observed data. The398

orange line is the cubic fit to these deviations and can be used to roughly assess how se-399

rious this problem is for each model. In the best case, the orange cubic line would lie on400

the 1:1 line, showing a model that reproduced the peaks and valleys well. The base AR-401

MAX model at 40 keV is a model that does particularly poorly at this task. The orange402

cubic fit in this case veers radically from the 1:1 red line. Both valley and peak magni-403

tudes are severely under-predicted.404

We report RMSE (root mean square error, or the standard deviation of the pre-405

diction vs observation residuals over the test set), and the MAE (mean absolute error,406
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3 a. Base ARMAX                          validation r=0.731
1 Week of Validation Set (40 keV)
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3 b. Base ARMAX + Lag 1 Flux       validation r=0.822 Lag 1 validation r=0.978
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3 c. ARMAX-MLT                             validation r=0.804 Lag 1 validation r=0.752
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3 d. ARMAX-MLT + Lag 1 Flux       validation r=0.859 Lag 1 validation r=0.895
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2016   
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3 e. ARMAX-MLT + Lag 6 Flux       validation r=0.814 Lag 1 validation r=0.765

Figure 3. Predictions over 1 week of the validation period (40 keV) showing how the models

incorporating Lag 1 flux lag behind observations. a. Base ARMA model, b. Base ARMA with

lag 1 flux, c. ARMAX-MLT, d. ARMAX-MLT with flux at lag 1, e. ARMAX-MLT with flux at

lag 6. Flux is converted to unitless Z-scores. Lag 1 validation r correlates current observations

with the prediction one hour previous. Models with Lag 1 flux as a predictor have higher Lag 1

validation correlation than same time validation correlation.
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Figure 4. Scatterplots of predictions vs. observations over the full validation period and all

three energies (a. 40 keV, b. 75 keV, c. 150 keV). Row 1: Base ARMA model, Row 2: ARMA

model split by MLT (ARMAX-MLT), Row 3: ARMAX-MLT with lag 6 flux added as an addi-

tional predictor. Red line shows the ideal 1:1 correspondence between predictions and observa-

tions. Orange line gives the cubic fit to the actual prediction-observation relationship. Flux is

converted to unitless Z-scores.
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Table 2. Median symmetric accuracy (MSA) and symmetric signed percentage bias (SSPB)

metrics for the value-predicting models (built on Z-score transformed data).

40 keV 75 keV 150 keV
MSA SSPB MSA SSPB MSA SSPB

Base ARMAX 5.70% -0.20% 4.10% -0.70% 4.00% -1.50%
ARMAX-MLT 5.00% -0.80% 3.80% -1.20% 3.70% -1.40%
ARMAX-MLT+Lag6 5.00% -0.80% 3.80% -1.20% 3.70% -1.90%

REG-MLT 5.10% -0.40% 3.90% -0.80% 4.00% -1.10%

Base RNN 5.40% -0.70% 3.70% -0.10% 3.30% -0.80%
RNN-MLT 4.90% -0.10% 3.70% -0.004% 3.20% -0.10%

or the average of the absolute differences between prediction and observation). The MAE407

is less sensitive to outliers, as the differences are not squared. (It is the same measure408

as the MAD, or mean absolute deviation.) Bias is the average of the differences of pre-409

diction and observation, without taking the absolute value. This measures whether pre-410

dictions tend to lie above or below the observations. All these measures will indicate bet-411

ter fit when they are lower in magnitude (Hyndman & Athanasopoulos, 2018). Note that412

the standard deviation of the datasets is the same for all models as all use the same data413

(with standard deviation = 1 as these are Z-scores). Additionally, we calculate median414

symmetric accuracy (MSA) and symmetric signed percentage bias (SSPB) metrics (Ta-415

ble 2) (Morley et al., 2018). These two metrics appear to improve on the commonly used416

MAPE (mean absolute percentage error, which we do not use) by reducing the influence417

of outliers. However, this assumes that outliers do not carry relevant information, and418

in the case of our models, it is the points lying outside the main cloud that are of most419

interest to us, both because they lie in the regions of most interest (high or low flux) and420

because it is important to flag these areas where the predictions fail. Metrics based on421

the median of the error (MSA) reduce the influence of the error outliers, the rarer sit-422

uations where the model performs the worst. RMSE, based on the mean of the errors,423

is more influenced by outliers and is therefore the more appropriate metric for assess-424

ing model failures. As MSA and SSPB use the ratio of prediction to observation rather425

than the difference, they may be better for data where the error variance increases or426

decreases with magnitude (heteroscedasicity) (Tofallis, 2015). However, as we have al-427

ready dealt with the increasing error variance problem by taking the log and then the428

Z-score of the variables, the use of these metrics is redundant in that regard.429

We should also point out a potential difficulty of MSA and SSPB with our partic-430

ular data set. As these two metrics take the log of the ratio between observation and pre-431

diction, which can be negative if the data is transformed by log or Z-score, it was nec-432

essary to further transform the data by moving both observation and prediction above433

zero by adding the magnitude of the lowest observation. It is unclear to us if this trans-434

formation changed the behavior of this metric. However, the inability of the MSA and435

SSPB to distinguish between our value-predicting models (see Table 2) mean that these436

metrics are of limited use in this situation beyond demonstrating that the mid-range bulk437

of observation-prediction pairs are forecast well.438

At all three flux energies, the ARMAX-MLT model, with higher validation corre-439

lation (0.769−0.804) and slightly lower RMSE, MAE, and MSA, improves on the base440

ARMAX models (r = 0.731 − 0.749). However, the ability to predict highs and lows441

correctly (comparing orange cubic line to red 1:1 line) is only slightly improved. The dif-442

ferences between ARMAX-MLT and ARMAX-MLT+Lag6 are not appreciable. The clear443

choice, for simplicity, would be the ARMAX-MLT model.444
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4.3 Validation of the Value-Predicting RNN Models445

We would hope that a neural network model, by efficiently utilizing all available446

information in the data, would produce a prediction that both improved on the valida-447

tion correlation and was more successful at predicting highs and lows. By building a time448

series dependent model using RNN (which we base on the previous 48 hours of predic-449

tor values), we also expected this would model the behavior of flux over time as well the450

ARMAX models. However, despite how the RNN model should include both this time451

dependent behavior and possible nonlinear information, we find no or, at best, only mod-452

est improvements in validation r (0.751−0.753), compared to the ARMAX models (Fig-453

ure 5). Creating a separate model for each MLT does result in a small improvement over454

the base RNN model, but the metrics (validation r, RMSE, MAE, and MSA) are not455

much different from those of the ARMAX-MLT model.456

4.4 Validation of the Reduced Polynomial/Interaction Regression Mod-457

els458

We are also interested in whether a parsimonious, more portable model, could be459

produced by ignoring the time series behavior of flux and focusing solely on the linear460

and nonlinear associations of flux with the predictors. This could work well if the time461

behavior of electron flux was highly dependent on the time behavior of the predictors.462

Nonlinear associations could take the form of multiplicative interactions (flux respond-463

ing to each predictor differently depending on the levels of the other predictors), or some464

sort of polynomial response (quadratic, cubic, etc.). The possibility also exists that a long465

time stretch of predictors is not needed to produce a reasonable model. Predictors from466

a single or several hours before may be sufficient.467

We created models containing all multiplicative interaction terms between predic-468

tors from one hour previous, as well as linear, quadratic, and cubic terms for each. We469

also included MLT as a categorical variable, including its interaction terms with the con-470

tinuous variables. We label these as the REG-MLT models. However, adding all these471

terms resulted in unstable models that would be unsuitable for predictive purposes, so472

we further used stepwise regression (Neter et al., 1990) to trim the models down to the473

terms that best described flux. The stepwise process removed all cubic terms, leaving474

only linear, quadratic, and multiplicative interaction terms. These models, with valida-475

tion correlation of r = 0.745 − 0.777, do only slightly worse at prediction, comparing476

the validation correlations, than the ARMAX-MLT models (Figure 6). As with the ARMAX-477

MLT models, there is also a tendency to underpredict the highs and over predict the lows,478

as evidenced by the cubic fit (orange line). RMSE, MAE, MSA, and bias measures are479

also similar to the ARMAX-MLT model. The advantage of this REG-MLT approach,480

however, is that these models would be more easily implemented by other users as all481

that is needed, after converting the data to standardized Z-scores, are the coefficient terms482

of the regression. While a neural network is also just a set of coefficients, the number483

of terms needed will be much lower for the stepwise-reduced REG-MLT model if statis-484

tically non-significant parameters are removed. This means that future prediction would485

be dependent on fewer inputs. Extraction of these coefficients is also easier as the out-486

put from a regression model in most statistical packages is simply the labelled coefficients.487

In the specific models we present here, there also appears to be little predictive advan-488

tage in including terms that describe time behavior, either the AR and MA terms of the489

ARMAX models or the 48 h measurements leading up to the flux prediction in the RNN490

models.491

The validation correlation coefficients of the value-predicting models are all fairly492

close, but at 40 keV, the ARMAX-MLT model has the highest correlation with obser-493

vations in the test set (Figure 7). At 150 keV, however, the 95% confidence intervals494

overlap so closely that there is no statistical difference between the models.495
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Figure 5. Scatterplots of predictions vs. observations for RNN models over the full valida-

tion period and all three energies (40 keV - 150 keV). First row: Base RNN model, second row:

RNN-MLT. Red line shows the ideal 1:1 correspondence between predictions and observations.

Orange line gives the cubic fit to the actual prediction-observation relationship. Flux is converted

to unitless Z-scores.
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Figure 6. Scatterplots of predictions vs. observations for the REG-MLT model over the full

validation period and all three energies (a. 40 keV, b. 75 keV, c. 150 keV). Red line shows the

ideal 1:1 correspondence between predictions and observations. Orange line gives the cubic fit to

the actual prediction-observation relationship. Flux is converted to unitless Z-scores.
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Figure 7. Validation correlation coefficients of the value-predicting models (base ARMAX,

ARMAX-MLT, base RNN, RNN-MLT, and REG-MLT). Although 95% confidence intervals

around each correlation are small, there is little practical difference between the models using this

metric.
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Table 3. Metrics of the REG-MLT models calculated from a. Z-score standardized flux, b.

log10 flux, and c. original flux units.

a. Z-score of b. Log10 Flux c. Untransformed

Log10 Flux Flux

40 keV 75 keV 150 keV 40 keV 75 keV 150 keV 40 keV 75 keV 150 keV

RMSE 0.65 0.66 0.66 0.27 0.26 0.28 70944 33235 7118

MAE 0.49 0.47 0.47 0.19 0.19 0.2 30997 13314 3320

Bias 0.04 0.07 0.06 0.02 0.03 0.02 16719 7590 1640

MSA 5.10% 3.90% 4.00% 3.20% 3.30% 4.00% 39.00% 37.90% 40.70%

SSPB -0.40% -0.80% -1.10% -0.30% -0.60% -1.00% -0.01% -0.10% 0.13%

validation r 0.777 0.766 0.746 0.777 0.766 0.746 0.777 0.766 0.746

Flux Std Dev 1.026 1.023 0.983 0.426 0.405 0.417 95060 40636 9025

RMSE/StdDev 0.6335 0.6452 0.6714 0.6338 0.6421 0.6715 0.7463 0.8179 0.7887

Using the REG-MLT models, we take the opportunity to compare metrics for stan-496

dardized (Z-score of log10 flux) and backtransformed non-standardized (Log10 flux), and497

the completely backtransformed flux data (Table 3). First, the RMSE is strongly in-498

fluenced by the standard deviation of the response variable. The standard deviation of499

the three (log10) electron energies are all near 0.4 while that of the Z-score fluxes are500

roughly 1. (The standard deviation of the standardized test set is close to but not ex-501

actly 1 because the original standardization values were calculated from the training set.)502

Because the RMSE scales with the standard deviation, the unstandardized RMSE met-503

rics are less than half the RMSE of the standardized output. This gives the erroneous504

impression that the unstandardized flux produces a better prediction. However, the un-505

transformed flux data, with standard deviation in the 104 range, has a similarly large506

RMSE. This clearly demonstrates that we should not directly compare the RMSE met-507

ric between models using differently scaled data. We can standardize the RMSE by di-508

viding by the standard deviation, as shown in the table (Liemohn et al., 2021). The other509

metrics are also affected by the scaling difference. The MSA, although it does not scale510

strictly linearly with the standard deviation, still shows a huge difference among the same511

predictions that merely differ in units, but the MSA is not as easily scaled to the stan-512

dard deviation. Only the validation correlation is unaffected by changes in standard de-513

viation or units. However, all these metrics are weighted heavily by the accurate predic-514

tion of mid-range values, missing the high and low values that are of most interest.515

4.5 Prediction above a Threshold516

Another method of comparing model accuracy is to determine how often models517

correctly predict a flux rise over a certain threshold, with correct predictions being true518

positives (TP) and true negatives (TN) and incorrect predictions being false positives519

(FP) and false negatives (FN). These four categories can be used to calculate an accu-520

racy rate:521

ACC =
TP + TN

TP + TN + FP + FN
(1)

The true positive rate (TPR = TP/(TP+FN)) gives the rate at which surpass-522

ing the threshold is correctly predicted. The true negative rate (TNR = TN/(TN +523

FP )) is the proportion of the time the model correctly predicts that the flux will stay524
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below the threshold. The false positive rate (FPR = 1 − TNR) is the misses due to525

predicting over the threshold when the observation stays below, and the false negative526

rate (FNR = 1−TPR) the rate at which it is predicted flux will stay below the thresh-527

old when, in fact, it goes above it (Yerushalmy, 1947).528

The TP, TN, FP, FN, and ACC can be compared directly, or used to calculate the529

Heidke Skill Score (HSS) (Heidke, 1926). A score below zero will be obtained if the model530

predicts less well than chance alone. Scores closer to 1 show greater accuracy in predic-531

tion, with a score of 1 representing a perfect prediction:532

HSS =
2(TP × TN − FP × FN)

[(TP + FN)(FN + TN) + (TP + FP )(FP + TN)]
(2)

We calculate the HSS for several of the above models, predicting above either the533

75th or 90th percentile (Table 4). Based on the HSS, the REG-MLT model appears to534

be more accurate than any of the ARMAX models, but less accurate than the RNN mod-535

els This is a different ranking of models than that obtained from the validation corre-536

lations where the ARMAX models did better. However, these differences are small and537

are likely not of much consequence. In general, but not always, these models perform538

somewhat better in predicting flux above the 75th percentile than above the 90th per-539

centile.540

These skill scores are higher than those obtained by Ganushkina et al. (2019) for541

flux events predicted by the IMPTAM (Inner Magnetosphere Particle Transport and Ac-542

celeration Model), the highest skill score being 0.17 for the 40 keV electrons at roughly543

the 75th percentile. Although, this previous study was predicting events at 10 minutes,544

a more difficult task, much of this difference in skill scores may be due to our use of a545

strictly empirical model and the incorporation of MLT both as a predictor in its own right546

and as a modifier of the other variables which may behave differently at different times547

or locations. A NARMAX model predicting daily averages of higher energy electron flux548

(≥ 2 MeV) achieved a Heidke skill score of 0.738 (Balikhin et al., 2016). Our ARMAX,549

REG-MLT, and RNN results for hourly lower energy electrons are somewhat lower than550

this, reflecting the that the prediction of both hourly flux and lower energy flux are more551

more difficult task.552

5 Building Probability Prediction Models: RNN and Logistic Regres-553

sion554

If we are interested in predicting above a threshold (e.g., a certain percentile) we555

may find that a probability model, rather than a value-predicting model, may give us556

more accuracy. Both regression and neural network models, such as RNN, can be made557

to output the probability of being above a threshold rather than a specific value. A re-558

gression of this sort is called logistic regression (Neter et al., 1990; Berkson, 1944). We559

classify flux observations and predictions ≥ 75th percentile as an event. Those less than560

this cut off are a non-event. (Note that this percentile is not the same as the probabil-561

ities discussed in the next paragraph.) Previously, this approach (used for daily predic-562

tions) was found to be more accurate at predicting events than value-predicting multi-563

ple regression or ARMAX models (Simms & Engebretson, 2020). We create several mod-564

els using these algorithms: RNN-MLTclass (a series of RNN models, one for each MLT,565

classifying predictions into the event and non-event groups); LogisticLag1, LogisticLag3,566

and LogisticLag6 (all including MLT and each using predictors from 1, 3, or 6 hours be-567

fore the flux measurement).568

But at what probability do we forecast an event? A threshold of probability = 0.5569

can be used as a default value (equal probability of either outcome), but there is gen-570

erally a more optimal cut off point which can be determined from either a ROC (receiver571
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operating characteristic) curve (Fawcett, 2006; Liemohn et al., 2020, 2022), or from a572

precision-recall curve, which is thought to often provide better accuracy for rare events573

(Saito & Rehmsmeier, 2015). A ROC curve plots TPR vs FPR and highlights the abil-574

ity of the model to distinguish between the two classes. Alternatively, precision (TP/(TP+575

FP )) vs. recall (TPR) plots better highlight the ability to accurately detect events, par-576

ticularly if they are rare. The threshold point of either curve can be ”tuned” to find the577

optimal cut off for distinguishing between classes by finding the maximum accurate sep-578

aration between the classes.579

RNN naturally incorporates past values of predictors if needed (we have chosen to580

use up to 48 hours from past predictor values). If these past values are important, we581

expect that a logistic regression based on only one previous time step would not do as582

well as an RNN model. Although we could enter many time steps into the logistic re-583

gression, we found that more than one either resulted in a model that could not converge,584

or provided very little further explanation of the variance. Using a stepwise procedure,585

as in the REG-MLT model above, cubic terms were not found to be useful. The vari-586

ables in the logistic models, therefore, included only a single previous time step (Lag 1,587

3, or 6), and whichever main effects, interactions, and quadratic terms were chosen as588

influential by the stepwise procedure.589

We report the usual true and false positive rates (TPR or hit rate, and FPR or false590

alarm ratio), true and false negative rates (TNR and FNR), along with the AUC (area591

under the ROC curve), the Heidke skill score (HSS), Matthews correlation coefficient (MCC),592

and the critical success index (CSI) all at the optimal threshold determined from a precision-593

recall curve (Table 5). (See Chakraborty and Morley (2020) for CSI and MCC calcu-594

lations.) The AUC is often used to compare models. A larger area under the ROC curve595

corresponds to a model that better differentiates between classes, with a value of 1 be-596

ing completely accurate discrimination. All the AUC values, for both logistic and RNN597

models, are similar (0.850 - 0.907). Based on the AUC values alone, we could conclude598

that all models are performing well and roughly equally, but other metrics may also be599

considered. The HSS, MCC, and CSI measure somewhat different attributes: the im-600

provement over random forecasts (HSS: Heidke (1926)), a measure of correlation of classes601

unaffected by unbalanced data (MCC: Chicco and Jurman (2020)), or a measure weighted602

to give more value to warnings for rare events (CSI: Schaefer (1990)). The Heidke skill603

scores lie within a small range (0.557 - 0.667), so although the 95% confidence intervals604

from 10,000 bootstrap resamplings of the data (of size 7000 points) of the HSS for each605

of these models is small, there is still considerable overlap between models (Figure 8).606

(Overlap of the 95% confidence intervals is equivalent to finding no difference between607

means in a t-test.) The ranges of MCC (0.558 - 0.673) and CSI (0.537 - 0.684) are sim-608

ilarly narrow and therefore also do not provide much discrimination between models. We609

do not show the bootstrap assessments of the MCC and CSI variation as they were also610

very small. (Bootstrapping randomly resamples, with replacement, from the original sam-611

ple to obtain a standard error needed to create confidence intervals or perform hypoth-612

esis tests for statistics for which the underlying distribution is not otherwise known (Efron613

& Tibshirani, 1986))614

Although the LogisticLag6 model consistently performs worse in all these metrics,615

there is no particular advantage to the RNN-MLTclass models over the LogisticLag1 or616

LogisticLag3. Again, this suggests that the RNN algorithm is not adding anything more617

than what we have incorporated into the logistic models. We may as well use the more618

portable model (the logistic model). Given that the LogisticLag1 and LogisticLag3 per-619

form much the same, we would choose the LogisticLag3 (referred to as LL3 from now620

on) as the more practical model. Predictions could be made up to 3 h ahead instead of621

the 1 h required by all the other models we present.622

For this one model (LL3; 150 keV) we show the determination of the optimal prob-623

ability threshold using both the ROC curve and the precision-recall curve (Figure 9). With624
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the ROC curve, the optimal point on the curve is closest to the upper left corner (9a).625

(We determined this using the perfcuve function in MATLAB.) This gives an optimal626

probability threshold of 0.480, close to the ”default” of 0.5. For the precision-recall curve,627

the optimal threshold is chosen by maximizing (Saito & Rehmsmeier, 2015):628

2× Precision×Recall

Precision+Recall
(3)

This gives an optimal threshold of 0.313 (Figure 9b). Although the overall accu-629

racy (ACC of Equation 1) is slightly higher with the ROC optimal threshold (0.832 (Fig-630

ure 9c) vs. 0.821 (Figure 9d)), the ACC can be quite high only because it identifies true631

negatives correctly without any correct identification of true events. For this reason, the632

ACC is often not the best measure. The Heidke skill score shows no improvement us-633

ing the optimal threshold. It is 0.639 at the optimal point chosen by the precision-recall634

curve, but 0.646 at the point chosen by the ROC curve. There is some advantage in us-635

ing the precision-recall curve point as there is an improvement in both the correctly pre-636

dicted events (TPR) and a reduction in the number of missed events (FNR). There may637

be some tolerance for the increased false positives if it improves the true positive rate.638

5.1 Predicting High Flux after Periods of Low Flux639

If we choose the LL3 model as the most practical, predicting when flux will be above640

the 75th percentile 3 h later, there is one further test of its abilities we should make. As641

all these models are based on a dataset dominated by one quiet hour leading into an-642

other quiet hour, it would not be surprising if the ability to predict sudden rises were643

limited by the overwhelming number of quiet data points. Furthermore, all our identi-644

fied models predict whether high flux will occur in the future without regard to the cur-645

rent status (low vs. high flux). It is a different task to predict a sudden rise in flux from646

a low level versus a persistence of high flux. This model type should be assessed for its647

ability to do that. In fact, we may find that a model made specifically for this situation648

would do a better job.649

We created one more model (LogisticLag3red) which uses as its training set only650

those hours preceded by low flux. This removes all times when a high flux hour is pre-651

ceded by high flux and gives us a method of predicting the specific case where flux rises652

from a lower level. We also test the ability of the original LL3 model to perform this same653

task by validating it only on the hours of the test set data which are preceded by low654

flux. This is a more difficult task: less than 7% of this reduced test set are hours of high655

flux following low flux. However, we find that these two models behave similarly, with656

the original LL3 model performing better (at 40 and 150 keV) or not much worse (150657

keV) as measured by the Heidke skill score if the optimal threshold is moved to account658

for the lower percentage of observations in the event class (Table 6). The coefficients of659

the original LL3 (or LogisticLag3) model (Tables 7- 9) can therefore be used to predict660

this particular situation, if the revised optimal threshold coefficients are used (Table 10b),661

without the need for a specialized model for this situation. As expected, the HSS for these662

predictions are lower than the overall HSS from the LL3 model.663

5.2 Using the LL3 Model for Prediction664

We report the coefficients of the LL3 models (Table 7, Table 8, Table 9) for use665

in future predictions. Inputs into these models must be Z-scores of the solar wind, IMF,666

and geomagnetic index predictors, with logs taken as described above. For future ref-667

erence, we use the LL3 (LogisticLag3) acronym for this model.668

The MLT variable set consists of 23 indicator variables, one less than the number669

of MLT values (MLT 0 − MLT 22). The variable is discretized such that, for exam-670
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Figure 8. Heidke skill scores of the classifier models (LogisticLag1, LogisticLag3, Logisti-

cLag6, and RNNclass-MLT). There is little difference between the models using this metric.

Bootstrap confidence intervals (95%) are small.
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Figure 9. Determining the optimal probability threshold (red circle) for the logistic Lag 3

(150 keV) model. a. ROC curve, b. precision-recall curve, c. classification of test set using the

optimal threshold from ROC curve, d. classification of test set using optimal threshold from the

precision-recall curve. Model predicts whether observation will be above or below the 75th per-

centile. AUC = area under the ROC curve, TPR = true positive rate, FPR = false positive rate,

TNR = true negative rate, FNR = false negative rate.
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Table 4. Heidke skill scores for the ARMAX, stepwise regression (including MLT), and RNN

regression models evaluated for their ability to predict flux above the 75th and 90th percentiles.

40 keV 75 keV 150 keV

Base ARMAX 75th %ile 0.586 0.597 0.622
90th %ile 0.386 0.488 0.535

ARMAX-MLT 75th %ile 0.615 0.626 0.635
90th %ile 0.521 0.541 0.562

ARMAX-MLT+Lag6 75th %ile 0.613 0.624 0.634
90th %ile 0.518 0.546 0.566

REG-MLT 75th %ile 0.625 0.636 0.619
90th %ile 0.570 0.591 0.549

Base RNN 75th %ile 0.527 0.613 0.654
90th %ile 0.276 0.499 0.546

RNN-MLT 75th %ile 0.602 0.638 0.663
90th %ile 0.589 0.569 0.609

ple, MLT = 0 includes all observations where MLT = 0−0.99. An indicator variable671

is given the value of 1 for the hour it represents and 0 for all other hours. In other words,672

an observation at MLT 0 will have MLT 0 = 1, with all other MLT variables = 0. An673

observation at MLT 23 is 0 in all MLT indicator variables.674

The multiplicative interaction terms are produced by multiplying the relevant vari-675

ables. Any multiplication between a numeric variable and an MLT indicator variable will676

result in 0 for all cases except the hour of the MLT.677

Predictions are made with the usual regression equation:678

Ypred = b0 + b1X1 + ...+ bnXn (4)

where b0 is the constant term and each variable is multiplied by its corresponding679

coefficient (b1, ..., bn), but the output must be converted back to probabilities:680

Prob =
e(b0+b1X1+...+bnXn)

1 + e(b0+b1X1+...+bnXn)
(5)

Once these probabilities are calculated, assignment to classes (above or below the681

75th percentile) is accomplished by comparing to the optimal thresholds of Table 10a682

(Neter et al., 1990).683

6 Discussion684

Our exploration of various algorithms for creating predictive models shows that value685

predicting models (multiple regression, ARMAX, and RNN) have difficulty predicting686

the more extreme high and low fluxes of keV electrons at geostationary orbit. These mod-687

els can be improved by including MLT, both as a term that describes the differing lev-688

els of flux over the 24 h period as well as how the influence of other predictors varies at689
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Table 5. Accuracy metrics for the classification models: logistic and RNN-MLTclass.

Model TPR FPR TNR FNR AUC HSS MCC CSI

40 keV
RNN-MLTclass 0.777 0.173 0.827 0.223 0.904 0.580 0.583 0.564
LogisticLag1 0.813 0.154 0.846 0.187 0.907 0.632 0.636 0.606
LogisticLag3 0.822 0.167 0.833 0.178 0.900 0.623 0.628 0.600
LogisticLag6 0.716 0.151 0.849 0.284 0.85 0.557 0.558 0.537

75 keV
RNN-MLTclass 0.846 0.193 0.807 0.154 0.877 0.627 0.633 0.629
LogisticLag1 0.847 0.184 0.816 0.153 0.891 0.638 0.644 0.637
LogisticLag3 0.828 0.155 0.845 0.172 0.903 0.657 0.659 0.647
LogisticLag6 0.817 0.195 0.805 0.183 0.875 0.600 0.605 0.605

150 keV
RNN-MLTclass 0.875 0.192 0.808 0.125 0.773 0.667 0.673 0.684
LogisticLag1 0.846 0.197 0.803 0.154 0.871 0.636 0.639 0.657
LogisticLag3 0.873 0.215 0.785 0.127 0.882 0.639 0.646 0.664
LogisticLag6 0.855 0.191 0.809 0.145 0.883 0.650 0.654 0.668
TPR: True Positive Rate (accurate prediction of event); FPR: False Positive Rate (false
prediction of an event); TNR: True Negative Rate (accurate prediction of non-event);
FNR: False Negative Rate (false prediction of non-event). AUC: Area under the ROC
curve.

Table 6. Classification model accuracy metrics when limited to periods when flux could in-

crease above the 75th percentile.

Model TPR FPR TNR FNR AUC HSS
LogisticLag3red
Training set limited to starting low flux hours
40 keV 0.728 0.190 0.810 0.272 0.854 0.357
75 keV 0.791 0.190 0.810 0.209 0.866 0.372
150 keV 0.611 0.075 0.925 0.389 0.886 0.412

LogisticLag3
Training set includes all hours
40 keV 0.653 0.139 0.861 0.347 0.900 0.395
75 keV 0.716 0.141 0.859 0.284 0.903 0.410
150 keV 0.743 0.163 0.837 0.257 0.882 0.361
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each hour (by the use of multiplicative interaction terms with the MLT variables). The690

addition of multiplicative interactions between inputs and of quadratic terms is helpful691

in the regression model. (Presumably, these are also added by the RNN algorithm al-692

though it takes some effort to determine this.) However, even with these additional terms693

highs and lows are still under reported. Adding Lag 1 flux as a predictor may appear694

to rectify the issue, but this results in predictions that lag an hour behind. This prob-695

lem has also been found in a Kp predictive model. While adding historical Kp as a pre-696

dictor improved the model, it resulted in missing rapid changes (Chakraborty & Mor-697

ley, 2020). The addition of Lag 6 flux to our model, while it does not cause predictions698

to lag, also does not solve the problem of under-predicted highs and lows.699

The prediction of high flux following low flux is the most challenging task, but also700

of the most practical importance. Models trained on these full datasets can give excel-701

lent prediction of the status quo (either the common mid-range values or persisting flux)702

because they tend to predict best what they are most heavily trained on. To better pre-703

dict just the start of high flux events, models can be built just on those days or hours704

when low flux could potentially rise to high flux (Simms & Engebretson, 2020). How-705

ever, an increase from low to high flux is still a somewhat rare event (much less than 50%:706

3049 out of 28921 hours or 10.5% of this subset) and without larger training sets, these707

empirical models may still struggle with predicting high flux events unless the relation-708

ship between flux increase and predictors is very strong. In fact, the high variability in709

flux response to the variables most often used for prediction might suggest that we are710

missing important parameters or processes that drive high flux events. One obvious can-711

didate in our particular models is substorm activity as we cannot include the AE index712

if we intend to use a model for real time prediction. However, studies that have included713

the AE (see below) do not achieve better prediction.714

The regression models (both conventional and logistic) are able to include main ef-715

fects, multiplicative interactions, and quadratic and higher polynomial terms as needed.716

Thus, they could potentially produce a model very similar to that chosen by the RNN717

algorithm, with the exception that only a limited number of previous lags can be included718

before the model becomes intractable and too burdened with overly correlated predic-719

tors. The RNN models we created could, potentially, use up to 48 h of previous infor-720

mation, but limiting the number of previous hours in the regression models did not lower721

their predictive ability below that of the RNN models. We therefore conclude that the722

relevant prediction information is contained in the variables measured just an hour or723

up to 3 h before.724

While cycling behavior may obscure the physical relationships of various processes,725

this may not be an issue with prediction models. For example, the nuisance diurnality726

of flux measurements from geosynchronous satellites may create misleading correlations.727

Models seeking to understand the physical drivers should account for this behavior, by728

such methods as ARMAX (autoregressive moving average transfer function) modelling729

or, at least, differencing of data to remove cycles (Simms, Engebretson, & Reeves, 2022),730

but perfectly serviceable prediction models can be produced even if these spurious cor-731

relations are not removed. Consequently, if ARMAX models are not needed to remove732

the cycling behavior, predictive models can be built from neural networks or simply from733

regression models. However, we must not make the mistake of interpreting an influen-734

tial parameter in these latter methods as evidence that it is a physical driver of flux. We735

must recognize that the high correlation seen between some variables and flux in mod-736

els that do not correct for co-cycling behavior and trends can only be interpreted as that737

parameter being a good proxy for the physical environment, not that that particular vari-738

able is the physical influence that drives electron flux. Bearing this in mind, when cre-739

ating prediction models, we can choose an algorithm for model construction based on740

such constraints as predictive ability, ease of determination, and portability to other users741

rather than considerations of which parameters are physically responsible for driving flux.742
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We do want to introduce as many variables as needed to describe the behavior of743

flux, not merely choose the few that are most important. It is true that we are not in-744

terested in a cluttered model where there are many essentially duplicate variables, but745

previous work on drivers suggests that most available variables have some statistically746

significant association with flux even when other parameters are accounted for. Even if747

this apparent influence is small, there is little reason to discard a statistically significant748

variable. (The same does not hold true for a model seeking to answer questions about749

which variables are most likely to be drivers. As competition between variables can have750

large effects on both coefficient estimation and statistical testing, there are some sets of751

variables that should not be considered together in the same model.)752

Model diagnostics should be geared to investigating the most important model fail-753

ures. For value-predicting models, single metrics may not be the best choice. RMSE, MAE,754

bias, MSA, and SSPB showed only small differences and therefore were not able to dif-755

ferentiate between models well. Heavy weighting on the most numerous prediction-observation756

pairs in the middle range leads these metrics to discount serious errors in the more im-757

portant, but less abundant, low and high flux ranges. This is the reason why we do not758

present 2-D density plots as they overlook the rarer, but more important, deviations from759

the model. Single metrics that seek to discount values farther from the predictions of the760

model, particularly if they are rarer, are even more misleading. The very low MSA val-761

ues that we obtain (compared to RMSE and MAE) show that this outlier-protected met-762

ric is missing much of the reduced prediction ability that we need to assess. We also show763

that both the mean-based RMSE and the median-based MSA are highly influenced by764

the standard deviation of the response variable. Comparing these metrics over variables765

of different standard deviations is therefore meaningless. Response variables should be766

normalized to the same standard deviation before metric comparisons are made.767

In this study, we have developed several techniques for assessing poor fit of the value-768

predicting models that focus on the areas of most interest: the high and low fluxes. The769

first, the cubic fit line to the prediction-observation relationship, is a visual technique.770

Inspection of this line immediately tells us that the fit to highs and lows is much worse,771

for example, in the base RNN model than in the RNN-MLT model. The validation cor-772

relation only tells us that the fit is slightly worse and gives no indication of where the773

problem lies or how serious it is for our particular needs. Our second diagnostic, the Lag1774

validation correlation, assesses whether the predictions lag behind the observations. While775

lagging in the mid-range values is not as problematic, the missing of large changes in flux776

until the hour after they have happened is more troubling. If the predictions correlate777

better with observations from the hour before than with the hour being predicted, this778

tells us that the model will be missing the events that we are most interested in. While779

including persistence (Lag1 flux) as a predictor creates an extreme case, it is possible780

that other predictors could produce the same behavior so this should be checked in fu-781

ture models.782

Validation correlations of the 3 value-predicting model types are reasonable and783

all of about the same magnitude (ARMAX-MLT: 0.731 - 0.814; RNN-MLT: 0.683 - 0.753;784

REG-MLT: 0.745 - 0.777). There is no apparent advantage to any of these model build-785

ing algorithms over the others in predictive ability. This suggests that each of these al-786

gorithms is accessing similar information from the predictors and that the choice of al-787

gorithm to build a model could depend mainly on accessibility. For a value-predicting788

model, a regression equation (the REG-MLT model) would be the obvious choice as there789

would be no need to transport the more complicated coefficients of an ARMAX or RNN790

model if the model were to be placed on another system.791

The validation correlations we obtain are higher than the 0.67 validation correla-792

tion found for a previous hourly 40 keV ARMAX model (averaged over the individual793

MLT models) (Boynton et al., 2019). Reasons for this improvement in our ARMAX model794

may be that we include a decay term and that we create one, more efficient, model with795
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indicator variables to identify the individual MLTs instead of a series of models for each796

MLT.797

However, validation correlations are not the only way to assess such models. We798

may be interested in a model’s ability to predict when flux will go over a certain thresh-799

old, such as the 75th percentile. In this case, we could evaluate models with the Heidke800

skill score, comparing the classification success against that of random assignment to cat-801

egories. Using this metric, all 3 of these value predicting models perform similarly (Hei-802

dke skill scores at the 75th percentile of 0.615 - 0.635 (ARMAX-MLT), 0.602 - 0.663 (RNN-803

MLT), and 0.619 - 0.636 (REG-MLT)). All do better than random assignment and all804

are better than the output of the IMPTAM model where the highest skill score was 0.17805

for 40 keV electrons at roughly the 75th percentile ((Ganushkina et al., 2019)). Although,806

this previous study was predicting events at 10 minutes, a more difficult task, much of807

this difference in skill scores may be due to our use of a strictly empirical model and the808

incorporation of MLT.809

An ARMAX model (SNB3GEO) predicting daily averages of higher energy elec-810

tron flux (≥2 MeV at L=6.6) achieved a Heidke skill score of 0.738 (Balikhin et al., 2016).811

Our hourly models achieved a lower HSS, in part because hourly prediction is a more812

difficult task (Simms, Engebretson, & Reeves, 2022), and in part because correlations813

between predictors and lower energy flux are weaker. In our results, the 150 keV flux was814

usually somewhat better predicted than the 40 keV flux, so it is not surprising that 2815

MeV electrons would be more easily predicted than the lower energies.816

Another daily regression model (at L=5.2) using several solar wind parameters gave817

a correlation between model prediction and observation of 0.854 at > 900keV , although818

it is not clear if this is a true validation correlation (on a reserved test set) or a corre-819

lation on the training data which would naturally be quite high (Katsavrias et al., 2022).820

In this same study, a daily prediction neural network model built on data over a wide821

range of energies and L shells (33 keV - 4.062 MeV; L 2.6-5.6) visually showed good cor-822

respondence with observations from a test set, while prediction at L=6.6, on an out of823

sample dataset, appeared considerably worse. The same problem we have experienced824

of under predicting the high values appears at low electron energies, along with over pre-825

diction of the low values at > 0.8MeV .826

The MERLIN model, a neural network model predicting 120-600 keV electrons, shows827

a Spearman’s rho validation correlation of 0.8 (at 120 keV), however this model incor-828

porates AE as a parameter, making it less useful for real time prediction (Smirnov et al.,829

2020)). This model also shows some difficulties with under predicting the highs and over830

predicting the lows. Although the validation correlation is reasonably high, this mostly831

represents accurate predictions in the less critical middle range. The ORIENT-M model,832

a neural network model for 50 keV - 1 MeV electrons, uses AE as a predictor as well (Ma833

et al., 2022). The R2 0.45− 0.7 on the withheld test dataset (1 month of data near L834

6 for the 54 keV electrons) is therefore also not a good comparison to our model which835

does not incorporate the real time unavailable AE.836

Predictions above or below a threshold can also be obtained from a dedicated clas-837

sifier model such as logistic regression or a classifier RNN model. Our classifier models838

provided little improvement to the Heidke skill score metric above that of the value-predicting839

models and were also not much different from each other (RNN-MLTclass: 0.580 - 0.667;840

LL3: 0.623 - 0.657).841

While the RNN models were given 48 h of previous variables to work with, the lo-842

gistic regression models were given only predictors from 1, 3, or 6 h before. (Various com-843

binations of 1 with 2, 3, 6 did not provide any improvement.) While the RNN models844

could, in principle, have used any combination of polynomial and interaction terms from845

any of the 48 h, we found that the stepwise procedure on the logistic models did not choose846
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any polynomial terms above a quadratic. Thus, while we did not investigate the details847

of which terms the RNN models chose, we feel confident that a single predictor lag (Lag848

1 and Lag 3 worked best) and no polynomials above a squared term are sufficient to de-849

scribe this data.850

Classifier models may be a better choice if the goal is to predict when an event (flux851

above a threshold) will occur. Classifier neural networks may predict as well as logistic852

regression models, but the latter provide the most portability. The LogisiticLag3 model853

is preferred only because it would allow a 3 h lead in prediction time while not sacrific-854

ing any predictive power (as would be the case for the Lag 6 model). We therefore present855

the coefficients for the LL3 models (40-150 keV) in Tables 4-6 for future predictions.856

We provide probability thresholds for classification using the LL3 model (Table 7)857

determined from optimizing precision vs. recall for two possible prediction scenarios: 1)858

predicting a flux over the 75th percentile from any flux level (high or low), and 2) pre-859

dicting a rise in flux over the 75th percentile from a lower flux level. We found that it860

was not necessary to produce another model for predictions in the second scenario, that861

the optimal prediction could be obtained simply by moving the probability threshold.862

We assumed equal costs of missing the prediction of an event (a false negative) vs. pre-863

dicting an event that did not happen (a false positive).864

Finally, we note that what we have produced here are prediction models, not mod-865

els showing physical dependence. Although there is overlap between which variables (and866

in what form) best predict flux and which may be physical drivers of flux, the variables867

chosen by the optimal prediction models are not necessarily those that have a physical868

influence on flux. First, we have limited our variables to those that can be accessed in869

real time so as to obtain useful predictions. While substorms (represented by the AE870

index) may correlate well with flux this is not a useful variable for a working prediction871

model as AE is not available in real time. Second, as much of the correlation between872

predictor variables and flux is the result of common cycles (e.g., the diurnal cycle due873

to satellite position and the 27 d solar cycle; Simms, Engebretson, and Reeves (2022)),874

a good predictor may not be a driver at all. (For an investigation into the driving role875

of various parameters see Simms, Ganushkina, et al.) That the ARMAX models produced876

no better predictions than models derived by other means (RNN and regression) sug-877

gests that the description of the time behavior of flux can be accomplished either with878

AR and MA parameters or simply by using the co-cycling predictor variables, just so long879

as we have no reason to separate out the time behavior independent of these other vari-880

ables. ARMAX modelling, therefore, is best suited to exploring actual physical relation-881

ships between flux and possible drivers, but does not give this model type any advan-882

tage in producing a predictive model. By the same argument, the coefficients of the re-883

gression models presented here are not any more interpretable in a physical sense than884

the hidden coefficients of a neural network, as we have not accounted for inflated cor-885

relations due to common cycles.886

However, there is a more fundamental problem in confusing prediction models with887

models used to test hypotheses about physical relationships. If the model selection method888

depends on sorting through many possible models to find the ”best” (this includes tech-889

niques such as neural networks and stepwise regression), the probability of rejecting a890

true null hypothesis becomes almost 100% and any conclusions based on this will be mean-891

ingless (Mundry & Nunn, 2009; Hurvich & Tsai, 1990; Whittingham et al., 2006). The892

result of this ”many-models-choose-best” approach is that we have no firm basis to say893

anything about the probability that a particular variable chosen by this type of model894

is actually influential. This means that any attempt to determine the drivers of electron895

flux from the terms chosen by a many-models-choose-best approach is misguided. Even896

if the model predicts well, there is no basis for inferring that the particular variables cho-897

sen in the model selection phase have an actual physical influence.898
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7 Conclusions899

1. We screen several algorithms for producing value-predicting models of hourly900

40 - 150 keV electron flux at geostationary orbit: ARMAX, RNN, and regression. These901

methods produce roughly similar models, as measured by validation correlations and the902

Heidke skill score.903

2. Classifier models (RNN and logistic regression) are somewhat better at predict-904

ing a flux event (flux rising above the 75th percentile) than value-predicting models. A905

model built by logistic regression using only variables from one previous time step pre-906

dicts as well as one built by a neural network using 48 h of previous data. We choose907

the LL3 model because it is more parsimonious and more portable than an RNN model.908

3. Although the prediction of high flux following a low flux hour is both the most909

difficult task as well as the most important, we were able to produce a reasonable pre-910

diction model for this special case merely by changing the probability threshold of the911

LL3 model.912

4. Two new diagnostic tests are introduced to assess value-predicting models: the913

cubic fit to the observation-prediction relationship, to visually assess the degree to which914

high and low flux is under or over predicted, and the Lag1 correlation which determines915

the degree to which predictions may lag behind and miss rapid changes in flux. Addi-916

tionally, to focus attention on the model failures instead of successes, we plot observa-917

tions vs. predictions as scatterplots instead of 2-D density plots, the latter of which tend918

to discount the rarer but more important deviations from the model.919

5. A ”good” metric is one which focuses attention on the ability of a model to pre-920

dict the cases of most interest, not simply one which produces a low value. We find that921

single metrics such as RMSE, MAE, bias, MSA, and SSPB are all too influenced by the922

bulk of well-predicted, mid-range values to differentiate between models that do better923

at predicting extreme values of flux. However, median-based metrics, such as the MSA,924

may be even less useful as they weight large deviations less heavily, giving an unreason-925

ably reassuring picture of model effectiveness at predicting the outliers we are most in-926

terested in. We note that RMSE uses the prediction error mean, while the MSA (and927

SSPB) use the prediction error median. Use of the median in the MSA reduces the in-928

fluence of prediction error outliers in the metric, thus it is of less use in identifying model929

failures than the RMSE is.930

6. Single-value metrics such as RMSE (or MSA) which use the difference (or ra-931

tio) between observation and prediction are highly influenced by the standard deviation932

of the response variable. It is therefore meaningless to compare the RMSE or MSA across933

variables with different standard deviations. The Z-score transformation (obtained by934

subtracting the mean and dividing by the standard deviation) normalizes variables to935

a standard deviation of 1, making a comparison across models or datasets more useful.936

7. Parameters are chosen for their availability, not solely due to their high corre-937

lation with flux. This is because we are interested in a useful model, rather than a model938

with the highest validation correlation. Some highly correlated variables (such as the AE939

index) are not used because they would not be available in real time when predictions940

are needed.941

8. The addition of MLT to these models, describing both the changing level of flux942

over the 24 h period as well as the change in predictor influence at each hour, improves943

predictions.944

9. Value-predicting models do a poor job at predicting the highs and lows although945

mid-range prediction is very good. The relative rarity of data points in the areas of most946

interest (very high flux) results in models that will miss these events much of the time.947
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The addition of flux from the previous hour as an input variable appears to fix this prob-948

lem, but produces predictions that lag behind observations.949

10. The addition of multiplicative interactions between the predictor variables, as950

well as quadratic terms, improves predictions. Cubic terms had no effect.951

11. Predictors from a full 48 h before are not needed. Variables measured in a sin-952

gle hour (1-3 h before the flux observation) are sufficient for a reasonable prediction. The953

time behavior of flux does not need to be described (i.e., with an ARMAX model) to pro-954

duce reasonable predictions.955

12. We provide coefficients and optimal probability thresholds to predict a flux rise956

above the 75th percentile 3 h in advance using a logistic regression model. (LL3) The957

logistic regression model was chosen for its portability to other systems. The 3 h time958

frame was chosen to provide a good balance between early warning and best prediction.959

13. The best predictive model does not necessarily tell us anything about the phys-960

ical relationship of each solar wind, IMF, or geomagnetic parameter with flux. If hypothe-961

ses about these relationships are to be explored, the model approach should be targeted962

to that goal instead of merely improving prediction scores.963
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Table 7. Coefficients of the 40 keV LL3 (Logistic Lag at 3 h) prediction model.

Constant -1.482 MLT Associated Coefficients:
B -0.104 MLT Bz ×MLT V ×MLT Kp ×MLT
Bz -0.542 MLT 0 0.275 -0.009 0.046 0.047
V 0.418 MLT 1 0.375 0.040 0.040 -0.052
P 0.036 MLT 2 0.963 0.158 0.142 -0.088
Kp 1.297 MLT 3 1.081 0.022 -0.014 0.121
Dst -0.359 MLT 4 1.316 -0.185 -0.037 0.137
Bˆ2 -0.092 MLT 5 1.079 -0.200 -0.145 0.500
Vˆ2 -0.117 MLT 6 1.254 -0.586 0.098 0.932
B ×Bz 0.065 MLT 7 1.203 -0.496 0.322 0.374
B ×V -0.096 MLT 8 1.029 -0.591 0.112 1.035
B ×P -0.065 MLT 9 0.650 -0.417 0.176 0.944
Bz ×V -0.083 MLT 10 0.679 -0.485 0.022 0.480
Bz ×Kp 0.229 MLT 11 0.359 -0.214 -0.318 0.896
V ×Kp 0.272 MLT 12 -0.291 -0.093 -0.133 0.973
P ×Kp -0.224 MLT 13 -0.387 -0.237 -0.080 0.288
Kp ×Dst 0.184 MLT 14 -0.752 -0.127 -0.366 0.347

MLT 15 -1.182 -0.113 -0.335 0.571
MLT 16 -1.319 -0.050 -0.304 0.282
MLT 17 -1.973 -0.225 -0.292 0.360
MLT 18 -2.563 -0.301 -0.198 0.753
MLT 19 -2.169 -0.274 -0.176 0.538
MLT 20 -1.632 -0.070 -0.067 0.614
MLT 21 -1.572 0.111 0.079 0.635
MLT 22 -0.473 -0.060 0.231 0.016

–
3
3
–
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Table 8. Coefficients of the 75 keV LL3 (Logistic Lag at 3 h) prediction model.

Constant -1.986 MLT Associated Coefficients:
B -0.438 MLT B ×MLT Bz ×MLT V ×MLT Kp ×MLT
Bz 1.961 MLT 0 0.061 0.141 -0.34 0.33 -0.397
Ey 2.104 MLT 1 0.21 -0.07 -0.053 0.036 -0.149
V 0.787 MLT 2 0.488 -0.153 0.048 0.093 0.127
P -0.085 MLT 3 0.863 -0.077 -0.114 -0.1 0.179
Kp 1.432 MLT 4 1.199 0.167 -0.332 0.07 -0.074
Dst -0.797 MLT 5 1.355 0.17 -0.397 -0.111 0.201
SolarFlux -0.081 MLT 6 1.545 0.045 -0.485 0.037 0.689
Bˆ2 -0.07 MLT 7 1.663 0.118 -0.485 0.229 0.463
Vˆ2 -0.236 MLT 8 1.526 0.134 -0.579 -0.057 1.32
Pˆ2 -0.081 MLT 9 1.29 0.422 -0.388 0.023 0.501
Kpˆ2 0.499 MLT 10 1.131 0.495 -0.494 -0.103 0.32
B ×Bz 0.118 MLT 11 0.793 0.318 -0.328 -0.046 0.991
B ×V -0.18 MLT 12 0.727 0.253 -0.103 -0.032 0.551
B ×Kp -0.349 MLT 13 0.456 0.444 -0.256 -0.024 0.164
B ×Dst -0.156 MLT 14 0.269 0.323 -0.028 -0.253 0.325
B ×SolarF lux 0.084 MLT 15 0.086 0.348 0.042 -0.266 0.16
Bz ×V 0.399 MLT 16 -0.011 0.482 -0.056 -0.262 -0.168
Bz ×P -0.325 MLT 17 -0.342 0.483 0.032 -0.476 -0.043
Bz ×Dst -0.17 MLT 18 -0.611 0.451 -0.147 -0.211 -0.298
Ey ×P -0.263 MLT 19 -0.484 0.215 -0.02 -0.234 -0.161
Ey ×Dst -0.124 MLT 20 -0.621 0.446 -0.072 0.113 -0.193
V ×P 0.071 MLT 21 -0.838 0.358 0.044 0.03 0.152
V ×Kp 0.226 MLT 22 -0.592 0.392 0.026 -0.07 -0.114
V ×SolarF lux -0.12
P ×Kp -0.183
P ×Dst 0.133
P ×SolarF lux -0.093
Kp ×Dst 0.506

–
3
4
–
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Table 9. Coefficients of the 150 keV LL3 (Logistic Lag at 3 h) prediction model.

Constant -1.865 MLT Associated Coefficients:
B -0.533 MLT Bz X MLT Kp X MLT
Bz 0.773 MLT 0 -0.395 -0.039 -0.105
Ey 0.718 MLT 1 -0.400 0.305 0.045
N -0.146 MLT 2 -0.048 0.246 0.086
V 1.130 MLT 3 0.166 0.273 0.189
Kp 0.309 MLT 4 0.656 0.078 0.282
Dst -1.098 MLT 5 0.954 -0.053 0.250
SolarFlux -0.260 MLT 6 1.400 -0.242 0.556
Bˆ2 -0.121 MLT 7 1.603 -0.097 0.579
Bzˆ2 -0.186 MLT 8 1.674 -0.095 0.676
Nˆ2 -0.094 MLT 9 1.619 -0.066 0.699
Vˆ2 -0.164 MLT 10 1.562 0.073 0.778
Kpˆ2 0.522 MLT 11 1.474 -0.010 0.786
Dstˆ2 -0.057 MLT 12 1.260 0.072 0.574
SolarFluxˆ2 0.009 MLT 13 1.086 0.106 0.445
B:Ey -0.111 MLT 14 0.819 0.223 0.461
B:N 0.093 MLT 15 0.552 0.230 0.398
B:V -0.098 MLT 16 0.287 0.281 0.366
B:Kp -0.102 MLT 17 0.219 0.426 0.342
B:Dst -0.155 MLT 18 -0.174 0.276 0.091
B:SolarFlux 0.185 MLT 19 -0.363 0.240 0.258
Bz:Ey -0.121 MLT 20 -0.380 0.152 0.146
Bz:Kp -0.652 MLT 21 -0.598 0.200 0.207
Bz:Dst -0.325 MLT 22 -0.705 0.225 0.194
Ey:Kp -0.325
Ey:Dst -0.228
N:Kp -0.225
N:Dst 0.303
N:SolarFlux -0.073
V:Kp -0.182
V:Dst 0.182
V:SolarFlux -0.183
Kp:Dst 0.403
Dst:SolarFlux 0.147

–
3
5
–
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Table 10. Optimal thresholds for the LL3 prediction models, a. Using entire test set, b. Using

only low flux hours that could rise above 75th percentile.

Test set: a. All hours b. Starting low flux hours
40 keV 0.34 0.17
75 keV 0.308 0.235
150 keV 0.326 0.351
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Figure Captions1279

Figure 1. Predictions from the Base ARMA model (40 keV) over the training set1280

(predictions in green) and the validation period (predictions in orange). Flux is converted1281

to unitless Z-scores.1282

Figure 2. Predictions over the validation period (40 keV) from a. Base ARMA model,1283

b. ARMAX-MLT, c. ARMAX-MLT with flux at lag 6 added as a predictor, d. ARMAX-1284

MLT with flux at lag 1 added as a predictor, e. ARMAX-MLT with flux at lag 6 added1285

as a predictor. Flux is converted to unitless Z-scores. Further metrics are given in Fig-1286

ure 4 and Table 2.1287

Figure 3. Predictions over 1 week of the validation period (40 keV) showing how1288

the models incorporating Lag 1 flux lag behind observations. a. Base ARMA model, b.1289

Base ARMA with lag 1 flux, c. ARMAX-MLT, d. ARMAX-MLT with flux at lag 1, e.1290

ARMAX-MLT with flux at lag 6. Flux is converted to unitless Z-scores. Lag 1 valida-1291

tion r correlates current observations with the prediction one hour previous. Models with1292

Lag 1 flux as a predictor have higher Lag 1 validation correlation than same time val-1293

idation correlation.1294

Figure 4. Scatterplots of predictions vs. observations over the full validation pe-1295

riod and all three energies (a. 40 keV, b. 75 keV, c. 150 keV). Row 1: Base ARMA model,1296

Row 2: ARMA model split by MLT (ARMAX-MLT), Row 3: ARMAX-MLT with lag1297

6 flux added as an additional predictor. Red line shows the ideal 1:1 correspondence be-1298

tween predictions and observations. Orange line gives the cubic fit to the actual prediction-1299

observation relationship. Flux is converted to unitless Z-scores.1300

Figure 5. Scatterplots of predictions vs. observations for RNN models over the full1301

validation period and all three energies (40 keV - 150 keV). First row: Base RNN model,1302

second row: RNN-MLT. Red line shows the ideal 1:1 correspondence between predictions1303

and observations. Orange line gives the cubic fit to the actual prediction-observation re-1304

lationship. Flux is converted to unitless Z-scores.1305

Figure 6. Scatterplots of predictions vs. observations for the REG-MLT model over1306

the full validation period and all three energies (a. 40 keV, b. 75 keV, c. 150 keV). Red1307

line shows the ideal 1:1 correspondence between predictions and observations. Orange1308

line gives the cubic fit to the actual prediction-observation relationship. Flux is converted1309

to unitless Z-scores.1310

Figure 7. Validation correlation coefficients of the value-predicting models (base1311

ARMAX, ARMAX-MLT, base RNN, RNN-MLT, and REG-MLT). Although 95% con-1312

fidence intervals around each correlation are small, there is little practical difference be-1313

tween the models using this metric.1314

Figure 8. Heidke skill scores of the classifier models (LogisticLag1, LogisticLag3,1315

LogisticLag6, and RNNclass-MLT). There is little difference between the models using1316

this metric. Bootstrap confidence intervals (95%) are small.1317

Figure 9. Determining the optimal probability threshold (red circle) for the logis-1318

tic Lag 3 (150 keV) model. a. ROC curve, b. precision-recall curve, c. classification of1319

test set using the optimal threshold from ROC curve, d. classification of test set using1320

optimal threshold from the precision-recall curve. Model predicts whether observation1321

will be above or below the 75th percentile. AUC = area under the ROC curve, TPR =1322

true positive rate, FPR = false positive rate, TNR = true negative rate, FNR = false1323

negative rate.1324
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