
1.  Introduction
A marine cold-air outbreak (MCAO) is the advection of cold, dry air (originating over cold land or sea ice) over 
relatively warmer water, the interaction of which destabilizes the lower troposphere and can lead to convection, 
cloud formation, and precipitation (Brümmer, 1997, 1999; Renfrew & Moore, 1999). These events impact clouds, 
weather, ocean-atmosphere heat exchange, and deep ocean circulation at higher latitudes where in situ observa-
tions are sparse (e.g., Dickson et al., 1996; Kolstad et al., 2009). MCAOs occur most frequently in the Northern 
Hemisphere, are generally longer meridionally than zonally, and tend to dissipate over the ocean as a function of 
air parcel distance (or “fetch”) from the ice/land-water interface increases (Fletcher et al., 2016a). North Atlantic 
MCAOs are often found in the cold sector of cyclones (e.g., Afargan-Gerstman et al., 2020; Fletcher et al., 2016a; 
Kolstad et al., 2009; Papritz & Grams, 2018) and in association with polar lows which can cause severe weather 
(e.g., Abel et al., 2017; Kolstad et al., 2009; Landgren et al., 2019; Shapiro et al., 1987; Terpstra et al., 2021). 
On longer timescales, persistent anticyclonic blocking in the North Atlantic, that is found to inundate the Green-
land Ice Sheet with precipitation (Papritz & Grams, 2018; Pettersen et al., 2022), simultaneously forces cold air 
equatorward on its eastward flank, initiating MCAOs impacting Europe (e.g., Papritz & Grams, 2018; Smith & 
Sheridan, 2021; Terpstra et al., 2021).

In the upstream region of MCAOs, turbulent heat fluxes force shallow roll convection that forms stratiform cloud 
“streets” (Brümmer, 1999; Hartmann et al., 1997). Strong sensible and latent heat fluxes deepen the boundary 
layer with increasing fetch, leading to taller CTH downstream, a transition to open-cellular convective clouds 
(Brümmer, 1999; Geerts et al., 2022; McCoy et al., 2017), and enhanced precipitation rates (Abel et al., 2017; 
Brümmer, 1997). In order to identify MCAO conditions over water, studies generally use a steep lapse rate or 
potential temperature gradient threshold (e.g., Fletcher et al., 2016a; Fletcher et al., 2016b; Geerts et al., 2022; 
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Smith & Sheridan, 2020; West et al., 2019) that would facilitate boundary layer convection to form clouds and 
precipitation. From a cloud perspective, the seasonality of high-latitude open cellular convective cloud regimes 
is positively correlated to the MCAO index (McCoy et al., 2017), such that most open cellular convection in the 
northern Atlantic is likely associated with an MCAO.

Globally, MCAOs are most frequent in the North Atlantic and the associated unique cloud regime can often 
be identified in visible satellite imagery (e.g., Abel et al., 2017; Brümmer, 1999; Geerts et al., 2022; Renfrew 
& Moore, 1999; Sanchez et al., 2022; Terpstra et al., 2021). More specifically, Fletcher et al.  (2016a) identi-
fied that the highest frequency and strength (via lapse rate) of North Atlantic MCAOs occur along the Gulf 
Stream or western continental boundary, Labrador Sea, south of Greenland, and in the Norwegian Sea (Fletcher 
et al., 2016a). Some of these locations are proximal to sea ice and cold continental air, but others are preferential 
for MCAO occurrence due to warmer sea surface temperature (SST) associated with western boundary currents 
in the ocean (Fletcher et al., 2016a). Global climate models tend to underestimate stratiform cloud cover (Fletcher 
et al., 2016a; Geerts et al., 2022), and multi- and sub-grid-scale meteorological processes make MCAO clouds 
difficult to capture in models (known as the “gray zone” problem; de Roode et al., 2019; Tomassini et al., 2017). 
Several studies employ in situ observations to resolve the finer-scale meteorological phenomena present during 
individual MCAO events (e.g., Brümmer,  1999; Geerts et  al.,  2022; Renfrew & Moore,  1999), though these 
observations may be limited in space and time.

The advent of satellite meteorology has evolved our understanding of MCAOs, as its unique cloud regime can 
often be identified in visible imagery (e.g., Abel et al., 2017; Brümmer, 1999; Geerts et al., 2022; Renfrew & 
Moore, 1999; Sanchez et al., 2022; Terpstra et al., 2021). Beyond the visible spectrum, clouds and precipitation 
in remote locations can now be observed via retrievals by CloudSat, a polar-orbiting satellite with a W-band radar 
onboard and measurement capabilities up to |82𝐴𝐴

◦  | latitude (Stephens et al., 2002). CloudSat's highly sensitive 
radar can detect even very light snowfall (Tanelli et al., 2008) and several CloudSat studies have documented 
frequent shallow convective snowfall over high-latitude oceanic regions (Battaglia & Delanoë, 2013; Battaglia 
& Panegrossi, 2020; Kulie & Milani, 2018; Kulie et al., 2016; Y. Wang et al., 2013). Additionally, studies have 
shown that oceanic cumuliform snowfall production commonly occurs in the North Atlantic region and is inti-
mately linked to sea ice coverage with a distinct seasonal cycle (Kulie & Milani, 2018; Kulie et al., 2016). These 
analyses surmise that MCAOs likely initiate this distinct shallow snowfall regime, but no direct connections were 
made by investigating associated environmental conditions.

In this work, we combine the 5th version of the European Centre for Medium-Range Weather Forecast's 
(ECMWF) Reanalysis, ERA5 (Hersbach et  al.,  2020) data products with CloudSat satellite snowfall and 
combined CloudSat-CALIPSO cloud retrievals to analyze the snowfall patterns and characteristics, as well as the 
cloud regimes present, during MCAOs over the North Atlantic Ocean. The use of snowfall only, and exclusion 
of mixed and liquid precipitation, provides key information on the presence and impact of MCAOs on the ubiq-
uitous shallow snowfall observed by CloudSat. CloudSat snowfall estimates and cloud top height information 
from 2007 to 2010 are paired with an ERA5-derived MCAO flag to investigate how conditions vary between 
MCAO and “non-CAO” snowfall events and the seasonality of those variations. Section 2 presents our data and 
methodology for filtering data into MCAO and non-CAO categories. Section 3 illustrates results of this research. 
Section 4 further analyzes the meteorological conditions and CloudSat-derived characteristics of MCAO snow-
fall events over the Greenland and Barents Seas and discusses implications for how MCAOs are captured by 
satellite. Finally, concluding remarks are provided in Section 5.

2.  Data and Methods
CloudSat is a polar-orbiting satellite that was launched in 2006 and is currently operational (Stephens 
et al., 2002, 2008). Onboard is a near-nadir pointing W-band 94 GHz Cloud Profiling Radar (CPR, Im et al., 2005; 
Tanelli et al., 2008) that measures radar reflectivity and retrieves cloud and precipitation properties up to |82𝐴𝐴

◦  | 
latitude. The CPR footprint is single-beam at 1.8 𝐴𝐴 ×  1.4 km (along-track and cross-track, respectively) resolution. 
In 2011, a battery anomaly onboard the satellite resulted in a shift to daytime-only operations moving forward 
(Stephens et al., 2018). The loss of nighttime data was found to decrease global mean snowfall rate estimates 
by ∼8% due to pronounced latitudinal sampling issues (Milani & Wood, 2021). For this study, we used data 
from January 2007 to December 2010 to avoid potential high-latitude seasonal biases from CPR daytime-only 
sampling deficiencies and allow for a more robust seasonal analysis.
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CloudSat surface snowfall retrievals are from version R05 of the 2C-SNOW-PROFILE data product (Wood & 
L’Ecuyer, 2018) while cloud type and cloud-top heights (CTH) are from version R05 of the 2B-CLDCLASS-LI-
DAR data product (Sassen & Wang, 2008; Z. Wang, 2019). Precipitation detected by the CPR is identified as snow 
if the entire atmospheric profile is below freezing, as determined in the 2C-PRECIP-COLUMN data product (more 
details in Haynes et al. (2009)). If the phase determination is inconclusive in the 2C-PRECIP-COLUMN product, 
a secondary test in the 2C-SNOW-PROFILE product will flag precipitation as snow if the surface temperature 
is below freezing and the derived precipitation melt fraction at the surface is 𝐴𝐴 ≤ 0.1. If the precipitation melt level 
within the CPR profile is misidentified, however, this may lead to incorrect phase identifica tion and consequently 
impact snowfall rate estimates (Shates et al., 2023). Snowfall rate is then derived in the 2C-SNOW-PROFILE 
product, an optimal estimation algorithm that uses CPR reflectivity alongside ancillary temperature and cloud 
mask data to identify a cloud layer producing snow. The CPR has a high (>85%) probability of detection of 
snowfall (Cao et al., 2014; Chen et al., 2016; Kodamana & Fletcher, 2021) and correctly assigns hydrometeors 
as frozen for 95% of snowfall events detected by surface observations (Kodamana & Fletcher,  2021). More 
specific details about the 2C-SNOW-PROFILE retrieval are available in the Algorithm Theoretical Basis Docu-
ment (ATBD, Wood & L’Ecuyer, 2018). The 2B-CLDCLASS-LIDAR product is an algorithm that uses CPR 
observations, lidar measurements by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations 
(CALIOP) on the CALIPSO satellite (Winker et al., 2007), and observations from the Moderate Resolution Imag-
ing Spectroradiometer instrument on the Aqua satellite (Z. Wang, 2019). This combined active-passive product 
uses retrieved cloud properties (including CTH) in a decision tree to identify cloud types, such as cumulus, 
stratus, nimbostratus, stratocumulus, deep convective, etc. (Sassen & Wang, 2008). These satellites were part of 
NASA's A-Train orbit from 2007 to 2010, providing near-spatio-temporally matched CPR and CALIOP data for 
the 2B-CLDCLASS-LIDAR product. More specific details about the 2B-CLDCLASS-LIDAR product can be 
found in the ATBD (Z. Wang, 2019).

Several caveats must be considered using CloudSat data products for this work. Relevant limitations of CPR 
retrievals include challenges in accurately modeling scattering effects, absorption by liquid water in the atmos-
phere, and that the highly sensitive CPR signal gets attenuated at higher precipitation rates (>1 mm hr −1, Battaglia 
et al., 2008; Cao et al., 2014; Chase et al., 2022; Durden et al., 2010; Hiley et al., 2011; Liu, 2008; Matrosov, 2007; 
Norin et al., 2015). However, most oceanic snowfall rates detected by CloudSat are light (<1 mm hr −1) and there-
fore less affected by attenuation (Hiley et al., 2011; Kulie et al., 2016; Matrosov, 2007). Additionally, the CPR is 
susceptible to ground-clutter contamination that can exceed 1 km over land surfaces (i.e., the radar “blind zone”), 
thus rendering near-surface CPR observations unreliable (Bennartz et al., 2019; Durden et al., 2010; Kulie & 
Bennartz, 2009; McIlhattan et al., 2017, 2020; Shates et al., 2023). However, a reduced blind zone over ocean 
(∼600 m, Maahn et al., 2014) lessens the uncertainty in using CloudSat data to examine marine cold-air outbreak 
(MCAO) conditions.

Notably, CALIOP is capable of detecting clouds below the CloudSat blind zone level (McErlich et al., 2021; 
Winker et al., 2009), but cannot resolve both low-level and optically thick clouds. This could lead to misidentifi-
cation of cloud type and height (Mace et al., 2021), particularly of the unique, shallow cloud regimes associated 
with MCAOs (Geerts et al., 2022; Yang & Geerts, 2006). Most clouds associated with MCAOs (both snowing 
and non-snowing) are of smaller scale than the CPR footprint (Gryschka et al., 2008; Wu & Ovchinnikov, 2022) 
and so the 2C-SNOW-PROFILE snowfall retrieval may be impacted by the CPR not resolving small-scale snow-
ing clouds. Regardless, overall uncertainty is reduced in the 2B-CLDCLASS-LIDAR product due to the combi-
nation of the CPR retrievals with that from the lidar (Z. Wang, 2019).

To determine the presence of MCAO conditions, we derived the sea-surface potential temperature (𝐴𝐴 𝐴𝐴SST) and 
potential temperature at 850 hPa (𝐴𝐴 𝐴𝐴850) using ERA5 temperature and pressure data. We define an MCAO where 
M 𝐴𝐴 ≡𝜃𝜃SST − 𝐴𝐴 𝐴𝐴850 > 0, as in Geerts et al. (2022), to identify regions of low-level instability (Papritz et al., 2015). In 
addition, we require that the ERA5 surface is flagged as ocean and contains no sea ice. The definition of the M 
index varies in literature using potential temperature at the 700, 800, or 850 hPa levels, but Fletcher et al. (2016a) 
determined that using 700  hPa potential temperature identified fewer high-latitude MCAOs while using the 
850 hPa level (𝐴𝐴 𝐴𝐴850), produced similar results to 800 hPa potential temperature but identified more sub-tropical 
MCAO events. Positive M values that are relatively larger in magnitude (based on location) are referred to as 
“stronger” MCAOs and associated with higher surface precipitation rates and taller CTH (Geerts et al., 2022). 
During the Cold-air Outbreaks in the Marine Boundary Layer Experiment (COMBLE) field campaign, Geerts 
et al. (2022), identified the 10th (90th) percentile of M values at a coastal Norwegian site as 1.3 K (7.1 K) with 
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an average value of 4.1 K. The range of possible M values varies by region and varies between studies depending 
on the chosen definition of M. Based on the prior work by Fletcher et al. (2016a) and to remain consistent with 
Geerts et al. (2022), we used 850 hPa potential temperature to determine MCAO conditions.

Our region of interest is over open ocean surfaces in the North Atlantic (45𝐴𝐴
◦  –82𝐴𝐴

◦  N, −76𝐴𝐴
◦  –40𝐴𝐴

◦  E) where MCAO 
frequency is highest globally (Fletcher et al., 2016a). This window contains the region where the field campaign 
COMBLE recently studied upstream meteorological conditions during MCAO events between Svalbard and 
Scandinavia (Geerts et al., 2022). For several decades, field campaigns have used aircraft measurements to study 
MCAOs in the Fram Strait and Norwegian Sea (Brümmer, 1992, 1996; Wendisch et al., 2019, 2022).

For non-spatial visualization of data (e.g., histograms), no gridding or interpolation is performed; each CloudSat 
retrieval is matched to a coincident ERA5 gridbox (0.25𝐴𝐴

◦  ). To map the data, we gridded the CloudSat data and 
interpolated ERA5 data products to 1𝐴𝐴

◦  latitude 𝐴𝐴 ×  2𝐴𝐴
◦  longitude, a commonly used resolution to analyze the Cloud-

Sat 2C-SNOW-PROFILE product at high-latitudes (e.g., Palerme et al., 2014, 2017; Souverijns et al., 2018). Per 
gridbox, we averaged across all CloudSat snowfall rate data, including zero values, to obtain a seasonal mean 
snowfall rate (absolute snowfall rate). To analyze the frequency of occurrence, however, we have removed zero 
snowfall rate values. CloudSat's orbit overlaps at high latitudes and is more spatially distributed at lower latitudes 
which may lead to low-sample biases or over-representation from a single event (Kulie et al., 2016; Milani & 
Wood, 2021). For all gridded figures, gridboxes that contain fewer than 50 pixels of data (or footprints) over a 
season are not included to avoid these biases. Frequency of occurrence statistics are generated by normalizing 
each gridbox by the number of footprints. Regardless, gridding high-resolution satellite data runs the risk of 
smaller-scale cloud and precipitation features being potentially smoothed out. ERA5 data is gridded using near-
est neighbor interpolation and then matched to the coincident CloudSat gridbox. For each CloudSat gridbox, we 
identify the median timestep and match this to the nearest-time ERA5 gridbox.

3.  Results
The region of interest and seasonal frequency of occurrence of MCAO conditions (fMCAO, defined as M > 0) are 
plotted in Figure 1. As fMCAO is derived from ERA5, it is plotted at 0.25𝐴𝐴

◦  resolution. The ERA5 seasonal mean sea 
ice extent is outlined in pink (Figures 1b–1e) and represents an average 𝐴𝐴 ≥ 50% coverage of a gridbox with sea ice. The 
red box encompasses the region where the COMBLE field campaign detected MCAOs (Geerts et al., 2022). Boreal 
winter (December, January, February [DJF]) and transition seasons (March, April, May [MAM] and September, 
October, November [SON]) (Figures 1a, 1b, and 1d) show relatively frequent seasonal occurrence of MCAOs, with a 
general fMCAO 𝐴𝐴 ≥  30%. Due to the infrequency of summertime (June, July, August [JJA]) MCAOs (Figure 1c, note the 
different color scale) and associated low snowfall rates (not shown), JJA is excluded from the remainder of this study.

High fMCAO values are found in regions consistent with Fletcher et al. (2016a): the Labrador Sea, the “North Atlan-
tic” (parallel to western boundary currents and the Canadian coast), and the Norwegian Sea (which appears to 
include the Greenland Sea). Many other studies of North Atlantic MCAOs have identified high fMCAO near Sval-
bard in the Greenland-Norwegian and/or Barents Seas (Afargan-Gerstman et al., 2020; Brümmer, 1999; Geerts 
et al., 2022; Kolstad et al., 2009), and the Labrador Sea (Kolstad et al., 2009; Renfrew & Moore, 1999; Smith & 
Sheridan, 2020; Terpstra et al., 2021). These same regions are also associated with frequent CloudSat-indicated 
shallow cumuliform snowfall maxima (Kulie & Milani, 2018; Kulie et al., 2016). In DJF (Figure 1a), fMCAO > 60% 
in the Labrador Sea, along the western boundary, and in the northeast in the Greenland-Norwegian and Barents 
Seas. In MAM (Figure 1b), fMCAO is largest (>50%) in the Greenland-Norwegian Seas and a mean sea ice extent 
is at its furthest from the Arctic. Finally, in SON (Figure 1d) fMCAO is highest (>40%) in the Greenland-Norwegian 
Seas and in the Baffin Bay along Greenland's coast, where the mean sea ice extent has receded.

Figure 2 presents normalized (left) and raw count (right) histograms of CloudSat liquid water equivalent (LWE) 
snowfall (hereafter, “2CSNOW”) rates during MCAO and non-CAO conditions in DJF (Figures  2a and  2b), 
MAM (Figures 2c and 2d), and SON (Figures 2e and 2f). The distribution of 2CSNOW rates during MCAO 
conditions shows that the majority of snowfall events are light (<0.1 mm hr −1 LWE). For non-CAO conditions, 
the distribution 2CSNOW rates is broader with higher frequency of more intense snowfall rates (>0.1 mm hr −1). 
Raw count histograms (Figures 2b, 2d, and 2f) also indicate that a majority of snowfall occurrences are produced 
during MCAO conditions across the spectrum and for all seasons, including more intense 2CSNOW rates. This 
indicates that CloudSat most often detects North Atlantic snowfall occurring during MCAO conditions, and 
therefore is most often detecting light snowfall (Figure 2). The highest 2CSNOW rates as well as frequency occur 
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Figure 1.
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in DJF which is reflected in the lower distributions of light 2CSNOW rates and higher distributions of larger rates 
(Figures 2a and 2b). The remaining mapped plots are constrained by nonzero mean 2CSNOW rates and therefore 
share similar spatial coverage.

To visualize the spatial distribution of North Atlantic snowfall, Figure 3 shows gridded seasonal mean 2CSNOW 
rates during MCAO (left column, Figures 3a, 3c, and 3e) and non-CAO (right column, Figures 3b, 3d, and 3f) condi-
tions. CloudSat observes negligible snowfall in the southeast region of this window, regardless of MCAO conditions 
or season. The mean 2CSNOW rates exceed 0.05 mm hr −1 LWE in regions where fMCAO values are highest (Figure 1). 
In DJF (Figure 3a), this is in the Labrador Sea, along the western boundary, the Greenland-Norwegian Seas, and the 
Barents Sea. During non-CAO conditions (Figure 3b), high rates are concentrated, generally along the mean sea ice 
edge. During MAM CAO conditions (Figure 3c), high 2CSNOW rates occur in the Labrador, Greenland-Norwegian, 
and Barents Seas. During non-CAO conditions (Figure 3d), MAM 2CSNOW rates are generally lower than DJF 

Figure 1.  (a) Region of study outlined in green with locations labeled. The approximate region where the Cold-air Outbreaks in the Marine Boundary Layer 
Experiment field campaign (Geerts et al., 2022) took place is outlined in red, near the north-easternmost corner of this window (60°–82𝐴𝐴

◦  N, −25°–40𝐴𝐴
◦  E). (b–e) 

Seasonal frequency of marine cold-air outbreak (MCAO) conditions in the North Atlantic determined using sea-surface potential temperature (𝐴𝐴 𝐴𝐴SST) and 850 hPa 
potential temperature (𝐴𝐴 𝐴𝐴850). MCAO conditions are defined where 𝐴𝐴 ∆𝜃𝜃SST-850 > 0. The pink contour represents an approximate seasonal mean sea ice extent (𝐴𝐴 ≥ 50% sea ice 
concentration) from ERA5.

Figure 2.  Normalized (left) and raw count (right) histograms of seasonal surface snowfall rates (“2CSNOW”) from CloudSat's 2C-SNOW-PROFILE data product from 
January 2007 to December 2010 in the North Atlantic. 2CSNOW rates are liquid water equivalent and are categorized as occurring during marine cold-air outbreaks 
(MCAO) (blue line) or non-CAO (orange line) conditions. MCAO occurrence is determined by spatio-temporally matching ERA5 data to each CloudSat pixel. Bin 
sizes are 0.01 mm hr −1.
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(Figure 3b), but are still highest along the sea ice edge. The 2CSNOW rates are lower in SON (Figures 3e and 3f) 
than other seasons, but the highest of those rates are again coincident with high fMCAO (Figure 1d), in the Baffin Bay 
and Greenland-Norwegian Seas. SON during non-CAO conditions (Figure 3f) is the least active season, as most 
snowfall occurs northward of 70𝐴𝐴

◦  N and rates are generally <0.05 mm hr −1. For all seasons, regardless of MCAO 
conditions, 2CSNOW rates eventually drop off in intensity in the downstream direction.

Figure 4 shows the conditional frequency of MCAO and non-CAO conditions constrained where the 2CSNOW 
rate 𝐴𝐴 ≥ 0.01 mm hr −1 LWE (f0.01; note the different colorbars for MCAO and non-CAO conditions). The f0.01 during 
MCAO conditions in DJF (Figure 4a) is highest (>9%) in the Labrador, Greenland-Norwegian, and Barents Seas. 
In MAM (Figure 4c), f0.01 values during MCAO conditions are smaller in the Labrador Sea, but f0.01 is greater 
than DJF in the Fram Strait and Barents Sea MCAO pathways. In SON (Figure 4e), MCAO f0.01 maxima are 
located in Baffin Bay and the Greenland Sea, but f0.01 magnitudes are greatly reduced compared to other seasons. 
Non-CAO f0.01 values (Figures 4b, 4d, and 4f) are generally much lower than MCAO f0.01 values, except along the 
mean sea ice edge and western boundaries. As was the case for the mean 2CSNOW rates shown in Figure 3, the 
spatial extent of f0.01 is highest during DJF and lowest during SON. The f0.01 during non-CAO conditions are even 

Figure 3.  Seasonal mean (January 2007–December 2010) gridded CloudSat 2CSNOW rates during marine cold-air outbreaks (left column) or non-CAO (right 
column) conditions. The green line indicates seasonal mean sea ice extent from the ERA5 data set.
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more spatially isolated. These results further highlight the dominance of snowfall events associated with MCAO 
conditions in the North Atlantic region.

Further restricting to see how MCAO conditions impact more intense 2CSNOW rates, Figure 5 is the same as 
Figure 4, but for 2CSNOW rates 𝐴𝐴 ≥ 0.5 mm hr −1 (“f0.5”). This threshold represents a rate that exceeds the 90th 
percentiles for all seasons. At more intense 2CSNOW rates, f0.5 magnitudes are more comparable between MCAO 
(Figures 5a, 5c, and 5e) and non-CAO (Figures 5b, 5d, and 5f) conditions and are therefore shown with the same 
scale. However, the locations of highest f0.5 are strikingly similar to f0.01 results (Figure 4). Generally, the intense 
2CSNOW rates are more likely to occur in regions of high fMCAO (Figure 1) or near sea ice during non-CAO 
conditions. Non-CAO f0.5 is less widespread geographically, indicating that more intense snow rates associated 
with non-CAO conditions are more isolated than for MCAO conditions.

CloudSat-derived mean CTH are shown in Figure 6 during snowfall (2CSNOW > 0 mm hr −1) under MCAO and 
non-CAO conditions. CTH are generally lower (taller) during MCAO (non-CAO) conditions with a spatiotem-
poral mean of 2.6 (4.0) km across all 3 seasons. Table 1 lists seasonal and combined (DJF, MAM, and SON) 
frequency of occurrence of cloud type, as defined by CloudSat's 2B-CLDCLASS-LIDAR product. The top row 

Figure 4.  Annual frequency of occurrence of gridded CloudSat snowfall rates exceeding or equal to 0.01 mm hr −1 (liquid 
water equivalent) during marine cold-air outbreaks conditions (left column) and non-CAO conditions (right column). The 
green line indicates seasonal mean sea ice extent.
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of Table 1 represents the frequency of occurrence across the entire basin for all 3 seasons, where snowing clouds 
are stratocumulus (Sc) 68.7% of the time, nimbostratus (Ns) 23.8% of the time, and 7.5% of snowing events are 
from other cloud types within the 2B-CLDCLASS-LIDAR designation (i.e., cumulus, stratus, cirrus, altostratus, 
etc.). During MCAO conditions, cloud occurrence is ∼76% Sc (74%–80% inter-seasonally), with the max occur-
rence in MAM (79%). Ns clouds make up ∼18% of snowing MCAO clouds (15%–20% inter-seasonally), with 
the max occurrence in DJF (19.8%). Non-CAO conditions have comparable frequency of Sc (44%) and Ns (43%) 
clouds for all seasons (respectively, 40%–45% and 38%–46% inter-seasonally), meaning that Ns clouds are more 
frequent and Sc less frequent during non-CAO conditions.

In Figure 7 2D histograms of ERA5 2-m temperature (T2M) and total column water vapor (TCWV) exhibit the 
seasonal environmental conditions in which CloudSat detects snowfall. There appears to be distinct relationships 
between TCWV and T2M for snowfall during MCAOs (Figures 7a, 7c, and 7e) versus during non-CAO (Figures 7b, 
7d, and 7f) conditions, with little seasonal variation. Generalljy, MCAO snowfall observed by CloudSat is coin-
cident with T2M between 260 and 280 K and TCWV between 2 and 10 mm. While there are far fewer instances 
of CloudSat snowfall coincident with non-CAO conditions, it mostly occurs at warmer T2M (270–280 K) and 

Figure 5.  Annual frequency of occurrence of gridded CloudSat snowfall rates exceeding or equal to 0.5 mm hr −1 (liquid 
water equivalent) during marine cold-air outbreaks conditions (left column) and non-CAO conditions (right column). The 
green line indicates seasonal mean sea ice extent.
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moister TCWV (5–15  mm). Unsurprisingly, snowfall retrieved during MCAOs often occurs during colder 
(T2M < 265 K) and drier conditions (TCWV < 5 mm) than observed for non-CAO conditions. Non-CAO condi-
tions, on the other hand, frequently produce snowfall in a moister environment (TCWV > 10 mm) but not neces-
sarily warmer, as the snow will melt at higher near-surface temperatures indicated here by higher T2M. Snowfall 
occurrence when T2M  >  283  K may be due to one of more of the following: (a) the 2C-SNOW-PROFILE 
using surface temperature data from the ECMWF forecast model, (b) differences in spatio-temporal resolution 
between CloudSat and ERA5 data, and (c) deficiencies in CPR retrievals of precipitation and phase, addressed in 
Section 2. The higher TCWV during non-CAO conditions is consistent with higher snowfall rates observed along 
the seasonal mean sea ice extent east of Greenland in Figures 2b, 2d, and 2f.

4.  Discussion
The high fMCAO identified along western continental and sea ice boundaries as well as in the Labrador, 
Greenland-Norwegian, and Barents Seas (Figure 1) align with findings in previous ground-based or model-based 

Figure 6.  Seasonal mean cloud-top height derived from CloudSat's 2B-CLDCLASS-LIDAR during marine cold-air 
outbreaks conditions (left column) and non-CAO conditions (right column). The pink line indicates seasonal mean sea ice 
extent.
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studies of MCAOs (e.g., Afargan-Gerstman et al., 2020; Fletcher et al., 2016a; Kolstad et al., 2009; Papritz & 
Spengler, 2017). Upon initial investigation, we found that most of the CloudSat snowfall in the North Atlantic 
is light (<0.1 mm hr −1, Figure 2) and most occurrence is coincident with MCAO conditions (Figures 2 and 4), 
regardless of season and including the most intense snowfall rates (𝐴𝐴 ≥ 0.5 mm hr −1, Figure 5). Spatially, the regions 
with the highest seasonal mean snowfall rates from CloudSat also coincide with regions of frequent MCAO 
occurrence (Figure 3). Higher mean snowfall rates may be attributed to the association of North Atlantic MCAO 
occurrence and midlatitude storm tracks (Papritz & Grams, 2018; Papritz & Spengler, 2017), cold sectors of 
cyclones (Fletcher et  al.,  2016a; Kolstad et  al.,  2009), and polar lows (Rasmussen & Turner,  2003; Terpstra 
et al., 2021). Persistent anticyclonic blocking over the Greenland Ice Sheet (e.g., Hanna et al., 2016) and in the 
North Atlantic (e.g., Papritz & Grams, 2018) may promote MCAO formation east of Greenland as air masses 
on the eastern flank originate from cold continental or sea ice locations and advect over the open ocean. West 
of Greenland, this circulation advects warm, moist air onto the Greenland Ice Sheet and is responsible for the 
majority of enhanced SON snowfall events over central Greenland (Pettersen et al., 2022). This warm air would 
be categorized as non-CAO over the Baffin Bay if 𝐴𝐴 𝐴𝐴SST 𝐴𝐴 ≤  𝐴𝐴 𝐴𝐴850, which may explain enhanced SON 2CSNOW 
rates west of Greenland during non-CAO conditions (Figure 3f). Additionally, enhanced mean snowfall rates and 
frequency along the sea ice edge during non-CAO conditions (Figures 3–5) may be driven by warm-air intrusions 
that are common in this region (Woods et al., 2017), comparably low sampling of non-CAO conditions, or a 
combination of the two.

On average, snowing CTHs are much lower during MCAO conditions (<3 km), and though less frequent, snow 
during non-CAO conditions is predominately produced by taller clouds (>3 km; Figure 6). In the Labrador Sea, 
mean CTH can exceed 3 km in some gridboxes during MCAO conditions, suggesting vigorous convective snow 
coincident with where the mean snow rates are high (Figure 3), presence of tall nimbostratus clouds (Table 1), or 
a combination of the two. From a seasonal perspective, DJF is the most active in terms of snowfall rates, spatial 
extent of MCAO-coincident snowfall (f0.01) including intense snowfall (f0.5), and fMCAO, followed by MAM and 
then SON. The mean sea ice coverage is greatest during MAM, which can both provide cold air but also inhibits 
surface heat fluxes and convection (Geerts et al., 2022). The lower sea ice extent in DJF likely plays a role in it 
being the most active MCAO season. Kulie and Milani (2018) identified similar spatial and seasonal patterns of 
shallow cumuliform (cumulus and Sc) snowfall in the CloudSat data set with respect to sea ice extent, finding 
that limited surface heat fluxes and convection over sea ice strongly decrease snowfall production from shallow 
Sc and cumulus clouds.

Our results in Table  1 show that the dominant snowing cloud types in this basin are stratocumulus (∼69%) 
and nimbostratus (∼24%), aligning with previous findings in Kulie et  al.  (2016) that cumulus and Sc clouds 
account for >60% of oceanic snowfall events in the 2B-CLDCLASS CloudSat product (different than the 
2B-CLDCLASS-LIDAR product used here). Kulie et al.  (2016) used 2B-CLDCLASS cloud type to partition 
CloudSat observations with the assumption that shallow cumuliform snowfall events are largely forced by MCAO 
conditions. Table 1 indicates a vast majority (76%) of MCAO snow occurrences are indeed Sc (though in our 

Table 1 
Seasonal and Combined (December, January, February; March, April, May; and September, October, November) 
Frequency of Occurrence of Cloud Type Derived From CloudSat's 2B-CLDCLASS-LIDAR During Snowing Marine Cold-
Air Outbreaks and Non-CAO Conditions

Frequency of occurrence (%) Stratocumulus Nimbostratus Other

Combined seasons MCAO + Non-CAO 68.7 23.8 7.50

Combined seasons 
(DJF + MAM + SON)

MCAO 75.6 18.4 6.00

Non-CAO 44.0 43.1 12.9

DJF MCAO 74.5 19.8 5.70

Non-CAO 45.2 44.8 10.0

MAM MCAO 79.0 15.5 5.50

Non-CAO 46.6 38.9 14.5

SON MCAO 73.9 19.1 7.00

Non-CAO 40.6 46.6 12.8
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study, cumulus is grouped into the “other” category). However, 18% of snowing clouds during MCAO conditions 
are Ns, calling into question the assumption that this cloud type does not contribute much to MCAO snowfall 
amounts made in Kulie et al. (2016) and Kulie and Milani (2018). Unlike the CPR-only 2B-CLDCLASS product 
used in those studies, the 2B-CLDCLASS-LIDAR contains collocated CPR with CALIOP measurements. The 
lidar is more sensitive to mid- to high-level clouds (e.g., Mace et al., 2021; T. Wang et al., 2016), which may 
cause 2B-CLDCLASS-LIDAR to systematically “see” higher CTH. Additionally, our studies use environmental 
conditions to identify MCAO conditions in order to gain insight on the types of clouds that can exist during 
MCAO events. Given that snowing oceanic Ns clouds tend to be thicker than Sc (Kulie et al., 2016), these Ns 
clouds during MCAO conditions may account for CTH > 3 km in Figure 6. There is also evidence that snowing 
shallow cumuliform clouds over water can be embedded within Ns clouds (Kulie et al., 2021) and thus is another 
caveat to the cloud type partitioning.

Non-CAO clouds are evenly split between Sc and Ns (43% and 44% frequency, respectively; Table 1) with little 
inter-seasonal variability. Though this again contradicts the Kulie et al. (2016) assumption that shallow Sc snow-
fall events are exclusively forced by MCAO conditions, Sc snowfall rates are lower during non-CAO conditions 
(not shown) and may fall below the M threshold to be categorized as MCAO. The high frequency of light, shallow 

Figure 7.  Histograms of ERA5 2-m temperature (T2M) and total column water vapor during snowing (2CSNOW > 0) 
marine cold-air outbreaks conditions (left column) and non-CAO conditions (right column).
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snowfall during non-CAO conditions motivates future research into whether reanalysis models produce similar 
frequency of occurrence and snowfall rate intensities for MCAO and non-CAO events. The results of this study, 
combined with that of Kulie et al. (2016) and Kulie and Milani (2018), indicate that not only is most CloudSat 
snowfall observed in the North Atlantic produced by shallow cumuliform clouds (Figure 6, Table 1), but most 
North Atlantic snowfall is also associated with MCAOs (Figures  4 and  5). Furthermore, if most snowfall is 
produced by MCAOs, then most North Atlantic snowfall is light (<0.1 mm hr −1 LWE, Figure 2).

Along the open water fetch of an MCAO, ground-based and airborne observations indicate the boundary layer 
deepens and shallow, mixed-phase (containing liquid and ice, Korolev et al., 2017; Morrison et al., 2012) roll 
clouds consequently transition to taller, glaciated, open-cellular convective clouds (e.g., Abel et  al.,  2017; 
Brümmer, 1999; Fletcher et al., 2016b; Geerts et al., 2022; McCoy et al., 2017; Renfrew & Moore, 1999). This 
work identified clouds as shallow Sc in regions categorized as upstream locations of MCAOs (Geerts et al., 2022), 
which is a notoriously difficult cloud type to parameterize in models (Abel et al., 2017; Field et al., 2014, 2017). 
In the Greenland-Norwegian Seas, this cloud regime change is the result of precipitation-fueled decoupling of 
the boundary layer that leads to enhanced precipitation downstream (Abel et al., 2017; Brümmer, 1997) until 
eventually ceasing, as evidenced in the downstream regions of Figure  3. Though not phase-specific, about 
75% of the evaporated water vapor is precipitated out along the fetch of a MCAO (Brümmer, 1997; Papritz & 
Sodemann, 2018). This work shows that CloudSat could potentially identify these ubiquitous cloud regimes asso-
ciated with MCAO snowfall events, whereas models may struggle to properly simulate stratiform clouds (Field 
et al., 2017; Fletcher et al., 2016b; Tomassini et al., 2017). Additionally, CloudSat captures the MCAO cloud and 
snowfall characteristics in a region that has very limited in situ observations of MCAO stratiform cloud layers 
(Abel et al., 2017). CloudSat, with its frequent sampling at higher latitudes, has the potential to be a useful tool 
to link spaceborne-derived cloud properties with surface-cloud-precipitation processes associated with MCAOs.

Analyzing MCAOs with CloudSat products gives broad but important context for satellite retrievals of snowfall. 
For example, the Global Precipitation Measurement (GPM) satellite employs the Goddard Profiling (GPROF) 
algorithm, which relies on passive microwave observations and auxiliary T2M and TCWV to constrain retrieved 
surface precipitation rates (Kummerow et  al.,  2015; Randel et  al.,  2020). At first-launch of the GPM satel-
lite in 2014 (Hou et al., 2014), GPROF utilized a reference data set that included CloudSat snowfall retriev-
als, meanwhile populating the database of GPM radar and radiometer observations for the succeeding, fully 
parametric version of GPROF (Kummerow et al., 2015). Therefore, we expect that the initial a priori database 
used by GPROF included instances of MCAO-forced snowfall observed by CloudSat. These findings therefore 
raise a key question of whether the current version of the GPROF a priori database (Randel et al., 2020) suffi-
ciently represents MCAO snowfall events. The Dual-Frequency Precipitation Radar (DPR) on GPM operates at 
lower frequencies than the CPR, uses non-uniform beam filling, and has a larger footprint than the CPR (Tanelli 
et al., 2012), making DPR less sensitive to light, shallow snowfall (Casella et al., 2017; Kulie & Bennartz, 2009; 
Matrosov et al., 2022; Silber et al., 2021; Skofronick-Jackson et al., 2019). Therefore, DPR may detect MCAOs 
with more intense snowfall rates, but may miss lighter and/or shallow snowfall due to the limitations of the 
radar. Furthermore, the high frequency of MCAO conditions north of GPM's 65𝐴𝐴

◦  N latitudinal extent would be 
completely missed. We see here that the distinct relationship of TCWV and T2M can inform the presence of 
MCAO conditions, which could assist in optimizing precipitation estimates for satellite retrievals. Future work 
aims to formalize the relationship between relevant environmental factors and MCAO or non-CAO snowfall 
events to optimize radar and radiometer retrievals.

4.1.  Connection to COMBLE

The Greenland-Norwegian and Barents Seas, east of Greenland, experience the highest frequency of MCAO 
conditions per ERA5, especially in DJF and MAM (red box outlined in Figure 1a). MCAOs here are responsible 
for severe weather impacting the UK and Norway (Abel et al., 2017; Brümmer, 1997; Papritz & Spengler, 2017) 
making this a popular region for field experiments due to the strength, persistence, and frequency of the MCAOs 
(Fletcher et al., 2016a; Geerts et al., 2022). The recently completed COMBLE field campaign (Geerts et al., 2022) 
analyzed cloud and snowfall characteristics of three MCAO case studies that were initiated out of the Fram Strait 
during 2019–2020. Decades earlier, the ARKTIS 1991 and ARKTIS 1993 field campaigns used flight-track 
measurements to characterize MCAO case studies in this region as well (Brümmer, 1992, 1996). Papritz and 
Grams (2018) found a correlation between MCAO occurrence in these seas and the Greenland Blocking Index 
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(Hanna et al., 2016). In Figure 8, we focus on the Greenland-Norwegian and Barents Seas and examine the two 
most active MCAO seasons: DJF and MAM. The window we examine here is an approximation of the region 
that COMBLE took place: the northeastern-most corner of our window, 60° to 82𝐴𝐴

◦  N and −25° to 40𝐴𝐴
◦  E (red box 

in Figure 1a). The 2CSNOW rate (Figures 8a and 8e) in this window is high (>0.05 mm hr −1) in the northern 
part of the window (near the Greenland and Barents Seas), where the snowing MCAO frequency (f0.01) is highest 
(Figures 8b and 8f). These open-water locations are proximal to sea ice and cold continental air, making them 
preferential pathways for an MCAO to occur in the Northern Hemisphere (Fletcher et  al.,  2016a; Papritz & 
Spengler, 2017).

The CloudSat-derived seasonal mean CTH (Figures 8c and 8g) show precipitating clouds are shallow (<2 km) 
nearest the MCAO initiation locations but are deeper (>2 km) further from the cold air source. Past work found 
that precipitation intensifies as the boundary layer deepens in the downstream region of MCAOs, which in turn 
acts to decouple the boundary layer (Abel et al., 2017; Brümmer, 1997). Here, higher mean snowfall rates are 
not necessarily observed by CloudSat. This could be the result of this work considering MCAO conditions based 
on temporal means within a gridbox and not the evolution of MCAO events upstream or downstream. Addition-
ally, this work focuses solely on snowfall (and excluding rain products) from CloudSat to understand the link 
between MCAOs and snowfall detected by CloudSat. That is to say, there could be rain or mixed-phase precip-
itation further from the sea ice that enhances total precipitation rates, but the 2C-SNOW-PROFILE product (as 
described in Section 2) deliberately filters out liquid and mixed-phase precipitation. Plots in the fourth column 
show seasonal mean M indices (𝐴𝐴 𝐴𝐴SST − 𝐴𝐴 𝐴𝐴850; Figures 8d and 8h), and scatter plots illustrate the relationships 
between the M-index and snowfall rate (Figures 8i and 8k) or CTH (Figures 8j and 8l) in this smaller region. 
Here, there are signals that two MCAO cloud modes (first identified by Geerts et al. (2022)) may be present: (a) 
higher CTH coincident with larger values of M (closer to the Norwegian coast and (b) lower CTH coincident with 
lower values of M (near the sources of cold air). Higher values of M further from the sea ice may also reflect a 
deeper boundary layer that accompanies higher CTH. Importantly, the M values here are calculated from ERA5 
while CTH is derived from CloudSat and are therefore completely separate pieces of information consistent 
with the transition between two distinct cloud modes during MCAOs as described in previous studies. Closer 
to the Norwegian coast, CloudSat snowfall is less frequent (Figures 8b and 8f), and produced from clouds with 
higher CTH (Figures 8c and 8g) paired with larger M-indices (Figures 8d, 8h, 8j, and 8l), indicating that cold-air 
outbreaks must be of greater strength to initiate snowfall with increased distance from cold air sources. It is also 
possible that along the fetch of MCAOs, precipitation phase change occurs and while total precipitation rates 
(rain, snow, mixed) may be heavy as found in Geerts et al. (2022); Figures 8a, 8e, 8i, and 8k do not show discern-
ible difference in mean snowfall rates with increasing M-index values. Future work will include wind data to 
investigate the fetch-dependency of precipitation phase, as this study focuses only on how the prevalent snowfall 
that CloudSat can detect is connected to MCAOs.

Figure 9 shows seasonal mean and anomalous (deviations from the mean) SSTs (Figure 9a), T2M (Figure 9b), 
T850 (Figure 9c), and TCWV (Figure 9d) from the ERA5 data set in DJF (rows 1 and 2) and MAM (rows 3 and 
4) during snowing (2CSNOW > 0) MCAO conditions. Mean SST (T2M) is often above (near) freezing for both 
seasons, with anomalously lower T2M that coincides with the regions of high MCAO frequency, f0.01 (as shown 
in Figures 8b and 8f) near the mean sea ice boundary. Differences between SST and T2M can inform on the 
magnitude of ocean-to-atmosphere heat fluxes but is not a good identifier for MCAOs (McCoy et al., 2017). At 
850 hPa, negative anomalies of T850 are even larger in magnitude and extend a greater distance from the mean 
sea ice edge. Seasonal mean TCWV is generally <6 mm in this region for both DJF and MAM, representing the 
dry conditions often associated with cold temperatures. Notably, coincident with the highest T850 anomalies are 
the largest TCWV dry anomalies, informing that while the environment near sea ice may be anomalously cold 
and dry, MCAO conditions will still produce snowfall due to the convective interaction with the relatively warm, 
open ocean water.

From this meteorological analysis, we see that North Atlantic MCAOs in this window are initiated by 
cold air originating over sea ice or land and advecting over relatively warm and open water surfaces in the 
Greenland-Norwegian and Barents Seas (Figures  9a–9c). Negative T850 and TCWV anomalies (Figures  9c 
and 9d) over water force intense sensible and latent heat loss from the surface (Brümmer, 1999; Renfrew & 
Moore, 1999), leading to the formation of shallow (<2 km) stratocumulus clouds in regions closer to sea ice 
(Figures 8c and 8g and Table 1). Snowfall during MCAOs is most frequent in the Fram Strait and Barents Sea 
(Figures 8b and 8f) and is associated with high snowfall rates (>0.05 mm hr −1, Figures 8a and 8e). CTH is higher 
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Figure 8.  CloudSat 2CSNOW rates (left column), frequency of snowfall (𝐴𝐴 ≥ 0.01 mm hr −1 liquid water equivalent; second column), cloud-top height (CTH, third 
column), and M (𝐴𝐴 𝐴𝐴SST − 𝐴𝐴 𝐴𝐴850, final column) in December, January, February (DJF) (top row) and March, April, May (MAM) (bottom row) during marine cold-
air outbreaks conditions. Snowfall (2CSNOW) rates are from 2C-SNOW-PROFILE and CTH are derived from CloudSat's 2B-CLDCLASS-LIDAR. The green 
line in columns 1, 2, and 4 and pink line in column 3 indicate seasonal mean sea ice extent from ERA5. (i–l) Show mean snowfall rate versus M-index (i, k) and 
mean CTH versus M-index (j, l) for DJF (third row) and MAM (fourth row). Green line shows line of best fit through data. Snowfall (2CSNOW) rates are from 
2C-SNOW-PROFILE and CTH are derived from CloudSat's 2B-CLDCLASS-LIDAR.
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toward the southeast (4–5 km, Figures 8c and 8g) indicative of a deeper boundary layer. M values also increase 
from just above 0 near the sea ice edge to ∼2–3 at the far southern reaches of the domain. Despite CTH and M 
being derived from two independent data sets (CloudSat and ERA5, respectively), we see a remarkably similar 
spatial pattern in increasing M and CTH in the downstream direction that illustrates the transition of MCAO cloud 
modes associated with fetch (Geerts et al., 2022).

The downstream region of MCAOs is near Norway and Russia, where enhanced precipitation should force clouds 
to transition to an open-cellular convection pattern (Abel et al., 2017; McCoy et al., 2017). Here, we show higher 
CTH (Figures 8c and 8g) and have previously identified most (∼75%) MCAO clouds as Sc (Table 1). Snowfall 
rates do not necessarily increase with fetch (Figures 8a and 8e), potentially due to a precipitation phase transition 
that would reduce 2CSNOW rates but increase rain rates. Another hypothesis is that the seemingly scattered 

Figure 9.  Mean and anomalous (deviations from the mean) ERA5 sea (a) surface temperature, (b) two-m temperature, (c) 850 hPa temperature, and (d) total column 
water vapor during snowing marine cold-air outbreaks conditions, 2CSNOW > 0. The top (bottom) two rows are December, January, February (March, April, May).
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pattern of snowfall rates in the downstream regions are representative of the stratiform open-cellular convec-
tion found here during MCAOs (Abel et al., 2017; Geerts et al., 2022) that becomes more disorganized moving 
equatorward (McCoy et al., 2017). These results from CloudSat reflect underlying physical mechanisms respon-
sible for development and apparent fetch-dependent decay of snowfall rates, whether these are phase transitions, 
organized linear to open cellular convection evolution, decoupling of the boundary layer from the surface due 
to precipitation, or other effects. Future work will examine where precipitation phase occurs along the fetch of 
MCAOs using satellite observations.

5.  Conclusion
In this work, we combined CloudSat satellite observations of snowfall and clouds with an ERA5-derived M 
index (M 𝐴𝐴 ≡𝜃𝜃SST − 𝐴𝐴 𝐴𝐴850 > 0) and reanalysis data products to analyze the frequency and meteorological impact of 
MCAOs in the North Atlantic Ocean. In the North Atlantic, the highest frequency of MCAO conditions occurs in 
boreal wintertime (DJF), followed by spring (MAM), autumn (SON), and summer (JJA, not included in this study 
due to infrequency of MCAO conditions and CloudSat snowfall). Ocean regions nearest cold continental land 
and sea ice experience the highest frequency of MCAO conditions: the Greenland Sea, Barents Sea, Norwegian 
Sea, Labrador Sea, and Baffin Bay. Sea ice extent (𝐴𝐴 ≥ 50% concentration) is highest in MAM, followed by DJF, 
then  SON.

CloudSat snowfall observations in the North Atlantic are often associated with MCAO conditions. The most 
active seasons in terms of collocated CloudSat snowfall and MCAO frequency are DJF, MAM, and SON, 
respectively. Spatial distributions of CloudSat snowfall show higher mean rates associated with areas of high 
frequency of MCAO conditions, particularly in the Barents, Greenland, and Labrador Seas. In SON, open waters 
in the Baffin Bay experience enhanced snowfall rates. Non-CAO snowfall rates are generally much lower except 
along mean sea ice edge. We hypothesize that enhanced rates in the Baffin Bay during non-CAO conditions in 
SON may be related to atmospheric blocking patterns, to be further investigated in future work. When filtering 
frequency of MCAO conditions by CloudSat snowfall occurrence, the Barents and Greenland Seas experience 
the highest frequency throughout the year, followed by the Norwegian Sea. CloudSat observes snowfall less 
frequently during non-CAO conditions year-round.

During MCAO conditions, CTH tend to be lower (<3 km) except in downstream regions where boundary layer 
growth is associated with higher cloud tops. The M index is larger in magnitude further from cold air sources, 
confirming via independent data sets (CloudSat and ERA5) the relationship between larger M indices and taller 
CTH that is consistent with the presence of two distinct modes, as identified during the COMBLE field campaign 
(Geerts et al., 2022). Stratocumulus clouds are the most prevalent in the North Atlantic, making up 76% (44%) of 
snowing clouds identified during MCAO (non-CAO) conditions. The remaining cloud types identified are mostly 
nimbostratus clouds: 18% during MCAO conditions and 43% during non-CAO conditions. Snow produced by 
stratocumulus clouds that are embedded within deeper nimbostratus cloud structures are also difficult for the 
2B-CLDCLASS-LIDAR to isolate as a unique category. Such instances are typically classified as nimbostratus 
events, but this classification does not reflect important process-related features indicated by the shallow embed-
ded convective features. These complex, multi-scale cloud processes familiar to MCAOs are difficult for general 
circulation models to capture (de Roode et al., 2019; Tomassini et al., 2017) and are therefore better suited to be 
studied by direct observations. Our work shows that CloudSat retrievals provide valuable, detailed information to 
study cloud and precipitation during MCAOs in remote, high-latitude locations. Additionally, our work suggests 
that future satellite missions that include radar and/or lidar onboard will contribute to the collection of satellite 
data assimilated into reanalysis data sets to further address the “gray zone” problem. Follow-on studies will 
further analyze whether CloudSat can capture the evolution of clouds and precipitation during MCAO events and 
incorporate additional satellite data products.

Data Availability Statement
The CloudSat 2C-SNOW-PROFILE (https://www.cloudsat.cira.colostate.edu/data-products/2c-snow-profile) 
and 2B-CLDCLASS-LIDAR (https://www.cloudsat.cira.colostate.edu/data-products/2b-cldclass-lidar) data 
products were downloaded from the CloudSat Data Processing Center. Hourly ERA5 reanalysis data (Hersbach 
et al., 2020) was downloaded from the Copernicus Climate Data Store (CDS).

https://www.cloudsat.cira.colostate.edu/data-products/2c-snow-profile
https://www.cloudsat.cira.colostate.edu/data-products/2b-cldclass-lidar
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