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Abstract
We introduce the framework of discrete holomorphic
functions on t-embeddings of weighted bipartite pla-
nar graphs; t-embeddings also appeared under the name
Coulomb gauges in a recent paper (Kenyon, Lam,
Ramassamy, and Russkikh, Dimers and circle patterns,
2018). We argue that this framework is particularly rel-
evant for the analysis of scaling limits of the height
fluctuations in the corresponding dimer models. In par-
ticular, it unifies both Kenyon’s interpretation of dimer
observables as derivatives of harmonic functions on
T-graphs and the notion of s-holomorphic functions
originated in Smirnov’s work on the critical Isingmodel.
We develop an a priori regularity theory for such func-
tions and provide a meta-theorem on convergence of
the height fluctuations to the Gaussian Free Field. We
also discuss how several more standard discretizations
of complex analysis fit this general framework.
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1 INTRODUCTION

1.1 General context

This paper contributes to two subjects: the dimer model on bipartite planar graphs and the dis-
crete complex analysis techniques in probability and statistical physics. Both topics are very rich,
we refer an interested reader to [25, 32] and [46] and references therein, respectively. Though the
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two subjects are known to be intimately related, it should be said that many other powerful tech-
niques were successfully applied to studying the dimer model, for example, see [2, 4, 5, 7, 17, 20,
24, 41], and references therein to mention some of the important achievements obtained during
the last decade. In particular, in the last years therewas awidespread feeling that discrete complex
analysis ideas had almost reached the limit of their capacity to bring new interesting results in the
bipartite dimer model context. In this paper and its follow-up [12], we intend to revive the link
between the two topics; see also [10] for a companion research project on the planar Ising model.
It is well-known that entries of the inverse Kasteleyn matrix (also known as the coupling func-

tion) of the homogeneous dimermodel on the square grid satisfy themost straightforward discrete
version of the Cauchy–Riemann equation. This observation was used by Kenyon in [29, 30] to
prove the convergence of the height fluctuations to theGaussian Free Field (GFF) for the so-called
Temperleyan discretizations of planar domains. This classical result was among the very first
rigorous proofs of the convergence of lattice model observables, considered in discrete domains
on 𝛿ℤ2 approximating a continuous domain Ω as 𝛿 → 0, to conformally invariant quantities. A
few years later, a similar treatment of the critical Ising model on the square grid appeared in
the work of Smirnov [45]. Smirnov’s approach, in particular, relied upon a specific reformulation
of the discrete Cauchy–Riemann equations on ℤ2. This reformulation is now commonly known
as the s-holomorphicity property, a term coined in the paper [15] devoted to a generalization of
Smirnov’s results to the Z-invariant critical Ising model on isoradial grids. Another, at first sight
unrelated, discretization of the Cauchy–Riemann equations was suggested in [22] which in fact
boils down to the linear relations satisfied by the coupling functions on the honeycomb grid.
However, a naive interpretation of discrete Cauchy–Riemann equations is known to be often

misleading even in the context of regular lattices, like the square or the honeycomb ones. Though
it works well in several contexts (critical Ising model, dimers in Temperleyan-type domains), the
dimer model observables are known not to have holomorphic scaling limits in other situations,
in particular if the Cohn–Kenyon–Propp limit shape surface [16] is not horizontal. The intrinsic
reason for such a mismatch is that we expect the scaling limit to live in a less trivial complex
structure than the one suggested by the naive discretization of Cauchy–Riemann equations. This
effect manifests itself by the fact that quantities like the entries of the inverse Kasteleyn matrix
that, in principle, could have holomorphic limits do not remain uniformly bounded even locally
and, in particular, do not converge as 𝛿 → 0. Instead, they grow exponentially with the number of
steps in away reminiscent of generic discrete harmonic functions. This raises a question of finding
a framework in which, on the one hand, this exponential growth is removed and, on the other
hand, the new discrete equations are compatible with a nontrivial continuous complex structure
arising in the limit; see [34] for the description of this complex structure via the limit shape surface
for doubly periodic dimer models.
Developing this idea in [31], Kenyon introduced a framework of holomorphic functions on T-

graphs (combinatorial objects first discussed in [35]) in order to analyze the behavior of dimer
model observables in the nonhorizontal case. In particular, this paper already contained an idea
of embedding a given abstract planar graph 𝛿 (a piece of the honeycomb grid in that case) into the
complex plane as a T-graph so that discrete observables approximate holomorphic functions in the
metric of these embeddingsΩ𝛿 ⊂ ℂ. This procedure, in particular, requires a proper choice of the
gauge function, a transformation of the dimer weights that leave the law of the model unchanged.
The gauge function is responsible for the removal of the local exponential growth of dimer cou-
pling functions, which varies from point to point in the original metric and should be evened out.
We refer an interested reader to a recent paper [36] for an extensive discussion of this approach.
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Amore geometric viewpoint on “nice” gauge functions, the so-calledCoulomb gauges, was sug-
gested in [33]. These gauges have many remarkable algebraic properties (see also [1]) and are also
closely related to T-graphs mentioned above. In parallel, a notion of s-embeddings of graphs car-
rying the planar Ising model was suggested in [9]. As explained in [33, section 7], the latter are
a particular case of the former under the combinatorial bosonization correspondence of the two
models [19]. The notion of t-embeddings discussed in our paper is fully equivalent to Coulomb
gauges of [33] except that we focus on embeddings of the dual graphs (𝛿)∗ from the very begin-
ning. The appearance of another name for the same object is caused by the fact that we were
not aware of the research of [33] at the beginning of this project and arrived at the same concept
aiming to generalize results obtained for the Ising model observables on s-embeddings to dimers.
Although the work [33] is focused on algebro-geometric properties of t-embeddings, our paper

is devoted to the study of discrete holomorphic functions on such graphs, which we will call t-
holomorphic functions to distinguish from other discretizations of complex analysis. In particular,
our framework generalizes (a part of) the discrete complex analysis techniques recently devel-
oped in [9, 10] in the planar Ising model context. We are particularly interested in the behavior
of t-holomorphic functions in the “small mesh size” limit. It is worth noting that we do not rely
upon usual “uniformly bounded angles, degrees or sizes of faces” assumptions. In particular, the
notion of the scale 𝛿 of a t-embedding  𝛿 requires a more invariant definition, which is discussed
below.Also, note that for the case of convergence of harmonic functions on circle packings or,more
generally, on orthodiagonal quadrangulations, similar technical assumptions were recently fully
dropped in [26]. However, the notion of harmonicity on T-graphs associated with t-embeddings
is formulated in terms of directed random walks (and not via conductances), which significantly
changes the perspective. Nevertheless, among other things we prove the a priori Lipschitzness of
harmonic functions under a mild assumption Exp-Fat(𝛿) formulated below.
One of the long-term motivations to get rid of “technical” assumptions mentioned above is

to develop a discrete complex analysis framework that could be eventually applied to random
planar mapsweighted by the critical Ising or by the bipartite dimer model. We believe that s- and
t-embeddings of abstract weighted planar graphs are the right tools to attack these questions. This
perspective is somehow similar to the idea† of using square tilings to study random planar maps
weighted by uniform spanning trees; in this case an alternative option could be to use Tutte’s
harmonic embeddings that are also related to the context of t-embeddings via [33, section 6.2].
On deterministic graphs, we believe that the discrete complex analysis viewpoint on Kasteleyn
equations provided in our paper is flexible enough to be applied in rather general situations, both
in terms of the underlying lattice and of the limit shape surfaces; for example, see [13] where
the case of the classical Aztec diamond is discussed from this perspective. In particular, our paper
unifies Smirnov’s concept of s-holomorphic functions andKenyon’s interpretation of dimermodel
observables as derivatives of harmonic functions on T-graphs. We also refer an interested reader
to Section 8, in which several links between the t-embeddings framework developed in our paper
and more standard discretizations of complex analysis are discussed.

1.2 Basic concepts and assumptions

We now briefly recall the setup of t-embeddings or Coulomb gauges, see Section 2 and [33] for
more details. Let  be a weighted bipartite graph carrying the dimer model; the latter is a random
† Smirnov and Boykiy, Private Communication
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F IGURE 1 A portion of a t-embedding  and the notation 𝑑 (𝑏𝑤∗). The angle condition∑𝑛
𝑗=1

𝜃(𝑤𝑗, 𝑣) =
∑𝑛

𝑘=1
𝜃(𝑏𝑘, 𝑣) = 𝜋 around a vertex 𝑣 of degree 2𝑛 = 6 is highlighted. The Kasteleyn matrix of the

dimer model on faces of  is 𝐾 (𝑏, 𝑤) ∶= 𝑑 (𝑏𝑤∗).

choice of a perfect matching of vertices of  with a probability proportional to the product of
the corresponding positive weights. We call the two bipartite classes of vertices of  “black” and
“white” and denote them 𝐵 and 𝑊 in what follows. Assume that all vertices of  = 𝐵 ∪ 𝑊 have
degree at least 3 and that the graph  is planar. A t-embedding  is a proper embedding of the
dual graph ∗ into the complex plane such that

∙ all edges of  are straight segments and all faces of  are convex polygons,
∙ the geometric weights given by the lengths of edges of  are gauge equivalent to the original
dimer weights,

and the following angle condition holds (see Figure 1):

∙ for each inner vertex 𝑣 of  , the sum of angles of black faces adjacent to 𝑣 (which correspond
to black vertices of  adjacent to a given face) equals 𝜋.

If  is a finite planar graph with the sphere topology (or, more accurately, a planar map, that
is, a proper embedding of  into the sphere considered up to homotopies), one should be more
accurate and first specify an “outer” face of , further replacing the corresponding vertex 𝑣out of ∗

by a cycle of length deg 𝑣out. The graph thus obtained is called the augmented dual in [33], we still
denote it by ∗. A finite t-embedding is an embedding of this augmented dual graph ∗ and the
angle condition is dropped at boundary vertices of ∗; see Figure 2.
In this paper, we do not discuss the existence of t-embeddings of a given abstract planar graph 

carrying the bipartite dimer model. This question was addressed in [33], we quote some of these
results below, see Theorem 2.10. Overall, we believe that all finite planar bipartite graphs admit
many t-embeddings if no constraints are imposed at the boundary vertices of  . The interested
reader is also referred to our follow-up paper [12] for a notion of “perfect” t-embeddings of finite
graphs, which specifies additional constraints on the boundary of  in a way that potentially
provides both the existence and the uniqueness of such an embedding up to a few natural iso-
morphisms. In particular, we consider “perfect” t-embeddings from [12] as a very important
application of the framework developed in this paper; see also remarks after Theorem 1.4.
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F IGURE 2 Left: A finite t-embedding, the boundary edges are dashed. Right: A bipartite graph  and its
augmented dual ∗ (dotted). We call  (∗) a finite triangulation if all vertices of  have degree 3. In this case,
interior faces of  are triangles while boundary ones are quadrilaterals.

To summarize the preceding discussion, in what follows we view a t-embedding  as an object
given in advance, and then study the dimer model on faces of  with weights given by edge
lengths. The angle condition easily implies (see [33] or Section 2) that the matrix 𝐾(𝑏,𝑤) ∶=

𝑑 (𝑏𝑤∗) is a Kasteleyn matrix for this dimer model, see Figure 1 for the notation. Loosely speak-
ing, t-holomorphic functions on  are just functions satisfying the Kasteleyn relations locally. Note
however that this down-to-earth interpretation is not the best possible one, we refer the reader to
Section 3 for precise definitions and a discussion.
The central concept for our analysis is the origami map  associated to a t-embedding  . (The

name “origami” for this map is motivated by [33], the reason is that tilings of the plane satisfy-
ing the angle condition coincide with the crease patterns of origami that are locally flat-foldable,
see [27].) Let 𝑧 be the complex coordinate in the plane in which the graph  is drawn. Informally
speaking, to construct the mapping 𝑧 ↦ (𝑧) out of  , one folds this plane along each of the
edges of  . The angle condition guarantees that this folding procedure is locally and hence glob-
ally consistent; we refer the reader to Section 2 for an accurate definition. Note that is defined up
to translations, rotations and a possible reflection; in our convention thewhite faces preserve their
orientation in  while the black ones change it. If one starts with the square lattice 𝛿ℤ2, then the
image of the origami map is just a single square of size 𝛿. Similarly, if one starts with the regular
triangular lattice (which corresponds to the dimermodel on the honeycomb grid), then the image
of is just a single equilateral triangle. However, already for a skewed triangular lattice themap
becomes less trivial though its image is still bounded. Surprisingly enough, the origami map of
these triangular lattices also appeared in the dynamical systems context recently [40]. The origami
map also gives a link between t-embeddings and T-graphs: the latter are just the images of the
t-embedding under the mappings 𝑧 ↦ 𝑧 + 𝛼2(𝑧) or 𝑧 ↦ 𝑧 + 𝛼2(𝑧), 𝛼 ∈ 𝕋, where 𝕋 ∶= {𝛼 ∈

ℂ ∶ |𝛼| = 1}. We use the notation  + 𝛼2 and  + 𝛼2 for these T-graphs, see Subsection 4.1
for details.
Clearly, the mapping 𝑧 ↦ (𝑧) does not increase Euclidean distances in the complex plane,

that is, is a 1-Lipschitz function. The main assumption for our analysis is that this mapping has a
slightly better Lipschitz constant at large scales:
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Assumption 1.1 (Lip(𝜅, 𝛿)). Given two constants 𝜅 < 1 and 𝛿 > 0 we say that a t-embedding 
satisfies assumption Lip(𝜅, 𝛿) in a region 𝑈 ⊂ ℂ covered by  if

|(𝑧′) − (𝑧)| ⩽ 𝜅 ⋅ |𝑧′ − 𝑧| for all 𝑧, 𝑧′ ∈ 𝑈 such that |𝑧 − 𝑧′| ⩾ 𝛿.

As we do not fold any face of  to get, assumption Lip(𝜅, 𝛿) clearly implies that all faces have
diameter less than 𝛿. We think of 𝛿 as the “mesh size” of a t-embedding and sometimes explicitly
include it into the notation by writing  𝛿 and 𝛿 instead of  and . Still, let us emphasize that
the actual size of faces can be much smaller than 𝛿.
A good part of the a priori regularity theory developed in this paper holds just under assump-

tion Lip(𝜅, 𝛿). Notably, this assumption is enough to prove a uniform ellipticity estimate for
randomwalks on the associated T-graphs on scales greater than 𝛿, to prove an a priori Hölder-type
estimate for t-holomorphic functions, and to describe their possible subsequential limits, see Sec-
tion 6 for details. However, to derive the a priori Lipschitz-type estimate for harmonic functions
on T-graphs and to deduce meaningful results for the dimer model on  we need slightly more:
see Assumption Exp-Fat(𝛿) below. For shortness, we now formulate this additional assumption
only in the case when  𝛿 are triangulations; the general case is discussed in Section 5.
Given 𝜌 > 0, let us say that a face of  is 𝜌-fat if it contains a disc of radius 𝜌.

Assumption 1.2 (Exp-Fat(𝛿), triangulations)). We say that a sequence  𝛿 of t-embeddings
with triangular faces satisfies assumption Exp-Fat(𝛿) (or, more accurately, Exp-Fat(𝛿, 𝛿′)) in a
region 𝑈 ⊂ ℂ covered by  (or, more generally, in regions 𝑈𝛿 ⊂ ℂ covered by  𝛿 and depending
on 𝛿) as 𝛿 → 0 if there exist auxiliary scales 𝛿′ = 𝛿′(𝛿) such that 𝛿′ → 0 as 𝛿 → 0 and the following
holds:

if one removes all 𝛿 exp(−𝛿′𝛿−1)-fat triangles from  𝛿, then each of the
remaining vertex-connected components of  𝛿 has diameter at most 𝛿′.

As awarm-up example, let us assume that all edges of a t-embedding  with triangular faces are
uniformly comparable to 𝓁 and that all angles of its faces are uniformly bounded away from 0. In
this case, it is not hard to check that there exist 𝜅 < 1 and𝐶 > 1 such that the assumption Lip(𝜅, 𝛿)
holds with 𝛿 = 𝐶𝓁. In its turn, the assumption Exp-Fat(𝛿) holds with 𝛿′ = 𝐶′𝛿 provided that
𝐶′ > 1 is big enough as in this case all triangles are 𝑒−𝐶′

𝛿-fat. Thus, in this setup both 𝛿 and 𝛿′

are just multiples of the “true” mesh size of the tiling. Amore interesting example arises when we
know that  =  𝛿 satisfies the assumption Lip(𝜅, 𝛿) and that all its faces except maybe isolated
ones are, say, 𝛿100-fat. In this case, the assumption Exp-Fat(𝛿) still holds with a huge margin
because one can take 𝛿′ ∶= 99𝛿| log 𝛿|. In full generality, one can replace 𝛿100 by any function
decaying, as 𝛿 → 0, slower than exponentially (in 𝛿−1) and admit not only isolated “exponentially
nonfat” triangles in  𝛿 but also arbitrary clusters formed by them, with the only requirement that
the maximal Euclidean diameter of these clusters tends to zero as 𝛿 → 0.
Let us emphasize that—contrary to Lip(𝜅, 𝛿)—we regard the second assumption Exp-Fat(𝛿) as

“technical”: loosely speaking (see Subsection 6.5 for details), we use it to exclude a hypothetical
pathological scenario in which the gradients of uniformly bounded harmonic functions on T-
graphs obtained from  𝛿 grow exponentially (in 𝛿−1) fast as 𝛿 → 0. Certainly, it would be much
nicer to rule out this pathological scenario using Lip(𝜅, 𝛿) only. However, it seems plausible to
believe that the very mild assumption Exp-Fat(𝛿) still holds in potential applications.
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1.3 Regularity of harmonic functions on T-graphs

Though studying harmonic functions on T-graphs is not the primary motivation of our work, it
is nevertheless one of its important ingredients. We now formulate our main a priori regularity
result in this direction. For an open set 𝑉 ⊂ ℂ, let 𝑊1,∞(𝑉) be the Sobolev space of functions
whose derivatives are bounded on compact subsets of 𝑉.
Recall that the origami map 𝛿 associated with a t-embedding  𝛿 is defined up to translations

and rotations. Therefore, when considering a sequence of, for example, T-graphs  𝛿 + (𝛼𝛿)2𝛿

associated with given  𝛿 we can assume that 𝛼𝛿 = 1 for all 𝛿 without loss of generality. In a
special case of T-graphs obtained from skewed triangular lattices  𝛿, the following theorem
yields [31, Lemma 3.6]; recall however that our aim is to develop the regularity theory for general
t-embeddings  𝛿.

Theorem 1.3. Let  𝛿 , 𝛿 → 0 be a sequence of t-embeddings satisfying both assumption Lip(𝜅, 𝛿)
(with a common constant 𝜅 < 1) and assumption Exp-Fat(𝛿). Let𝐻𝛿 be a sequence of (real-valued)
harmonic functions defined onT-graphs  𝛿 + 𝛿 associated to  𝛿 . If the functions𝐻𝛿 are uniformly
bounded in a region𝑉 ⊂ ℂ, then these functions are also uniformly Lipschitz on each compact subset
of 𝑉. Moreover, the family {𝐻𝛿} is pre-compact in the space𝑊1,∞(𝑉).

Proof. See Subsection 6.5, notably Corollary 6.19. □

Given Theorem 1.3, one can ask about properties of subsequential limits of bounded harmonic
functions on T-graphs  𝛿 + 𝛿. To this end, let us assume that the t-embeddings  𝛿 cover a com-
mon region𝑈 ⊂ ℂ. As𝛿 are 1-Lipschitz functions on𝑈, one can always find a subsequence such
that

𝛿(𝑧) → 𝜗(𝑧) uniformly on compact subsets (1.1)

for a Lipschitz function 𝜗 ∶ 𝑈 → ℂ. As above, assume that t-embeddings  𝛿 satisfy both assump-
tions Lip(𝜅, 𝛿) and Exp-Fat(𝛿) in 𝑈. In Subsection 6.5, we also show that the gradients 2𝜕ℎ ∶=

𝜕𝑥ℎ − 𝑖𝜕𝑦ℎ of all subsequential limits ℎ∶ (id + 𝜗)(𝑈) → ℝ from Theorem 1.3 admit the following
representation:

2𝜕ℎ = 𝑓 ◦ (id + 𝜗) with a Hölder-continuous function 𝑓 ∶ 𝑈 → ℂ

such that the form 𝑓(𝑧)𝑑𝑧 + 𝑓(𝑧)𝑑𝜗(𝑧) is closed.

In a special situation 𝜗(𝑧) ≡ 0, which we call the “small origami” case below, one sees that the
functions ℎ are just harmonic in𝑈. In general, ℎ satisfies a second-order PDE whose coefficients
can be recovered from 𝜗. Though we do not go into such an analysis here, let us nevertheless
mention that there also exists a very particular generalization of the case 𝜗(𝑧) ≡ 0. Namely, if
we assume that (𝑧, 𝜗(𝑧)) is a space-like maximal surface in the Minkowski space ℝ2,2, then all
subsequential limits ℎ are harmonic in the conformal metric of this surface, see [12] for details.

1.4 Convergence framework for the dimer model on t-embeddings

We begin with recalling the definition of the Thurston height function [47] for the dimer model
on a bipartite graph . Given a perfect matching P of vertices of , let P∗ be a flow on edges of the
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dual graph ∗ constructed as follows: one assigns the value 1 to edges 𝑏𝑤∗ crossing those edges 𝑏𝑤

of  that are used in P (with the plus sign if 𝑏 is on the right), and 0 to all other edges. If P0 is an
(arbitrarily chosen) reference perfect matching, then the primitive of the flow P∗− P∗

0
is well-

defined (up to an additive constant) and is called the height function of the perfect matching P.
Given a t-embedding  carrying the dimer model, we denote by ℎ the random height function
obtained from a random perfect matching of faces of  ; note that ℎ is defined on vertices of  .
Further, let ℏ ∶= ℎ − 𝔼(ℎ ) be the fluctuations of ℎ . It is not hard to see that, even though the
definition of the function ℎ involves a choice of the reference matching P0, the fluctuations ℏ
are independent of this choice. For a collection of vertices 𝑣1, … , 𝑣𝑛 of  , denote by

𝐻 ,𝑛(𝑣1, … , 𝑣𝑛) ∶= 𝔼(ℏ (𝑣1) …ℏ (𝑣𝑛)) (1.2)

the correlation functions of the height fluctuations at these vertices.
Let us now assume that we are given a sequence of finite t-embeddings 𝑚 and that the cor-

responding discrete domains Ω𝑚
, defined as the unions of faces of 𝑚, approximate a bounded

simply connected domain Ω ⊂ ℂ as 𝑚 → ∞ (say, in the Hausdorff sense for simplicity though in
fact one can also work with weaker notions of convergence ofΩ𝑚

toΩ). For 𝑣1, … , 𝑣2𝑘 ∈ Ω, let

𝐺Ω,2𝑘(𝑣1, … , 𝑣2𝑘) ∶=
∑

pairings𝜛 of 1,…,2𝑘
𝐺Ω(𝑣𝜛(1), 𝑣𝜛(2)) …𝐺Ω(𝑣𝜛(2𝑘−1), 𝑣𝜛(2𝑘)) (1.3)

be the correlation functions of the GFF in Ω with Dirichlet boundary conditions (e.g., see [44]
for background), where the normalization of the Green function is chosen so that 𝐺Ω(𝑧, 𝑧′) =

− 1

2𝜋
log |𝑧′ − 𝑧| + 𝑂(1) as 𝑧′ → 𝑧; we also set 𝐺Ω,2𝑘+1 ∶= 0. The following theorem provides a

general framework to study the limit of the dimer model on t-embeddings.

Theorem 1.4. Let the t-embeddings 𝑚 approximate a bounded simply connected domain Ω ⊂

ℂ as 𝑚 → ∞. Assume that for each compact subset 𝐾 ⊂ Ω there exist a constant 𝜅 = 𝜅(𝐾) <

1 and scales 𝛿𝑚 = 𝛿𝑚(𝐾) → 0, 𝛿′
𝑚 = 𝛿′

𝑚(𝐾) → 0 as 𝑚 → ∞ such that 𝑚 satisfies the assump-
tions Lip(𝜅, 𝛿𝑚) and Exp-Fat(𝛿𝑚, 𝛿′

𝑚) on 𝐾 for all sufficiently large𝑚. Assume also that

(I) we are in the “small origami” case: 𝑚(𝑧) → 𝜗(𝑧) ≡ 0 as𝑚 → ∞;
(II) the coupling functions 𝐾−1𝑚

are uniformly bounded on compact sets: for each 𝜌 > 0 there exists
𝐶(𝜌) > 0 such that |𝐾−1𝑚

(𝑤, 𝑏)| ⩽ 𝐶(𝜌) provided that 𝑚 is big enough (depending only on 𝜌)
and the faces 𝑤, 𝑏 of 𝑚 stay 𝜌-away from each other and from the boundary ofΩ;

(III) the correlations (1.2) are uniformly small near the boundary of Ω: for each 𝜀 > 0 and for each
𝜌 > 0 there exists 𝑑(𝜀, 𝜌) > 0 such that

|𝐻𝑚,𝑛(𝑣
(𝑚)
1

, … , 𝑣(𝑚)
𝑛 )| ⩽ 𝜀 if dist(𝑣(𝑚)

𝑛 , 𝜕Ω) ⩽ 𝑑(𝜀, 𝜌),

𝑚 is big enough (depending only on 𝜀,𝜌 and𝑛) and provided that the other vertices 𝑣(𝑚)
1

, … , 𝑣(𝑚)
𝑛−1

of 𝑚 stay 𝜌-away from each other and from 𝜕Ω.

Then, the height function correlations (1.2) converge to those of the GFF in Ω: for all 𝑛 ⩾ 2 and all
collections of pairwise distinct points 𝑣1, … , 𝑣𝑛 ∈ Ω, we have

𝐻𝑚,𝑛(𝑣
(𝑚)
1

, … , 𝑣(𝑚)
𝑛 ) → 𝜋−𝑛∕2𝐺Ω,𝑛(𝑣1, … , 𝑣𝑛) if 𝑣(𝑚)

𝑘
→ 𝑣𝑘 as 𝑚 → ∞.
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Moreover, this convergence is uniform provided that 𝑣1, … , 𝑣𝑛 remain at a definite distance from each
other and from the boundary ofΩ.

Before discussing assumptions (I)–(III) in more detail, let us emphasize that in Theorem 1.4 we
neither assume nor prove the existence of scaling limits of the coupling functions𝐾−1𝑚

themselves.
Such limits, when they do exist, are known to be highly sensitive to the microscopic details of the
boundary, see Subsection 7.3 for a discussion. In particular, in many setups one should not expect
the convergence of the full sequence of the coupling functions though subsequential limits of
them still exist under assumption (II) due to compactness arguments.
We emphasize that in this paper we do not discuss how one can check the assumptions (I)–

(III) in any concrete setup, this is why we call our result a framework or a meta-theorem. Still, it
is worth mentioning that almost all known examples of applications of discrete complex analysis
techniques to the bipartite dimer model fit the framework of Theorem 1.4; see also Section 8. An
important exception is the work [31] of Kenyon on the convergence of height correlations to the
GFF in a “nonflat” metric; see also a recent development [36] that fixes several details of this
approach, which combines a “local” study of the dimer coupling function by means of discrete
complex analysis on skewed triangular lattices with other ideas. Thoughwe do not knowwhether
it is possible to construct an appropriate global t-embedding and to apply Theorem 1.4 in the setup
of [31, 36], we believe that our paper, in particular, provides a natural development of the ideas
originated in [31].
Let us also mention that we use essentially the same approach to the convergence of height

fluctuations in our follow-up paper [12]. To conclude, we briefly discuss each of the assumptions
(I)–(III), in particular in order to make precise the links between the setup of Theorem 1.4 and
that of [12].

(I) This assumption cannot be dropped completely. Still, there exists a striking case when the
proof of Theorem 1.4 goes through just by the cost of more involved computations. Namely,
if (𝑧, 𝜗(𝑧)) is a space-like maximal surface in the Minkowski space ℝ2,2, then the correla-
tions (1.2) converge to those of theGFF in the conformalmetric of this surface. For simplicity,
we do not consider this more general setup here and discuss it in [12].

(II) This assumption seems natural from the discrete complex analysis perspective: if the cou-
pling functions 𝐾−1𝑚

are not bounded on compacts, they typically contain local exponential
growing factors as mentioned in Subsection 1.1. In such a situation, one should not expect
that the “discrete conformal structure” provided by the t-embedding 𝑚 captures the behav-
ior of 𝐾−1𝑚

correctly. In previously known examples, this assumption is typically verified
along with finding the scaling limit of 𝐾−1𝑚

as 𝑚 → ∞, which is exactly the route that we
want to avoid by formulating Theorem 1.4. In particular, in [12] we introduce a special class
of t-embeddings of finite graphs, so-called “perfect” ones, for which we are able to derive
the required uniform boundedness of the coupling functions 𝐾−1𝑚

from general estimates,
not identifying their possible scaling limits.

(III) This assumption is quite natural from the dimermodel perspective: it simply says that fluctu-
ations vanish near the boundary ofΩ. However, it should be said that even in thewell-known
cases this fact is typically derived a posteriori from the identification of the scaling limit
of 𝐾−1𝑚

. Nevertheless, in some situations one could hope to verify it by probabilistic tools.
Let us also mention that for “perfect” t-embeddings introduced in [12] we are in fact able
to prove the uniform boundedness of the functions 𝐾−1𝑚

(𝑤, 𝑏) not only on compact subsets
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ofΩ but also in a situation when one of 𝑤 and 𝑏 is allowed to approach the boundary of 𝑚.
Though this estimate near 𝜕Ω is not strong enough to control the boundary values of the
limits of 𝐻𝑚,𝑛, it nevertheless implies the convergence of the gradients of these correlation
functions to those of the GFF; see [12] for details.

The paper is organized as follows. We overview the setup of t-embeddings  in Section 2. The
notion of t-holomorphicity on  , in the special case when  is a triangulation, is introduced in
Section 3. In Section 4, we discuss the links between t-holomorphic functions on t-embeddings
and harmonic functions on T-graphs; note that Subsection 4.3 contains a new material as com-
pared to, say, the paper [31] due to Kenyon. Section 5 is devoted to generalizations of all these
notions to the case of general t-embeddings (not triangulations). Section 6 is at the heart of our
paper, we develop the a priori regularity theory for t-holomorphic and harmonic functions there.
Twoparticularly important ingredients are the uniformellipticity estimate for randomwalks onT-
graphs obtained in Subsection 6.2 under the assumption Lip(𝜅, 𝛿) and the a priori Lipschitzness of
harmonic functions discussed in Subsection 6.5 under the additional assumption Exp-Fat(𝛿). We
prove Theorem 1.4 in Section 7. Finally, in Section 8 we discuss the links between t-holomorphic
functions on t-embeddings and more standard discretizations of complex analysis.

2 THE SETUP OF t-EMBEDDINGS

2.1 Definitions

In this section, we introduce t-embeddings and give several related definitions.

Definition 2.1. A t-embedding in the whole plane is an embedded locally finite planar graph
with the following properties.

∙ Properness: The edges are nondegenerate straight segments, the faces are convex, do not overlap
and cover the whole plane.

∙ Bipartite dual: The dual graph is bipartite, we call the bipartite classes black and white, and
denote them 𝐵 and 𝑊, respectively. (In other words, we assume that the faces of the corre-
sponding tiling of the plane by convex polygons are colored black and white in a chessboard
fashion.)

∙ Angle condition: For every vertex 𝑣, one has∑
𝑏∈𝐵∶ 𝑏∼𝑣

𝜃(𝑏, 𝑣) =
∑

𝑤∈𝑊∶𝑤∼𝑣

𝜃(𝑤, 𝑣) = 𝜋,

where 𝜃(𝑢, 𝑣) is the angle of a face 𝑢 at a neighboring vertex 𝑣, see Figure 1.

Given an infinite t-embedding, let ∗ be the associated planar graph seen as an abstract com-
binatorial object (i.e., as a planar map: a planar graph embedded into the plane and considered
up to homotopies in the space of proper embeddings) and let  be its planar bipartite dual, also
seen abstractly.
The above definition can be extended to finite bipartite planar graphs  with the topology of

the sphere. To this end, we remove one marked vertex 𝑣out from the dual graph ∗ which is to
be embedded, and replace it by a cycle of length deg 𝑣out so that deg 𝑣out edges adjacent to 𝑣out
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become adjacent to corresponding vertices of the cycle. Following [33], we call this procedure an
augmentation at 𝑣out.

Definition 2.2. A finite t-embedding of a planar graph with the topology of the sphere and a
marked vertex 𝑣out is an embedding of its augmentation at 𝑣out with the following properties.

∙ Properness: The edges are nondegenerate straight segments, the faces are convex and do not
overlap, the outer face corresponds to the cycle replacing 𝑣out in the augmented graph.

∙ Bipartite dual: The dual graph of the augmented map becomes bipartite once the outer face is
removed, we call the bipartite classes black and white, and denote them 𝐵 and𝑊.

∙ Angle condition: For every interior vertex 𝑣 one has∑
𝑏∈𝐵∶ 𝑏∼𝑣

𝜃(𝑏, 𝑣) =
∑

𝑤∈𝑊∶𝑤∼𝑣

𝜃(𝑤, 𝑣) = 𝜋,

where we call 𝑣 interior if it is not adjacent to the outer face, see Figure 2.

We call the union of the closed faces (except the outer one) of a finite t-embedding the discrete
domain associated with this t-embedding.

In what follows, we exclude the outer face from  and the boundary edges (i.e., those adjacent
to the outer face) from ∗; see Figure 2. Recall that 𝑉() = 𝐵 ∪ 𝑊, where 𝐵 and 𝑊 denote the
sets of black and white faces of ∗, respectively. Below we denote typical faces of ∗ either 𝑏 or 𝑤

depending on their color and also use the notation 𝑢∙, 𝑢◦ for the same purpose. The vertices of ∗

are typically denoted as 𝑣, 𝑣′, and so on. We say that a face of the graph ∗ of a finite t-embedding
is a boundary face if it is adjacent to at least one boundary edge. Other faces are called interior. Let
𝜕𝐵 and 𝜕𝑊 be the sets of boundary black and boundary white faces, respectively.
Given an oriented edge (𝑏𝑤) of , denote by (𝑏𝑤)∗ (or 𝑏𝑤∗ for brevity) the oriented edge of ∗

that has the first face (here 𝑏) to its right. Denote by 𝑤𝑏∗ the same edge of ∗ oriented in the
opposite direction. Let  denote the map from ∗ to ℂ giving the position of any vertex in the
embedding. Given an oriented edge 𝑒∗ = (𝑣𝑣′) of ∗, let 𝑑 (𝑒∗) ∶=  (𝑣′) −  (𝑣), see Figure 1.
For a given face 𝑏 or 𝑤 of ∗, we write  (𝑏) or  (𝑤) to denote the corresponding polygon in
the embedding.
Let us now briefly describe how to construct a realization of  given a t-embedding  =  (∗).

The resulting realizations with an embedded dual have been introduced and studied in [1, 33] in
the so-called “circle patterns” context, so we refer the reader to these papers for more details.

Lemma 2.3. The following definition of a mapping ∶ 𝑉() → ℂ constructed from a t-
embedding  (∗) is consistent: fix an arbitrary white vertex𝑤0 ∈ 𝑉() and choose (𝑤0) arbitrarily,
then define  at neighbors of 𝑤0 and iteratively everywhere on 𝑉() by saying that points (𝑏) and
(𝑤) are symmetric with respect to the line  (𝑏𝑤∗) for each pair of neighboring 𝑏 and 𝑤.

Proof. It is enough to check the consistency around a single vertex of ∗. Let 𝑤1, 𝑏1, …, 𝑤𝑘, 𝑏𝑘 be
faces of ∗ around 𝑣, labeled in the counterclockwise order, and assume without loss of generality
and for ease of notation that  (𝑣) = 0. Let

𝑑1 = 𝑑 (𝑤1𝑏
∗
1)∕|𝑑 (𝑤1𝑏

∗
1)|, 𝑑2 = 𝑑 (𝑏1𝑤

∗
2)∕|𝑑 (𝑏1𝑤

∗
2)|, …

be the directions of the edges of  (∗) around  (𝑣), pointing away from  (𝑣).
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It is easy to see that the reflection symmetry condition gives (𝑏1) = 𝑑2
1
⋅ (𝑤1) and therefore

(𝑤2) = (𝑑2𝑑1)
2 ⋅ (𝑤1). Note that arg(𝑑2𝑑1) is the angle of the face  (𝑏1) at  (𝑣), so the angle

condition is equivalent to the consistency of the definition of  around 𝑣. □

The construction described in Lemma 2.3 produces a two-dimensional family of realizations of
 parameterized by the position of (𝑤0). In general, it is not clear whether  is a proper embed-
ding of . However, for each face 𝑣 of , all points (𝑢), where 𝑣 ∼ 𝑢 ∈ 𝑉(), lie on a single circle
and each point (𝑢) is an intersection of deg(𝑢) such circles. This justifies the name circle pattern
realizations for such embeddings of bipartite planar graphs, see [1, 33].
Informally speaking, the above construction of  can be equivalently described as follows: fold

the plane along all the edges of  (where the angle condition guarantees that this operation
makes sense), then pierce the folded plane at an arbitrary point. Finally, unfold the plane: the
realization  is given by the positions of all the punctures (provided that all points (𝑢) lie inside
corresponding faces  (𝑢) of the t-embedding, which is certainly not true in general).

2.2 The origami map

The goal of this section is to introduce a formal definition of the folding procedure described
above, which we call the origami map and which plays a crucial role in our analysis.

Definition 2.4. A function 𝜂 ∶ 𝑉() = 𝐵 ∪ 𝑊 → 𝕋 is said to be an origami square root function
if it satisfies the identity

𝜂𝑏𝜂𝑤 =
𝑑 (𝑏𝑤∗)|𝑑 (𝑏𝑤∗)| (2.1)

for all pairs (𝑏, 𝑤) of white and black neighboring faces of ∗.

Remark 2.5. As the sumof external angles of each convex polygon equals 2𝜋, Equation (2.1) gives a
consistent definition of 𝜂 around each face of  . However, it can be (slightly) inconsistent around
its vertices: due to the angle condition, definition (2.1) implies that the total increment of 𝜂𝑤 (and
similarly for 𝜂𝑏) around a vertex 𝑣 of a t-embedding equals (1+ 1

2
deg 𝑣) ⋅ 𝜋. Therefore, the function

𝜂2 is alwayswell-defined but the function 𝜂 itself has to branch over every vertex 𝑣 of ∗ (i.e., a face
of ) such that deg 𝑣 ∈ 4ℤ. (In other words, 𝜂 has to be defined on an appropriate double cover
of 𝑉(), with the values on the two sheets being opposite of each other.) By an abuse of notation
we will consider 𝜂 being defined up to the sign. We also define the values 𝜙𝑢 ∈ (−𝜋∕2, 𝜋∕2] as
follows:

𝜙𝑢 ∶= arg 𝜂𝑢 mod 𝜋, 𝑢 ∈ 𝐵 ∪ 𝑊.

It is clear that two origami square root functions 𝜂 and 𝜂′ differ only by a global factor: more
precisely, there exists 𝛼 ∈ 𝕋 such that 𝜂′

𝑤 = 𝛼 ⋅ 𝜂𝑤 for all 𝑤 ∈ 𝑊 and 𝜂′
𝑏

= 𝛼 ⋅ 𝜂𝑏 for all 𝑏 ∈ 𝐵. In
general, there is no canonical way to choose the global prefactor 𝛼. Let us now comment on how
the angles 𝜙 are related to the geometry of a t-embedding.
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Lemma 2.6. Let 𝑣 be an inner vertex of ∗ and 𝑏1, 𝑏2 ∈ 𝐵 and 𝑤 ∈ 𝑊 be three consecutive faces
adjacent to 𝑣. If 𝑏1, 𝑤, 𝑏2 are in the counterclockwise order around 𝑣, then, for any origami square
root function and associated 𝜙,

𝜙𝑏2
− 𝜙𝑏1

= −𝜃(𝑤, 𝑣) mod 𝜋,

where 𝜃(𝑤, 𝑣) is the angle of the white face 𝑤 at the vertex 𝑣, computed in the positive direction.
Similarly, if 𝑤1, 𝑏, 𝑤2 are in the counterclockwise order around their common vertex 𝑣, then

𝜙𝑤2
− 𝜙𝑤1

= −𝜃(𝑏, 𝑣) mod 𝜋.

Proof. Let 𝑣𝑗 ≠ 𝑣 be the endpoints of the edges  (𝑤𝑏∗
𝑗
) for 𝑗 ∈ {1, 2}. Then,

𝜂𝑏2
𝜂𝑏1

=
𝑑 (𝑏2𝑤

∗)|𝑑 (𝑏2𝑤
∗)| ⋅ 𝑑 (𝑏1𝑤

∗)|𝑑 (𝑏1𝑤
∗)| =

𝑣 − 𝑣2|𝑣 − 𝑣2| ⋅ 𝑣1 − 𝑣|𝑣1 − 𝑣| = −𝑒−𝑖𝜃(𝑤,𝑣).

The computation for the second case is identical.
We now formally define the folding of the plane along the edges of  using the (square of the)

function 𝜂 introduced above.

Definition 2.7. The origami differential form associated to 𝜂 is defined as

𝑑(𝑧) ∶=

{
𝜂2
𝑤 𝑑𝑧 if 𝑧 belongs to a white face  (𝑤),

𝜂
2
𝑏 𝑑�̄� if 𝑧 belongs to a black face  (𝑏).

Let us emphasize that we view 𝑑(𝑧) as a piecewise constant differential form defined in the
whole complex plane (or inside the discrete domain associated to a finite t-embedding). However,
it is worth noting that the above definition also allows one to view 𝑑 as a well-defined 1-form on
edges of  by setting

𝑑(𝑏𝑤∗) ∶= 𝜂2
𝑤 𝑑 (𝑏𝑤∗) = 𝜂𝑏𝜂𝑤 |𝑑 (𝑏𝑤∗)| = 𝜂

2
𝑏 𝑑 (𝑏𝑤∗). (2.2)

Lemma2.8. The origami differential form𝑑 is a closed form (inside the associated discrete domain
in the finite case). We denote its primitive by , which we call the origami map.
Proof. Let 𝛾 be a closed contour running in the domain of a t-embedding. If 𝛾 lies inside a sin-
gle face of  , then ∮𝛾 𝑑 = 0 because 𝑑 is proportional either to 𝑑𝑧 or to 𝑑𝑧. For general 𝛾, as|𝑑(𝑧)| ⩽ |𝑑𝑧|, one can always write ∮𝛾 𝑑 as a sum of integrals over smaller loops 𝛾𝑢, each of
which belongs to a closed face  (𝑢). As pointed out in (2.2), on an edge 𝑏𝑤∗ of the t-embedding,
the two definitions of 𝑑 (coming from the right face 𝑏 and the left face 𝑤) agree. Hence, all
contour integrals over such loops 𝛾𝑢 make sense and vanish, thus ∮𝛾 𝑑𝑂 also vanishes. □

Note that 𝜂2
𝑤 is the local rotation angle of the origami map  on the white face  (𝑤). Recall

that the origami differential form 𝑑 is defined up to a global prefactor 𝛼2 ∈ 𝕋 only, whichmeans
that the origami map  itself is defined up to rotations and translations. If |𝑤0

= Id on some
white face 𝑤0 ∈ 𝑊 (which one can always assume by choosing 𝛼 and the integration constant
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properly), then it is easy to check thatmaps 𝑧 to its position after the folding procedure (started
from the face 𝑤0 so as it is kept fixed), which was described in the construction of a circle pattern
realization . In particular, if (𝑢) ∈  (𝑢) for all 𝑢 ∈ 𝑉() (recall that this is not true in general),
then {(𝑢), 𝑢 ∈ 𝑉()} = −1((𝑤0)).
With a slight abuse of notation (similar to that in the definition of the origami differential form),

below we also allow ourselves to see  as a map from ∗ to ℂ.

2.3 Dimers and t-embeddings

In this section, we describe how to define Kasteleyn weights on a bipartite graph  in a natural
geometric way given a t-embedding of its dual graph ∗. Let 𝜒(𝑒) ∶= |𝑑 (𝑒∗)| be positive weights
of edges 𝑒 of . Recall that a Kasteleyn matrix 𝐾 is a weighted, complex-signed adjacency matrix
whose rows index the black vertices and columns index the white vertices, and the signs (𝜏𝑏𝑤 ∈

ℂ, |𝜏𝑏𝑤| = 1) are chosen to satisfy the following condition: around a face of  of degree 2𝑘 the
alternating product of signs over the edges of this face is (−1)𝑘+1. Signs satisfying this condition
around each face are called Kasteleyn signs.

Proposition 2.9. For 𝑏,𝑤 ∈ , let𝐾(𝑏,𝑤) ∶= 𝑑 (𝑏𝑤∗) if 𝑏 and𝑤 are neighbors and𝐾(𝑏,𝑤) ∶=0

otherwise. Then, 𝐾 is a Kasteleyn matrix for the weights 𝜒.

Proof. Fix a face 𝑣 of  and let 𝑏1, 𝑤1, … , 𝑏𝑘, 𝑤𝑘 be its neighboring vertices listed counterclockwise.
Let 𝑣1, … , 𝑣2𝑘 be its neighboring faces listed counterclockwise so that 𝑣1 is between 𝑏1 and 𝑤1. It
is easy to see that

𝑘∏
𝑖=1

𝐾(𝑏𝑖, 𝑤𝑖)

𝐾(𝑏𝑖+1, 𝑤𝑖)
=

𝑘∏
𝑖=1

𝑑 (𝑣𝑣2𝑖−1)

𝑑 (𝑣2𝑖𝑣)
= 𝑋𝑣 ⋅

𝑘∏
𝑖=1

(−𝑒−𝑖𝜃(𝑤𝑖,𝑣)) = 𝑋𝑣 ⋅ (−1)𝑘+1,

where 𝑋𝑣 ∶=
∏𝑘

𝑖=1
𝜒(𝑏𝑖𝑤𝑖)

𝜒(𝑏𝑖+1𝑤𝑖)
is a positive constant; in the last equality we use that the white angles

adjacent to 𝑣 sum up to 𝜋. This is exactly the sign condition in a Kasteleyn matrix. □

Given an abstract planar weighted bipartite graph (, 𝑥), one can wonder about the existence
of a t-embedding of ∗ into the plane such that the given edges weights 𝑥(𝑒) are gauge equiva-
lent to the geometrical weights 𝜒(𝑒) = |𝑑 (𝑒∗)| introduced above. (The gauge equivalence means
that 𝜒(𝑏𝑤) = g(𝑏)𝑥(𝑏𝑤)g(𝑤) for all 𝑏 ∈ 𝐵, 𝑤 ∈ 𝑊 and some function g ∶ 𝑉() → ℝ+; such a
transform preserves the law of the dimer model on .) In this case, we say that (, 𝑥) admits a
t-embedding of the (augmented) dual graph ∗. We are now in the position to state one of the
main results of [33], we refer the interested reader to this paper for more details.

Theorem 2.10 ([33, Theorems 2 and 8]). t-Embeddings of the (augmented) dual graph ∗ exist at
least in the following cases.

(i) (, 𝑥) is a nondegenerate bipartite finite weighted graph admitting a dimer cover and with outer
face of degree 4.

(ii) (, 𝑥) is a doubly periodic weighted bipartite graph, equippedwith an equivalence class of doubly
periodic edge weights, which corresponds to a liquid phase. In this situation, we can also require
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that the t-embedding  is doubly periodic and that the origami map  is bounded. Moreover,
such doubly periodic t-embeddings of ∗, considered up to scalings, rotations, translations and
reflections, are in bijection with the interior of the amoeba of the dimer spectral curve.

3 T-HOLOMORPHICITY

In this section, we introduce the notion of t-holomorphic functions defined on faces of a t-
embedding and give some basic facts about such functions. Let us already remark that this theory
has a simpler and more invariant form in the case of triangulations so we restrict ourselves to this
case for now. The modifications required in the general case will be given in Section 5.
Below, we work with a fixed t-embedding  of a finite or infinite triangulation and a fixed

origami square root function 𝜂. In the finite case, we call a t-embedding  (∗) a triangulation if all
its interior faces are triangles (equivalently, if all vertices of the corresponding dual bipartite graph
 have degree 3), see Figure 2 for an example. A t-holomorphic function 𝐹 will be defined on both
black and white faces but 𝐵 and𝑊 do not play the same role. We denote by 𝐹∙ the restriction of a
function𝐹 to black faces and𝐹◦ the restriction towhite faces, the t-holomorphicity condition links
the values of 𝐹∙ and 𝐹◦ to each other. We will use a subscript 𝔟 or𝔴 to indicate whether we “pri-
marily” consider a function on black or white faces, note that all four combinations𝐹◦

𝔟
, 𝐹∙

𝔟
, 𝐹◦

𝔴, 𝐹∙
𝔴

are used below.

3.1 Definition of t-holomorphic functions

We begin with a preliminary lemma. Let 𝐾 be the Kasteleyn matrix defined in Proposition 2.9.
Given a discrete path 𝛾 = (𝑒1, … , 𝑒𝑛) on ∗ and a function 𝐹 on unoriented edges of ∗, define
∫𝛾 𝐹 𝑑 ∶=

∑
𝐹(𝑒𝑖) 𝑑 (𝑒𝑖). With a slight abuse of notation, one can extend this definition to func-

tions defined either on black or on white faces of ∗ by setting 𝐹◦(𝑏𝑤∗) ∶= 𝐹◦(𝑤) for 𝑤 ∈ 𝑊 and
similarly for 𝑏 ∈ 𝐵.
Given a face 𝑢 of ∗, let 𝜕𝑢 be its boundary, viewed as a path on  (∗) and oriented in the

positive (i.e., counterclockwise) direction.

Lemma 3.1. Let 𝐹◦ be a complex-valued function defined on (a subset of) W. Then, for each interior
black face 𝑏 one has

(𝐾𝐹◦)(𝑏) = −∮𝜕𝑏
𝐹◦ 𝑑 .

Similarly, for a function 𝐹∙ defined on (a subset of) 𝐵 and an interior white face 𝑤, one has

(𝐹∙𝐾)(𝑤) = ∮𝜕𝑤
𝐹∙ 𝑑 .

Proof. By the definition of 𝐾, we have (𝐾𝐹◦)(𝑏) =
∑

𝑤∶𝑤∼𝑏 𝑑 (𝑏𝑤∗) ⋅ 𝐹◦(𝑤). According to our
conventions, this is the definition of the contour integral − ∮𝜕𝑏 𝐹◦𝑑 ; see Figure 1. The proof for
white faces is similar. □
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Note that, for any function 𝐹◦ and any white face 𝑤, the equality ∮𝜕𝑤 𝐹◦ 𝑑 = 0 holds because
 is well-defined. Therefore, the condition 𝐾𝐹◦(𝑏) = 0 for all 𝑏 in a simply connected region 𝑈

of the t-embedding is equivalent to ∮𝛾 𝐹◦ 𝑑 = 0 for all closed contours 𝛾 in this region. A similar
statement holds for a function 𝐹∙ defined on the black faces of 𝑈. (In this section, we think of 𝛾
as being a path composed of edges of  . However, let us note that below we adopt a more general
viewpoint and think of 𝛾 as a general rectifiable curve in the complex plane, in which  stands
for the complex coordinate; see Lemma 3.8 for a formal statement.)
For a region 𝑈 of the t-embedding  , let 𝐵𝑈 and 𝑊𝑈 denote the sets of black and white faces,

respectively, that are contained in𝑈. Further, given a subset 𝔭 of faces of  , thought of as “punc-
tures,” denote 𝑈𝔭 ∶= 𝑈 ⧵ 𝔭. The forthcoming Definition 3.2 is one of the central concepts of this
paper, see Remark 3.3 for the motivation. We use the notation

Pr(𝐹, 𝜂ℝ) ∶= 1

2
(𝐹 + 𝜂2𝐹)

for the orthogonal projection of a complex number 𝐹 onto the line 𝜂ℝ, where |𝜂| = 1.

Definition 3.2. Given a subregion 𝑈 of a t-embedding  with triangular faces and an origami
square root function 𝜂, a function 𝐹𝔴 ∶ 𝑈 → ℂ, is said to be t-white-holomorphic at 𝑢◦ ∈ 𝑊𝑈 if 𝑢◦

is an inner face of 𝑈 and{
𝐹∙

𝔴(𝑏) ∈ 𝜂𝑏ℝ,

Pr(𝐹◦
𝔴(𝑢◦), 𝜂𝑏ℝ) = 𝐹∙

𝔴(𝑏)
for all 𝑏 ∈ 𝐵 such that 𝑏 ∼ 𝑢◦. (3.1)

A function 𝐹𝔴 is t-white-holomorphic in a region𝑈 or, more generally, in a punctured region𝑈𝔭

if it is t-white-holomorphic at all inner white faces of the region.
Similarly, we say that 𝐹𝔟 is t-black-holomorphic at an inner face 𝑢∙ ∈ 𝐵𝑈 if{

𝐹◦
𝔟
(𝑤) ∈ 𝜂𝑤ℝ,

Pr(𝐹∙
𝔟
(𝑢∙), 𝜂𝑤ℝ) = 𝐹◦

𝔟
(𝑤)

for all 𝑤 ∈ 𝑊 such that 𝑤 ∼ 𝑢∙. (3.2)

If no confusion arises, we simply say that a function is t-holomorphic if it is either t-white-
holomorphic or t-black-holomorphic; note that these properties never hold together as 𝐵 and 𝑊

play different roles in each of the definitions (3.1), (3.2).

Remark 3.3. A typical example of a t-white-holomorphic function is given by

𝐹∙
𝑤(𝑏) ∶= 𝜂𝑤 ⋅ 𝐾−1(𝑤, 𝑏), where 𝑤 is a fixed white face of  .

Indeed, the first condition in (3.1) holds because the matrix (𝜂𝑏𝐾(𝑏, 𝑤)𝜂𝑤)𝑏∈𝐵,𝑤∈𝑊 is real-valued
due to (2.1) and hence so is its inverse (𝜂𝑤𝐾−1(𝑤, 𝑏)𝜂𝑏)𝑤∈𝑊,𝑏∈𝐵. In Lemma 3.4, we show that
the existence of a value 𝐹◦(𝑢◦) such that the second condition in (3.1) holds true given the first
is equivalent to the identity ∮𝜕𝑢◦ 𝐹∙𝑑 = 0. This is true for 𝐹∙

𝑤 due to Lemma 3.1 unless 𝑢◦=𝑤;
in other words, the function 𝐹𝑤 is t-white-holomorphic in the punctured region 𝑈𝑤. Similarly, a
typical example of a t-black-holomorphic function is given by 𝐹◦

𝑏
(𝑤) = 𝜂𝑏 ⋅ 𝐾

−1(𝑤, 𝑏), for a fixed
black face 𝑏. In particular, the notation 𝐹𝔴, 𝐹𝔟 is designed so that in the future these functions
can be easily replaced by 𝐹𝑤 and 𝐹𝑏 for actual faces 𝑤 and 𝑏.
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Lemma3.4. Given a t-embedding  of a triangulation andan origami square root function 𝜂, let𝐹∙
𝔴

be a function on black faces of some region𝑈 such that𝐹∙
𝔴(𝑏) ∈ 𝜂𝑏ℝ for all 𝑏 ∈ 𝐵𝑈 . The function𝐹∙

𝔴

can be extended to a t-white-holomorphic function 𝐹𝔴 in𝑈𝔭, 𝔭 ⊂ 𝑊𝑈 , if and only if ∮𝜕𝑢◦ 𝐹∙
𝔴 𝑑 = 0

for all inner faces 𝑢◦ ∈ 𝑊𝑈 ⧵ 𝔭.
Similarly, a function𝐹◦

𝔟
defined onwhite faces of𝑈 such that𝐹◦

𝔟
(𝑤) ∈ 𝜂𝑤ℝ for all𝑤 ∈ 𝑊𝑈 admits

an extension to a t-black-holomorphic function in 𝑈𝔭, 𝔭 ⊂ 𝐵𝑈 , if and only if ∮𝜕𝑢∙ 𝐹◦
𝔟
𝑑 = 0 for all

inner faces 𝑢∙ ∈ 𝐵𝑈 ⧵ 𝔭.

Proof. Consider an inner white face 𝑢◦ of 𝑈𝔭 and let 𝑏1, 𝑏2, 𝑏3 be its adjacent black faces. The
function 𝐹∙

𝔴 can be extended to 𝑢◦ as a t-white-holomorphic function if and only if the three lines
perpendicular to 𝜂𝑏𝑘

ℝ, 𝑘 = 1, 2, 3, and passing through the points 𝐹∙
𝔴(𝑏𝑘), respectively, intersect.

This corresponds to the following equations with unknown 𝐹◦
𝔴(𝑢◦):

𝐹◦
𝔴(𝑢◦) + 𝜂2

𝑏𝑘
𝐹◦

𝔴(𝑢◦) = 2 ⋅ 𝐹∙
𝔴(𝑏𝑘) for all 𝑘 ∈ {1, 2, 3}.

These equations can be viewed as a system of three real equations on two real unknowns. As
𝜂2
𝑏
𝑑 (𝑏𝑤∗) = 𝑑(𝑏𝑤∗), multiplying each equation by 𝑑 ((𝑏𝑘𝑢

◦)∗) and adding them together one
easily gets a necessary solvability condition:

2∮𝜕𝑢◦
𝐹∙

𝔴(𝑏𝑘)𝑑 = ∮𝜕𝑢◦

(
𝐹◦

𝔴(𝑢◦) + 𝜂2
𝑏𝑘

𝐹◦
𝔴(𝑢◦)

)
𝑑

= 𝐹◦
𝔴(𝑢◦)∮𝜕𝑢◦

𝑑 + 𝐹◦
𝔴(𝑢◦)∮𝜕𝑢◦

𝑑 = 0.

This condition is also sufficient as 𝑢◦ has degree 3 and the directions 𝜂𝑏𝑘
are never collinear.

Similarly, for a function 𝐹𝔟 we want

𝐹∙
𝔟
(𝑢∙) + 𝜂2

𝑤𝑘
𝐹∙

𝔟
(𝑢∙) = 2 ⋅ 𝐹◦

𝔟
(𝑤𝑘) for all 𝑘 ∈ {1, 2, 3},

which gives the desired solution using the identity 𝜂2
𝑤 𝑑 (𝑏𝑤∗) = 𝑑(𝑏𝑤∗). □

Remark 3.5. As 𝐾(𝑏,𝑤) ∈ 𝜂𝑏𝜂𝑤ℝ for all 𝑏,𝑤, the mapping 𝐹∙ → 𝜂2 ⋅ 𝐹∙ defines an involution on
the kernel of 𝐾, which is naturally split into the invariant and anti-invariant components. The
first condition in (3.1) says that we consider the invariant component only. Let us emphasize that
t-holomorphic functions form a real-linear space but not a complex-linear one.

In the finite case, let us glue to each boundary edge an outer face with a color different from the
color of the incident boundary face, see Figure 3. Denote the sets of thus obtained black and white
faces by 𝜕out𝐵 and 𝜕out𝑊, respectively. Denote 𝐵 ∶= 𝐵 ∪ 𝜕out𝐵, 𝑊 ∶= 𝑊 ∪ 𝜕out𝑊 and let 𝑈 be a
(sub)region of the t-embedding; we also use a notation 𝐵𝑈 , (𝜕out𝐵)𝑈 , and so on, for intersections
of these sets with 𝑈.

Definition 3.6. We say that a t-white-holomorphic function 𝐹𝔴 defined on a set 𝐵𝑈 ∪ (𝑊𝑈 ⧵

((𝜕𝑊)𝑈 ∪ 𝔭)), 𝔭 ⊂ 𝑊𝑈 , satisfies standard boundary conditions if{
𝐹∙

𝔴(𝑏) = 0 for all 𝑏 ∈ (𝜕out𝐵)𝑈,

∮𝜕𝑢◦ 𝐹∙
𝔴 𝑑 = 0 for all 𝑢◦ ∈ (𝜕𝑊)𝑈 ⧵ 𝔭.
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F IGURE 3 Standard boundary conditions for a t-white-holomorphic function 𝐹𝑤 , 𝑤 ∈ 𝑊; see Remark 3.3
and Definition 3.6.

(Recall that 𝜕𝑊 ⊂ 𝑊 is the set of white “inner” boundary faces of  .) The standard boundary
conditions for t-black-holomorphic functions are defined similarly.

Note that a t-white-holomorphic function 𝐹∙
𝑤 ∶ 𝑏 ↦ 𝜂𝑤 ⋅ 𝐾−1(𝑤, 𝑏) with 𝑤 ∈ 𝑊 satisfies stan-

dard boundary conditions in the region𝑈𝑤 providedwe set𝐹∙
𝑤(𝑏) ∶= 0 for 𝑏 ∈ 𝜕out𝐵, see Figure 3.

Indeed, (𝐹∙
𝑤𝐾)(𝑢◦) = 0 for all 𝑢◦ ≠ 𝑤 including the boundary faces 𝑢◦ ∈ 𝜕𝑊𝑈 ⧵ {𝑤}. As we set

𝐹∙
𝑤(𝑏) = 0 at the nearby outer black face, this sum coincides with the contour integral along 𝜕𝑢◦

as before.

3.2 Closed forms associated to t-holomorphic functions

Let us first summarize basic properties of t-holomorphic functions discussed in the previous
section.

Proposition 3.7. Let 𝑈 be a simply connected region in the domain of a t-embedding and 𝐹𝔴 be
a t-white-holomorphic function on a punctured region 𝑈𝔭, 𝔭 ⊂ 𝑊. Then, on edges not adjacent to
boundary white faces and/or to faces of 𝔭,

2𝐹∙
𝔴 𝑑 = 𝐹◦

𝔴 𝑑 + 𝐹◦
𝔴 𝑑 (3.3)

and 𝐹∙
𝔴 𝑑 is a closed form in𝑈𝔭 away from the boundary (i.e., the integral over any closed contour

𝛾 running over interior edges and not surrounding faces from 𝔭 vanishes). Moreover, if 𝐹𝔴 satisfies
standard boundary conditions, then the left-hand side of (3.3) also defines a closed form up to the
boundary (i.e., 𝛾 can then contain boundary edges too).
Similarly, if 𝐹𝔟 is a t-black-holomorphic function in 𝑈𝔭, 𝔭 ⊂ 𝐵, then, on edges not adjacent to

boundary black faces and/or to faces of 𝔭,

2𝐹◦
𝔟
𝑑 = 𝐹∙

𝔟
𝑑 + 𝐹∙

𝔟
𝑑 (3.4)
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and 𝐹◦
𝔟
𝑑 is a closed form in 𝑈𝔭 away from the boundary. Again, if 𝐹𝔟 satisfies the standard

boundary conditions, then the left-hand side of (3.4) defines a closed form up to the boundary.

Proof. See the proof of Lemma 3.4: the equalities (3.3) and (3.4) follow from the definition of
t-holomorphic functions and the identities 𝜂2

𝑏
𝑑 (𝑏𝑤∗) = 𝑑(𝑏𝑤∗) and 𝜂2

𝑤𝑑 (𝑏𝑤∗) = 𝑑(𝑏𝑤∗).
The fact that the form 𝐹∙

𝔟
𝑑 (respectively, 𝐹◦

𝔴𝑑 ) is closed is trivial around black (respectively,
white) faces and is equivalent to the definition of t-holomorphicity at white (respectively, black)
ones. The extension up to the boundary is nothing but the definition of standard boundary
conditions. □

In what follows, we “primarily” think about t-holomorphic functions 𝐹𝔴 and 𝐹𝔟 as of 𝐹◦
𝔴

and 𝐹∙
𝔟
, respectively; let us emphasize once again that the two colors play nonsymmetric roles

in the definition of t-holomorphicity, so 𝐹∙
𝔴 and 𝐹◦

𝔟
are functions of a different kind whose values

have complex signs 𝜂𝑢 prescribed in advance, contrary to 𝐹◦
𝔴 and 𝐹∙

𝔟
. Note that the differential

forms 𝐹◦
𝔴𝑑 and 𝐹∙

𝔟
𝑑 are not closed: the contour integrals ∮𝜕𝑢∙ 𝐹◦

𝔴 𝑑 and ∮𝜕𝑢◦ 𝐹∙
𝔟
𝑑 do not

vanish.

Lemma 3.8. Similarly to the definition of the origami differential form 𝑑, one can view (3.3)
and (3.4) as closed piecewise constant differential forms

𝐹◦
𝔴(𝑧)𝑑𝑧 + 𝐹◦

𝔴(𝑧)𝑑(𝑧) and 𝐹∙
𝔟
(𝑧)𝑑𝑧 + 𝐹∙

𝔟
(𝑧)𝑑(𝑧)

defined in the plane (and not just on edges of the t-embedding), where we set 𝐹◦
𝔴(𝑧) ∶= 𝐹◦

𝔴(𝑢◦) if
𝑧 ∈  (𝑢◦) and 𝐹∙

𝔟
(𝑧) ∶= 𝐹∙

𝔟
(𝑢∙) if 𝑧 ∈  (𝑢∙), respectively. To define the former form for 𝑧 inside an

interior black face  (𝑏) (respectively, the latter for 𝑧 ∈  (𝑤)) one can use any of the three values
𝐹◦

𝔴(𝑢◦) at the adjacent white faces 𝑢◦ ∼ 𝑏 (respectively, any of the three values 𝐹∙
𝔟
(𝑢∙), 𝑢∙ ∼ 𝑤): all

thus obtained expressions coincide.

Proof. Let us consider the form (3.3). Its extension inside white faces is a triviality. Moreover, one
can also extend this form inside a black face as 2𝐹∙

𝔴(𝑏)𝑑𝑧, 𝑧 ∈  (𝑏): similarly to the definition of
the origami differential form 𝑑, this procedure is consistent because the two sides of (3.3) match
along the edge (𝑏𝑢◦)∗. Finally, note that

2𝐹∙
𝔴(𝑏)𝑑𝑧 = 𝐹◦

𝔴(𝑢◦)𝑑𝑧 + 𝜂2
𝑏
𝐹◦

𝔴(𝑢◦)𝑑𝑧 = 𝐹◦
𝔴(𝑢◦)𝑑𝑧 + 𝐹◦

𝔴(𝑢◦)𝑑(𝑧)

as 𝑑(𝑧) = 𝜂
2
𝑏𝑑𝑧 for 𝑧 ∈  (𝑏). The other case is identical. □

Remark 3.9. Though Lemma 3.8 does not apply to faces of higher degrees literally (and, in partic-
ular, does not apply to boundary faces of a finite triangulation; see Figure 2) it can be nevertheless
extended to the full generality by splitting faces of higher degree into triangles.We refer the reader
to Section 5 for more details.

The next proposition provides a key identity for the analysis of dimer correlation functions in
Section 7. As 𝐹∙

𝔟
≡ cst (respectively, 𝐹◦

𝔴 ≡ cst) is a trivial example of a t-holomorphic function, it
can be also viewed as a generalization of (3.3) and (3.4).
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Proposition 3.10. If 𝐹𝔟 and 𝐹𝔴 are, respectively, a t-black- and a t-white-holomorphic functions on
some region𝑈𝔭, then, on edges not adjacent to boundary faces and to faces of 𝔭, the identity

𝐹∙
𝔴𝐹◦

𝔟
𝑑 = 1

2
Re

(
𝐹◦

𝔴𝐹∙
𝔟
𝑑 + 𝐹◦

𝔴𝐹∙
𝔟
𝑑) (3.5)

holds and the form 𝐹∙
𝔴𝐹◦

𝔟
𝑑 is closed in𝑈𝔭 away from the boundary.

Moreover, if 𝐹𝔴 and 𝐹𝔟 satisfy standard boundary conditions, then the form 𝐹∙
𝔴𝐹◦

𝔟
𝑑 is closed up

to the boundary (provided we set 𝐹∙
𝔴(𝑏)𝐹◦

𝔟
(𝑤) ∶= 0 for boundary edges 𝑏𝑤∗).

Proof. The definition of t-holomorphicity implies that

𝐹∙
𝔴(𝑏)𝐹◦

𝔟
(𝑤)𝑑 (𝑏𝑤∗) = 1

4

(
𝐹◦

𝔴(𝑤) + 𝜂2
𝑏
𝐹◦

𝔴(𝑤)
)(

𝐹∙
𝔟
(𝑏) + 𝜂2

𝑤𝐹∙
𝔟
(𝑏)

)
𝑑 (𝑏𝑤∗),

which gives the result because 𝜂2
𝑏
𝑑 = 𝑑, 𝜂2

𝑤𝑑 = 𝑑 and 𝜂2
𝑏
𝜂2
𝑤𝑑 = 𝑑 on 𝑏𝑤∗. As

∮𝜕𝑢◦
𝐹∙

𝔴𝐹◦
𝔟
𝑑 = 𝐹◦

𝔟
(𝑢◦)∮𝜕𝑢◦

𝐹∙
𝔴 𝑑 = 0,

and

∮𝜕𝑢∙
𝐹∙

𝔴𝐹◦
𝔟
𝑑 = 𝐹∙

𝔴(𝑢∙)∮𝜕𝑢∙
𝐹◦

𝔟
𝑑 = 0

for 𝑢◦ ∈ 𝑊𝑈 ⧵ 𝔭 and 𝑢∙ ∈ 𝐵𝑈 ⧵ 𝔭, respectively, the expression (3.5) defines a closed form on edges
of the t-embedding. □

Remark 3.11. Similarly to Lemma 3.8, the form (3.5) can be extended from edges of  to a closed
piecewise constant differential form

1

2
Re

(
𝐹◦

𝔴(𝑧)𝐹∙
𝔟
(𝑧)𝑑𝑧 + 𝐹◦

𝔴(𝑧)𝐹∙
𝔟
(𝑧) 𝑑(𝑧)

)
defined in the complex plane. For 𝑧 ∈  (𝑏) (and similarly for 𝑧 ∈  (𝑤)), we set 𝐹∙

𝔟
(𝑧) ∶=

𝐹∙
𝔟
(𝑏) and use an arbitrary adjacent white face 𝑢◦ ∼ 𝑏 to define the value 𝐹◦

𝔴(𝑧) ∶= 𝐹◦
𝔴(𝑢◦).

Thus, obtained differential form does not depend on the choices of 𝑢◦ (and similar choices
made for 𝑧 ∈  (𝑤)). Similarly to Remark 3.9, this definition does not literally apply to faces of
degree more than 3 (including boundary ones) but can be extended to the full generality; see
Section 5.

3.3 Dimer coupling function as a linear combination of
t-holomorphic ones

Let 𝑤 ∈ 𝑊 and 𝑏 ∈ 𝐵. As discussed in Remark 3.3, the functions 𝐹∙
𝑤(⋅) ∶= 𝜂𝑤𝐾−1(𝑤, ⋅) and

𝐹◦
𝑏
(⋅) ∶= 𝜂𝑏𝐾

−1(⋅, 𝑏) are t-holomorphic and, in particular, admit extensions𝐹◦
𝑤 and𝐹∙

𝑏
to the inner

faces of the opposite color (except 𝑤 and 𝑏, respectively) such that the conditions (3.1) and (3.2)
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are fulfilled. If 𝑢◦
𝑏

∈ 𝑊 and 𝑢∙
𝑤 ∈ 𝐵 satisfy 𝑏 ∼ 𝑢◦

𝑏
≠ 𝑤 and 𝑤 ∼ 𝑢∙

𝑤 ≠ 𝑏, this reads as

𝐾−1(𝑤, 𝑏) = 𝜂𝑤 ⋅ 1

2

(
𝐹◦

𝑤(𝑢◦
𝑏
) + 𝜂2

𝑏
𝐹◦

𝑤(𝑢◦
𝑏
)
)

= 𝜂𝑏 ⋅
1

2

(
𝐹∙

𝑏
(𝑢∙

𝑤) + 𝜂2
𝑤𝐹∙

𝑏
(𝑢∙

𝑤)
)
. (3.6)

The next proposition provides a more symmetric representation of the dimer coupling func-
tion 𝐾−1, which will be particularly useful in Section 7.

Proposition 3.12. There exist four complex-valued functions𝐹[±±], defined on pairs (𝑢∙, 𝑢◦) of inner
faces 𝑢∙ ∈ 𝐵 ⧵ 𝜕𝐵 and 𝑢◦ ∈ 𝑊 ⧵ 𝜕𝑊, such that

(i) one has 𝐹[−−](𝑢∙, 𝑢◦) = 𝐹[++](𝑢∙, 𝑢◦) and 𝐹[+−](𝑢∙, 𝑢◦) = 𝐹[−+](𝑢∙, 𝑢◦);
(ii) the following identities hold if 𝑤 ∼ 𝑢∙ ≠ 𝑏 and 𝑏 ∼ 𝑢◦ ≠ 𝑤:

𝐹◦
𝑤( ⋅ ) = 1

2

(
𝜂𝑤𝐹[++] + 𝜂𝑤𝐹[−+]

)
(𝑢∙, ⋅ ), 𝐹∙

𝑏
( ⋅ ) = 1

2

(
𝜂𝑏𝐹

[++] + 𝜂𝑏𝐹
[+−]

)
( ⋅ , 𝑢◦);

moreover, for such 𝑤 ∼ 𝑢∙ and 𝑏 ∼ 𝑢◦ one has

𝐾−1(𝑤, 𝑏) = 1

4

(
𝐹[++] + 𝜂2

𝑏
𝐹[+−] + 𝜂2

𝑤𝐹[−+] + 𝜂2
𝑤𝜂2

𝑏
𝐹[−−]

)
(𝑢∙, 𝑢◦);

(iii) for each 𝜂 ∈ ℂ, the function 1

2
(𝜂𝐹[++] + 𝜂𝐹[−+])(𝑢∙, ⋅) is t-white-holomorphic away from 𝑢∙ and

1

2
(𝜂𝐹[++] + 𝜂𝐹[+−])(⋅, 𝑢◦) is t-black-holomorphic away from 𝑢◦.

Proof. Given an inner white face 𝑢◦, let 𝑐[+]

𝑢◦𝑏
∈ 𝜂𝑏ℝ, 𝑏 ∼ 𝑢◦, be the (uniquely defined) triple of

numbers satisfying the identities∑
𝑏∶ 𝑏∼𝑢◦

𝑐[+]

𝑢◦𝑏
𝜂𝑏 = 2,

∑
𝑏∶ 𝑏∼𝑢◦

𝑐[+]

𝑢◦𝑏
𝜂𝑏 = 0,

and let 𝑐[−]

𝑢◦𝑏
∈ 𝜂𝑏ℝ be the complex conjugate of 𝑐[+]

𝑢◦𝑏
. Note that the following identities are fulfilled

for each t-white-holomorphic function 𝐹𝔴:

𝐹◦
𝔴(𝑢◦) =

∑
𝑏∶ 𝑏∼𝑢◦

𝑐[+]

𝑢◦𝑏
⋅ 𝜂𝑏𝐹

∙
𝔴(𝑏), 𝐹◦

𝔴(𝑢◦) =
∑

𝑏∶ 𝑏∼𝑢◦

𝑐[−]

𝑢◦𝑏
⋅ 𝜂𝑏𝐹

∙
𝔴(𝑏),

as 𝜂𝑏𝐹
∙
𝔴(𝑏) = 1

2
(𝜂𝑏𝐹

◦
𝔴(𝑢◦) + 𝜂𝑏𝐹

◦
𝔴(𝑢◦)). In particular, for 𝑢◦ ≠ 𝑤 one has

𝐹◦
𝑤(𝑢◦) =

∑
𝑏∶ 𝑏∼𝑢◦

𝑐[+]

𝑢◦𝑏
⋅ 𝜂𝑏𝐹

∙
𝑤(𝑏) =

∑
𝑏∶ 𝑏∼𝑢◦

𝑐[+]

𝑢◦𝑏
⋅ 𝜂𝑏𝜂𝑤𝐾−1(𝑤, 𝑏)

and similarly for the conjugate, with the coefficients 𝑐[+]

𝑢◦𝑏
replaced by 𝑐[−]

𝑢◦𝑏
.

Given an inner black face 𝑢∙, let 𝑐[+]

𝑢∙𝑤 ∈ 𝜂𝑤ℝ, 𝑤 ∼ 𝑢∙, be defined by the identities∑
𝑤∶𝑤∼𝑢∙

𝑐[+]

𝑢∙𝑤𝜂𝑤 = 2,
∑

𝑤∶𝑤∼𝑢∙

𝑐[+]

𝑢∙𝑤𝜂𝑤 = 0,
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and let 𝑐[−]

𝑢∙𝑤 ∈ 𝜂𝑤ℝ be their complex conjugate. For 𝑢∙ ≠ 𝑏, the t-holomorphicity of 𝐹𝑏 implies

𝐹∙
𝑏
(𝑢∙) =

∑
𝑤∶𝑤∼𝑢∙

𝑐[+]

𝑢∙𝑤 ⋅ 𝜂𝑤𝐹◦
𝑏
(𝑤) =

∑
𝑤∶𝑤∼𝑢∙

𝑐[+]

𝑢∙𝑤 ⋅ 𝜂𝑏𝜂𝑤𝐾−1(𝑤, 𝑏)

and similarly for the conjugate, with the coefficients 𝑐[+]

𝑢∙𝑤 replaced by 𝑐[−]

𝑢∙𝑤.
Now, for inner faces 𝑢∙ ∈ 𝐵 ⧵ 𝜕𝐵 and 𝑢◦ ∈ 𝑊 ⧵ 𝜕𝑊, define

𝐹[±±](𝑢∙, 𝑢◦) ∶=
∑

𝑤∶𝑤∼𝑢∙

∑
𝑏∶ 𝑏∼𝑢◦

𝑐[±]

𝑢∙𝑤𝑐[±]

𝑢◦𝑏
⋅ 𝜂𝑏𝜂𝑤𝐾−1(𝑤, 𝑏),

where the superscript of 𝑐[±]

𝑢∙𝑤 corresponds to the first superscript of 𝐹[±±] and that of 𝑐[±]

𝑢◦𝑤
to the

second one. As 𝜂𝑏𝜂𝑤𝐾−1(𝑤, 𝑏) ∈ ℝ, the property (i) holds automatically.
Let us now prove the identities (ii). If 𝑤 ∼ 𝑢∙ ≠ 𝑏 and 𝑢◦ ≠ 𝑤, then

𝜂𝑤𝐹[++](𝑢∙, 𝑢◦) + 𝜂𝑤𝐹[−+](𝑢∙, 𝑢◦)

=
∑

𝑤′∶𝑤′∼𝑢∙

∑
𝑏∶ 𝑏∼𝑢◦

(𝜂𝑤𝑐[+]

𝑢∙𝑤′ + 𝜂𝑤𝑐[−]

𝑢∙𝑤′)𝑐
[+]

𝑢◦𝑏
⋅ 𝜂𝑏𝜂𝑤′𝐾−1(𝑤′, 𝑏)

=
∑

𝑏∶ 𝑏∼𝑢◦

𝑐[+]

𝑢◦𝑏
( 𝜂𝑤𝐹∙

𝑏
(𝑢∙) + 𝜂𝑤𝐹∙

𝑏
(𝑢∙) )

=
∑

𝑏∶ 𝑏∼𝑢◦

𝑐[+]

𝑢◦𝑏
⋅ 2𝜂𝑤𝐹◦

𝑏
(𝑤) =

∑
𝑏∶ 𝑏∼𝑢◦

𝑐[+]

𝑢◦𝑏
⋅ 2𝜂𝑏𝐹

∙
𝑤(𝑏) = 2𝐹◦

𝑤(𝑢◦).

A similar identity for the function 𝐹∙
𝑏
(𝑢∙) follows from the same arguments and the formula for

𝐾−1(𝑤, 𝑏) follows, for example, from (3.6).
Finally, note that (iii) holds if 𝜂 = 𝜂𝑤, 𝑤 ∼ 𝑢∙ (or 𝜂 = 𝜂𝑏, 𝑏 ∼ 𝑢◦, respectively). The result for

all 𝜂 ∈ ℂ follows from the fact that t-holomorphic functions form a real-linear vector space. □

4 T-EMBEDDINGS AND T-GRAPHS

We still assume that  (∗) is a triangulation in this section. Our approach to the properties (in
particular the regularity) of t-holomorphic functions will be to link them to harmonic functions
on related graphs called T-graphs, which were first introduced in [35]. We recall the definition of
T-graphs and discuss basic properties of randomwalks on them in Subsection 4.1. The link (simi-
lar to [31, Lemma 2.4]) between t-holomorphic functions and harmonic functions on T-graphs
is discussed in Subsection 4.2. Subsection 4.3 contains a new material: another link between
t-holomorphic functions and time-reversed random walks on T-graphs.

4.1 T-graphs and their randomwalks

In this section, we consider the image of ∗ under themapping  +  and relate it to the geometry
of  . We allow ourselves a similar abuse of the notation for  and  by viewing them both as
complex-valued functions defined on an abstract graph ∗ and as functions defined in (a subset
of) ℂ. Note that in the latter case  is just the identity mapping.
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F IGURE 4 A (rescaled) nondegenerate T-graph  + 𝛼2 (right) obtained from a finite t-embedding  (left,
see also Figure 2): faces 𝑤 ∈ 𝑊 of  correspond to faces of the T-graph while 𝑏 ∈ 𝐵 are flattened to the segments
(and vice versa in T-graphs  + 𝛼2). When 𝛼 varies, some of the faces degenerate; see Figure 5.

F IGURE 5 An example of a triangular face in the T-graph  + 𝛼2 for three consecutive values of 𝛼 ∈ 𝕋:
the face degenerates in the central picture (this corresponds to 𝑛 = 3 and𝑚 = 2 in Definition 4.2). The arrows
indicate possible transitions for the random walks on these T-graphs; see Definitions 4.4, 4.6 and Remark 4.7.

Definition 4.1. A (nondegenerate) T-graph in the whole plane is a closed path-connected
subset of ℂ that can be written as the disjoint, locally finite, union of a countable number of
open segments.
A finite (nondegenerate) T-graph is a closed path-connected subset of ℂ that can be written

as the disjoint union of a finite number of open segments and a finite number of single points,
named “boundary vertices,” each of which is adjacent either to a single open segment or to a pair
of those lying on the same line; see Figure 4.
We say that a finite T-graph has the topology of the disc if all its “boundary vertices” are adjacent

to the unbounded connected component of its complement.

Note that as the union of open segments is required to form a closed set, the endpoints of each
segment have to lie either inside another segment or at a boundary point. Furthermore, this is the
only way two segments canmeet so the name refers to the fact that each vertex of a nondegenerate
T-graph typically looks like a T or a K (or, in more involved situations, like an X with one of the
segments split into two at the intersection point, etc.) but not like a Y; see Figures 4 and 5.

Definition 4.2. A T-graph with possibly degenerate faces in the whole plane is a disjoint, locally
finite union of open segments and single points called degenerate faces such that the following
conditions hold (see also Figure 5).

∙ Each of the endpoints of an open segment either lies inside another segment as in the
nondegenerate case, or coincides with a degenerate face.
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∙ Each degenerate face is the endpoint of 𝑛 + 𝑚 open segments, among which 𝑛 ⩾ 3 are called
outgoing and 𝑚 ⩾ 0 incoming, with a restriction that the directions of outgoing segments are
not contained in a half-plane.

∙ In the latter case, we say that this degenerate face has degree𝑛 and assign to it an “infinitesimal”
convex 𝑛-gon (i.e., an equivalence class of polygons considered up to homotheties) with sides
parallel to the outgoing segments (note that for 𝑛 = 3 no additional data are actually required
as the directions of the sides define such an “infinitesimal” triangle uniquely).

The definition in the finite case is similar.

Proposition 4.3. For each 𝛼 ∈ ℂ with |𝛼| = 1, the image of ∗ under the mapping  + 𝛼2 is a
T-graph, possibly with degenerate faces. In this T-graph,

(i) for each 𝑤 ∈ 𝑊, the image of 𝑤 is a translate of (1+𝛼2𝜂2
𝑤) (𝑤);

(ii) for each 𝑏 ∈ 𝐵, the image of 𝑏 is a translate of 2 Pr( (𝑏), 𝛼𝜂𝑏ℝ).

For a generic choice of 𝛼, no face of  + 𝛼2 is degenerate.

Proof. Let us start by identifying the image of faces of ∗. On a white face 𝑤, one has
𝑑( + 𝛼2) = (1 + 𝛼2𝜂2

𝑤)𝑑𝑧 that proves the first item. The second item is identical, so we just
need to show that  + 𝛼2 is a T-graph. The angle property of a t-embedding together with the
fact that all white faces preserve the orientation imply that the end of each segment either lies on
some other segment or belongs to a degenerate face. Therefore,  + 𝛼2 is a union of segments
that satisfies Definition 4.2 except the fact that the segments are disjoint.
Let us show that there are no overlaps. Suppose that the images of twowhite faces𝑤,𝑤′ overlap.

Choose a point 𝑧 ∈ ( + )(𝑤) ∩ ( + )(𝑤′) such that 𝑧 is not on any segment of the T-graph.
Recall that  and  can be seen as functions from ℂ to ℂ and in this case,  is just the identity.
Let us orient edges of  in the counterclockwise direction around each white face. Let 𝛾 be an
oriented closed edge path surrounding both  (𝑤) and  (𝑤′). Note that  is defined up to an
additive constant, so we can assume that 𝛾 surrounds the point 𝑧. As the orientation of all white
faces of  +  is the same as the orientation of white faces of  the winding of ( + )(𝛾) around
𝑧 is at least 4𝜋. On the other hand, we have clearly |(𝑧′) − (𝑧)| ⩽ | (𝑧′) −  (𝑧)| for all 𝑧′ ∈ 𝛾

so by the Rouché theorem (or “dog on a leash” lemma) the winding of ( + )(𝛾) around 𝑧 is the
same as the winding of 𝛾 around 𝑧, which is 2𝜋. This is a contradiction. □

Note that by Definitions 2.4 and 2.7, 𝛼2 is just the origami map corresponding to the origami
square root function 𝛼𝜂. Also note that for any white face 𝑤, its image is degenerate exactly
for 𝛼2 = −𝜂

2
𝑤. In what follows we focus our attention on the T-graph  +  without loss of

generality.

Definition 4.4. The (continuous time) random walk on a whole plane T-graph with no degen-
erate faces is the Markov chain with the following transition rates. For any interior vertex 𝑣, there
exists a unique segment (𝑣−, 𝑣+) such that 𝑣 ∈ (𝑣−, 𝑣+). We set

𝑞(𝑣 → 𝑣±) ∶=
1|𝑣± − 𝑣| ⋅ |𝑣+ − 𝑣−|

and all other transitions have probability zero.
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F IGURE 6 Possible configurations of a T-graph near the boundary of a finite triangulation. The circled
crosses are boundary vertices (sinks) and the arrows indicate possible transitions for the random walk; see also
Section 5 for a more general discussion.

In the finite triangulation case, for each edge of the T-graph corresponding to a boundary black
face of  (recall that such faces have degree 4) we make a choice between two options to split this
face into two triangles and define the possible transitions accordingly; see Figure 6. Boundary
vertices act as sinks for the chain.

Remark 4.5. The Markov chain 𝑋𝑡 defined above is a martingale. The choice of transition rates is
made so that it fits the expected time for a Brownian motion started at 𝑣 and moving along the
segment [𝑣−, 𝑣+] to hit the endpoints. In particular, in thewhole plane case one hasTr(Var(𝑋𝑡)) =

𝑡 for all 𝑡 ⩾ 0.

For T-graphs associated to t-embeddings with triangular faces, Definition 4.4 can be naturally
extended to degenerate faces as follows.

Definition 4.6. Consider a T-graph of the form  +  and suppose 𝑣 = ( + )(𝑤) is a degener-
ate triangular face. Let 𝑏1, 𝑏2, 𝑏3 be the adjacent faces of𝑤 in ∗ and let 𝑣1, 𝑣2, 𝑣3 be the endpoints
of the corresponding segments in  + .We define transition rates for the randomwalk from 𝑣 as

𝑞(𝑣 → 𝑣𝑘) ∶=
𝑚𝑘|𝑣𝑘 − 𝑣|2 , 𝑚𝑘 ∶=

|𝑑 (𝑏𝑘𝑤
∗)| ⋅ |𝑣𝑘 − 𝑣|∑3

𝑗=1 |𝑑 (𝑏𝑗𝑤
∗)| ⋅ |𝑣𝑗 − 𝑣| .

Remark 4.7. One can understand these transition probabilities as follows. The degenerate vertex 𝑣

corresponds to three vertices of nondegenerate T-graphs  + 𝛼2, with 𝛼 → 1. For 𝛼 = 1, these
vertices forma face of diameter 0 but 𝑣 still contains the information on the aspect ratio of  (𝑤). In
particular, each of these three collapsed vertices now have a possible transition to one of the 𝑣𝑘’s
with the rate |𝑣𝑘 − 𝑣|−2 and a transition to other vertex with infinite rate; see Figure 5. These
infinite rates still depend on the geometry of  (𝑤) and have invariant measure 𝑚𝑘. Clearly, this
invariant measure just multiplies the rates of the long jumps.

It is not hard to see that the lawof the (continuous time) randomwalk on  + 𝛼2 is continuous
in 𝛼, including those producing degenerate faces, see Remark 4.7.
We now make the transition probabilities more explicit in terms of the geometry of the t-

embedding itself. For this, recall Lemma 2.6 and note that it implies that the values 𝜙𝑤 around a
black face of ∗ are monotone with a single jump of 𝜋. If 𝑣 is a nondegenerate vertex of  + ,
denote by 𝑏(𝑣) the unique black face such that 𝑣 is an interior point of the segment ( + )(𝑏(𝑣)).
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F IGURE 7 Notation used in Lemma 4.8: a triangle  (𝑏) in a t-embedding (left) and the corresponding edge
of the T-graph  +  in the nondegenerate (center) and degenerate (right) cases.

If 𝑣 = ( + )(𝑤) is a degenerate face, define by 𝑏1(𝑣), 𝑏2(𝑣), 𝑏3(𝑣) the three black faces adjacent
to 𝑤. Finally, denote the area of a triangle  (𝑏) by 𝑆𝑏.

Lemma 4.8. Let 𝑏 be an inner black face of ∗, let 𝐴, 𝐵, 𝐶 be vertices of the triangle  (𝑏) listed
counterclockwise, let 𝑤𝐴, 𝑤𝐵, 𝑤𝐶 be the opposite white faces adjacent to 𝑏, and let 𝑣𝐴 = ( + )(𝐴)

and similarly for 𝑣𝐵 and 𝑣𝐶 ; see Figure 7. Then, the following holds.

(i) The vertex 𝑣𝐴 lies in the interior of the segment ( + )(𝑏) (i.e., 𝑏 = 𝑏(𝑣𝐴)) if and only if

−𝜋∕2 < 𝜙𝑤𝐶
< 𝜙𝑤𝐴

< 𝜙𝑤𝐵
< 𝜋∕2 .

(ii) If 𝑏 = 𝑏(𝑣𝐴), then

𝑞(𝑣𝐴 → 𝑣𝐵) =
tan(𝜙𝑤𝐴

) − tan(𝜙𝑤𝐶
)

8𝑆𝑏

and 𝑞(𝑣𝐴 → 𝑣𝐶) =
tan(𝜙𝑤𝐵

) − tan(𝜙𝑤𝐴
)

8𝑆𝑏

.

(iii) Vertices 𝑣𝐴 and 𝑣𝐵 coincide if and only if 𝜙𝑤𝐶
= 𝜋∕2. In this case,

𝑞(𝑣 → 𝑣𝐶) =
tan(𝜙𝑤𝐵

) − tan(𝜙𝑤𝐴
)

8(𝑆𝑏1(𝑣) + 𝑆𝑏2(𝑣) + 𝑆𝑏3(𝑣))
, 𝑣 = 𝑣𝐴 = 𝑣𝐵 .

Proof. Note that Pr( (𝑏), 𝜂𝑏ℝ) = 𝜂𝑏 Pr(𝜂𝑏 (𝑏), ℝ) and that by definition of the origami square
root function 𝜂, the sides of the triangle 𝜂𝑏 (𝑏) are parallel to the lines 𝜂𝑤𝐴

ℝ, 𝜂𝑤𝐵
ℝ, 𝜂𝑤𝐶

ℝ. Assum-
ing that these lines are not vertical, it is clear that the angle equality fromLemma 2.6 holdswithout
an additional 𝜋 at the rightmost and the leftmost vertices of the triangle 𝜂𝑏 (𝑏). Therefore, the
interior vertex of Pr(𝜂𝑏 (𝑏), ℝ) corresponds to the vertex of  (𝑏) where the angle equality holds
with an additional 𝜋. This proves (i).
To compute the transition rates from the vertex 𝑣𝐴 such that 𝑏=𝑏(𝐴), note that

|𝑣𝐵 − 𝑣𝐴| = 2 cos(𝜙𝑤𝐶
)|𝐴𝐵| ,

|𝑣𝐴 − 𝑣𝐶| = 2 cos(𝜙𝑤𝐵
)|𝐴𝐶| ,

|𝑣𝐵 − 𝑣𝐶| = 2 cos(𝜙𝑤𝐴
)|𝐵𝐶| .
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This gives the transition rate

𝑞(𝑣𝐴 → 𝑣𝐵) =
1

2 cos(𝜙𝑤𝐶
)|𝐴𝐵| ⋅ 2 cos(𝜙𝑤𝐴

)|𝐵𝐶| =
sin(𝜃(𝑏, 𝐵))

8 cos(𝜙𝑤𝐶
) cos(𝜙𝑤𝐴

)𝑆𝑏

,

where 𝜃(𝑏, 𝐵) = 𝜙𝑤𝐴
− 𝜙𝑤𝐶

is the angle of the triangle  (𝑏) at the vertex 𝐵. This implies (ii).
In the degenerate case (iii), it is obvious that 𝑣𝐴 = 𝑣𝐵 if and only if 𝜙𝑤𝐶

= 𝜋∕2 and that in this
case 𝑣𝐶 is the other endpoint of the segment ( +)(𝑏). First, we note that

| (𝑏𝑤∗
𝐶)| ⋅ |𝑣𝐵 − 𝑣𝐶| = |𝐴𝐵| ⋅ 2 cos(𝜙𝑤𝐴

)|𝐵𝐶| = 4𝑆𝑏 ⋅
cos 𝜙𝑤𝐴

sin 𝜃(𝑏, 𝐵)
= 4𝑆𝑏

because 𝜙𝑤𝐶
= 𝜋∕2 and hence 𝜙𝑤𝐴

= 𝜃(𝑏, 𝐵) − 𝜋∕2. This shows that

𝑚𝑘 = 𝑆𝑏𝑘
∕(𝑆𝑏1

+ 𝑆𝑏2
+ 𝑆𝑏3

).

The rest of the proof is a simple computation similar to the nondegenerate case. □

We now give a simple geometric expression for the invariant measure of the random walk on
the T-graph  + . It is worth noting that in factwe have the samemeasure for each of the random
walks on  + 𝛼2, even though these T-graphs are quite different for different 𝛼 ∈ 𝕋.

Corollary 4.9. For a whole plane T-graph  + , define an infinite measure on its vertices by
𝜇(𝑣) ∶= 𝑆𝑏(𝑣) if 𝑣 is not a degenerate vertex of  +  and 𝜇(𝑣) ∶= 𝑆𝑏1(𝑣) + 𝑆𝑏2(𝑣) + 𝑆𝑏3(𝑣) if 𝑣 is a
degenerate one. The measure 𝜇 is invariant for the random walk on  +  defined above.

Proof. First, assume that there are no degenerate faces. Consider a vertex 𝑣 of  +  and let 2𝑛
be its degree in ∗. The consecutive values 𝜙𝑤𝑗

for the white faces adjacent to 𝑣 differ by either
𝜃(𝑏𝑗, 𝑣) or 𝜃(𝑏𝑗, 𝑣) − 𝜋 (where 𝑏𝑗 are the black vertices around 𝑣). Moreover, it is easy to see that
there is exactly one increment 𝜃(𝑏𝑗, 𝑣) − 𝜋 and without loss of generality we can assume that this
is the increment from 𝜙𝑤𝑛

to 𝜙𝑤1
. By Lemma 4.8, the two outgoing edges from 𝑣 lead to the two

other vertices of 𝑏𝑛 and the total outgoing rate is
1

8
(tan 𝜙𝑤𝑛

− tan 𝜙𝑤1
).

For the incoming rate, we see from Lemma 4.8 that the incoming rate through the edge of
 +  corresponding to 𝑏𝑗 is

1

8
(tan 𝜙𝑤𝑗+1

− tan 𝜙𝑤𝑗
), independently of which vertex it comes from.

Therefore, the total incoming rate is also 1

8
(tan 𝜙𝑤𝑛

− tan 𝜙𝑤1
), which concludes the proof.

Finally, it is not hard to check that, if 𝑣 = ( + )(𝑤) is a degenerate face, then the above argu-
ments still hold, one only needs to consider more possible transitions. An alternative—and more
conceptual—argument is to use the continuity of the randomwalks on  + 𝛼2with respect to 𝛼;
see Remark 4.7. □

Remark 4.10. In the finite case, one clearly cannot define a true invariant measure in presence of
the absorbing boundary. Nevertheless, let us note that the definition of 𝜇 given above still makes
sense. More precisely, recall that the definition of 𝑋𝑡 on a segment ( + )(𝑏) obtained from a
boundary quad 𝑏 requires a choice of a decomposition of 𝑏 into two triangles; see Figure 6. If 𝑣 is
an inner vertex of  +  on such a segment, then we set 𝜇(𝑣) to be the area of the corresponding
triangle and not that of 𝑏. It is easy to see that thus defined measure 𝜇 is subinvariant.
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Clearly, one can exchange the roles of black and white faces replacing the origami map 
by its conjugate . Below we list properties of thus obtained T-graphs with flattened white
faces.

Proposition 4.11. For each 𝛼 ∈ 𝕋, the mapping  + 𝛼2 defines a T-graph and

(i) for each 𝑤 ∈ 𝑊, the edge ( + 𝛼2)(𝑤) is a translate of 2 Pr( (𝑤), 𝛼𝜂𝑤ℝ);
(ii) for each 𝑏 ∈ 𝐵, the face ( + 𝛼2)(𝑏) is a translate of (1 + 𝛼

2
𝜂2
𝑏
) (𝑏);

(iii) let𝛼 = 1 and𝑤 = △𝐴𝐵𝐶 be an interiorwhite face of  . The vertex 𝑣𝐴 ∶= ( + )(𝐴) lies in the
interior of the corresponding segment ( + )(𝑤) of the T-graph if and only if −𝜋∕2 < 𝜙𝑏𝐶

<

𝜙𝑏𝐴
< 𝜙𝑏𝐵

< 𝜋∕2;
(iv) in the above case, the transition rates of the random walk are

𝑞(𝑣𝐴 → 𝑣𝐵) =
tan 𝜙𝑏𝐴

− tan 𝜙𝑏𝐶

8𝑆𝑤

and 𝑞(𝑣𝐴 → 𝑣𝐶) =
tan 𝜙𝑏𝐵

− tan 𝜙𝑏𝐴

8𝑆𝑤

;

(v) vertices 𝑣𝐴 and 𝑣𝐵 coincide if and only if 𝜙𝑏𝐶
= 𝜋∕2. In this case,

𝑞(𝑣 → 𝑣𝐶) =
tan(𝜙𝑏𝐵

) − tan(𝜙𝑏𝐴
)

8(𝑆𝑤1(𝑣) + 𝑆𝑤2(𝑣) + 𝑆𝑤3(𝑣))
, 𝑣 = 𝑣𝐴 = 𝑣𝐵 ;

(vi) the invariant measure 𝜇 for the random walk discussed above is given by 𝜇(𝑣) ∶= 𝑆𝑤(𝑣) if 𝑣 is
nondegenerate and 𝜇(𝑣) ∶= 𝑆𝑤1(𝑣) + 𝑆𝑤2(𝑣) + 𝑆𝑤3(𝑣) otherwise.

Proof. The proof mimics the case of T-graphs  + 𝛼2 with flattened black faces. □

4.2 T-Holomorphic functions as derivatives of harmonic functions
on T-graphs

In this section, we present a relation between t-holomorphic functions on t-embeddings and har-
monic ones on T-graphs, similar to [31, Lemma 2.4]. The harmonic functions are understood
in the usual sense: 𝐻 is harmonic on  + 𝛼2 if 𝐻(𝑋𝑡) is a martingale for the corresponding
random walk 𝑋𝑡. In the whole plane case, such a function can be naturally extended onto seg-
ments of the T-graph in a linear way. Moreover, if all faces of the T-graph are triangles, then
it can also be extended as a function on ℂ that is affine on each face. Conversely, it is easy
to see that any such piecewise affine function restricts to a harmonic function on vertices of
the T-graph. In the finite case, a similar correspondence holds for piecewise affine functions
defined on the union of interior faces only, recall that boundary faces are not triangles; see
Figure 2.

Definition 4.12. On a nondegenerate T-graph  + 𝛼2 with flattened black faces, we define a
derivative operator D, acting on real-valued harmonic functions𝐻, by specifying that

𝑑𝐻 = D[𝐻](𝑏)𝑑𝑧 along each segment ( +𝛼2)(𝑏),
𝑑𝐻 = Re(D[𝐻](𝑤)𝑑𝑧) inside each inner face ( +𝛼2)(𝑤).

(4.1)
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If 𝑣 = ( + 𝛼2)(𝑤) is a degenerate face, calling 𝑏𝑘 = 𝑏𝑘(𝑣), 𝑘 = 1, 2, 3, the neighboring black
faces as before, we define D[𝐻](𝑤) as the unique complex number such that

D[𝐻](𝑏𝑘) = Pr(D[𝐻](𝑤), 𝛼𝜂𝑏𝑘
ℝ) for all 𝑘 ∈ {1, 2, 3}.

Note that 𝛼𝜂𝑏𝑘
ℝ is the conjugated direction of the segment ( + 𝛼2)(𝑏𝑘), and that the above

relation also holds around nondegenerate faces 𝑤 due to (4.1).

We need to check that the definition of D[𝐻](𝑤) for degenerate faces makes sense. Denote
𝑏𝑘 = 𝑏𝑘(𝑣) for shortness. By harmonicity, we have the identity

3∑
𝑘=1

|𝑑 (𝑏𝑘𝑤
∗)||𝑣𝑘 − 𝑣||𝑣𝑘 − 𝑣|2 ⋅ (𝑣𝑘 − 𝑣)D[𝐻](𝑏𝑘) = 0,

which simplifies into

3∑
𝑘=1

𝛼D[𝐻](𝑏𝑘) ⋅ 𝜂𝑏𝑘
|𝑑 (𝑏𝑘𝑤

∗)| = 𝜂𝑤

3∑
𝑘=1

𝛼D[𝐻](𝑏𝑘) ⋅ 𝑑 (𝑏𝑘𝑤
∗) = 0.

This is exactly the condition from Lemma 3.4 that ensures the existence of a complex
number 𝛼D[𝐻](𝑤) with prescribed projections 𝛼D[𝐻](𝑏𝑘) onto the lines 𝜂𝑏𝑘

ℝ.

Remark 4.13. Definition 4.12 extends to complex multiples of real-valued harmonic functions
by linearity (note however that one cannot extend it to all complex-valued 𝐻 as the definition
of D[𝐻](𝑤) is not complex-linear). For what follows, a particularly important case is when 𝐻

is 𝛼ℝ-valued. For such functions, we have D[𝐻](𝑏) = Pr(D[𝐻](𝑤), 𝜂𝑏ℝ) if 𝑏 ∼ 𝑤.

In other words, if 𝐻 is an 𝛼ℝ-valued harmonic function on  + 𝛼2, then its derivative D[𝐻]

satisfies the t-holomorphicity condition. The next definition provides the inverse operation.

Definition 4.14. Let a function 𝐹𝔴 be t-white-holomorphic on (a subset of) the t-embedding  .
We denote by Iℂ[𝐹𝔴] a primitive of the form (3.3). Similarly, for a t-black-holomorphic function𝐹𝔟,
let Iℂ[𝐹𝔟] be a primitive of (3.4). Further, let I𝛼ℝ[𝐹𝔴] ∶= Pr(Iℂ[𝐹𝔴]; 𝛼ℝ) for 𝛼 ∈ 𝕋 and similarly
for 𝐹𝔟.

Proposition 4.15. Let𝐹𝔴 be a t-white-holomorphic function and𝛼 be in the unit circle. The function
I𝛼ℝ[𝐹𝔴] is harmonic on the T-graph  + 𝛼2, except possibly on segments containing boundary
vertices. Furthermore,𝐹𝔴 = D[I𝛼ℝ[𝐹𝔴]] away from the boundary. If𝐹𝔴 satisfies standard boundary
conditions, then the function I𝛼ℝ[𝐹𝔴] is harmonic up to the boundary.
The same statements hold for t-black-holomorphic functions: I𝛼ℝ[𝐹𝔟] is harmonic on the T-graph

 + 𝛼2, up to the boundary if 𝐹𝔟 satisfies standard boundary conditions, and 𝐹𝔟 = D[I𝛼ℝ[𝐹𝔟]].

Proof. Consider a t-white-holomorphic function 𝐹𝔴, two vertices 𝑣, 𝑣′ of ∗, and let 𝑏, 𝑤 be the
black and the white faces of ∗ adjacent to the edge (𝑣𝑣′). Assume first that they are not boundary
faces. Let us check that all relations are consistent for increments between 𝑣 and 𝑣′. Due to (3.3),
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one has

Pr
(
Iℂ[𝐹𝔴](𝑣′) − Iℂ[𝐹𝔴](𝑣), 𝛼ℝ

)
= 𝐹∙

𝔴(𝑏) 𝑑 (𝑣𝑣′) + 𝛼2𝐹∙
𝔴(𝑏) 𝑑 (𝑣𝑣′)

= 𝐹∙
𝔴(𝑏) ⋅

(
𝑑 (𝑣𝑣′) + 𝛼2𝜂

2
𝑏 𝑑 (𝑣𝑣′)

)
= 𝐹∙

𝔴(𝑏) ⋅ (𝑑 + 𝛼2𝑑)(𝑣𝑣′).

In particular, the increments of I𝛼ℝ[𝐹𝔴] are linear along each segment of  + 𝛼2, hence I𝛼ℝ[𝐹𝔴]

is harmonic and for all 𝑏 one has D[I𝛼ℝ[𝐹𝔴]](𝑏) = 𝐹∙
𝔴(𝑏). For white faces, the following holds:

Pr
(
Iℂ[𝐹𝔴](𝑣′) − Iℂ[𝐹𝔴](𝑣), 𝛼ℝ

)
= (𝐹◦

𝔴(𝑤)𝑑 + 𝐹◦
𝔴(𝑤)𝑑 + 𝛼2𝐹◦

𝔴(𝑤)𝑑 + 𝛼2𝐹◦
𝔴(𝑤)𝑑)(𝑣𝑣′)

= Pr
(
𝐹◦

𝑤(𝑤) ⋅ (𝑑 + 𝛼2 𝑑)(𝑣𝑣′) , 𝛼ℝ
)
,

which shows that D[I𝛼ℝ[𝐹𝔴]](𝑤) = 𝐹◦
𝔴(𝑤) according to the definition of the derivative D[𝐻]

for 𝛼ℝ-valued harmonic functions.
Note that the proof given above works up to the boundary as long as the primitive Iℂ

is well-defined, which is the case if 𝐹𝔴 satisfies standard boundary conditions. The case of
t-black-holomorphic functions is similar. □

Remark 4.16. Proposition 4.15 explains why, for a t-white-holomorphic function, its values on
white vertices have a better behavior than those on black vertices. Indeed, in the above repre-
sentation the values 𝐹◦

𝔴 encode the whole derivative of 𝐻 while 𝐹∙
𝔴 only gives the derivative in a

specific direction. Finally, if 𝐻 is regular, 𝐹◦
𝔴 inherits its regularity while 𝐹∙

𝔴 does not.

4.3 T-Holomorphic functions and reversed randomwalks on
T-graphs

This section is devoted to another link between t-holomorphic functions and T-graphs, which
was not discussed in the earlier literature. Namely, we show that projecting the values 𝐹◦

𝔴 (sim-
ilarly, 𝐹∙

𝔟
) onto a given direction, one obtains a harmonic function with respect to the reversed

random walk on an appropriate T-graph.

Proposition 4.17. Let 𝐹𝔴 be a t-white-holomorphic function. For each 𝛼 in the unit circle, the func-
tion Pr(𝐹◦

𝔴, 𝛼ℝ) is a martingale for the time reversal of the continuous time random walk on the
T-graph  − 𝛼2 (with respect to the invariant measure given in Proposition 4.11(vi)).
Similarly, if 𝐹𝔟 is t-black-holomorphic, then Pr(𝐹∙

𝔟
, 𝛼ℝ) is harmonic for the time reversal of the

random walk on the T-graph  − 𝛼2. Both claims hold true under proper identifications of the
white (respectively, black) faces of a t-embedding  with its vertices. Such an identification depends
on 𝛼 and is described in Lemma 4.21.

Remark 4.18. Let 𝑣 = ( −𝛼2)(𝑏) be a degenerate face of the T-graph  −𝛼2, note that this
means 𝜂𝑏 = ±𝛼. In Lemma 4.21, all the three white faces 𝑤𝑘 adjacent to 𝑏 are identified with 𝑣.
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However, if𝐹𝔴 is t-holomorphic, the three valuesPr(𝐹◦
𝔴(𝑤𝑘), 𝛼ℝ) = 𝐹∙

𝔴(𝑏)match. Therefore, even
in presence of degenerate faces, it makes sense to view the function Pr(𝐹◦

𝔴; 𝛼ℝ) as being defined
on vertices of the T-graph  − 𝛼2 via Lemma 4.21.

The proof of Proposition 4.17 goes through a sequence of lemmas. Let us focus on the
case of Im(𝐹◦

𝔴) for simplicity and without true loss of generality. We first assume that the T-
graph  −𝛼2 =  + has no degenerate faces, which is equivalent to saying that Re 𝜂𝑏 ≠ 0 for
all 𝑏.

Lemma 4.19. Let 𝐹𝔴 be a t-white-holomorphic function. Let 𝑤1, 𝑏1, 𝑤2, … be faces adjacent to an
interior vertex 𝑣 of  , listed counterclockwise, and assume that 𝑤𝑘 ∈ 𝑊 ⧵ 𝜕𝑊 for all 𝑘. Then,∑

𝑘

Im(𝐹◦
𝔴(𝑤𝑘)) ⋅ (tan(𝜙𝑏𝑘−1

) − tan(𝜙𝑏𝑘
)) = 0,

where we use a cyclical indexing of vertices.

Proof. Due to the definition of t-white-holomorphic functions, the values 𝐹◦
𝔴(𝑤𝑘) and 𝐹◦

𝔴(𝑤𝑘+1)

have the same projection on the direction 𝜂𝑏𝑘
ℝ. Therefore, for all 𝑘, we have the identity

𝜂𝑏𝑘
⋅ 𝐹◦

𝔴(𝑤𝑘) + 𝜂𝑏𝑘
⋅ 𝐹◦

𝔴(𝑤𝑘) = 𝜂𝑏𝑘
⋅ 𝐹◦

𝔴(𝑤𝑘+1) + 𝜂𝑏𝑘
⋅ 𝐹◦

𝔴(𝑤𝑘+1),

which can be rewritten as

Re(𝐹◦
𝔴(𝑤𝑘)) − Re(𝐹◦

𝔴(𝑤𝑘+1)) +
Im(𝜂𝑏𝑘

)

Re(𝜂𝑏𝑘
)
⋅
(
Im(𝐹◦

𝔴(𝑤𝑘)) − Im(𝐹◦
𝔴(𝑤𝑘+1))

)
= 0.

Summing over 𝑘 and re-indexing, we obtain

∑
𝑘

Im(𝐹◦
𝔴(𝑤𝑘)) ⋅

(
Im(𝜂𝑏𝑘

)

Re(𝜂𝑏𝑘
)

−
Im(𝜂𝑏𝑘−1

)

Re(𝜂𝑏𝑘−1
)

)
= 0,

which is the desired statement written in terms of 𝜂. □

Remark 4.20. One can also interpret the identity of Lemma 4.19 geometrically: successive values
of 𝐹◦

𝔴 have prescribed projections on the lines 𝜂𝑏𝑘
ℝ so they must form a closed polygonal chain

with edges with directions 𝑖𝜂𝑏𝑘
. The identity expresses the fact that this chain is closed.

Using Lemma 2.6, it is easy to see that all the coefficients (tan(𝜙𝑏𝑘−1
) − tan(𝜙𝑏𝑘

)) are positive
except for a single one. As a consequence, for each vertex 𝑣 of ∗ lying away from the boundary,
we can specify a white face 𝑤(𝑣) = 𝑤𝑘(𝑣) corresponding to this negative coefficient, and rewrite
the equations as

Im
(
𝐹◦

𝔴(𝑤(𝑣))
)

=
∑

𝑤≠𝑤(𝑣)∶𝑤∼𝑣

𝑝(𝑤(𝑣), 𝑤) ⋅ Im(𝐹◦
𝔴(𝑤)), (4.2)
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where

𝑝(𝑤(𝑣), 𝑤𝑘) ∶=
(
tan(𝜙𝑏𝑘−1

) − tan(𝜙𝑏𝑘
)
)/(

tan(𝜙𝑏𝑘(𝑣)
) − tan(𝜙𝑏𝑘(𝑣)−1

)
)

. (4.3)

Note that 𝑝(𝑤(𝑣), 𝑤) are positive and sum up to 1. We want to see these as equations for a discrete
harmonic function for a random walk with transition probabilities given by (4.3). Let us write
explicitly that 𝑤(𝑣) = 𝑤𝑘(𝑣), where 𝑘(𝑣) is the unique index such that 𝜙𝑏𝑘(𝑣)−1

< 𝜙𝑏𝑘(𝑣)
and that

this condition is equivalent to the equality 𝜙𝑏𝑘(𝑣)
− 𝜙𝑏𝑘(𝑣)−1

= 𝜋 − 𝜃(𝑣, 𝑤(𝑣)); see Lemma 2.6.

Lemma 4.21. Suppose first that  +  has no degenerate faces. In the whole plane case, the map
𝑣 ↦ 𝑤(𝑣) constructed above is a bijection. Its inverse can be described as follows: ( + )(𝑣) is the
interior vertex of the segment ( + )(𝑤(𝑣)) in  +  (more generally, in  − 𝛼2).
In the finite case, there exists a subset 𝑉′ of the set 𝑉 of vertices of ∗ such that 𝑣 ↦ 𝑤(𝑣) ∶ 𝑉′ →

𝑊 ⧵ 𝜕𝑊 is a bijection. Moreover, 𝑉′ differs from 𝑉 only at the boundary in the sense that all vertices
in 𝑉 ⧵ 𝑉′ are adjacent to boundary faces.
Finally, the bijection 𝑣 ↦ 𝑤(𝑣) is well-defined on ∗ even if the T-graph  +  has degenerate

faces: in this case, each degenerate vertex 𝑣 = ( + )(𝑤) corresponds to three vertices of ∗ and,
further, to three white faces adjacent to 𝑏; see Remark 4.7.

Proof. Given an inner white face 𝑤 of  , let 𝐴, 𝐵, 𝐶 be the adjacent vertices of ∗ listed counter-
clockwise and let 𝑏𝐴, 𝑏𝐵, 𝑏𝐶 be the black faces opposite to 𝐴, 𝐵, 𝐶, respectively. Let 𝑣(𝑤) ∈ ∗ be
the vertex mapped into the inner vertex of the segment ( + )(𝑤) of the T-graph. Due to Propo-
sition 4.11(iii), 𝐴 = 𝑣(𝑤) if and only if −𝜋∕2 < 𝜙𝑏𝐶

< 𝜙𝑏𝐴
< 𝜙𝑏𝐵

< 𝜋∕2, which is also equivalent
to say that 𝜙𝑏𝐵

− 𝜙𝑏𝐶
= 𝜋 − 𝜃(𝐴,𝑤).

Let us check that the composition 𝑣 ↦ 𝑤(𝑣) ↦ 𝑣(𝑤(𝑣)) gives the identity in the whole plane
case. Given a vertex 𝑣, let 𝑏𝑘(𝑣)−1, 𝑏𝑘(𝑣) be the two common black neighbors of 𝑣 and𝑤(𝑣) = 𝑤𝑘(𝑣).
By definition of the mapping 𝑣 ↦ 𝑤(𝑣), we have 𝜙𝑏𝑘(𝑣)

− 𝜙𝑏𝑘(𝑣)−1
= 𝜋 − 𝜃(𝑣, 𝑤(𝑣)). Therefore,

𝑣(𝑤(𝑣)) = 𝑣. The proof of 𝑤(𝑣(𝑤)) = 𝑤 is identical, thus 𝑣 ↦ 𝑤(𝑣) is a bijection.
In the finite case, we just note that the mapping𝑤 ↦ 𝑣(𝑤)makes sense for interior white faces

and denote by 𝑉′ ⊂ 𝑉 the image of𝑊 ⧵ 𝜕𝑊 under this mapping. If 𝑣 is not adjacent to boundary
faces, then the face 𝑤(𝑣) is well-defined and one has 𝑣 = 𝑣(𝑤(𝑣)) ∈ 𝑉′ as above.
Finally, to define the inverse mapping 𝑤 ↦ 𝑣(𝑤) in presence of degenerate faces, one simply

says that 𝑣(𝑤) = 𝐴 if 𝜙𝑏𝐵
− 𝜙𝑏𝑐

= 𝜋 − 𝜃(𝐴,𝑤) (and similarly for 𝐵 and 𝐶). Clearly, this remains a
bijective correspondence if 𝑣’s are considered as vertices of ∗ and not as those of  + . □

Assume for a moment that the T-graph  +  has no degenerate faces. Given a vertex 𝑣 (we
assume that 𝑣 is not adjacent to boundary faces in the finite case), introduce the transition rates

𝑞(𝑤(𝑣) → 𝑤𝑘) ∶=
tan(𝜙𝑏𝑘−1

) − tan(𝜙𝑏𝑘
)

8𝑆𝑤(𝑣)

, 𝑘 ≠ 𝑘(𝑣) (4.4)

provided that 𝑏𝑘−1, 𝑤𝑘, 𝑏𝑘 are consecutive faces adjacent to 𝑣 (and set all other transition rates
from𝑤(𝑣) to zero). Clearly, Equation (4.2) can be viewed as the harmonicity property with respect
to the corresponding (continuous time) randomwalk 𝑋𝑡. Moreover, Lemma 4.21 provides a bijec-
tive correspondence 𝑣 ↔ 𝑤(𝑣), which allows to view this randomwalk as being defined on vertices
of  + . We are now in the position to prove the main result of this section.
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Proof of Proposition 4.17. We first consider the case when  +  has no degenerate faces. We have
seen above that Im(𝐹◦

𝔴) is harmonic for the walk 𝑋𝑡. Thus, it remains to check that its transition
rates agree with the time reversal of the walk on  +  discussed in Proposition 4.11. Consider
two white faces 𝑤,𝑤′ of  sharing a vertex 𝑣. The transition rate 𝑞(𝑤 → 𝑤′) is nonzero if and
only if 𝑤 = 𝑤(𝑣). In this situation, ( + )(𝑣) is an interior point of the segment ( + )(𝑤) and
hence is an endpoint of ( + )(𝑤′). Therefore, the forward random walk on  +  also has a
nonzero transition rate from 𝑣(𝑤′) to 𝑣 if and only if 𝑤′ ≠ 𝑤(𝑣). Moreover, it is easy to see from
Proposition 4.17(iv) that

𝑞(𝑣(𝑤𝑘) → 𝑣) =
tan(𝜙𝑏𝑘−1

) − tan(𝜙𝑏𝑘
)

8𝑆𝑤𝑘

, 𝑘 ≠ 𝑘(𝑣)

if 𝑏𝑘−1, 𝑤𝑘, 𝑏𝑘+1 are faces adjacent to 𝑣 listed counterclockwise. As the invariant measure of the
random walk is given by 𝜇(𝑣) = 𝑆𝑤(𝑣), this concludes the proof in the nondegenerate case.
Finally, if  +  has degenerate faces, we still see that Pr(𝐹◦

𝔴, 𝛼ℝ) is harmonic for the time
reversal of the walk on  − 𝛼2, for generic values 𝛼. By continuity, we can take the limit 𝛼 → 𝑖

in order to obtain the desired result for  + , see Remarks 4.7 and 4.18. □

5 GENERALIZATION TO FACES OF HIGHER DEGREE

In this section, we extend the framework of t-holomorphicity from triangulations to higher degree
faces. This discussion also applies ad verbum to boundary quads of a finite triangulation provided
that the t-holomorphic functions in question satisfy standard boundary conditions. Recall that
the general definition of a t-embedding and of the origami map was given in Section 2 without
any restriction on degrees of faces. The general idea is that the “proper” notion to extend is the
kernel of 𝐾 and the link between t-holomorphic functions on a t-embedding and harmonic ones
on the corresponding T-graphs. Compared to triangulations, the main missing point is the exact
extension of functions 𝐹𝔴 or 𝐹𝔟 from one bipartite class to the other (e.g., an extension of 𝐹∙

𝔴

to 𝐹◦
𝔴).

Below we define such an extension by splitting higher degree faces into triangles, similar
to our treatment of the boundary of a finite triangulation discussed in Subsection 4.1; see also
Figure 6. (A simplest example of this kind appears when discussing the link between the most
standard discretization of the complex analysis on the square grid and the framework developed
in this paper, we refer the interested reader to Subsection 8.4.1 for details.) Though the exact val-
ues 𝐹◦

𝔴 on these new triangles depend on the choice of a splitting, this dependence is local: if
one changes the splitting of a single face 𝑤, only the values of 𝐹𝔴 on the new faces obtained
from𝑤 change. Moreover, the a priori regularity estimates discussed in Section 6 (e.g., see Propo-
sition 6.13) eventually imply that these values are actually almost independent of theway inwhich
faces are split, at least for bounded t-holomorphic functions and at faces lying in the bulk of a
t-embedding.
Recall that 𝜂 and  are the origami square root function and the origami map associated to a

t-embedding  , and that 𝐵 and 𝑊 are the sets of black and white faces of  , respectively. The
link between t-embeddings  and T-graphs  + 𝛼2 and  + 𝛼2 remains exactly the same as
in Proposition 4.3 and Proposition 4.11, respectively, with the same proof. Namely,
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∙ for each 𝛼 ∈ 𝕋, both  + 𝛼2 and  + 𝛼2 are T-graphs with possibly degenerate faces; for a
generic choice of 𝛼 there are no degenerate faces;

∙ in the T-graph  + 𝛼2 the following holds:
– for each 𝑏 ∈ 𝐵, the image of 𝑏 is a translate of 2 Pr( (𝑏), 𝛼𝜂𝑏ℝ);
– for each 𝑤 ∈ 𝑊, the image of 𝑤 is a translate of (1+𝛼2𝜂2

𝑤) (𝑤);
– if a face (1 + 𝛼2𝜂2

𝑤) (𝑤) is degenerate (i.e., if 𝛼2 = −𝜂
2
𝑤), then the “infinitesimal” polygon

assigned to it is homothetic to 𝛼𝜂𝑤 (𝑤);
∙ in the T-graph  + 𝛼2 the following holds:
– for each 𝑤 ∈ 𝑊, the image of 𝑤 is a translate of 2 Pr( (𝑤), 𝛼𝜂𝑤ℝ);
– for each 𝑏 ∈ 𝐵, the image of 𝑏 is a translate of (1 + 𝛼

2
𝜂2
𝑏
) (𝑏);

– if a face (1 + 𝛼
2
𝜂2
𝑏
) (𝑤) is degenerate (i.e., if 𝛼2 = −𝜂2

𝑏
), then the “infinitesimal” polygon

assigned to it is homothetic to 𝛼𝜂𝑏 (𝑤).

To simplify the discussion, in the rest of this section we focus on the T-graphs  +  and  +

 and assume that both contain no degenerate faces. Moreover, we also assume that no pair of
distinct vertices of  is mapped onto the same vertex of  +  or  +  (beyond triangulations,
this might happen even in absence of degenerate faces in the T-graph if, for example, two vertices
of  (𝑏) are projected to the same point of the segment ( + )(𝑤) from opposite sides). As in
Section 4, these nondegeneracy assumptions can be dropped using continuity arguments with
respect to 𝛼, thus all the statements readily extend to the general case.
Note that the definition of harmonic functions on T-graphs still makes sense: one says that a

function𝐻, defined on vertices of, for example,  + , is harmonic if it admits a linear continua-
tion onto each edge, the only difference is that these edges can now containmore than one interior
point. In particular, the derivative D[𝐻] of a harmonic function on  +  is still well-defined on
black faces of  . As already mentioned above, we keep this link with harmonic functions on T-
graphs (see Proposition 4.15) as the definition of a t-holomorphic function. Recall that we denote
by 𝐵𝑈 the subset of 𝐵 lying in a region 𝑈 ⊂ ℂ and similarly for other sets.

Definition 5.1. Let𝑈 ⊂ ℂ be a subregion of a t-embedding  . We say that a function 𝐹∙
𝔴 defined

on 𝐵𝑈 is t-white-holomorphic if there exists a real-valued harmonic function 𝐻 defined on the
corresponding subset of the T-graph  +  such that 𝐹∙

𝔴 = D[𝐻]. If the region 𝑈 is not simply
connected, we require that such a harmonic primitive exists on all simply connected subregions
of 𝑈.
Similarly, a function 𝐹◦

𝔟
defined on𝑊𝑈 is t-black-holomorphic if it can be locally viewed as the

derivative of a real-valued harmonic function defined on the corresponding subset of  + .
As in the case of triangulations, this definition can be reformulated in a more invariant way via

the Kasteleyn matrix 𝐾 and the contour integration. For instance, 𝐹∙
𝔴 is t-white-holomorphic if

and only if {
𝐹∙

𝔴(𝑏) ∈ 𝜂𝑏ℝ for all 𝑏 ∈ 𝐵𝑈 ,
∮𝜕𝑤 𝐹∙

𝔴 𝑑 = 0 for all 𝑤 ∈ 𝑊𝑈 ;

the latter condition is equivalent to say that (𝐹∙
𝔴𝐾)(𝑤) = 0. This equivalence also shows that con-

sidering derivatives of 𝛼ℝ-valued harmonic functions on the T-graph  + 𝛼2 one gets the same
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F IGURE 8 A schematic representation of the effect of splitting a face, left in the t-embedding, middle in the
T-graph and right in the combinatorial graph. The gray region around the added edge in the left picture
represents the fact that we consider this edge as a black bigon in the t-embedding  ◦

spl
. We set 𝜂𝑤1

=𝜂𝑤2
∶=𝜂𝑤 and

also assign a value 𝜂𝑏 to the new bigon 𝑏 so that (2.1) holds for  ◦
spl
.

notion of t-holomorphic functions on  . The standard boundary conditions are defined exactly
in the same way as for triangulations.
We now move on to defining the “true” values 𝐹◦

𝔴 of a t-white-holomorphic function out of
its values 𝐹∙

𝔴. Recall that all faces of a t-embedding are convex due to the angle condition. If the
degree of 𝑤 ∈ 𝑊 is 𝑛 > 3, then the condition (𝐹∙

𝔴𝐾)(𝑤) = 0, which can be written as a linear
equation on 𝑛 real variables, no longer guarantees the existence of a complex value 𝐹◦

𝔴(𝑤) that
has prescribed projections on the directions 𝜂𝑏ℝ for all 𝑏 ∈ 𝐵 surrounding 𝑤. This motivates the
following definition.

Definition 5.2. Given a t-embedding  , we say that  ◦
spl
is a white splitting of  if  ◦

spl
is obtained

from  by adding diagonal segments in all its white faces of degree at least 4 so that they are
decomposed into triangles; see Figure 8. With a slight abuse of the terminology we still view  ◦

spl

as a t-embedding by interpreting each added segment as a black bigon with zero angles, note that
this does not break the angle condition. Let ◦

spl
= 𝐵◦

spl
∪ 𝑊◦

spl
be the associated dimer graph; note

that 𝐵◦
spl
contains not only all black faces of  but also the newly constructed bigons.

We mention several simple properties of this construction in the next lemma.

Lemma 5.3. The origami square root function 𝜂 extends from  to ◦
spl

so that it keeps its values
on all original black faces, coherently assigns values to black bigons, and inherits its value 𝜂𝑤 on all
white faces obtained from 𝑤. In particular, the t-embeddings  and  ◦

spl
define the same origami

map .
The T-graph ( + )◦

spl
is obtained from  +  by splitting all its white faces with the same diag-

onals as in the definition of spl. Each harmonic function defined on vertices and edges of  + 
extends to new edges of ( + )◦

spl
in a unique way.

Proof. For the definition of the origami square root function on  ◦
spl
, note that, when propagating

its value through the different pieces of a white face of  , we reflect two times on each added
diagonal. Therefore, these values have to be equal on all such pieces and hence the origami square
root function on  ◦

spl
agrees with the original function 𝜂 everywhere.

For the fact that ( + )◦
spl

is obtained from  +  by splitting faces (see Figure 8), the proof
is simply to write explicitly the restriction of ( +)◦

spl
to a white face of  . Finally, note that the
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extra edges that we add when splitting white faces have no interior vertices, therefore the two
notions of harmonic functions on  +  and on ( + )◦

spl
are tautologically the same. □

With a slight abuse of the notation we still denote the origami square root function on  ◦
spl

by 𝜂. Thanks to the correspondence between harmonic functions on (vertices and edges of)  + 
and on ( + )◦

spl
, we can now reformulate the t-holomorphicity condition on  similarly to the

case of triangulations. Geometrically, this can be seen as considering complex-valued gradients of
affine extensions of a harmonic function𝐻 inside faces of  + , which is not necessarily possible
for faces of high degree and thus requires a choice of a triangulation.

Proposition 5.4. For each white splitting  ◦
spl

of  , a function 𝐹∙
𝔴 defined on a set 𝐵𝑈 is t-

white-holomorphic in the sense of Definition 5.1 if and only if it can be extended to faces of  ◦
spl

so
that

𝐹∙
𝔴(𝑏) = Pr(𝐹◦

𝔴(𝑤), 𝜂𝑏ℝ) if 𝑏 ∼ 𝑤, 𝑏 ∈ (𝐵◦
spl

)𝑈, 𝑤 ∈ (𝑊◦
spl

)𝑈. (5.1)

(In particular, note that we also extend 𝐹∙
𝔴 from 𝐵 to the bigger set 𝐵◦

spl
.) The t-black-holomorphicity

property admits a similar reformulation via black splittings  ∙
spl

of  , defined similarly to
Definition 5.2.

Proof. Let 𝐹∙
𝔴 be t-white-holomorphic, and let 𝐻 be its primitive defined on vertices and edges

of  + . By Lemma 5.3, the function 𝐻 can also be seen as a harmonic function on ver-
tices and edges of ( + )◦

spl
and hence its derivative can be defined on 𝑊◦

spl
and satisfies (5.1)

because 𝑊◦
spl

has triangular faces. Conversely, if 𝐹𝔴 satisfies (5.1), then it admits a real har-
monic primitive defined on vertices and edges of ( + )◦

spl
, therefore its restriction to 𝐵𝑈 is

t-white-holomorphic. □

We nowmove to forward and backward randomwalks on T-graphs  +  and  +  obtained
from general t-embeddings. Recall that we assume that these graphs do not have degenerate faces
and, moreover, that all vertices of  have distinct positions in these T-graphs. (A general case
follows by considering, e.g., T-graphs  + 𝛼2 with 𝛼 → 1 and using the continuity in 𝛼.) The
only difference with the case of triangulations is that the edges of T-graphs can now contain more
than one interior vertex.

Definition 5.5. On a T-graph, we say that a continuous time Markov chain 𝑋𝑡 is a version of the
(continuous time) random walk on this T-graph if its jump rates 𝑞(𝑣 → 𝑣′) satisfy the following
property. For any segment 𝐿 of the T-graph and any interior vertex 𝑣 lying on 𝐿, there exist exactly
two vertices 𝑣− and 𝑣+ in the closure of 𝐿 and on different sides from 𝑣 such that

𝑞(𝑣 → 𝑣±) = (|𝑣± − 𝑣| ⋅ |𝑣+ − 𝑣−|)−1

and 𝑞(𝑣 → 𝑣′) = 0 for all other transitions.

Note that all versions 𝑋𝑡 of the random walk on a T-graph are martingales and we also nor-
malize the jump rates so that the process |𝑋𝑡|2 − 𝑡 is a martingale too. The standard randomwalk
is obtained when one always chooses 𝑣± to be the endpoints of 𝐿. Introducing versions of this
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randomwalkmeans that we also allow transitions between interior vertices on the same segment.
As the chain is still a martingale, this difference essentially amounts to a time change only. Nev-
ertheless, it is crucial for a geometric interpretation of the invariant measure as discussed below.
In fact, we already used a version of the standard walk when discussing the boundary of a finite
triangulations in Subsection 4.1, see Figure 6.
It is easy to see that each splitting  ∙

spl
of the black faces of  naturally defines a version of the

random walk on  +  by using the recipe described in Lemma 4.8. In particular, the correspon-
dence 𝑣 ↦ 𝑏(𝑣) ∈ 𝐵∙

spl
can be defined in exactly the same way by inspecting the increments of the

nearby values 𝜙𝑤𝑗
, including those assigned to 𝑤𝑗 ∈ 𝑊∙

spl
⧵ 𝑊. Geometrically, this can be seen as

interpreting each segment of  +  (which may have several interior points) as the superimpo-
sition of several segments of ( + )∙

spl
(each with only one interior point), let us repeat that this

procedure was already sketched in Subsection 4.1 to treat the boundary faces.
As in the triangulation case, we can define a measure on vertices of the T-graph  +  by set-

ting 𝜇∙
spl

∶= 𝑆𝑣(𝑏), in the notation we emphasize the fact that this measure depends on the splitting
because 𝑏(𝑣) is a face of  ∙

spl
and not of  itself. (Recall also that possible degeneracies in the T-

graph can be treated by working with  + 𝛼2 instead and passing to the limit 𝛼 → 1.) The next
lemma clarifies the advantage of considering versions of the random walk on T-graphs.

Lemma 5.6. In the whole plane case, 𝜇∙
spl

is an invariant measure for the version of the random
walk on  +  associated to the splitting  ∙

spl
. In the finite case this measure, considered on inner

vertices of  + , is subinvariant provided that boundary vertices act as sinks.
Proof. This follows from exactly the same computation as in the proof of Corollary 4.9 as in this
proof we never used the fact that white faces are triangles but only local relations around vertices
of ∗ and the geometry of black faces. For interior vertices adjacent to boundary faces, the map-
ping 𝑣 ↦ 𝑏(𝑣) is still well-defined, we have the same outgoing rate but the incoming rate might
be smaller; see Figure 6. □

Note that the same measure is invariant for each of the random walks on T-graphs  + 𝛼2
provided that we use a version corresponding to a fixed splitting of black faces. Clearly, similar
considerations apply to (versions of) random walks on T-graphs  + 𝛼2 associated with a split-
ting  ◦

spl
of white faces. Let 𝜇◦

spl
be the corresponding invariant measure and 𝑋𝑡 be the reversed

(with respect to this measure) randomwalk on  + . We now claim that the key Proposition 4.17
also generalizes to faces of higher degrees in a straightforward way.

Proposition 5.7. Let  ◦
spl

be a white splitting of  and 𝐹𝔴 be a t-white-holomorphic function,
whose values 𝐹◦

𝔴 on white faces of  ◦
spl

are defined according to (5.1). Then, the function Im𝐹◦
𝔴

is harmonic for the time reversal (with respect to 𝜇◦
spl
) of the random walk on spl + , under the

identification 𝑣 ↦ 𝑤(𝑣) ∈ 𝑊◦
spl
.

Similarly, for each 𝛼 ∈ 𝕋, the function Pr(𝐹◦
𝔴, 𝛼ℝ) is harmonic with respect to the time reversal

(with respect to 𝜇◦
spl
) of the random walk on  + 𝛼2.

Proof. Again, the proof repeats the proof of Proposition 4.17, almost word by word. Indeed, in the
proof of Lemma 4.19 we never used the fact that black faces are triangles. This allows us to define
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a Markov chain𝑋𝑡 on vertices of  +  such that the function Im(𝐹◦
𝔴) is harmonic for that chain.

Furthermore, the definition of the correspondence 𝑣 ↦ 𝑤(𝑣) via the increments of 𝜙𝑏𝑘
, 𝑏𝑘 ∈ 𝐵◦

spl

remains the same. This ensures that 𝑋𝑡 is a time reversal of some version of the random walk
on  + . Finally, the algebraic part of computations of the transition rates also does not rely
upon the shape of black faces and thus still holds word by word. □

Remark 5.8. Formally, the choice of a specific version of the forward random walk affects in a
nontrivial way the law of its time reversal. However, one can check that the law of the discrete
time sequence of edges of  +  used by the forward or backwardwalk does not depend onwhich
version we choose, at least among versions associated to different splittings. This reflects the fact
that changing the splitting of a single white face one does not change values of 𝐹◦

𝔴 at other white
faces of  .
We conclude this section by formulating the modifications required in assumption Exp-Fat(𝛿)

in the case of higher degrees of faces. Recall that we call a triangle “𝜌-fat” if it contains a disc of
radius 𝜌; we use the same terminology for faces of degree 𝑛 ⩾ 4. We also introduce an artificial
extension of this notion to the case 𝑛 = 2: a bigon 𝑏 ∈ 𝐵◦

spl
is called 𝜌-fat if all the edges on at least

one of the corresponding boundary arcs of the white face 𝑤 ∈ 𝑊 containing 𝑏 belong to 𝜌-fat
black faces. (The notion of 𝜌-fat bigons 𝑤 ∈ 𝑊∙

spl
is defined similarly.)

Assumption 5.9 (Exp-Fat(𝛿), general case)). We say that t-embeddings  𝛿 satisfy the assump-
tion Exp-Fat(𝛿) (or, more accurately, Exp-Fat(𝛿, 𝛿′)) as 𝛿 → 0 on a common region 𝑈 ⊂ ℂ (or,
more generally, on regions 𝑈𝛿 depending on 𝛿) if there exist auxiliary scales 𝛿′ = 𝛿′(𝛿) and
splittings  ◦,𝛿

spl
,  ∙,𝛿

spl
of  such that 𝛿′ → 0 as 𝛿 → 0 and the following is fulfilled:

∙ if one removes all “𝛿 exp(−𝛿𝛿−1)-fat” black faces (including bigons as defined above) and all
“𝛿 exp(−𝛿′𝛿−1)-fat” white triangles from  ◦,𝛿

spl
, then each of its remaining vertex-connected

components has diameter at most 𝛿′,

and if a similar condition for  ∙,𝛿
spl

holds.

Though the notion of “𝜌-fat bigons” used in Assumption 5.9 does not look very natural, it
turns out to be useful in the context of a priori Harnack estimates of t-holomorphic functions
via their harmonic primitives on T-graphs. We refer the reader to the proof of Corollary 6.18 for
the motivation of this definition.

6 A PRIORI REGULARITY THEORY FOR t-HOLOMORPHIC
FUNCTIONS ON t-EMBEDDINGS AND FORHARMONIC FUNCTIONS
ON ASSOCIATED T-GRAPHS

This section is devoted to a priori regularity properties of t-holomorphic functions on t-
embeddings and of harmonic functions on T-graphs obtained thereof. Let us emphasize that in
what follows we do not rely upon any type of “uniformly bounded angles” or “uniformly fat faces”
assumptions. In particular, the crucial uniform ellipticity estimate for random walks on T-graphs
(see Subsection 6.2) is fully independent of the microscopic (below the scale 𝛿) structure of the
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t-embeddings  𝛿 provided that the corresponding origami maps 𝛿 satisfy the “Lipschitzness at
large scales” assumption Lip(𝜅, 𝛿) with 𝜅 < 1.
We then discuss corollaries of this estimate in Subsections 6.3 and 6.4, notably the a priori

Hölder-type regularity for both harmonic and t-holomorphic functions and its consequences
for subsequential scaling limits. In Subsection 6.5 we go even further and prove the a priori
Lipschitz-type regularity for harmonic functions on T-graphs under a mild additional assump-
tion Exp-Fat(𝛿). Finally, Subsection 6.6 also relies upon additional assumption Exp-Fat(𝛿) and
contains a technical result that we later use in Section 7.

6.1 Preliminaries

We begin this section with a usual estimate for large deviations of a martingale process with
bounded increments. Then we discuss simple distortion estimates for “𝜅-Lipschitz at large scale,”
𝜅 < 1, perturbations of the identity mapping in the complex plane. When speaking about random
walks on T-graphs obtained from general t-embeddings we always assume that an appropriate
splitting (either black or white) is made as discussed in Section 5 and that 𝑋𝑡 denotes a version of
the random walk corresponding to this splitting.

Proposition 6.1. For all 𝑡, 𝜆 > 0, the following estimate is fulfilled:

ℙ
(
sup𝑠∈[0,𝑡] |𝑋𝑠 − 𝑋0| ⩾ 2𝜆

√
𝑡
)

⩽ 4 exp
(
−1

2
𝜆2 ⋅ (1 + 2

3
𝛿𝜆𝑡−1∕2 )−1

)
.

In particular, the left-hand side is exponentially small in 𝜆 uniformly over all 𝑡 ⩾ 𝛿2.

Proof. Let 𝑌𝑡 ∶= Re(𝑋𝑡), note that the process 𝑌𝑡 inherits the martingale property of 𝑋𝑡. As the
jumps of 𝑋𝑡 are bounded by 2𝛿, so do those of 𝑌𝑡. Therefore, one can apply (a continuous time
version of) Bennett’s inequality, which says that

ℙ
(
sup𝑠∈[0,𝑡](𝑌𝑠 − 𝑌0) ⩾ 𝑎

)
⩽ exp

(
−

Var(𝑌𝑡)

4𝛿2
𝐻

(
2𝛿𝑎

Var(𝑌𝑡)

))

for all 𝑎, 𝑡 > 0, where 𝐻(𝑥) ∶= (1 + 𝑥) log(1 + 𝑥) − 𝑥 ⩾
1

2
𝑥2 ⋅ (1 + 1

3
𝑥)−1 for 𝑥 ⩾ 0. As the func-

tion 𝜎2𝐻(𝑥∕𝜎2) is decreasing in 𝜎, and Var(Re𝑋𝑡) ⩽ TrVar(𝑋𝑡) = 𝑡, one gets

ℙ
(
sup𝑠∈[0,𝑡] Re(𝑋𝑠 − 𝑋0) ⩾ 𝜆

√
𝑡
)

⩽ exp
(
−1

4
𝑡𝛿−2𝐻(2𝛿𝜆𝑡−1∕2)

)
⩽ exp

(
−1

2
𝜆2 ⋅ (1 + 2

3
𝛿𝜆𝑡−1∕2 )−1

)
,

a version of the Bernstein inequality; and similarly for −Re(𝑋𝑠 − 𝑋0) and for ± Im(𝑋𝑠 − 𝑋0). We
conclude the proof by saying that, for sup𝑠∈[0,𝑡] |𝑋𝑠 − 𝑋0| to be greater than 2𝜆, at least one among
these quantities must be greater than 𝜆. □

Corollary 6.2. There exist 𝑛0 ∈ ℕ such that the following estimate holds:

ℙ
(
sup𝑠∈[0,𝑛0𝑡]

|𝑋𝑠 − 𝑋0| ⩾
1

4

√
𝑡
)

⩾
3

4
for all 𝑡 ⩾ 𝛿2.
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Proof. This is a straightforward corollary of the tail estimate given above and of the Markov prop-
erty. Recall that we have 𝔼|𝑋𝑡 − 𝑋0|2 = 𝑡 for each 𝑡 ⩾ 0. Let us now find a (big) constant 𝐶0 > 0

such that

𝔼(|𝑋𝑡 − 𝑋0|2𝟏|𝑋𝑡−𝑋0|⩽𝐶0

√
𝑡
) ⩾

1

2
𝑡

and hence

ℙ(|𝑋𝑡 − 𝑋0| ⩾
1

2

√
𝑡) ⩾

1

4
𝐶−2

0

for all 𝑡 ⩾ 𝛿2. It is now enough to choose big enough 𝑛0 so that (1 − 1

4
𝐶−2

0
)𝑛0 ⩽

1

4
and apply this

estimate 𝑛0 times using the Markov property of 𝑋𝑡. □

We now discuss distortion properties of the correspondence between t-embeddings and T-
graphs under assumption Lip(𝜅, 𝛿). Let 𝛼 ∈ 𝕋 and  be one of the mappings 𝑧 ↦ ( + 𝛼2)(𝑧)

or 𝑧 ↦ ( + 𝛼2)(𝑧). Note that  is “almost a homeomorphism”: it can be viewed as a limit of
bi-Lipschitz mappings defined similarly with |𝛼| < 1. It is easy to see that assumption Lip(𝜅, 𝛿)
implies the inclusions

𝐵((𝑧), (1 − 𝜅)𝑟) ⊂ (𝐵(𝑧, 𝑟)) ⊂ 𝐵((𝑧), (1 + 𝜅)𝑟) provided that 𝑟 ⩾ 𝛿. (6.1)

Indeed, the upper bound is trivial while the lower one follows from the fact that the image of the
boundary (𝜕𝐵(𝑧, 𝑟)) remains at distance at least (1 − 𝜅)𝑟 from (𝑧) and that this curve necessar-
ily encircles (𝑧) due to the “dog on a leash” lemma or Rouché’s theorem similarly to the proof
of Proposition 4.3.

Lemma 6.3. There exist constants 𝑞0 = 𝑞0(𝜅) ⩾ 1 and 𝑐1(𝜅), 𝑐2(𝜅) > 0 such that the following esti-
mates hold for all T-graphs  + 𝛼2 and  + 𝛼2, 𝛼 ∈ 𝕋, obtained from t-embeddings satisfying
assumption Lip(𝜅, 𝛿) and for all 𝛽 ∈ 𝕋:

𝑐1(𝜅) ⋅ Area(𝑄) ⩽
∑
𝑣∈𝑄

|Re( 𝛽𝜂𝑏(𝑣) )|2𝑆𝑏(𝑣) ⩽
∑
𝑣∈𝑄

𝑆𝑏(𝑣) ⩽ 𝑐2(𝜅) ⋅ Area(𝑄)

for each square 𝑄 of size (𝑞0𝛿) × (𝑞0𝛿) drawn over the T-graph. Let us also denote

𝑐0(𝜅) ∶= 𝑐1(𝜅)∕𝑐2(𝜅) . (6.2)

Proof. Let 𝑄 be the preimage of 𝑄 on the t-embedding and 𝑉(𝑄 ) denote the set of vertices
of  lying in 𝑄 . The upper bound 𝑐2(𝜅)𝛿2 follows from the fact that 𝑄 is contained in a disc of
radius (1 − 𝜅)−1 ⋅ 2−1∕2𝑞0𝛿 due to (6.1) and that all faces 𝑏 have diameter less than 𝛿. To verify the
lower bound 𝑐1(𝜅)𝛿2, note that

∑
𝑣∈𝑄

|Re( 𝛽𝜂𝑏(𝑣) )|2𝑆𝑏(𝑣) =
1

4

∑
𝑣∈𝑄

Area(( + 𝛽2)(𝑏(𝑣))).

It follows from (6.1) that the image ( + 𝛽2)(𝑄 ) contains a disc of radius 3𝛿 provided that 𝑞0 is
chosen big enough. Therefore, the union of images of black faces 𝑏(𝑣) with 𝑣 ∈ 𝑄 contains a disc
of radius 𝛿, which implies the result. □
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6.2 Variance estimate for the randomwalks on T-graphs under
assumption Lip(𝜿, 𝜹)

In this section, we prove the key ellipticity estimate for the continuous time random walks 𝑋𝑡 on
T-graphs associated to t-embeddings; see Definitions 4.4 and 4.6. The estimates given below are
fully independent of the microscopic (below the scale 𝛿) structure of t-embeddings  𝛿 provided
that the corresponding origami maps𝛿 satisfy the “Lipschitzness at large” assumption Lip(𝜅, 𝛿)
with 𝜅 < 1. Throughout this section, the scale 𝛿 is fixed, thus we write  =  𝛿 and  = 𝛿 for
shortness. In what follows, all constants notated like 𝑡0, 𝜎0, 𝑞0, 𝑐0, and so on, can (and actually do)
depend on 𝜅 but not on the t-embedding  𝛿 or on 𝛿.

Proposition 6.4. There exist constants 𝑡0 = 𝑡0(𝜅) > 0 and 𝜎0 = 𝜎0(𝜅) > 0 such that, for each t-
embedding  satisfying assumption Lip(𝜅, 𝛿), each 𝛽 ∈ 𝕋, and each starting point 𝑋0, the following
estimate holds for the continuous time random walk 𝑋𝑡 on  + :

Var(Re( 𝛽(𝑋𝑡0𝛿
2 − 𝑋0))) ⩾ 𝜎2

0𝛿
2. (6.3)

Due to the Markov property, (6.3) also implies that Var(Re(𝛽(𝑋𝑡 − 𝑋0))) ⩾
1

2
𝜎2

0
𝑡 for all 𝑡 ⩾ 𝑡0𝛿

2.

Proof. Without loss of generality, we can assume that 𝑋0 = 0, 𝛿 = 1 and 𝛽 = 𝑖, that is, we aim to
prove that Var(Im𝑋0

𝑡0
) ⩾ 𝜎0. The proof goes by contradiction and relies upon two lemmas given

below. Eventually, we will set (see Lemma 6.6(ii) for the motivation of this choice)

𝜎2
0 ∶= 1

8
𝑞2
0𝐿

−1, 𝑡0 ∶= 16𝑛0𝑞
2
0𝐿

4 + 𝐾0𝐿 (6.4)

for a large enough 𝐿 ∈ 2ℕ, where 𝑛0 ∈ ℕ is fixed in Corollary 6.2, 𝑞0 = 𝑞0(𝜅) ⩾ 1 is fixed in
Lemma 6.3, and a (big) constant 𝐾0 = 𝐾0(𝜅) will be chosen later.
Denote

𝐷 ∶= [−𝑞0𝐿
2, 𝑞0𝐿

2] × [−𝑞0, 𝑞0(𝐿 − 1)] (6.5)

and 𝜈(⋅) ∶= 𝜇(⋅)∕𝜇(𝐷) be the normalized invariant measure of the random walk on  + ,
restricted to vertices of the T-graph lying inside 𝐷. Denote by 𝑋𝜈

𝑡 the random walk started at the
measure 𝜈 and stoppedwhen leaving𝐷. Let 𝜈𝑡 be the law of𝑋𝜈

𝑡 , note that 𝜈𝑡(𝑣) < 𝜈0(𝑣) for all 𝑣 ∈ 𝐷

because of the contribution of those trajectories that exit 𝐷 and a lack of those who enter 𝐷 from
outside. Of course, 𝜈𝑡 remains a probability measure: the remaining mass is concentrated at the
boundary of 𝐷.
Let us first informally explain the intuition behind the proof given below. The assumption

Var(Im𝑋0
𝑡0
) < 𝜎2

0
for big 𝑡0 and small 𝜎0 means that the random walk started at the origin propa-

gates almost only in the horizontal direction. This implies the existence of a “bottom-screening”
path Γ (see the proof of Lemma 6.6(ii)) that crosses the rectangle 𝐷 horizontally near its bottom
side and has the property that for each vertex 𝑣 ∈ Γ the probability that the random walk started
at 𝑣 exits from𝐷 through the bottom side is small. If we now start the randomwalk at the invariant
measure 𝜈, then the existence of such a “bottom-screening” path implies that the particles cannot
exit from 𝐷 through the bottom side as, for topological reasons, they should cross Γ before doing
that. In this scenario, themartingale property of Im(𝑋𝑡) implies that all particles in𝐷move almost
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only in the horizontal direction, which is not hard to rule out using the assumption Lip(𝜅, 𝛿) and
the geometric interpretation of the invariant measure 𝜈; see Lemma 6.5.
Recall that the constant 𝑐0 = 𝑐0(𝜅) > 0 is given by (6.2).

Lemma 6.5. For each 𝐾 ⩾ 1, the estimate

Var(Im(𝑋𝜈
𝐾𝐿 − 𝑋𝜈

0)) ⩾
1

2
𝑐0 ⋅ 𝐾𝐿

holds for all sufficiently (depending on 𝜅 and 𝐾) large 𝐿.

Proof. As the edge ( + )(𝑏(𝑣)) of the T-graph corresponding to a vertex 𝑣 goes in the
direction 𝜂𝑏, we see that

Var(Im(𝑋𝜈
𝐾𝐿 − 𝑋𝜈

0)) = ∫
𝐾𝐿

0

∑
𝑣∈𝐷

| Im 𝜂𝑏(𝑣)|2𝜈𝑡(𝑣)𝑑𝑡.

(Note that this expression holds without any restriction on the degree of faces of a t-embedding
provided that 𝑋𝑡 is a version of the random walk on  +  corresponding to a black splitting.
Moreover, the same expression in presence of degenerate vertices follows, for example, from con-
tinuity arguments.) Recall (see Subsection 4.1) that the invariant measure 𝜈 = 𝜈0 is, up to the
multiplicative normalization, nothing but the area of black faces of  . Therefore, it is easy to see
from Lemma 6.3 and Proposition 6.1 that∑

𝑣∈𝐷

| Im 𝜂𝑏(𝑣)|2𝜈𝑡(𝑣) ⩾
∑
𝑣∈𝐷

| Im𝜂𝑏(𝑣)|2𝜈0(𝑣) − (𝜈0(𝐷) − 𝜈𝑡(𝐷))

⩾ 𝑐0 ⋅
∑
𝑣∈𝐷

𝜈0(𝑣) − 𝑂((𝐾∕𝐿)1∕2) = 𝑐0 − 𝑂((𝐾∕𝐿)1∕2)

for all 𝑡 ⩽ 𝐾𝐿. Hence, Var(Im(𝑋𝜈
𝐾𝐿

− 𝑋𝜈
0
)) ⩾ 𝐾𝐿 ⋅ (𝑐0 − 𝑂((𝐾∕𝐿)1∕2)), which is greater

than 1

2
𝑐0 ⋅ 𝐾𝐿 for large enough 𝐿. □

The next lemma provides a bound for the probability that the random walk 𝑋𝜈
𝑡 exits from the

rectangle 𝐷 before time 𝐾0𝐿 through (i) the vertical or (ii) the bottom side; the latter is the key
ingredient of the proof of Proposition 6.4. Recall that, by our convention, we stop 𝑋𝜈

𝑡 right after
the exit from 𝐷.

Lemma 6.6.

(i) Provided that 𝐿 is large enough (depending on 𝐾0), one has

ℙ(|Re𝑋𝜈
𝐾0𝐿

| > 𝑞0𝐿
2) ⩽ 1∕𝐿 .

(ii) Let 𝑡0 and 𝜎0 be related to 𝐿 by (6.4) and assume, by contradiction, that Var(Im𝑋0
𝑡0
) < 𝜎2

0
for

the random walk started at 0. Then, provided that 𝐿 is large enough, the following holds:

ℙ(Im𝑋𝜈
𝐾0𝐿

< 0) ⩽ (1 + 2𝑐−1
0 )∕𝐿 ,

where the constant 𝑐0 = 𝑐0(𝜅) > 0 is given by (6.2).
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Proof.

(i) This is an easy corollary of Lemma 6.3 and Proposition 6.1. As the width of the rectangle 𝐷 is
of order 𝐿2, the probability to exit from 𝐷 before time 𝐾0𝐿 through its vertical sides starting
from 𝜈 is actually of order 𝐿−3∕2.

(ii) We call a vertex 𝑣 “bottom-screening” if the probability that the random walk started at 𝑣 and
run for time 𝐾0𝐿 exits the rectangle 𝐷 given by (6.5) through its bottom side is less than 1∕𝐿.
Let 𝑅 ∶= [−𝑞0𝐿

2, 𝑞0𝐿
2] × [−𝑞0, 𝑞0] be the bottom part of 𝐷. Let us first show that there exists

a (nonoriented) path Γ on the T-graph that crosses the rectangle 𝑅 horizontally and consists
of “bottom-screening” vertices.

Assume that such Γ does not exist. For topological reasons, this implies existence of a path 𝛾

crossing 𝑅 vertically and not containing “bottom-screening” vertices. Due to Corollary 6.2, if we
start the random walk at the origin and wait for time 𝑡′

0
∶= 16𝑛0𝑞

2
0
𝐿4, then it exists from 𝑅 with

probability at least 3

4
. Note however that, due to our assumptionVar(Im𝑋0

𝑡0
) < 𝜎2

0
, the probability

that𝑋0
𝑡 exits 𝑅 through the top or the bottom sides before 𝑡′

0
< 𝑡0 is bounded by 𝜎2

0
𝑞−2
0

< 1

8
. Hence,

with probability at least 5

8
this happens through one of the vertical sides. Moreover, as Re𝑋0

𝑡 is a
martingale,𝑋0

𝑡 exists 𝑅 before time 𝑡′
0
through each of the vertical sides with probability at least 1

8
.

For topological reasons, this also implies that 𝑋0
𝑡 crosses the path 𝛾 earlier on. Therefore, if we

additionally wait for time 𝐾0𝐿 in the latter case so that this random walk, restarted on 𝛾, hits the
bottom side of 𝑅 with probability at least 𝐿−1, we see that

Var(Im𝑋0
𝑡0
) ⩾

1

8
𝐿−1𝑞2

0 = 𝜎2
0, 𝑡0 = 𝑡′0 + 𝐾0𝐿 = 16𝑛0𝑞

2
0𝐿

4 + 𝐾0𝐿.

This is exactly the choice of constants 𝑡0 and 𝜎0 made in (6.4), which is a contradiction. The proof
of the existence of the “bottom-screening” path Γ is complete.
It is easy to see that the existence of Γ implies the required estimate of the probability that the

randomwalk exits𝐷 through the bottom side if started at the invariantmeasure 𝜈. Let a vertex 𝑣 ∈

𝐷 lie above Γ. For topological reasons, the probability that the random walk started at 𝑣 hits the
bottom side of 𝐷 before time 𝐾0𝐿 is bounded by 1∕𝐿 as in this case the walk should first cross Γ.
Finally, the total mass (in the measure 𝜈) of vertices lying below Γ is bounded by 2𝑐2(𝜅)∕(𝐿𝑐1(𝜅))

due to Lemma 6.3 and the fact that Γ ⊂ 𝑅. □

We now move back to the proof of Proposition 6.4. Recall that the choice of the constant 𝐾0 =

𝐾0(𝜅) is postponed until the end of the proof and that 𝐿 will be eventually chosen large enough
(depending on 𝐾0).
Recall also that 𝜈𝐾0𝐿

(𝑣) ⩽ 𝜈0(𝑣) for all 𝑣 ∈ 𝐷 and that the remaining mass 1 −
∑

𝑣∈𝐷 𝜈𝐾0𝑇
(𝑣) is

located at distance at most 2𝛿 = 2 from the boundary of 𝐷. It is easy to see that one can construct
a coupling of the laws 𝜈0 and 𝜈𝐾0𝐿

such that they differ if and only if the latter variable does not
belong to 𝐷. Let (𝜉, 𝜉′) denote the corresponding coupling obtained by taking the imaginary part:
𝜉 has the law of Im𝑋𝜈

0
and 𝜉′ has the law of Im𝑋𝜈

𝐾0𝐿
.

Note that 𝔼(𝜉′) = 𝔼(𝜉) due to the martingale property of the random walk. Therefore,

1

2
𝑐0 ⋅ 𝐾0𝐿 ⩽ Var(𝜉′) − Var(𝜉) = ℙ(𝜉′ ≠ 𝜉) ⋅ (Var(𝜉′|𝜉′ ≠ 𝜉) − Var(𝜉|𝜉′ ≠ 𝜉))

⩽ ℙ(𝜉′ ≠ 𝜉) ⋅ Var(𝜉′|𝜉′ ≠ 𝜉), (6.6)
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see Lemma 6.5 for the first inequality. It remains to prove that (6.6) can be bounded from above
(provided that 𝐿 is large enough, depending on 𝐾0) by 𝑐(𝜅)𝐿, where 𝑐(𝜅) does not depend on 𝐾0:
once this is done, choosing first 𝐾0 and then 𝐿 big enough one obtains a desired contradiction.
Trivially, 𝜉′ ∈ [−3𝑞0, (𝐿 + 1)𝑞0] as the steps of the random walk are bounded by 𝛿 = 1 ⩽ 2𝑞0.

Let

𝑝± ∶= ℙ(𝐸±), where
𝐸− ∶= {𝜔 ∶ 𝜉′ ≠ 𝜉 & 𝜉′ ∈ [−3𝑞0, (𝐿 − 1)𝑞0])},

𝐸+ ∶= {𝜔 ∶ 𝜉′ ≠ 𝜉 & 𝜉′ ∈ ((𝐿 − 1)𝑞0, (𝐿 + 1)𝑞0])}

be the probabilities that 𝑋𝜈
𝐾0𝐿

exited from the rectangle 𝐷 through the bottom or vertical (𝐸−) or
through the top (𝐸+) side, respectively. It follows from Lemma 6.6 that

𝑝− ⩽ 2(1 + 𝑐−1
0 ) ⋅ 𝐿−1 (6.7)

provided that 𝐿 is large enough (depending on 𝐾0). Though we do not have a similar estimate of
the exit probability 𝑝+, the bound (6.7) alone is already enough to control (6.6). Indeed, we have

ℙ(𝜉′ ≠ 𝜉) ⋅ Var(𝜉′|𝜉′ ≠ 𝜉)

= 𝑝− ⋅ Var(𝜉′ |𝐸−) + 𝑝+ ⋅ Var(𝜉′ |𝐸+) + 𝑝−𝑝+ ⋅ (𝔼(𝜉′ |𝐸−) − 𝔼(𝜉′ |𝐸+))2

⩽ 2(1 + 𝑐−1
0 )𝐿−1 ⋅ 1

4
((𝐿 + 2)𝑞0)

2 + 𝑞2
0 + 2(1 + 𝑐−1

0 )𝐿−1 ⋅ ((𝐿 + 4)𝑞0)
2

⩽ 𝑐(𝜅)𝐿

for large enough 𝐿 (depending of 𝐾0), where the constant 𝑐(𝜅) does not depend on 𝐾0. The proof
is complete. □

6.3 Crossing estimates for forward and backward randomwalks

In this section, we first collect several standard corollaries of the uniform ellipticity estimate (6.3)
for the forward random walk and harmonic functions on T-graphs. Then we argue that the same
statements hold for the backward randomwalk. As the backward randomwalk isnot amartingale,
standard arguments do not apply, instead we derive crossing estimates for this walk from those
available for the forward one; see Proposition 6.11. Below we always assume that regions of T-
graphs under consideration are such that assumption Lip(𝜅, 𝛿) is fulfilled (in the corresponding
regions of t-embeddings) with a fixed constant 𝜅 < 1.

Lemma 6.7. There exist constants 𝜌0, 𝜂0, 𝜍0 > 0 (depending on 𝜅) such that the following holds:
for all discs 𝐵(𝑣, 𝑟) with 𝑟 ⩾ 𝜌0𝛿 drawn over the T-graph and centered at its vertex, and for all
intervals 𝐼 ⊂ ℝ∕2𝜋ℤ of length 𝜋 − 𝜂0,

ℙ𝑣
(
𝑋𝑡 exits 𝐵(𝑣, 𝑟) through the boundary arc {𝑣 + 𝑟𝑒𝑖𝜃, 𝜃 ∈ 𝐼}

)
⩾ 𝜍0, (6.8)

where ℙ𝑣 denotes the law of the (continuous time) random walk on the T-graph started at 𝑣.
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F IGURE 9 Notation used in the discussion of the uniform crossing property for forward and backward
walks on T-graphs.

Proof. See the proof of [3, Lemma 3.7], we briefly recall this proof here for completeness. Without
loss of generality, assume that 𝐼 = (1

2
𝜂0, 𝜋 − 1

2
𝜃0). Let 𝜏 denote the exit time from 𝐵(𝑣, 𝑟), note

that 𝜏 < ∞ almost surely due to Corollary 6.2 and the Markov property. Also, note that 𝔼(𝜏) =

𝔼(|𝑋𝑣
𝜏 − 𝑣|2) ⩾ 𝑟2 because |𝑋𝑣

𝑡 − 𝑣|2 − 𝑡 is a martingale. As the process Im(𝑋𝑣
𝑡 ) is a martingale, in

order to prove (6.8) it is enough to find a constant 𝜎′
0

> 0 such that

Var(Im(𝑋𝑣
𝜏 )) ⩾ (𝜎′

0)
2𝑟2 for all 𝑟 ⩾ 𝜌0𝛿.

Proposition 6.4 implies that the discrete time process

𝑌𝑘 ∶= | Im(𝑋𝑣
𝑘𝑡0𝛿

2 − 𝑣)|2 − 𝑘𝜎2
0𝛿

2

is a submartingale. The optional stopping applied to the stopping time

𝜘 ∶= ⌈(𝑡0𝛿2)−1𝜏⌉∈ (𝜏, 𝜏 + 𝑡0𝛿
2]

gives the desired result because Var(Im(𝑋𝑣𝜘𝑡0𝛿
2 − 𝑋𝑣

𝜏 )) ⩽ 𝔼(𝜘 − 𝜏) ⩽ 𝑡0𝛿
2. □

Given 𝑧 ∈ ℂ and 𝑟 > 0, let

(𝑧, 𝑟) ∶= 𝑧 + [−3𝑟, 3𝑟] × [−𝑟, 𝑟],

𝐵1() ∶= 𝐵(𝑧−2𝑟, 1

2
𝑟), 𝐵2() ∶= 𝐵(𝑧+2𝑟, 1

2
𝑟)

be a rectangle and two discs drawn over the T-graph; see Figure 9. The following property of
random walks was called the uniform crossing property in [4].

Lemma 6.8. There exist constants 𝜌′
0
, 𝜍′

0
> 0 such that the following holds for all rectangles(𝑧, 𝑟)

with 𝑟 ⩾ 𝜌′
0
𝛿 drawn over the T-graph:

ℙ𝑣(𝑋𝑡 hits 𝐵2() before exiting) ⩾ 𝜍′
0 for all 𝑣 ∈ 𝐵1().

Proof. This is a simple geometrical corollary of Lemma 6.7; for example, see [8, appendix] or the
proof of [3, Theorem 3.8]; note that the latter uses the martingale property of 𝑋𝑡 once more. □
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The crossing estimates discussed above easily imply the elliptic Harnack principle for positive
harmonic functions on planar graphs.

Proposition 6.9. For each 𝜌 < 1, there exists a constant 𝑐(𝜌) = 𝑐(𝜌, 𝜅) > 0 such that, for each
positive harmonic function𝐻 defined inside a disc 𝐵(𝑣0, 𝑟) drawn over the T-graph, we have

min𝑣∈𝐵(𝑣0,𝜌𝑟) 𝐻(𝑣) ⩾ 𝑐(𝜌) ⋅ max𝑣∈𝐵(𝑣0,𝜌𝑟) 𝐻(𝑣)

provided that (1 − 𝜌)𝑟 ⩾ cst ⋅𝛿 for a constant cst depending on 𝜅 only.

Proof. This is a standard argument,whichwe also recall for completeness. Let 𝑣max and 𝑣min be the
vertices in 𝐵(𝑣0, 𝜌𝑟) at which 𝐻 attains its maximal and minimal values, respectively. It follows
from the maximal principle that 𝐻(⋅) ⩾ 𝐻(𝑣max) along some nearest-neighbor path 𝛾max going
from 𝑣max to the boundary of 𝐵(𝑣0, 𝑟). The uniform crossing estimates ensure that the probability
that the random walk started at 𝑣min hits 𝛾max before exiting 𝐵(𝑣0, 𝑟) is uniformly bounded from
below. The optional stopping theorem concludes the proof. □

As pointed out in [4, Lemma 4.4], the elliptic Harnack principle allows one to strengthen the
claim of Lemma 6.8 by additionally conditioning the random walk to exit from through a fixed
vertex 𝑎.

Lemma 6.10. Let 𝜏 be the exit time from = (𝑧, 𝑟) of the random walk𝑋𝑡 on the T-graph. There
exists a constant 𝜍′′

0
= 𝜍′′

0
(𝜅) > 0 such that the following holds: for all 𝑣 ∈ 𝐵1() and all exit points 𝑎

such that ℙ(𝑋𝜏 = 𝑎) > 0, we have

ℙ𝑣(𝑋𝑡 hits 𝐵2() before exiting | 𝑋𝜏 = 𝑎) ⩾ 𝜍′′
0

provided that 𝑟 ⩾ cst ⋅𝛿 for a constant cst depending on 𝜅 only. Due to the strong Markov property,
the same lower bound also applies to any conditioning made after the exit time 𝜏.

Proof. Let𝐻(𝑣′) ∶= ℙ𝑣′
(𝑋𝜏 = 𝑎), note that𝐻 is a positive harmonic function in. We have

ℙ𝑣(𝑋𝑡 hits 𝐵2() before exiting and 𝑋𝜏 = 𝑎)

⩾ ℙ𝑣(𝑋𝑡 hits 𝐵2() before exiting) ⋅ min𝑣′∈𝐵2() 𝐻(𝑣′).

As min𝑣′∈𝐵2() 𝐻(𝑣′) is comparable to ℙ𝑣(𝑋𝜏 = 𝑎) = 𝐻(𝑣) due to the Harnack principle, the
required estimate follows. □

We are now in the position to prove a similar uniform crossing estimate for backward random
walks on T-graphs. Again, as this estimate does not depend on the exit point, the same bound
holds for any conditioning made after the exit from (and, in particular, unconditionally).

Proposition 6.11. Let �̃� be the exit time from = (𝑧, 𝑟) for the backward randomwalk𝑋𝑡 on the
T-graph. There exists a constant �̃�0 = �̃�0(𝜅) > 0 such that the following holds: for all 𝑣 ∈ 𝐵1() and
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all exit points 𝑎 such that ℙ̃(𝑋�̃� = 𝑎) > 0, we have

ℙ̃𝑣(𝑋𝑡 hits 𝐵2() before exiting | 𝑋�̃� = 𝑎) ⩾ �̃�0

provided that 𝑟 ⩾ cst ⋅𝛿 for a constant cst depending on 𝜅 only.

Proof. We decompose the backward random walk 𝑋𝑡 as first a sequence of loops around 𝑣 fol-
lowed by an excursion from 𝑣 to 𝑎 inside conditioned not to return to 𝑣. Clearly, the loops can
only contribute positively to the probability to hit 𝐵2 before the exit from. Let ℙ̃𝑣→𝑎 denote the
probability measure on such excursions of the backward walk 𝑋𝑡. Up to reversing the direction
of trajectories, this measure is the same as the measure ℙ𝑎→𝑣 on excursions from 𝑎 to 𝑣 staying
inside  of the forward random walk 𝑋𝑡. Therefore, it is enough to obtain the uniform lower
bound

ℙ𝑎→𝑣( excursion 𝑋𝑡 visits 𝐵2 )

= ℙ𝑎(𝑋𝑡∧𝜏 visits 𝐵2 before 𝑣 | 𝑋𝑡∧𝜏 visits 𝑣 ) ⩾ �̃�0 > 0,

where, as before, 𝜏 stands for the exit time from of the forward walk.
Let 𝐿 be a contour going along the T-graph near the boundary of a slightly smaller rectangle

(e.g., 𝑧 + [−17

6
𝑟, 17

6
𝑟] × [−5

6
𝑟, 5

6
𝑟], see Figure 9) that still contains both discs𝐵1(),𝐵2(). As each

randomwalk trajectory running from 𝑎 to 𝑣 should cross 𝐿, it is enough to prove the same uniform
estimate for trajectories started at 𝐿:

ℙ𝑢(𝑋𝑡∧𝜏 visits 𝐵2 before 𝑣 | 𝑋𝑡∧𝜏 visits 𝑣 ) ⩾ �̃�0 > 0, for all 𝑢 ∈ 𝐿.

This statement follows from Lemma 6.10 applied to a suitable chain of smaller rectangles
1, … ,𝑛: on each step we condition on the event that the random walk visits 𝑣 before hitting
the boundary of, both 𝑣 and 𝜕 being outside of𝑗 . □

Corollary 6.12. The ellipticHarnack inequality (see Proposition 6.9) also holds for positive functions
that are harmonic with respect to the backward random walk on the T-graph.

Proof. The same arguments as those given in the proof of Proposition 6.9 (based upon the
nonconditioned version of Proposition 6.11) apply. □

6.4 Subsequential limits of harmonic and t-holomorphic functions

We begin this section with an a priori Hölder-type bound for oscillations of harmonic functions
on T-graphs and t-holomorphic functions on t-embeddings. Then we use these bounds to claim
the existence of subsequential limits of uniformly bounded sequences of functions defined on
a sequence of T-graphs or t-embeddings  𝛿 satisfying assumption Lip(𝜅, 𝛿) with 𝛿 → 0 and the
same 𝜅 < 1. For shortness, we do not include the superscript 𝛿 in the notation until Corollary 6.14.
For a real-valued function𝐻 defined on vertices of a T-graph and a region 𝑈, denote

osc𝑈 𝐻 ∶= max𝑣∈𝑈 𝐻(𝑣) − min𝑣∈𝑈 𝐻(𝑣) .
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In the same way, for a t-white-holomorphic function 𝐹𝔴 (similarly, for a t-black-holomorphic
function 𝐹𝔟) and a region 𝑈 of a t-embedding, let

osc𝑈 𝐹𝔴 ∶= max𝑤,𝑤′∈𝑊𝑈
|𝐹◦

𝔴(𝑤′) − 𝐹◦
𝔴(𝑤)| ,

osc𝑈 𝐹𝔟 ∶= max𝑏,𝑏′∈𝐵𝑈
|𝐹∙

𝔟
(𝑏′) − 𝐹∙

𝔟
(𝑏)| .

Proposition 6.13. There exist constants 𝛽 = 𝛽(𝜅) > 0 and 𝐶 = 𝐶(𝜅) > 0 such that the following
estimates hold for all harmonic functions 𝐻 (respectively, t-holomorphic functions 𝐹) defined in a
ball of radius 𝑅 > 𝑟 drawn over a T-graph (respectively, over a t-embedding):

osc𝐵(𝑣,𝑟) 𝐻 ⩽ 𝐶(𝑟∕𝑅)𝛽 osc𝐵(𝑣,𝑅) 𝐻

and

osc𝐵(𝑧,𝑟) 𝐹 ⩽ 𝐶(𝑟∕𝑅)𝛽 osc𝐵(𝑧,𝑅) 𝐹

provided that 𝑟 ⩾ cst ⋅𝛿 for a constant cst depending on 𝜅 only.

Proof. The estimate for harmonic functions is straightforward from Lemma 6.8. Indeed, the same
argument as in the proof of Proposition 6.9 ensures that

min𝐵(𝑣,𝑟) 𝐻 ⩾ 𝑝0 max𝐵(𝑣,𝑟) 𝐻 + (1−𝑝0)min𝐵(𝑣,2𝑟) 𝐻

for some 𝑝0 = 𝑝0(𝜅) > 0. Together with a similar inequality for −𝐻, this yields

(1 + 𝑝0) osc𝐵(𝑣,𝑟) 𝐻 ⩽ (1 − 𝑝0) osc𝐵(𝑣,2𝑟) 𝐻. (6.9)

Iterating (6.9), one obtains the desired bound with the exponent

𝛽 = log 2∕ log((1 + 𝑝0)∕(1 − 𝑝0)).

To prove the same result for t-holomorphic functions 𝐹 = 𝐹𝔴, recall that Proposition 4.17
implies that both Re𝐹◦

𝔴 and Im𝐹◦
𝔴 can be viewed as harmonic functions with respect to the back-

ward random walks on appropriate T-graphs. Using Proposition 6.11 and the inclusions (6.1) and
applying the same argument as above, we obtain the estimate

(1 + 𝑝′
0) osc𝐵(𝑧,(1+𝜅)−1𝑟) Re 𝐹◦

𝔴 ⩽ (1 − 𝑝′
0) osc𝐵(𝑧,(1−𝜅)−1𝑟) Re 𝐹◦

𝔴

(and similarly for Im𝐹◦
𝔴) for some 𝑝′

0
= 𝑝′

0
(𝜅) > 0. Therefore, there exist constants 𝛽′ = 𝛽′(𝜅) > 0

and 𝐶′ = 𝐶′(𝜅) > 0 such that

osc𝐵(𝑧,𝑟) Re 𝐹◦
𝔴 ⩽ 𝐶′(𝑟∕𝑅)𝛽

′
osc𝐵(𝑧,𝑅) Re 𝐹◦

𝔴,

and similarly for Im𝐹◦
𝔴. As osc𝐵(𝑧,𝑟) 𝐹𝔴 ⩽ osc𝐵(𝑧,𝑟) Re 𝐹◦

𝔴 + osc𝐵(𝑧,𝑟) Im𝐹◦
𝔴, this gives a similar

estimate for oscillations of the function 𝐹◦
𝔴 itself. □
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Corollary 6.14.

(i) Let a sequence of t-embeddings  𝛿 with 𝛿 → 0, a constant 𝜅 < 1, and an open set 𝑈 ⊂ ℂ be
such that  𝛿 covers𝑈 and satisfies the assumption Lip(𝜅, 𝛿) for all sufficiently small 𝛿. Assume
that 𝐹𝛿 are t-holomorphic functions on  𝛿 ∩ 𝑈 and that these functions are uniformly bounded
on compact subsets of 𝑈. Then, the family {𝐹𝛿} is pre-compact in the topology of the uniform
convergence on compact subsets of𝑈.

(ii) In the same setup, let a sequence of T-graphs associated to  𝛿 be given and an open set 𝑉 ⊂ ℂ

be covered by each of them. If functions𝐻𝛿 are harmonic (on T-graphs) and uniformly bounded
on compact subsets of 𝑉, then the family {𝐻𝛿} is pre-compact in the topology of the uniform
convergence on compact subsets of 𝑉.

Proof. Both statements are just applications of the Arzelà–Ascoli criterium. Indeed, Proposi-
tion 6.13 yields that, on each compact set, the families {𝐹𝛿} and {𝐻𝛿} are equicontinuous on scales
above 𝛿. To get rid of small scales one can, for instance, consider convolutions of, say, 𝐹𝛿 with
mollifiers of size 𝛿1∕2: thus obtained functions stay close to 𝐹𝛿 due to Proposition 6.13 and are
equicontinuous on all scales. □

In the same setup, assume now that the origami maps 𝛿 associated to  𝛿 converge as 𝛿 → 0:

𝛿(𝑧) → 𝜗(𝑧), uniformly on compact subsets of 𝑈; 𝜗 ∶ 𝑈 → ℂ. (6.10)

(Note that one can always find a subsequential limit because all 𝛿 are 1-Lipschitz functions,
defined up to a constant.) Clearly, 𝜗 has to be a 𝜅-Lipschitz function.

Proposition 6.15. In the setup described above, for each subsequential limit 𝑓𝔴 ∶ 𝑈 → ℂ of
uniformly bounded (on compact subsets of 𝑈) t-white-holomorphic functions 𝐹𝛿

𝔴 the differential
form 𝑓𝔴(𝑧)𝑑𝑧 + 𝑓𝔴(𝑧)𝑑𝜗(𝑧) is closed.
Similarly, for each subsequential limit 𝑓𝔟 ∶ 𝑈 → ℂ of uniformly bounded t-black-holomorphic

functions 𝐹𝛿
𝔟
the differential form 𝑓𝔟(𝑧)𝑑𝑧 + 𝑓𝔟(𝑧)𝑑𝜗(𝑧) is closed.

In particular, if 𝜗 ≡ 0, then all such subsequential limits are holomorphic in𝑈.

Proof. We consider limits 𝑓𝔴 of t-white-holomorphic functions only, the case of 𝑓𝔟 is fully
similar. Recall that Proposition 3.7 and Lemma 3.8 imply that, for each t-white-holomorphic func-
tion 𝐹𝔴 = 𝐹𝛿

𝔴, the differential form 𝐹◦
𝔴(𝑧)𝑑𝑧 + 𝐹◦

𝔴(𝑧)𝑑(𝑧) is closed. (Let us emphasize that we
view such forms as being defined everywhere in 𝑈 ⊂ ℂ and not only on edges of t-embeddings.)
Let 𝛾 be a smooth loop in 𝑈 and 𝐹◦,𝛿

𝔴 → 𝑓𝔴 as 𝛿 → 0 uniformly on 𝛾. We claim that

∮𝛾
𝐹◦,𝛿

𝔴 (𝑧)𝑑𝑧 → ∮𝛾
𝑓𝔴(𝑧)𝑑𝑧 and ∮𝛾

𝐹◦,𝛿
𝔴 (𝑧)𝑑𝛿(𝑧) → ∮𝛾

𝑓𝔴(𝑧)𝑑𝜗(𝑧) (6.11)

as 𝛿 → 0, where the last integral is understood in the Riemann–Stieltjes sense. Indeed, the for-
mer convergence is a triviality. To prove the latter note that, for each 𝜀 > 0, one can split 𝛾

into pieces 𝛾(1)
𝜀 , … , 𝛾

(𝑛𝜀)
𝜀 , of diameter at most 𝜀. Let 𝑧

(𝑗)
𝜀 be an (arbitrarily chosen) point on 𝛾

(𝑗)
𝜀 .

Proposition 6.13 implies that

osc
𝛾
(𝑗)
𝜀

(𝐹◦,𝛿
𝔴 ) = 𝑂(𝜀𝛽) for each 𝑗 = 1,… , 𝑛𝜀
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and some exponent 𝛽 > 0 independent of 𝛿. As all functions 𝛿 are 1-Lipschitz, we see that

∮ 𝛾
𝐹◦,𝛿

𝔴 (𝑧)𝑑𝛿(𝑧) =

𝑛𝜀∑
𝑗=1

𝐹◦,𝛿
𝔴 (𝑧

(𝑗)
𝜀 )∫𝛾

(𝑗)
𝜀

𝑑𝛿(𝑧) + 𝑂(𝜀𝛽 ⋅ length(𝛾)),

where the O-estimate is uniform in 𝛿. As 𝛿 → 0 for a fixed 𝜀 > 0, the main term converges
to a Riemann–Stieltjes sum approximating the contour integral ∮𝛾 𝑓𝔴(𝑧)𝑑𝜗(𝑧). Thus, sending
first 𝛿 → 0 and then 𝜀 → 0 we arrive at (6.11).
Finally, in the “small origami” case 𝜗 ≡ 0, all subsequential limits 𝑓𝔴 and 𝑓𝔟 are holomorphic

due to Morera’s theorem. □

Remark 6.16. Proposition 6.15 allows one to identify a limit of “discrete complex structures” associ-
ated to the notion of t-holomorphicity on t-embeddings. For a generic limit 𝜗(𝑧) of origami maps,
the scaling limits 𝑓𝔴 and 𝑓𝔟 satisfy different conditions, neither of which is complex-linear. How-
ever, if we assume that, say, the differential form 𝑓[𝜂](𝑧)𝑑𝑧 + 𝑓[𝜂](𝑧)𝑑𝜗(𝑧) is closed for each of the
functions 𝑓[𝜂](𝑧) ∶= 1

2
(𝜂𝑓[+](𝑧) + 𝜂𝑓[−](𝑧)), 𝜂 ∈ ℂ, then this condition, reformulated in terms of

the pair (𝑓[+], 𝑓[−]), becomes complex-linear. This setup is explicitly relevant for the dimer model
coupling functions due to Proposition 3.12(ii).

6.5 Assumption Exp-Fat(𝜹) and Lipschitzness of harmonic
functions on T-graphs

This section is devoted to the a priori regularity (Lipschitzness) theory for harmonic functions
on T-graphs obtained from t-embeddings satisfying assumption Lip(𝜅, 𝛿). From now onward we
additionally rely upon assumption Exp-Fat(𝛿, 𝛿′) (see Assumption 1.2 for the case of triangula-
tions and Assumption 5.9 for a generalization to arbitrary degrees of faces). Working on, say, a
T-graph  + 𝛼2, we mostly focus on 𝛼ℝ-valued harmonic functions: as discussed in Subsec-
tion 4.2 (in particular, see Remark 4.12), their gradients D[𝐻] are t-white-holomorphic functions.
For simplicity, below we assume that 𝛼 = 1. (Note that we do not really lose generality here: for
each 𝛿, the origami square root function is defined up to a multiple, thus one can always modify
them so that 𝛼 = 1 for all 𝛿.
The next theorem is the key result of this section. Loosely speaking, it says that the gradients

of bounded harmonic functions satisfy the standard Harnack-type estimate at least if they do not
blow up exponentially fast as 𝛿 → 0. We later use the additional assumption Exp-Fat(𝛿, 𝛿′) to
forbid the pathological blow-up scenario; see Corollary 6.18. Note, however, that we prefer to for-
mulate these results in a constructivemanner so that no limit passage as 𝛿 → 0 is involved. To ease
the notation, below we do not distinguish points on t-embeddings and their images on T-graphs.

Theorem 6.17. For each 𝜅 < 1 there exist positive constants 𝛽0 = 𝛽0(𝜅) and 𝐶0 = 𝐶0(𝜅) such that
the following holds. Let𝐻𝛿 be a harmonic function in a ball 𝐵(𝑣, 𝑑) drawn over a T-graph obtained
from a t-embedding  𝛿 satisfying assumption Lip(𝜅, 𝛿). Then,

either max
𝐵(𝑣, 1

2
𝑑)
|D[𝐻𝛿]| ⩽ 𝐶0𝑑

−1 ⋅ osc𝐵(𝑣,𝑑)(𝐻
𝛿)

or max
𝐵(𝑣, 3

4
𝑑)
|D[𝐻𝛿]| > exp(𝛽0𝑑𝛿−1) ⋅ 𝐶0𝑑

−1 osc𝐵(𝑣,𝑑)(𝐻
𝛿),

provided that 𝑑 ⩾ cst ⋅𝛿 for a constant cst depending on 𝜅 only.
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Proof. Recall that the gradient 𝐹𝛿
𝔴 ∶= D[𝐻𝛿] is a t-white-holomorphic function defined in the

preimage of 𝐵(𝑣, 𝑑) on  𝛿, which we identify with this ball to ease the notation. Proposition 6.13
and distortion estimate (6.1) yield the existence of constants𝐴 = 𝐴(𝜅) > 1 and 𝑟0 = 𝑟0(𝜅) > 0 such
that

osc𝐵(𝑧,𝑟)(𝐹
◦,𝛿
𝔴 ) ⩽

1 − 𝜅

12
osc𝐵(𝑧,𝐴𝑟)(𝐹

◦,𝛿
𝔴 ) provided that 𝑟 ⩾ 𝑟0𝛿. (6.12)

Below we assume that 𝑑 ⩾ 8𝐴𝑟0𝛿 and let 𝐶0 ∶= 8𝐴(1 − 𝜅)−1 be a big enough constant. Without
loss of generality, assume also that osc𝐵(𝑣,𝑑)(𝐻

𝛿) = 1 and that the first alternative does not hold,
that is, 𝑀0 ∶= |𝐹𝛿

𝔴(𝑧0)| > 𝐶0𝑑
−1 at a point 𝑧0 ∈ 𝐵(𝑣, 1

2
𝑑). We now claim that one can iteratively

construct, while the condition 𝑧𝑛 ∈ 𝐵(𝑣, 𝑑−𝐴𝑟0𝛿) holds, a sequence of points 𝑧0, 𝑧1, … such that

𝑀𝑛+1 ∶= |𝐹◦,𝛿
𝔴 (𝑧𝑛+1)| ⩾ 2𝑀𝑛 and |𝑧𝑛+1 − 𝑧𝑛| ⩽ 𝐴 ⋅ max((1 − 𝜅)−1𝑀−1

𝑛 , 𝑟0𝛿).

Indeed, integrating the differential form 𝐹◦,𝛿
𝔴 (𝑧)𝑑𝑧 + 𝐹◦,𝛿

𝔴 (𝑧)𝑑𝛿(𝑧) (see Lemma 3.8) along an
appropriately oriented segment of length 2𝑟 centered at the point 𝑧𝑛 one gets the estimate

1 ⩾ osc𝐵(𝑧𝑛,𝑟)(𝐻
𝛿) ⩾ 2𝑟 ⋅

(
(𝑀𝑛 − osc𝐵(𝑧𝑛,𝑟)(𝐹

◦,𝛿
𝔴 )) − (𝜅 ⋅ 𝑀𝑛 + osc𝐵(𝑧𝑛,𝑟)(𝐹

◦,𝛿
𝔴 ))

)
= 2𝑟 ⋅

(
(1 − 𝜅)𝑀𝑛 − 2 osc𝐵(𝑧𝑛,𝑟)(𝐹

◦,𝛿
𝔴 )

)
.

If 𝑟 ⩾ (1 − 𝜅)−1𝑀−1
𝑛 , then we must have osc𝐵(𝑧𝑛,𝑟)(𝐹

◦,𝛿
𝔴 ) ⩾

1

4
(1 − 𝜅)𝑀𝑛 and hence

osc𝐵(𝑧𝑛,𝐴𝑟)(𝐹
◦,𝛿
𝔴 ) ⩾ 3𝑀𝑛 = 3|𝐹◦,𝛿

𝔴 (𝑧𝑛)| due to the choice of the constant 𝐴made above. Therefore,
the maximal value of |𝐹◦,𝛿

𝔴 | in the disc 𝐵(𝑧𝑛, 𝐴𝑟) must be at least 2𝑀𝑛, as required. It is easy to
see that

|𝑧𝑛+1 − 𝑧𝑛| ⩽ max(2−𝑛|𝑧1 − 𝑧0|, 𝐴𝑟0𝛿) ⩽ max(2−𝑛−3𝑑 , 𝐴𝑟0𝛿).

Hence, this sequence has to make at least 1

8
𝑑(𝐴𝑟0𝛿)−1 steps in order to leave the disc 𝐵(𝑧0,

3

4
𝑑) if

started inside 𝐵(𝑧0,
1

2
𝑑). As the value 𝑀𝑛 at least doubles at each step, the last such value should

be at least exp[𝛽0𝑑𝛿−1] ⋅ 𝑀0 provided we set 𝛽0 ∶= 1

8
(𝐴𝑟0)

−1 log 2. The proof is complete. □

Corollary 6.18. In the setup of Theorem 6.17, let us additionally assume that the t-embedding  𝛿

satisfies the assumption Exp-Fat(𝛿, 𝛿′). Then,

max
𝐵(𝑣, 1

2
𝑑)
|D[𝐻𝛿]| ⩽ 𝐶0𝑑

−1 ⋅ osc𝐵(𝑣,𝑑)(𝐻
𝛿)

provided that 𝑑 ⩾ cst ⋅ max(𝛿, 𝛿′), where the constant cst depends only on 𝜅.

Proof. Without loss of generality, assume that osc𝐵(𝑣,𝑑)(𝐻
𝛿) = 1 and that we work with the T-

graph  𝛿 + 𝛿; recall that in this case the gradient D[𝐻𝛿] is a t-white-holomorphic function that
we denote 𝐹𝔴 in what follows.
For simplicity, let us first consider the case when  𝛿 is a triangulation. Provided that 1

4
(1 −

𝜅)𝑑 ⩾ 𝛿′, the assumption Exp-Fat(𝛿, 𝛿′) guarantees that each point in 𝐵(𝑣, 3

4
𝑑) is surrounded by
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an edge-connected circuit consisting of 𝛿 exp(−𝛿′𝛿−1)-fat triangles (and running inside 𝐵(𝑣, 𝑑));
let 𝛾 denote this circuit. The image of each black face 𝑏 ∈ 𝛾 in the T-graph  𝛿 + 𝛿 has length at
least 2𝛿 exp(−𝛿′𝛿−1), which trivially gives the estimate

|𝐹∙
𝔴(𝑏)| = |D[𝐻𝛿]| ⩽

1

2
𝛿−1 exp(𝛿′𝛿−1) for all 𝑏 ∈ 𝛾 ∩ 𝐵. (6.13)

Moreover, for each𝑤 ∈ 𝑊𝛾 one can use this estimate at two neighboring black triangles 𝑏1, 𝑏2 ∈ 𝛾

to show that

|𝐹◦
𝔴(𝑤)| ⩽ 𝛿−1 exp(2𝛿′𝛿−1) for all 𝑤 ∈ 𝛾 ∩ 𝑊.

due to the explicit formula

𝐹◦
𝔴(𝑤) =

𝐹∙
𝔴(𝑏1)𝜂𝑏2

𝜂𝑏1
− 𝐹∙

𝔴(𝑏2)𝜂𝑏2
𝜂𝑏1

𝑖 Im(𝜂𝑏2
𝜂𝑏1

)
(6.14)

and the fact that Im(𝜂𝑏2
𝜂𝑏1

) ⩾ 𝜌𝛿−1 if 𝑤 is 𝜌-fat and has diameter less than 𝛿. Due to Proposi-
tion 4.17, the function |𝐹◦

𝔴| satisfies the maximum principle, which allows us to conclude that the
estimate |𝐹◦

𝔴| ⩽ 𝛿−1 exp(2𝛿′𝛿−1) holds everywhere in the ball 𝐵(𝑣, 3

4
𝑑). This rules out the second

(pathological) scenario in Theorem 6.17 provided that

𝐶0𝛿𝑑−1 exp(𝛽0𝑑𝛿−1) ⩾ exp(2𝛿′𝛿−1),

which holds true if 𝑑 ⩾ cst(𝐶0, 𝛽0) ⋅ max(𝛿, 𝛿′).
For general t-embeddings  𝛿, the same arguments go through with the only caveat that we

should prove an appropriate replacement of the estimate (6.13) for “𝜌-fat” bigons 𝑏 ∈ 𝛾 ∩ 𝐵◦
spl
;

see the definition given before Assumption 5.9. To this end, note that such 𝑏 has length (in the t-
embedding) at least 2𝜌, where 𝜌 ∶= 𝛿 exp(−𝛿′𝛿−1), as it is a side of a neighboring (in the circuit 𝛾)
white 𝜌-fat triangle. Let 𝑤 ∈ 𝑊 be the white face containing 𝑏 and 𝑏1, … , 𝑏𝑘 ∈ 𝐵 denote the 𝜌-fat
black faces that are adjacent to the corresponding boundary arc of 𝑤. It is easy to see that the
equation ∮ 𝐹∙

𝔴𝑑 ∙,𝛿
spl

= 0 (and the fact that the face  𝛿(𝑤) is convex and has diameter less than 𝛿)
imply that

2𝜌 ⋅ |𝐹∙
𝔴(𝑏)| ⩽ | ∙,𝛿

spl
(𝑏)| ⋅ |𝐹∙

𝔴(𝑏)| ⩽ 2𝛿 ⋅ max(|𝐹∙
𝔴(𝑏1)|, … , |𝐹∙

𝔴(𝑏𝑘)|).
Therefore, the estimate (6.13) for black faces 𝑏1, … , 𝑏𝑘 yields

|𝐹∙
𝔴(𝑏)| ⩽

1

2
𝛿−1 exp(2𝛿′𝛿−1) for all bigons 𝑏 ∈ 𝛾 ∩ 𝐵◦

spl
.

The rest of the proof given above goes through with minor modifications. □

Assumenow thatwe are given a sequence of t-embeddings  𝛿 covering a commonopen set𝑈 ⊂

ℂ and such that 𝛿(𝑧) → 𝜗(𝑧) uniformly on compact subsets of 𝑈. Let 𝑉 ∶= (id + 𝜗)(𝑈), recall
that we denote by𝑊1,∞(𝑉) the Sobolev space of functions on 𝑉 whose derivatives are uniformly
bounded on compact subsets of 𝑉.
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Corollary 6.19. In the setup described above, let t-embeddings  𝛿 satisfy assumptions Lip(𝜅, 𝛿)
and Exp-Fat(𝛿) on 𝑈. Let 𝐻𝛿 be uniformly (in 𝛿) bounded real-valued harmonic functions on
T-graphs ( 𝛿 + 𝑂𝛿) ∩ 𝑉. Then, the family {𝐻𝛿} is pre-compact in the topology of the Sobolev
space𝑊1,∞(𝑉).
The gradients 𝑓𝔴 ∶= 2𝜕ℎ◦(id + 𝜗) of all subsequential limits ℎ ∶ 𝑉 → ℝ of functions 𝐻𝛿 , con-

sidered as functions in𝑈, are 𝛽-Hölder, with the exponent 𝛽 given in Proposition 6.13. Moreover, the
form 𝑓𝔴(𝑧)𝑑𝑧 + 𝑓𝔴(𝑧)𝑑𝜗(𝑧) is closed in𝑈.
In particular, if 𝜗 ≡ 0, then all subsequential limits ℎ are harmonic in 𝑉 = 𝑈.

Proof. The uniform (on compact sets) boundedness of the gradients 𝐹𝛿
𝔴 ∶= D[𝐻𝛿] of the func-

tions 𝐻𝛿 follows from Corollary 6.18. Applying the Arzelà–Ascoli theorem, we can assume
that 𝐻𝛿(𝑣) → ℎ(𝑣) uniformly on compact subsets of 𝑉. Proposition 6.13 guarantees the a priori
Hölder regularity of 𝐹𝛿

𝔴 and the existence of subsequential limits 𝑓𝔴 ∶ 𝑈 → ℂ of t-holomorphic
functions 𝐹𝛿

𝔴. Passing to the limit in the identity𝐻𝛿 = Iℝ[𝐹𝛿
𝔴] (see Subsection 4.2), one sees that

ℎ(𝑣) = ∫
(id+𝜗)−1(𝑣)

Re(𝑓𝔴(𝑧)𝑑𝑧 + 𝑓𝔴(𝑧)𝑑𝜗(𝑧)) = ∫
(id+𝜗)−1(𝑣)

Re(𝑓𝔴(𝑧)𝑑(𝑧 + 𝜗(𝑧))),

that is, 2𝜕ℎ = 𝑓𝔴◦(id + 𝜗). Finally, the form 𝑓𝔴(𝑧)𝑑𝑧 + 𝑓𝔴(𝑧)𝑑𝜗(𝑧) is closed in 𝑈 due to
Proposition 6.15. □

Remark 6.20. Similarly to the case 𝜗 ≡ 0, one can use the above description of gradients 𝑓𝔴 = 2𝜕ℎ

of subsequential limits ℎ of harmonic functions 𝐻𝛿 to identify the coefficients of a second-order
elliptic PDE (𝑎(𝑣)𝜕𝑥𝑥 + 2𝑏(𝑣)𝜕𝑥𝑦 + 𝑐(𝑣)𝜕𝑦𝑦)ℎ = 0, 𝑣 = 𝑥 + 𝑖𝑦 ∈ 𝑉, that all such limits ℎ satisfy.
Also, it is worth noting that there exists a very particular case in which this PDE can be viewed
simply as the harmonicity of ℎ after a change of variable 𝑣. Namely, if (𝑧, 𝜗(𝑧)) is a space-like
maximal surface in the Minkowski space ℝ2,2, then ℎ is harmonic in the conformal metric of this
surface; see the companion paper [12] for more details on this setup.

6.6 Boundedness of functions 𝑭[±±] under assumption Exp-Fat(𝜹)

This section contains a technical result needed for the proof of Theorem 1.4 given in Section 7.
In that theorem, we assume that the dimer coupling functions 𝐾−1

 𝛿
(𝑤, 𝑏) are uniformly bounded

as 𝛿 → 0 provided that𝑤 and 𝑏 remain at a definite distance from the boundary ofΩ and fromeach
other. Recall that Proposition 3.12 gives a representation of these functions via four functions𝐹[±±]

 𝛿
,

similar to the link between the “true” values of a t-white-holomorphic function 𝐹◦
𝔴 and their

projections 𝐹∙
𝔴. In Section 7, we rely upon the fact that these functions 𝐹[±±]

 𝛿
are also uniformly

bounded. This bound is obtained in Proposition 6.22.

Lemma6.21. Let𝑈 ⊂ ℂ be an open set and t-embeddings  𝛿 satisfy both assumptionLip(𝜅, 𝛿) (with
a fixed constant 𝜅 < 1) and assumption Exp-Fat(𝛿) (as 𝛿 → 0) on 𝑈. Assume that 𝐹𝛿

𝔴 are t-white-
holomorphic functions on  𝛿 ∩ 𝑈. If the values 𝐹∙,𝛿

𝔴 are uniformly bounded on compact subsets of𝑈
as 𝛿 → 0, then the same is true for the values 𝐹◦,𝛿

𝔴 .

Proof. First, let us note that the assumption Lip(𝜅, 𝛿) implies that each disc 𝐷 of radius 𝑟 ⩾ 𝛿 on a
t-embedding  𝛿 must intersect two black faces 𝑏1, 𝑏2 such that | Im(𝜂𝑏2

𝜂𝑏1
)| ⩾

1

2
(1 − 𝜅). Indeed,
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otherwise there would exist 𝛼 ∈ 𝕋 such that |𝜂2
𝑏
− 𝛼2| < 1 − 𝜅 for all 𝑏 in𝐷. In its turn, this would

mean that |1 + 𝛼
2
𝜂2
𝑏
| > 1 + 𝜅 for all such 𝑏, so the image of𝐷 in the T-graph  + 𝛼2would have

too big area to fit the distortion estimate (6.1). Using the formula (6.14) it is not hard to see that
this observation implies the estimate

max𝐷 |𝐹◦
𝔴| ⩽ 4(1 − 𝜅)−1 ⋅ (max𝐷 |𝐹∙

𝔴| + osc𝐷(𝐹◦
𝔴)).

Provided that the constants 𝐴 and 𝑟0 are chosen as in (6.12), this gives

osc𝐵(𝑧,𝐴𝑟0𝛿)(𝐹
◦
𝔴) ⩾ 12(1 − 𝜅)−1 ⋅ osc𝐵(𝑧,𝑟0𝛿)(𝐹

◦
𝔴)

⩾ 3 ⋅ (max𝐵(𝑧,𝑟0𝛿) |𝐹◦
𝔴| − 4(1 − 𝜅)−1 max𝐵(𝑧,𝑟0𝛿) |𝐹∙

𝔴|).
In particular, ifmax𝐵(𝑧,𝑟0𝛿) |𝐹◦

𝔴| ⩾ 16(1 − 𝜅)−1 max𝐵(𝑧,𝑟0𝛿) |𝐹∙
𝔴|, then

max𝐵(𝑧,𝐴𝑟0𝛿) |𝐹◦
𝔴| ⩾

1

2
osc𝐵(𝑧,𝐴𝑟0𝛿)(𝐹

◦
𝔴) ⩾

9

8
max𝐵(𝑧,𝑟0𝛿) |𝐹◦

𝔴|.
Thus, if the function 𝐹◦

𝔴 attains, at a certain point in the bulk of 𝑈, a much bigger value than the
maximum of |𝐹∙

𝔴| in a vicinity of this point, then one can iterate the above estimate similarly to
the proof of Theorem 6.17 and observe an exponential (in 𝛿−1) blow-up of 𝐹◦,𝛿

𝔴 . However, this is
not possible under assumption Exp-Fat(𝛿): a contradiction is obtained similarly to the proof of
Corollary 6.18 as the reconstruction of the values𝐹◦

𝔴 from𝐹∙
𝔴 on 𝛿 exp(−𝛿′𝛿−1)-fat white triangles

(and first on relevant black bigons if necessary in the general case) can only give a subexponential
factor exp(2𝛿′𝛿−1) with 𝛿′ → 0. □

Proposition 6.22. Let𝑈1,𝑈2 ⊂ ℂ be disjoint open sets and assume that the t-embeddings  𝛿 satisfy
both assumptions Lip(𝜅, 𝛿) (with a fixed constant 𝜅 < 1) and assumption Exp-Fat(𝛿) (as 𝛿 → 0)
on𝑈1 ∪ 𝑈2. If the functions𝐾−1

 𝛿
(⋅, ⋅)are uniformly bounded on compact subsets of𝑈1 × 𝑈2 as𝛿 → 0,

then the same is true for the functions 𝐹[±±]

 𝛿
defined in Proposition 3.12.

Proof. Let 𝑤 ∈ 𝑈1 and 𝐹∙,𝛿
𝑤 (⋅) = 𝜂𝑤𝐾−1

 𝛿
(𝑤, ⋅) be the values of a t-white-holomorphic function on

black faces of  𝛿 lying in 𝑈2. (If  𝛿 is not a triangulation, we use its black splitting in 𝑈1 and a
white splitting in 𝑈2 in what follows.) Provided that 𝑤 stays on a compact subset of 𝑈1 as 𝛿 → 0,
Lemma 6.21 ensures that the functions 𝐹◦,𝛿

𝑤 are uniformly bounded on compact subsets of 𝑈2.
Moreover, this estimate is also uniform in 𝑤 provided that it stays on a compact subset of 𝑈1. We
now use the identity

𝐹◦,𝛿
𝑤 (𝑢◦) = 1

2

(
𝜂𝑤𝐹[++]

 𝛿
(𝑢∙, 𝑢◦) + 𝜂𝑤𝐹[−+]

 𝛿
(𝑢∙, 𝑢◦)

)
,

where 𝑤 ∼ 𝑢∙ ∈ 𝑈1 and 𝑢◦ ∈ 𝑈2. Frow now onward, let us fix the second argument 𝑢◦. Arguing
as in the proof of Lemma 6.21, for each disc 𝐷 of radius greater than 𝛿 one obtains the estimate

1

2

(
osc𝐷(𝐹[++]

 𝛿
(⋅, 𝑢◦)) + osc𝐷(𝐹[−+]

 𝛿
(⋅, 𝑢◦))

)
⩾

1

4
(1 − 𝜅) ⋅ max𝐷 |𝐹[++]

 𝛿
(⋅, 𝑢◦)| − max𝑤∈𝐷 |𝐹◦,𝛿

𝑤 (𝑢◦)|
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and a similar estimate withmax𝐷 |𝐹[−+]

 𝛿
(⋅, 𝑢◦)| in the right-hand side. Denote

𝐺∙,𝛿
+ (𝑢∙) ∶= 1

2

(
𝐹[++]

 𝛿
+ 𝐹[+−]

 𝛿

)
(𝑢∙, 𝑢◦) , 𝐺∙,𝛿

− (𝑢∙) ∶= 𝑖

2

(
𝐹[++]

 𝛿
+ 𝐹[+−]

 𝛿

)
(𝑢∙, 𝑢◦) ;

recall that 𝐹[+−] is the conjugate of 𝐹[−+]. It follows from Proposition 3.12 that 𝐺𝛿
± are t-black-

holomorphic functions and that their values on white faces are given by

𝐺◦,𝛿
+ (𝑤) = 𝜂𝑤 Re𝐹◦,𝛿

𝑤 (𝑢◦), 𝐺◦,𝛿
− (𝑤) = −𝜂𝑤 Im𝐹◦,𝛿

𝑤 (𝑢◦). (6.15)

For each disc 𝐷 of radius greater than 𝛿 the following estimate holds:

osc𝐷(𝐺∙,𝛿
+ ) + osc𝐷(𝐺∙,𝛿

− )

⩾
1

2

(
osc𝐷(𝐹[++]

 𝛿
(⋅, 𝑢◦)) + osc𝐷(𝐹[−+]

 𝛿
(⋅, 𝑢◦))

)
⩾

1

8
(1 − 𝜅) ⋅

(
max𝐷 |𝐹[++]

 𝛿
(⋅, 𝑢◦)| + max𝐷 |𝐹[−+]

 𝛿
(⋅, 𝑢◦)| ) − max𝑤∈𝐷 |𝐹◦,𝛿

𝑤 (𝑢◦)|
⩾

1

8
(1 − 𝜅) ⋅

(
max𝐷 |𝐺∙,𝛿

+ | + max𝐷 |𝐺∙,𝛿
− | ) − max𝑤∈𝐷 |𝐹◦,𝛿

𝑤 (𝑢◦)|.
The proof can be now completed similarly to that of Lemma 6.21. As the functions 𝐺∙,𝛿

± are t-
holomorphic, there exists a constant 𝐴′ = 𝐴′(𝜅) > 1 such that

osc𝐵(𝑧,𝐴′𝑟)(𝐺
∙,𝛿
± ) ⩾ 32(1 − 𝜅)−1 ⋅ osc𝐵(𝑧,𝑟)(𝐺

∙,𝛿
± ) provided that 𝑟 ⩾ 𝑟0𝛿.

Denote 𝐷 ∶= 𝐵(𝑧, 𝑟0𝛿) and 𝐴′𝐷 ∶= 𝐵(𝑧, 𝐴′𝑟0𝛿). We now have the estimate

max𝐴′𝐷 |𝐺∙,𝛿
+ | + max𝐴′𝐷 |𝐺∙,𝛿

− | ⩾
1

2

(
osc𝐴′𝐷(𝐺∙,𝛿

+ ) + osc𝐴′𝐷(𝐺∙,𝛿
− )

)
⩾ 2 ⋅

(
max𝐷 |𝐺∙,𝛿

+ | + max𝐷 |𝐺∙,𝛿
− | ) − 16(1 − 𝜅)−1 ⋅ max𝑤∈𝐷 |𝐹◦,𝛿

𝑤 (𝑢◦)|.
If (at least) one of the functions 𝐺∙,𝛿

± attained, in the bulk of 𝑈, a value much greater than the
maximum of |𝐹◦,𝛿

𝑤 (𝑢◦)| in a vicinity of this point, this would imply the existence of exponentially
(in 𝛿−1) big values of (at least one of) these functions. However, this scenario is not possible due to
a subexponential cost of the reconstruction of t-black holomorphic functions 𝐺∙,𝛿

± (𝑢∙) from their
values 𝐺◦,𝛿

± (𝑤), which are given by (6.15) and, as already mentioned at the beginning of the proof,
are uniformly (on compacts) bounded due to Lemma 6.21. □

7 CONVERGENCE TO THE GFF: A GENERAL FRAMEWORK

This section is devoted to the proof of Theorem 1.4. In particular, instead of the very mild Lips-
chitzness condition Lip(𝜅, 𝛿), below we rely upon a much stronger “small origami” assumption:
the origami maps 𝑚 tend to 0 as 𝑚 → ∞, uniformly on compact subsets. Though we do not
include such a discussion into this paper, let us nevertheless mention that a similar (thoughmore
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involved) analysis can be performed assuming that the origamimaps𝑚(𝑧) converge, as𝑚 → ∞,
to a function 𝜗(𝑧), which is a graph of a maximal surface in the Minkowski space ℝ2,2. In this sit-
uation one eventually obtains the GFF in the conformal metric of the corresponding surface and
not just in the Euclidean metric onΩ. We refer the interested reader to the companion paper [12]
for details and focus on the case 𝜗(𝑧) ≡ 0 from now onward. Also, in Subsection 7.3 we briefly
discuss how several known setups (Temperleyan [29–31], piecewise Temperleyan [42], hedgehog
domains [43]) fit the general framework developed in our paper.

7.1 Subsequential limits of the dimer coupling functions

Recall the expression of the dimer coupling function

𝐾−1(𝑤, 𝑏) = 1

4
(𝐹[++] + 𝜂2

𝑏
𝐹[+−] + 𝜂2

𝑤𝐹[−+] + 𝜂2
𝑤𝜂2

𝑏
𝐹[−−])(𝑢∙, 𝑢◦),

where 𝑤 ∼ 𝑢∙ and 𝑏 ∼ 𝑢◦, via the functions 𝐹[±±] ∶ (𝐵 ⧵ 𝜕𝐵) × (𝑊 ⧵ 𝜕𝑊) → ℂ given in Proposi-
tion 3.12. Let𝑈 ∶= Int𝐾 be the interior of a compact subset𝐾 ⊂ Ω, whereΩ stands for the limiting
domain of t-embeddings 𝑚 under consideration. Under the assumptions Lip(𝜅, 𝛿) and Exp-
Fat(𝛿, 𝛿′) on 𝐾, Propositions 6.22 and 6.13 imply that the functions 𝐹[±±]

𝑚
are uniformly bounded

and equicontinuous on scales above 𝛿𝑚 = 𝛿𝑚(𝐾) provided that their arguments remain at a defi-
nite distance from 𝜕𝑈 and from each other. Using the Arzelà–Ascoli theorem on each such𝑈 and
applying the diagonal process for a sequence of compacts 𝐾 approximating Ω from inside, one
obtains the existence of subsequential limits:

𝐹[±±]

𝑚
(𝑢∙, 𝑢◦) → 𝑓[±±](𝑧1, 𝑧2) if 𝑢∙ → 𝑧1, 𝑢◦ → 𝑧2 as 𝑚 = 𝑚𝑘 → ∞; (7.1)

the convergence is uniform provided that 𝑧1 and 𝑧2 remain at a definite distance from 𝜕Ω and
from each other. We list the key properties of functions 𝑓[±±] in the next proposition; note that
these properties do not define 𝑓[±±] uniquely.

Proposition 7.1. In the setup described above, for each subsequential limit 𝑓[±±] (which might
depend on the sequence𝑚 = 𝑚𝑘 → ∞) the following is fulfilled:

(i) 𝑓[−−](𝑧1, 𝑧2) = 𝑓[++](𝑧1, 𝑧2) and 𝑓[+−](𝑧1, 𝑧2) = 𝑓[−+](𝑧1, 𝑧2);
(ii) for each 𝑧1 ∈ Ω, both functions 𝑓[±+](𝑧1, ⋅) are holomorphic inΩ ⧵ {𝑧1}; similarly, for each 𝑧2 ∈

Ω, both functions 𝑓[+±](⋅, 𝑧2) are holomorphic inΩ ⧵ {𝑧2};
(iii) the following asymptotics hold as 𝑧2 → 𝑧1 ∈ Ω (similarly, as 𝑧1 → 𝑧2 ∈ Ω):

𝑓[++](𝑧1, 𝑧2) =
2

𝜋𝑖
⋅

1

𝑧2 − 𝑧1

+ 𝑂(1) and 𝑓[−+](𝑧1, 𝑧2) = 𝑂(1). (7.2)

Proof. Item (i) is a triviality because the same relations hold for the functions 𝐹[±±] before tak-
ing the limit, see Proposition 3.12(i). To prove (ii), recall that, for each 𝜂 ∈ ℂ and 𝑢∙ ∈ 𝐵, the
functions 𝜂𝐹[++](𝑢∙, ⋅) + 𝜂𝐹[−+](𝑢∙, ⋅) are t-holomorphic due to Proposition 3.12(iii). Therefore,
Proposition 6.15 and the “small origami” assumption 𝜗(𝑧) ≡ 0 imply that

(𝜂𝑓[++](𝑧1, 𝑧2) + 𝜂𝑓[−+](𝑧1, 𝑧2))𝑑𝑧2 is a closed form in Ω ⧵ {𝑧1}.
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Morera’s theoremyields that 𝜂𝑓[++](𝑧1, ⋅) + 𝜂𝑓[−+](𝑧1, ⋅) is a holomorphic function of 𝑧2. Varying 𝜂,
one concludes that both functions 𝑓[++](𝑧1, ⋅) and 𝑓[−+](𝑧1, ⋅) are holomorphic in Ω ⧵ {𝑧1}. The
holomorphicity of the functions 𝑓[+±](⋅, 𝑧2) follows by the same reasoning.
It remains to demonstrate (iii), that is, to identify the behavior of the functions 𝑓[±±] at 𝑧1 = 𝑧2.

To this end, given 𝑤 ∈ 𝑊, consider the complex-valued primitive

𝐼𝑤(⋅) ∶= Iℂ[𝐹𝑤], where 𝐹∙
𝑤(⋅) = 𝜂𝑤𝐾−1(𝑤, ⋅),

see Definition 4.14. As the function 𝐹𝑤 is t-holomorphic in a punctured domain, the function 𝐼𝑤
is not well-defined: in fact, it has an additive monodromy 2𝜂𝑤 around the white face 𝑤 as the
integral of the differential form (3.3) around 𝑤 is equal to 2𝜂𝑤

∑
𝑏∶ 𝑏∼𝑤 𝐾−1(𝑤, 𝑏)𝐾(𝑏, 𝑤) = 2𝜂𝑤.

Therefore, the function

𝐻𝑤(⋅) ∶= I𝑖𝜂𝑤ℝ[𝐹𝑤] = Pr(𝐼𝑤(⋅), 𝑖𝜂𝑤ℝ)

is well-defined and harmonic, except at the image of 𝑤, on the corresponding T-graph  − 𝜂
2
𝑤;

see Proposition 4.15. Moreover, Proposition 4.3 implies that this image is a single (degenerate) ver-
tex of the T-graph  − 𝜂

2
𝑤 and thus the real-valued function 𝑖𝜂𝑤𝐻𝑤 satisfies either themaximum

or the minimum principle in a vicinity of 𝑤.
We now use the representation of the function 𝐹𝑤 via 𝐹[±±] provided by Proposition 3.12(ii) to

claim that

𝐹◦
𝑤(𝑢◦) = 1

2

(
𝜂𝑤𝑓[++](𝑧1, 𝑧2) + 𝜂𝑤𝑓[−+](𝑧1, 𝑧2)

)
+ 𝑜(1) (7.3)

for𝑤 → 𝑧1 and 𝑢◦ → 𝑧2, uniformly over 𝑧1, 𝑧2 at a definite distance from 𝜕Ω and from each other.
Denote by ℎ[±+](𝑧1, ⋅) the (complex-valued, having additive monodromy around 𝑧1) primitive of
the holomorphic function 𝑓[±+](𝑧1, ⋅). As the primitive of the second term in (3.3) vanishes in the
limit𝑚 → ∞ due to the “small origami” assumption, we have

𝐻𝑤(𝑣) = 𝑖𝜂𝑤 ⋅ 1

2
Im

(
ℎ[++](𝑧1, 𝑧2) + 𝜂2

𝑤ℎ[−+](𝑧1, 𝑧2)
)
+ 𝑜(1) for 𝑤 → 𝑧1, 𝑣 → 𝑧2.

Recall that the discrete functions 𝑖𝜂𝑤𝐻𝑤 always satisfy a one-sidedmaximum principle in a vicin-
ity of 𝑧1. It is easy to see from Lemma 6.3 that for all sufficiently large 𝑚 one can find 𝑤 and
𝑤′ in a small vicinity of a given point 𝑧1 such that |𝜂2

𝑤 − 𝜂2
𝑤′ | = 2| Im(𝜂𝑤𝜂𝑤′)| ⩾ 2(𝑐1(𝜅))1∕2 > 0;

see also the proof of Lemma 6.21. Therefore, both functions ℎ[±+](𝑧1, ⋅) can have only logarithmic
singularities at 𝑧1. Moreover, as 𝐻𝑤 never has an additive monodromy around 𝑤, the function
ℎ[−+](𝑧1, ⋅) must be well-defined and thus cannot have a logarithmic singularity. Therefore, the
function 𝑓[++](𝑧1, ⋅) has (at most) a simple pole at 𝑧1 and 𝑓[−+](𝑧1, ⋅) does not have any singularity
in Ω.
Finally, if 𝑓[++](𝑧1, 𝑧2) = 𝑐 ⋅ (𝑧2 − 𝑧1)

−1 + 𝑂(1) as 𝑧2 → 𝑧1, then the function ℎ[++](𝑧1, ⋅) has an
additive monodromy 2𝜋𝑖𝑐 around 𝑧1. As the monodromy of 𝐼𝑤 = Iℂ[𝐹𝑤] around 𝑤 is known
to be equal to 2𝜂𝑤, integrating asymptotics (7.3) over a fixed contour surrounding 𝑧1 and
passing to the limit 𝑚 → ∞ one gets the identity 2𝜂𝑤 = 1

2
𝜂𝑤 ⋅ 2𝜋𝑖𝑐. This concludes the proof

of (7.2). □
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7.2 Proof of Theorem 1.4

Recall from the discussion after Theorem 1.4 that we want to prove the convergence of height
fluctuations to the GFF without proving convergence of 𝐾−1. We first give an expression of the
limits of correlation functions𝐻𝑇𝑚,𝑛 via unknown subsequential limits (7.1) of the dimer coupling
function and then identify these limits up to an unknown holomorphic factor 𝜒 ∶ Ω → ℂ (see
Lemma 7.3 and the forthcoming Subsection 7.3 for more details), which turns out to be enough
for the proof of Theorem 1.4.

Proposition 7.2. In the setup of Theorem 1.4 and Proposition 7.1, let 𝑣(𝑚)
𝑘,1

→ 𝑣𝑘,1 as𝑚 → ∞ for 𝑘 =

1,… , 𝑛 and pairwise distinct points 𝑣1,1, … , 𝑣𝑛,1 ∈ Ω, and similarly 𝑣(𝑚)
𝑘,2

→ 𝑣𝑘,2 for pairwise distinct
points 𝑣1,2, … , 𝑣𝑛,2 ∈ Ω. Then,

∑
𝑟1,…,𝑟𝑛∈{1,2}

(−1)𝑟1+⋯+𝑟𝑛𝐻𝑚,𝑛(𝑣
(𝑚)
1,𝑟1

, … , 𝑣(𝑚)
𝑛,𝑟𝑛

)

→ 4−𝑛 ∫
𝑣1,2

𝑣1,1

…∫
𝑣𝑛,2

𝑣𝑛,1

∑
𝑠1,…,𝑠𝑛∈{±}

det
[
𝟏𝑗≠𝑘𝑓

[𝑠𝑗,𝑠𝑘](𝑧𝑗, 𝑧𝑘)
]𝑛

𝑗,𝑘=1
⋅

𝑛∏
𝑘=1

𝑑𝑧
[𝑠𝑘]

𝑘

as𝑚 → ∞, where 𝑑𝑧[+] ∶= 𝑑𝑧, 𝑑𝑧[−] ∶= 𝑑𝑧. Themultiple integral can be evaluated over an arbitrary
collection of pairwise nonintersecting paths 𝛾𝑘 linking 𝑣𝑘,1 and 𝑣𝑘,2 (i.e., the integrand is an exact
differential form in each of the variables 𝑧1, … , 𝑧𝑛). The convergence is uniform provided that the
points 𝑣𝑘,1 remain at a definite distance from each other and from 𝜕Ω and that the same is true
for 𝑣𝑘,2.

Proof. The proof essentially repeats the classical argument of Kenyon [29, 30] in our setup.
Let 𝛾(𝑚)

𝑘
be a path running over edges of the t-embedding 𝑚 from 𝑣(𝑚)

𝑘,1
to 𝑣(𝑚)

𝑘,2
near 𝛾𝑘. (Note

that, in general, we do not control the total length of these paths as we do not assume that the
angles of t-embeddings are uniformly bounded from below.) Let (𝑏𝑘𝑤𝑘)

∗ ∈ 𝛾(𝑚)
𝑘

be some edges
on these paths. It is well-known that the probability that all the dimers (𝑏𝑘𝑤𝑘), 𝑘 = 1,… , 𝑛, are
present in a randomdimer cover of𝑚 can bewritten as det[𝐾−1𝑚

(𝑤𝑗, 𝑏𝑘)]
𝑛
𝑗,𝑘=1

⋅
∏𝑛

𝑘=1 𝐾𝑚
(𝑏𝑘, 𝑤𝑘).

Therefore, ∑
𝑟1,…,𝑟𝑛∈{1,2}

(−1)𝑟1+⋯+𝑟𝑛𝐻𝑚,𝑛(𝑣
(𝑚)
1,𝑟1

, … , 𝑣(𝑚)
𝑛,𝑟𝑛

)

= ∫
𝑣
(𝑚)
1,2

𝑣
(𝑚)
1,1

…∫
𝑣
(𝑚)
𝑛,2

𝑣
(𝑚)
𝑛,1

det
[
𝟏𝑗≠𝑘𝐾

−1𝑚
(𝑤𝑗, 𝑏𝑘)

]𝑛

𝑗,𝑘=1
⋅

𝑛∏
𝑘=1

(±𝑑𝑚((𝑏𝑘𝑤𝑘)
∗)),

where the “±” signs depend onwhether 𝑏𝑘 is to the right or to the left from the path 𝛾(𝑚)
𝑘

so that the
increment ±𝑑𝑚((𝑏𝑘𝑤𝑘)

∗) is always oriented from 𝑣(𝑚)
𝑘,1

to 𝑣(𝑚)
𝑘,2

. (The diagonal 𝑗 = 𝑘 is excluded
because we are interested in the correlations of the fluctuations ℏ𝑚

= ℎ𝑚
− 𝔼[ℎ𝑚

] and not in
the functions ℎ𝑚

themselves.) In what follows, we denote thus oriented edge ±(𝑏𝑘𝑤𝑘)
∗ of ∗

𝑚

by 𝑒𝑘.
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Expanding the determinant one obtains the expression

∑
𝜎∈𝑆𝑛∶𝜎(𝑗)≠𝑗

(−1)sign(𝜎) ∫
𝑣
(𝑚)
1,2

𝑣
(𝑚)
1,1

…∫
𝑣
(𝑚)
𝑛,2

𝑣
(𝑚)
𝑛,1

𝑛∏
𝑗=1

𝐾−1𝑚
(𝑤𝑗, 𝑏𝜎(𝑗)) ⋅

𝑛∏
𝑘=1

𝑑𝑚(𝑒𝑘),

where the sum is taken over all permutations 𝜎 having no fixed points. Note that, in each of the
variables 𝑒𝑘 = ±(𝑏𝑘𝑤𝑘)

∗, the integrand is proportional to

𝐾−1𝑚
(𝑤𝜎−1(𝑘), 𝑏𝑘)𝐾

−1𝑚
(𝑤𝑘, 𝑏𝜎(𝑘))𝑑𝑚(𝑒𝑘)

= 𝜂𝑤𝜎−1(𝑘)
𝜂𝑏𝜎(𝑘)

𝐹∙
𝑤𝜎−1(𝑘)

(𝑏𝑘)𝐹
◦
𝑏𝜎(𝑘)

(𝑤𝑘)𝑑𝑚(𝑒𝑘).

According to Remark 3.11, this differential form can be extended from the edges of the
t-embedding 𝑚 into the complex plane, as

1

4

(
𝐹◦

𝑤𝜎−1(𝑘)
(𝑧𝑘)𝐹

∙
𝑏𝜎(𝑘)

(𝑧𝑘)𝑑𝑧𝑘 + 𝐹◦
𝑤𝜎−1(𝑘)

(𝑧𝑘)𝐹
∙
𝑏𝜎(𝑘)

(𝑧𝑘) 𝑑𝑚(𝑧𝑘)

+ 𝐹◦
𝑤𝜎−1(𝑘)

(𝑧𝑘)𝐹
∙
𝑏𝜎(𝑘)

(𝑧𝑘) 𝑑𝑚(𝑧𝑘) + 𝐹◦
𝑤𝜎−1(𝑘)

(𝑧𝑘)𝐹
∙
𝑏𝜎(𝑘)

(𝑧𝑘)𝑑𝑧𝑘

)
.

Moreover, using the functions 𝐹[±±] introduced in Proposition 3.12, one can write this extension
in all the variables 𝑧𝑘, 𝑘 = 1,… , 𝑛, simultaneously. Namely, recall that

𝐾−1(𝑤𝑗, 𝑏𝜎(𝑗)) = 1

4

(
𝐹[++] + 𝜂2

𝑏𝜎(𝑗)
𝐹[+−] + 𝜂2

𝑤𝑗
𝐹[−+] + 𝜂2

𝑏𝜎(𝑗)
𝜂2
𝑤𝑗

𝐹[−−]
)
(𝑢∙

𝑗, 𝑢
◦
𝜎(𝑗)

)

if 𝑤𝑗 ∼ 𝑢∙
𝑗
and 𝑏𝜎(𝑗) ∼ 𝑢◦

𝜎(𝑗)
(e.g., one can take 𝑢∙

𝑗
∶= 𝑏𝑗 and 𝑢◦

𝜎(𝑗)
∶= 𝑤𝜎(𝑗)) and denote

𝑑 [+]

[+]
∶= 𝑑 , 𝑑 [+]

[−]
∶= 𝑑 = 𝜂2

𝑤𝑑 ,

𝑑 [−]

[+]
∶= 𝑑 = 𝜂2

𝑏
𝜂2
𝑤𝑑 , 𝑑 [−]

[−]
∶= 𝑑 = 𝜂2

𝑏
𝑑 .

Then,

𝑛∏
𝑗=1

𝐾−1(𝑤𝑗, 𝑏𝜎(𝑗)) ⋅
𝑛∏

𝑘=1

𝑑𝑚(𝑒𝑘)

= 4−𝑛
∑

𝑝𝑘,𝑞𝑘=±

𝑛∏
𝑗=1

𝐹[𝑝𝑗,𝑞𝜎(𝑗)](𝑏𝑗, 𝑤𝜎(𝑗)) ⋅
𝑛∏

𝑘=1

𝑑 [𝑞𝑘]

𝑚,[𝑝𝑘𝑞𝑘]
(𝑒𝑘) ,

where the sum is taken over all 22𝑛 possible combinations of signs𝑝𝑘 and 𝑞𝑘. Due to this extension
from edges of 𝑚 to ℂ, the paths 𝛾(𝑚)

𝑘
can now be assumed to coincide with 𝛾𝑘 except near the

endpoints and, in particular, to have uniformly (as𝑚 → ∞) bounded lengths.
It follows from the “small origami” assumption that the integrals against 𝑑 [𝑞𝑘]

𝑚,[−]
vanish in

the limit 𝑚 → ∞, thus only terms corresponding to 𝑠𝑘 ∶= 𝑝𝑘 = 𝑞𝑘 ∈ {±} survive; see the proof
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of Proposition 6.15 for a similar statement. The convergence (7.1) allows us to conclude that, as
𝑚 → ∞, ∑

𝑟1,…,𝑟𝑛∈{1,2}

(−1)𝑟1+⋯+𝑟𝑛𝐻𝑚,𝑛(𝑣
(𝑚)
1,𝑟1

, … , 𝑣(𝑚)
𝑛,𝑟𝑛

) →

4−𝑛
∑

𝜎∈𝑆𝑛∶𝜎(𝑗)≠𝑗

(−1)sign(𝜎) ∫
𝑣1,2

𝑣1,1

…∫
𝑣𝑛,2

𝑣𝑛,1

∑
𝑠1,…,𝑠𝑛∈{±}

𝑛∏
𝑗=1

𝑓[𝑠𝑗,𝑠𝜎(𝑗)](𝑧𝑗, 𝑧𝜎(𝑗))

𝑛∏
𝑘=1

𝑑𝑧
[𝑠𝑘]

𝑘
.

Interchanging the summations over 𝜎 and over the signs 𝑠𝑘 gives the claim. □

Proof of Theorem 1.4. Given t-embeddings 𝑚 approximating a continuous domain Ω, consider
subsequential limits (7.1) of the functions 𝐹[±±]

𝑚
and define

𝑛(𝑧1, … , 𝑧𝑛) ∶= 4−𝑛
∑

𝑠1,…,𝑠𝑛∈{±}

det
[
𝟏𝑗≠𝑘𝑓

[𝑠𝑗,𝑠𝑘](𝑧𝑗, 𝑧𝑘)
]𝑛

𝑗,𝑘=1
⋅

𝑛∏
𝑘=1

𝑑𝑧
[𝑠𝑘]

𝑘
. (7.4)

Proposition 7.2, in particular, implies that 𝑛(𝑧1, … , 𝑧𝑛) is an exact differential form in each of
the arguments 𝑧1, … , 𝑧𝑛. Let 𝑣1,...,𝑣𝑛 be auxiliary points close to the boundary ofΩ (but lying at a
definite distance from each other). Let us nowdeduce from the assumption (III) that the function

ℎ𝑛(𝑣1, … , 𝑣𝑛) ∶= lim𝑣1→𝜕Ω … lim𝑣𝑛→𝜕Ω ∫
𝑣1

𝑣1

…∫
𝑣𝑛

𝑣𝑛

𝑛(𝑧1, … , 𝑧𝑛) (7.5)

is well-defined (i.e., that the iterated limit exists and does not depend on the way in which the
auxiliary points 𝑣𝑛, … , 𝑣1 consecutively approach the boundary of Ω) and that, as𝑚 → ∞,

𝐻𝑚,𝑛(𝑣
(𝑚)
1

, … , 𝑣(𝑚)
𝑛 ) → ℎ𝑛(𝑣1, … , 𝑣𝑛) if 𝑣(𝑚)

𝑘
→ 𝑣𝑘; (7.6)

uniformly over 𝑣1, … , 𝑣𝑛 at a definite distance from 𝜕Ω and from each other. Denote 𝑣𝑘,1 ∶= 𝑣𝑘,
𝑣𝑘,2 ∶= 𝑣𝑘 and similarly for the vertices of 𝑚 that approximate these points. It follows fromPropo-
sition 7.2 and from the assumption (III) applied to all terms of the sum containing 𝑣(𝑚)

𝑛,1
= 𝑣(𝑚)

𝑛

that ∑
𝑟1,…,𝑟𝑛−1∈{1,2}

(−1)𝑟1+⋯+𝑟𝑛−1𝐻𝑚,𝑛(𝑣
(𝑚)
1,𝑟1

, … , 𝑣(𝑚)
𝑛−1,𝑟𝑛−1

, 𝑣(𝑚)
𝑛 )

= ∫
𝑣1

𝑣1

…∫
𝑣𝑛

𝑣𝑛

𝑛(𝑧1, … , 𝑧𝑛) + 𝑜𝑣𝑛→𝜕Ω(1) + 𝑜𝑚→∞(1) , (7.7)

where the 𝑜𝑣𝑛→𝜕Ω(1) error term in the right-hand side is uniform in 𝑚 provided that all other
auxiliary points 𝑣1, … , 𝑣𝑛−1 stay in the bulk of Ω (and that 𝑚 is big enough depending on 𝑣𝑛).
As the left-hand side does not depend on 𝑣𝑛 and the main term in the right-hand side does not
depend on𝑚, this implies that

∫
𝑣1

𝑣1

…∫
𝑣′
𝑛

𝑣𝑛

𝑛(𝑧1, … , 𝑧𝑛) → 0 as both 𝑣𝑛, 𝑣
′
𝑛 → 𝜕Ω. (7.8)
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Therefore, the primitive ∫ 𝑣1

𝑣1
… ∫ 𝑣𝑛

𝑣𝑛
𝑛(𝑧1, … , 𝑧𝑛) has awell-defined limit as 𝑣𝑛 → 𝜕Ω. Moreover,

choosing first 𝑣𝑛 close enough to 𝜕Ω and then 𝑚 big enough (depending on 𝑣𝑛) in (7.7), we see
that ∑

𝑟1,…,𝑟𝑛−1∈{1,2}

(−1)𝑟1+⋯+𝑟𝑛−1𝐻𝑚,𝑛(𝑣
(𝑚)
1,𝑟1

, … , 𝑣(𝑚)
𝑛−1,𝑟𝑛−1

, 𝑣(𝑚)
𝑛 )

= lim
𝑣𝑛→𝜕Ω∫

𝑣1

𝑣1

…∫
𝑣𝑛

𝑣𝑛

𝑛(𝑧1, … , 𝑧𝑛) + 𝑜𝑚→∞(1).

Applying the same argument as 𝑣𝑛−1 → 𝜕Ω,… , 𝑣1 → 𝜕Ω one obtains the existence of the iterated
limit (7.5) and the convergence (7.6). Moreover, note that both these convergences are uniform if
the points 𝑣1, … , 𝑣𝑛 remain at a definite distance from 𝜕Ω and from each other.
It remains to identify the functions ℎ𝑛. Due to the holomorphicity/anti-holomorphicity of the

functions 𝑓[±±](⋅, ⋅), for each fixed reference points 𝑣1, … , 𝑣𝑛, the function ∫ 𝑣1

𝑣1
… ∫ 𝑣𝑛

𝑣𝑛
𝑛(𝑧1, … , 𝑧𝑛)

is continuous and harmonic in each of the variables 𝑣1, … , 𝑣𝑛 away from the reference points
and from the diagonals 𝑣𝑝 = 𝑣𝑞, 𝑝 ≠ 𝑞. As the iterated limit in (7.5) is uniform on compacts, the
functions ℎ𝑛 are also harmonic in each of 𝑣1, … , 𝑣𝑛. It is also easy to see that ℎ𝑛 is symmetric
in 𝑣1, … , 𝑣𝑛 because the left-hand side in (7.6) is symmetric. Moreover, Assumption (III) implies
that ℎ𝑛 satisfies Dirichlet boundary conditions as one of the variables (e.g., 𝑣𝑛) approaches 𝜕Ω.
We start with two particular cases 𝑛 = 2 and 𝑛 = 3.
Let 𝑛 = 2. It follows from Proposition 7.1(iii) that

𝑓[++](𝑧1, 𝑧2) =
2

𝜋𝑖

1

𝑧2 − 𝑧1

+ 𝑓[++]

reg (𝑧1, 𝑧2),

where the function 𝑓[++]
reg is continuous in (𝑧1, 𝑧2) away from the diagonal and holomorphic

with a removable singularity as a function of each of the variables 𝑧1, 𝑧2. Due to Hartogs’s
lemma, this implies that 𝑓[++]

reg is continuous and holomorphic as a function of (𝑧1, 𝑧2); in
particular, 𝑓[++]

reg (𝑧2, 𝑧1) − 𝑓[++]
reg (𝑧1, 𝑧2) = 𝑂(|𝑧2 − 𝑧1|). Hence,

𝑓[++](𝑧1, 𝑧2)𝑓
[++](𝑧2, 𝑧1) =

4

𝜋2

1

(𝑧2 − 𝑧1)
2

+ 𝑂(1)

and

2(𝑧1, 𝑧2) = −
1

2𝜋2
Re

(
𝑑𝑧1𝑑𝑧2

(𝑧2 − 𝑧1)
2

)
+ 𝑂(1)

provided that 𝑧1, 𝑧2 stay in the bulk of Ω (but not necessarily far from each other). This means
that the function ℎ2(𝑣1, ⋅ ) satisfies the asymptotics

ℎ2(𝑣1, 𝑣2) = (−2𝜋2)−1 log |𝑣2 − 𝑣1| + 𝑂(1) as 𝑣2 → 𝑣1

and thus can be identified with the Green function ℎ2(𝑣1, 𝑣2) = 𝜋−1𝐺Ω(𝑣1, 𝑣2) due to the
harmonicity and Dirichlet boundary conditions.
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Let 𝑛 = 3. A similar consideration shows that in this case the differential form

3(𝑧1, 𝑧2, 𝑧3) =
1

64

∑
𝑠1,𝑠2,𝑠3∈{±}

(
𝑓[𝑠1,𝑠2](𝑧1, 𝑧2)𝑓

[𝑠2,𝑠3](𝑧2, 𝑧3)𝑓
[𝑠3,𝑠1](𝑧3, 𝑧1)

+𝑓[𝑠1,𝑠3](𝑧1, 𝑧3)𝑓
[𝑠3,𝑠2](𝑧3, 𝑧2)𝑓

[𝑠2,𝑠1](𝑧2, 𝑧1)
)
𝑑𝑧

[𝑠1]

1
𝑑𝑧

[𝑠2]

2
𝑑𝑧

[𝑠3]

3

does not have singularities at all: for instance, for both 𝑠1 ∈ {±} one has

𝑓[𝑠1,+](𝑧1, 𝑧2)𝑓
[++](𝑧2, 𝑧3)𝑓

[+,𝑠1](𝑧3, 𝑧1) =
2

𝜋𝑖

𝑓[𝑠1,+](𝑧1, 𝑧2)𝑓
[+,𝑠1](𝑧2, 𝑧1)

𝑧3 − 𝑧2

+ 𝑂(1)

as 𝑧3 → 𝑧2 ≠ 𝑧1 and the same pole appears with the opposite sign in the second term
𝑓[𝑠1,+](𝑧1, 𝑧3)𝑓

[++](𝑧3, 𝑧2)𝑓
[+,𝑠1](𝑧2, 𝑧1) contributing to3.

Therefore, the function ℎ3(𝑣1, 𝑣2, ⋅ ) does not have a singularity as 𝑣3 → 𝑣2 or as 𝑣3 → 𝑣1. Due to
the harmonicity and Dirichlet boundary conditions this yields ℎ3(𝑣1, 𝑣2, 𝑣3) = 0 for all 𝑣1, 𝑣2, 𝑣3 ∈

Ω.
The rest of the proof of Theorem 1.4 boils down to the following simple lemma.

Lemma 7.3. Let differential forms 2,3 be defined by (7.4), where functions 𝑓[±±](𝑧1, 𝑧2) are
holomorphic/anti-holomorphic in each of the variables and satisfy the relations𝑓[−−] = 𝑓[++],𝑓[+−] =

𝑓[−+]. If2 = 𝜋−1𝑑𝑣1
𝑑𝑣2

𝐺Ω(𝑣1, 𝑣2) and3 = 0, then there exists a holomorphic function 𝜒 ∶ Ω →

ℂ ⧵ {0} such that

𝑓[++](𝑧1, 𝑧2) =
𝜒(𝑧1)

𝜒(𝑧2)
⋅ 𝑓[++]

0
(𝑧1, 𝑧2), 𝑓[++]

0
(𝑧1, 𝑧2) ∶=

2

𝜋𝑖
⋅
𝜙′

Ω
(𝑧1)

1
2 𝜙′

Ω
(𝑧2)

1
2

𝜙Ω(𝑧2) − 𝜙Ω(𝑧1)
,

𝑓[−+](𝑧1, 𝑧2) =
𝜒(𝑧1)

𝜒(𝑧2)
⋅ 𝑓[−+]

0
(𝑧1, 𝑧2), 𝑓[−+]

0
(𝑧1, 𝑧2) ∶=

2

𝜋𝑖
⋅
𝜙′

Ω
(𝑧1)

1
2 𝜙′

Ω
(𝑧2)

1
2

𝜙Ω(𝑧2) − 𝜙Ω(𝑧1)
,

where 𝜙Ω ∶ Ω → ℍ is a conformal uniformizationΩ onto the upper half-plane ℍ.

Proof. Denote g [±±](𝑧1, 𝑧2) ∶= 𝑓[±±](𝑧1, 𝑧2)∕𝑓[±±]

0
(𝑧1, 𝑧2). As we have 𝑓[−−]

0
= 𝑓[++]

0
and 𝑓[+−]

0
=

𝑓[−+], the functions g [±±] satisfy the same relations. Note also that these functions do not have
singularities as the simple pole of 𝑓[++] at 𝑧1 = 𝑧2 cancels out by the same pole of 𝑓

[++]

0
, which also

implies that g [++](𝑧, 𝑧) = 1. As

𝜋−1𝑑𝑣1
𝑑𝑣2

𝐺Ω(𝑣1, 𝑣2) = −
1

16

∑
𝑠1,𝑠2∈{±}

𝑓
[𝑠1,𝑠2]

0
(𝑧1, 𝑧2)𝑓

[𝑠2,𝑠1]

0
(𝑧2, 𝑧1)𝑑𝑧

[𝑠1]

1
𝑑𝑧

[𝑠2]

2
,

one can rewrite the identity2 = 𝜋−1𝑑𝑣1
𝑑𝑣2

𝐺Ω(𝑣1, 𝑣2) as

g [𝑠1,𝑠2](𝑧1, 𝑧2)g
[𝑠2,𝑠1](𝑧2, 𝑧1) = 1, (7.9)
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for all 𝑠1, 𝑠2 ∈ {±} and 𝑧1, 𝑧2 ∈ Ω. In particular, g [±±](𝑧1, 𝑧2) ≠ 0 everywhere in Ω × Ω. Similarly,
expanding the definition (7.4) of the differential form3 = 0 as above one sees that

g [𝑠1,𝑠2](𝑧1, 𝑧2)g
[𝑠2,𝑠3](𝑧2, 𝑧3)g

[𝑠3,𝑠1](𝑧3, 𝑧1)

= g [𝑠1,𝑠3](𝑧1, 𝑧3)g
[𝑠3,𝑠2](𝑧3, 𝑧2)g

[𝑠2,𝑠1](𝑧2, 𝑧1)

for all 𝑠1, 𝑠2, 𝑠3 ∈ {±} and 𝑧1, 𝑧2, 𝑧3 ∈ Ω. Due to (7.9), the two sides of this identity are inverse to
each other, which means that they do not depend on 𝑧1, 𝑧2, 𝑧3 and are equal to ±1. Moreover,
substituting 𝑧𝑝 = 𝑧𝑞 if 𝑠𝑝 = 𝑠𝑞 one sees that only +1 is possible and hence

g [𝑠1,𝑠3](𝑧1, 𝑧3) = g [𝑠1,𝑠2](𝑧1, 𝑧2)g
[𝑠2,𝑠3](𝑧2, 𝑧3)

for all 𝑠1, 𝑠2, 𝑠3 ∈ {±} and 𝑧1, 𝑧2, 𝑧3 ∈ Ω. Let us now fix a point 𝑧0 ∈ Ω and denote

𝜒(𝑧) ∶= (g [+−](𝑧0, 𝑧0))
1∕2 ⋅ g [++](𝑧, 𝑧0) = (g [+−](𝑧0, 𝑧0))

−1∕2 ⋅ g [+−](𝑧, 𝑧0) ;

note that |g [+−](𝑧0, 𝑧0)| = 1 due to (7.9) and because g [−+] = g [+−]. Therefore,

g [++](𝑧1, 𝑧2) =
g [++](𝑧1, 𝑧0)

g [++](𝑧2, 𝑧0)
=

𝜒(𝑧1)

𝜒(𝑧2)
and g [−+](𝑧1, 𝑧2) =

g [−+](𝑧1, 𝑧0)

g [++](𝑧2, 𝑧0)
=

𝜒(𝑧1)

𝜒(𝑧2)

as required. □

We are now ready to conclude the proof of Theorem 1.4. It is easy to see that the dif-
ferential forms 𝑛 (see (7.4)) do not depend on the factors 𝜒(⋅) in the representation of
functions 𝑓[±±] provided by Lemma 7.3: all these factors simply cancel out when one consid-
ers a product

∏𝑛
𝑗=1 𝑓[𝑠𝑗,𝑠𝜎(𝑗)](𝑧𝑗, 𝑧𝜎(𝑗)). Similarly, the global ± sign in the expression of 𝑓[±±] can

only affect the sign of 𝑛 for odd 𝑛. In other words, even though we are unable to identify the
functions 𝑓[±±] themselves, Lemma 7.3 provides enough information to identify the differential
forms𝑛. It is well-known (e.g., see [30, Proposition 3.2] and [18, eq. (12.53)]) that

𝑛 = 𝜋−𝑛∕2 ⋅ 𝑑𝑣1
…𝑑𝑣𝑛

𝐺Ω,𝑛(𝑣1, … , 𝑣𝑛) ,

where 𝐺Ω,2𝑘+1 = 0 and the correlation functions 𝐺Ω,2𝑘 of the GFF in Ω are given by (1.3). Thus,
we have the identity

[𝑑𝑣1
… 𝑑𝑣𝑛

(ℎ𝑛 − 𝐺Ω,𝑛)](𝑧1, … , 𝑧𝑛) = 0, 𝑧1, … , 𝑧𝑛 ∈ Ω,

and it remains to note that the Dirichlet boundary conditions of the harmonic function ℎ𝑛 − 𝐺Ω,𝑛

as 𝑣𝑛 → 𝜕Ω yield (via the Harnack principle) the same boundary conditions, for example, for the
gradient 𝑑𝑣1

…𝑑𝑣𝑛−1
(ℎ𝑛 − 𝐺Ω,𝑛) as 𝑣𝑛 → 𝜕Ω. By induction, this allows us to conclude that

[𝑑𝑣1
… 𝑑𝑣𝑛−𝑘

(ℎ𝑛 − 𝐺Ω,𝑛)](𝑧1, … , 𝑧𝑛−𝑘, 𝑣𝑛−𝑘+1, … , 𝑣𝑛) = 0

for all 𝑘 = 1, 2, … , 𝑛. The proof is complete. □
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7.3 Discussion

We now briefly discuss how several cases from the existing literature fit our setup; with a partic-
ular emphasis on the explicit expression for functions 𝑓[±±], the scaling limits of 𝐹[±±]

𝑚
as𝑚 → ∞,

available in these cases. In all these situations, one obtains 𝑓[±±] explicitly by solving some con-
formally covariant boundary value problem, so these functions are also conformally covariant.
Recall that 𝑓[−−](𝑧1, 𝑧2) = 𝑓[++](𝑧1, 𝑧2) and 𝑓[+−](𝑧1, 𝑧2) = 𝑓[−+](𝑧1, 𝑧2).
For classical Temperleyan domains onℤ2 [29, 30] (see also [37]), aswell as for Temperleyan-type

domains coming from T-graphs [31] (see also [36] and [3, 4]), the functions 𝑓[±±](𝑧1, 𝑧2) are con-
formally invariant in the first variable and conformally covariant with exponent 1 in the second.
This implies the explicit expressions

𝑓[++](𝑧1, 𝑧2) =
2

𝜋𝑖

𝜙′
Ω
(𝑧2)

𝜙Ω(𝑧2)−𝜙Ω(𝑧1)
, 𝑓[−+](𝑧1, 𝑧2) =

2

𝜋𝑖

𝜙′
Ω
(𝑧2)

𝜙Ω(𝑧2)−𝜙Ω(𝑧1)
, (7.10)

where 𝜙Ω ∶ Ω → ℍ denotes a conformal uniformization of Ω onto the upper half-plane sending
the root point 𝑎 ∈ 𝜕Ω of the Temperley correspondence to∞. Equivalently, for each 𝜂𝑤 ∈ 𝕋,

Re

[
∫ (𝜂𝑤𝑓[++](𝑧1, 𝑧2) + 𝜂𝑤𝑓[−+](𝑧1, 𝑧2))𝑑𝑧2

]
= 0 if 𝑧2 ∈ 𝜕Ω ⧵ {𝑎}. (7.11)

This boundary condition is inherited from the Dirichlet boundary conditions for the discrete
primitives Iℝ[𝐹𝑤] of the dimer observables (which are discrete harmonic functions on the cor-
responding T-graph), the particular feature that allows one to prove the convergence theorem in
this case; see [31, 36]. It is worth mentioning that the Temperleyan case is nonsymmetric with
respect to changing the roles of black and white faces. In terms of the first variable, one observes
that, for each 𝜂𝑏 ∈ 𝕋,

Im
(
𝜂𝑏𝑓

[++](𝑧1, 𝑧2) + 𝜂𝑏𝑓
[+−](𝑧1, 𝑧2)

)
= 0 if 𝑧1 ∈ 𝜕Ω ⧵ {𝑎}. (7.12)

Both boundary conditions (7.12) and (7.11) are clearly visible in classical Temperleyan domains
on ℤ2 and can be used to prove the convergence of observables, the original argument of
Kenyon [29, 30] went through the simpler Dirichlet boundary conditions (7.12). However, in the
Temperleyan-like setup coming fromT-graphs one of the variables plays a distinguished role: (7.11)
is tautological while (7.12) does not admit a straightforward interpretation in discrete to the best
of our knowledge; it would be interesting to find one.
The second case to discuss is the so-called white-piecewise Temperleyan domains on ℤ2 stud-

ied in [42] (we swap the colors as compared to [42] to fit the preceding discussion). This setup
is conceptually similar to the classical Temperleyan one, except that one gets more complicated
limits

𝑓[±+](𝑧1, 𝑧2) =
2

𝜋𝑖

𝜙′
Ω
(𝑧2)

𝜙Ω(𝑧2) − 𝜙[±]

Ω
(𝑧1)

×

∏𝑚−1
𝑘=1 (𝜙[+]

Ω
(𝑧2) − 𝜙Ω(𝑣′

𝑘
))

1
2∏𝑚+1

𝑘=1 (𝜙[+]

Ω
(𝑧2) − 𝜙Ω(𝑣𝑘))

1
2

⋅

∏𝑚+1
𝑘=1 (𝜙[±]

Ω
(𝑧1) − 𝜙Ω(𝑣𝑘))

1
2∏𝑚−1

𝑘=1 (𝜙[±]

Ω
(𝑧1) − 𝜙Ω(𝑣′

𝑘
))

1
2
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instead of (7.10), where 𝜙[+]

Ω
(𝑧1) ∶= 𝜙Ω(𝑧1), 𝜙

[−]

Ω
(𝑧1) ∶= 𝜙Ω(𝑧1) and 𝑣𝑘, 𝑣

′
𝑘

∈ 𝜕Ω are the boundary
points at which boundary conditions change. Again, the covariance exponents of the func-
tions 𝑓[±±] are (1,0) and the two colors play asymmetric roles. On each of the boundary arcs
between points 𝑣𝑘, 𝑣

′
𝑘
, either the real or the imaginary part of the function

𝜂𝑏𝑓
[++](𝑧1, 𝑧2) + 𝜂𝑏𝑓

[+−](𝑧1, 𝑧2) = 𝜂𝑏𝑓
[++](𝑧1, 𝑧2) + 𝜂𝑏𝑓

[−+](𝑧1, 𝑧2)

satisfies Dirichlet conditions and one can use this boundary value problem to pass to the limit.
The third example is the so-called hedgehog domains studied in [43]. For these domains, one

has

𝑓[++](𝑧1, 𝑧2) =
2

𝜋𝑖

𝜙′
Ω
(𝑧1)

1
2 𝜙′

Ω
(𝑧2)

1
2

𝜙Ω(𝑧2) − 𝜙Ω(𝑧1)
, 𝑓[−+](𝑧1, 𝑧2) =

2

𝜋𝑖

𝜙′
Ω
(𝑧1)

1
2 𝜙′

Ω
(𝑧1)

1
2

𝜙Ω(𝑧2) − 𝜙Ω(𝑧1)
,

the colors play symmetric roles, and the boundary conditions are the Ising-type ones:

Im[∫ (𝑓(𝑧1, 𝑧2))
2𝑑𝑧2] = 0 at 𝜕Ω if 𝑓(𝑧1, 𝑧2) = 𝜂𝑤𝑓[++](𝑧1, 𝑧2) + 𝜂𝑤𝑓[−+](𝑧1, 𝑧2);

Im[∫ (𝑓(𝑧1, 𝑧2))
2𝑑𝑧1] = 0 at 𝜕Ω if 𝑓(𝑧1, 𝑧2) = 𝜂𝑏𝑓

[++](𝑧1, 𝑧2) + 𝜂𝑏𝑓
[+−](𝑧1, 𝑧2).

Already this set of conformally covariant examples clearly illustrates the fragility of the func-
tions 𝑓[±±] with respect to the change of the microscopic properties of the boundary. (Note that
this effect has nothing to do with limit shapes: on the square grid, all three examples listed above
lead to an asymptotically horizontal profile of the height function.)
In general, one can easily invent a setup in which the functions 𝑓[±±] are not conformally

covariant: for instance, piecewise Temperleyan domains onℤ2 with arcs satisfying the Temperley
condition with respect to different colors provide a relevant example. Moreover, in any reason-
ably general situation—for example, domains on the square grid composed of 2 × 2 blocks, which
again leads to the flat horizontal limit profile of the height function—one should not expect to see
any particular boundary conditions for dimers observables. This is one of the reasons of why we
believe that the framework of Theorem 1.4, which bypasses the identification of the limits of the
functions 𝑓[±±], is a right way to treat the dimer model in a reasonably general situation.
To summarize, the limits of dimer observables 𝐹◦

𝑤(⋅) and 𝐹∙
𝑏
(⋅) might depend on a subse-

quence but their boundary conditions are always dual to each other so that the primitives
∫ Re[𝐹◦

𝑤(𝑧)𝐹∙
𝑏
(𝑧)𝑑𝑧] satisfy the Dirichlet ones. In a general setup, it does not make much sense to

consider limits of 𝐹◦
𝑤 and limits of 𝐹∙

𝑏
separately. However, being combined together these limits

form a stable object, while each of them alone might have no reasonable interpretation at all due
to a great freedom in the choice of the unknown holomorphic factor 𝜒 in Lemma 7.3. The three
particular cases discussed above are clearly very special in this respect.

8 T-HOLOMORPHICITY AND OTHER DISCRETIZATIONS OF
COMPLEX ANALYSIS

The goal of this last section is to clarify the links between the setup of t-holomorphic functions on
t-embeddings and more standard discretizations of complex analysis. Namely, in Subsection 8.1
we show that the setup of orthodiagonal embeddings is a particular case of t-embeddings. More-
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F IGURE 10 A portion of an orthodiagonal embeddingort(Λ), the corresponding dimer graph 𝐺𝐷

(dashed) and its t-embedding. There are two types of black vertices in 𝐺𝐷 : black discs are vertices of Γ and black
squares are those of Γ∗. White vertices of 𝐺𝐷 are vertices of ♢ drawn as white rhombi in the picture.

over, in Subsection 8.1.3 we indicate a link between square tilings (or, more generally, rectangular
ones) and t-embeddings. Further, in Subsection 8.2 we focus on another particular case: that of
s-embeddings appearing in the planar Ising model context, see [33, section 7] and [10, section 2.3].
The standard framework of isoradial grids, which can be viewed both as s-embeddings and as
orthodiagonal ones, is discussed in Subsection 8.3. Finally, in Subsection 8.4 we briefly explain
how the two known discrete complex analysis frameworks on the square and the honeycomb
lattices fit our setup.

8.1 Orthodiagonal embeddings and square tilings

Let Γ be a planar graph, denote its dual by Γ∗ and let Λ be the “diamond graph” of Γ: the ver-
tices of Λ are those of Γ and of Γ∗, the edges of Γ connect a vertex of Γ with an adjacent vertex
of Γ∗ so that all faces of Λ have degree 4 and correspond to edges of Γ. Let ort ∶ Λ → ℂ be an
orthodiagonal embedding, that is, a graph Γ is embedded to ℂ together with its dual Γ∗ so that all
edges are straight segments and dual edgesort(𝑒),ort(𝑒

∗) intersect and are orthogonal to each
other for each edge 𝑒 of Γ; see Figure 10. In many questions and results, the intersection condition
can be weakened, instead one often assumes that the images of faces of Λ under ort are proper
(though not necessarily convex) quads.While keeping the forthcoming exposition essentially self-
contained, we refer the reader to [26] and references therein for more background on the discrete
complex analysis in this setup.
Given an orthodiagonal embeddingort one defines conductances 𝑐(𝑣𝑣′) on edges of Γ by

𝑐(𝑣𝑣′) ∶=

|||ort(𝑏
∗
+) − ort(𝑏

∗
−)
|||||ort(𝑏+) − ort(𝑏−)|| , 𝑐(𝑣𝑣′)∗ ∶= 𝑐−1

(𝑣𝑣′)
, (8.1)

wherewe use the notation (𝑣𝑣′) = (𝑏−𝑏+) and (𝑣𝑣′)∗ = (𝑏∗
−𝑏∗

+) for an edge of Γ and its dual; below
we often identify vertices of “abstract” graphs with their positions in ℂ under ort and simply
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write, for example, 𝑏∗
+ instead ofort(𝑏

∗
+). Further, let a dimer graph 𝐺𝐷 be the “diamond graph”

ofΛ: its vertex set consists of the union ofΛ (two types of black vertices) and quads♢ ∶= Λ∗ (white
vertices), where each vertex 𝑢◦ ∈ ♢ is represented inort by the intersection of the corresponding
edge (𝑏−𝑏+) of Γ and its dual edge (𝑏∗

−𝑏∗
+).

Note that the medial graph ofort(Λ) forms a t-embedding  of 𝐺∗
𝐷
, see Figure 10. As all white

faces of  (𝐺∗
𝐷
) are rectangles, an origami square root function 𝜂𝑏 takes only two values on black

faces depending on whether such a face corresponds to a vertex of Γ or to that of Γ∗. If 𝜂𝑏 equals
to ±1 on Γ, then it is ±𝑖 on Γ∗ (recall that 𝜂𝑏 is defined up to the sign).

Remark 8.1. Given an edge-weighted graph (Γ, 𝑐) one defines weights 𝜒 on edges of the
corresponding dimer graph 𝐺𝐷 by

𝜒(𝑏+𝑢◦) = 𝜒(𝑏−𝑢◦) ∶= 𝑐(𝑏−𝑏+), 𝜒(𝑏∗
+𝑢◦) = 𝜒(𝑏∗

−𝑢◦) ∶= 1,

where vertices 𝑢◦, 𝑏+, 𝑏−, 𝑏∗
+, 𝑏∗

− ∈ 𝐺𝐷 are as shown in Figure 10. If ort is an orthodiagonal
embedding and 𝑐(𝑣𝑣′) are given by (8.1), then these weights are gauge equivalent to the geometrical
weights |𝑑 ((𝑏𝑢◦)∗)|. Namely, for all adjacent 𝑏 ∈ Λ and 𝑢◦ ∈ ♢ (i.e., for 𝑏 = 𝑏+, 𝑏−, 𝑏∗

+, 𝑏∗
−) the

following identity holds:

|𝑑 ((𝑏𝑢◦)∗)| = 𝜒(𝑏𝑢◦) ⋅ 1

2
|ort(𝑏+) − ort(𝑏−)| .

Let 𝐹 be a function defined on (a subset of) Λ. The discrete operators 𝜕ort, 𝜕ort ∶ ℂΛ → ℂ♢ are
defined by the formulae:

[𝜕ort𝐹](𝑢◦) ∶=
1

2

(
𝐹(𝑏+) − 𝐹(𝑏−)

𝑏+ − 𝑏−

+
𝐹(𝑏∗

+) − 𝐹(𝑏∗
−)

𝑏∗
+ − 𝑏∗

−

)
,

[𝜕ort𝐹](𝑢◦) ∶=
1

2

(
𝐹(𝑏+) − 𝐹(𝑏−)

𝑏+ − 𝑏−

+
𝐹(𝑏∗

+) − 𝐹(𝑏∗
−)

𝑏∗
+ − 𝑏∗

−

)
;

see Figure 10.
A function 𝐹 is called discrete holomorphic at 𝑢◦ ∈ ♢ if [𝜕ort𝐹](𝑢◦) = 0. If 𝐹 is discrete holo-

morphic, then replacing it by Re𝐹 on Γ and by Im𝐹 on Γ∗ (or vice versa) also gives a discrete
holomorphic function. Because of that, it is often convenient to assume that 𝐹 is purely real on Γ

and is purely imaginary on Γ∗.
Given 𝑢◦ ∈ ♢, let

𝜇♢(𝑢◦) ∶= 1

2
|𝑏∗

+ − 𝑏∗
−| |𝑏+ − 𝑏−| (8.2)

be the area of the corresponding orthodiagonal quad inort. Further, for 𝑏 ∈ Λ define

𝜇Λ(𝑏) ∶=
1

4

∑
𝑤𝑘∼𝑏

|𝑏∗
𝑘+1

− 𝑏∗
𝑘
| |𝑤𝑘 − 𝑏| , (8.3)

where the sum is taken over all vertices 𝑤𝑘 ∈ ♢ adjacent to 𝑏; see Figure 11 for the nota-
tion. Let 𝜕∗

ort, 𝜕
∗
ort ∶ ℂ♢ → ℂΛ be the (formal) adjoint operators to the operators 𝜕ort, 𝜕ort , where

we assume that the scalar products in ℂ♢ and ℂΛ are defined by the weights (8.2) and (8.3),
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F IGURE 11 A t-embedding  obtained from an orthodiagonal embedding (left) and the corresponding
T-graph  +  with flattened white faces (right). The black faces  (𝑏), 𝑏 ∈ Γ, scale by the factor 2 while the
faces  (𝑏∗), 𝑏∗ ∈ Γ∗, degenerate to vertices of  + .

respectively. In particular, one has

[𝜕∗
ort𝐺](𝑏) =

1

𝜇Λ(𝑏)

∑
𝑤𝑘∼𝑏

𝜇♢(𝑤𝑘)

2(𝑏 − 𝑏𝑘)
𝐺(𝑤𝑘) =

𝑖

4𝜇Λ(𝑏)

∑
𝑤𝑘∼𝑏

(𝑏∗
𝑘+1

− 𝑏∗
𝑘
)𝐺(𝑤𝑘). (8.4)

Now let𝐻 be a function defined on (a subset of) Γ or, similarly, on (a subset of) Γ∗. The so-called
cotangent Laplacian on orthodiagonal embeddings reads as

[Δort𝐻](𝑏) ∶=
1

2𝜇Λ(𝑏)

∑
𝑏𝑘∼𝑏

𝑐(𝑏𝑏𝑘)(𝐻(𝑏𝑘) − 𝐻(𝑏)) . (8.5)

It is well-known that the following factorization holds:

−Δort = 4𝜕∗
ort𝜕ort = 4𝜕∗

ort𝜕ort .

A function 𝐻 is called discrete harmonic at 𝑏 if [Δort𝐻](𝑏) = 0. In terms of probabilistic models,
this notion is naturally associatedwith reversible randomwalks onΓ and onΓ∗ with conductances
𝑐(𝑣𝑣′) given by (8.1).
The factorization ofΔort implies that the restrictions of discrete holomorphic functions to Γ and

to Γ∗ are discrete harmonic. In particular, it is easy to see that [𝜕ortort](𝑢
◦) = 0 for all 𝑢◦ ∈ ♢

and hence the “coordinate function” ort ∶ Λ → ℂ is discrete harmonic both on Γ and on Γ∗.
Thus, orthodiagonal embeddings form a subclass of Tutte’s harmonic embeddings. Vice versa,
given a harmonic embeddingharm ∶ Γ → ℂ, one can always construct a discrete harmonic con-
jugate function∗

harm
∶ Γ∗ → ℂ such that the images of dual edges 𝑒, 𝑒∗ underharm and∗

harm
,

respectively, are orthogonal to each other. However, the images of faces of Λ under such pairs of
embeddings are not necessarily proper and/or small even if all the images of edges of bothΓ andΓ∗

are small. Still, one can introduce a proper t-embedding (with small faces)  = 1

2
(harm + ∗

harm
)

of the corresponding graph 𝐺∗
𝐷
similarly to Figure 10 and apply the techniques developed in this

paper to t-holomorphic functions on  . Let us emphasize once again that, in general, the dual
harmonic embeddings harm and ∗

harm
are not close to each other and thus are not close to  ;

this is the reason why discrete harmonic functions on harmonic embeddings do not necessarily
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converge to usual harmonic functions in the small mesh size limit while those on biorthogonal
embeddings do; see also Remark 6.20.

8.1.1 T-Holomorphic functions in the orthodiagonal setup

Given an orthodiagonal embedding, let us consider the corresponding t-embedding and let the
origami square root function be chosen so that 𝜂𝑏 = ±1 on Γ and 𝜂𝑏 = ±𝑖 on Γ∗ as discussed
above. This also implies that

𝜂𝑢◦ = ±𝑖𝑒−𝑖 arg(𝑏+−𝑏−), 𝑢◦ ∈ ♢ ; (8.6)

see Figure 10 for the notation. In the orthodiagonal context, the “true” complex values 𝐹◦
𝔴 of t-

white-holomorphic functions 𝐹𝔴 and 𝐹∙
𝔟
of t-black-holomorphic functions 𝐹𝔟 do not have much

sense, in particular because the faces of the t-embedding are not triangles and there is no canonical
way to split them in order to defined such complex values; see Section 5. However, if one consid-
ers the values 𝐹∙

𝔴(𝑏) ∈ 𝜂𝑏ℝ and 𝐹◦
𝔟
(𝑢◦) ∈ 𝜂𝑢◦ℝ, then the usual notion of discrete holomorphicity

arises. Indeed, it is easy to see that

∮𝜕𝑢◦
𝐹∙ 𝑑 = −𝜂2

𝑢◦ ⋅ (𝑏+ − 𝑏−)(𝑏∗
+ − 𝑏∗

−) ⋅ [𝜕ort𝐹
∙](𝑢◦)

for all functions 𝐹∙ (locally) defined on Λ = Γ ∪ Γ∗ and

∮𝜕𝑏
𝐹◦ 𝑑 =

∑
𝑤𝑘∼𝑏

1

2
(𝑏∗

𝑘
− 𝑏∗

𝑘+1
)𝐹◦(𝑤𝑘) = 2𝑖𝜇Λ(𝑏) ⋅ [𝜕∗

ort𝐹
◦](𝑏) (8.7)

for all functions (locally) defined on ♢. Thus, in the orthodiagonal setup, t-white-holomorphic
functions 𝐹∙

𝔴 are usual discrete holomorphic functions on Λ such that 𝐹∙|Γ ∈ ℝ and 𝐹∙|Γ∗ ∈ 𝑖ℝ

while t-black-holomorphic functions 𝐹◦
𝔟
are usual discrete holomorphic functions on ♢ such

that𝐹◦(𝑢◦) ∈ 𝜂𝑢◦ℝ for all 𝑢◦ ∈ ♢, that is, nothing but the discrete gradients of real-valued discrete
harmonic functions on Γ∗ (or, equivalently, 𝑖ℝ-valued harmonic functions on Γ).

8.1.2 Discrete harmonic functions on Γ as harmonic functions on T-graphs

We now discuss how the notion of discrete harmonicity on orthodiagonal embeddings fits
the frameworks developed in this paper. A similar discussion can be applied to general har-
monic embeddings by passing to the t-embedding  = 1

2
(harm + ∗

harm
) obtained from such an

embeddingharm and its harmonic conjugate∗
harm

.

Proposition 8.2.

(i) If 𝜂𝑏 = ±1 for 𝑏 ∈ Γ and 𝜂𝑏 = ±𝑖 for 𝑏 ∈ Γ∗, then the (degenerate) T-graph  +  coincides
with Γ∗. Similarly,  −  coincides with Γ.

(ii) A function is harmonic on the T-graph  +  (respectively, on  − ) in the sense of Remark 4.7
if and only if it is harmonic on Γ∗ (respectively, on Γ) in the usual sense.
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Proof.

(i) Due to Proposition 4.11 (see also Section 5) all faces ( + )(𝑏) for 𝑏 ∈ Γ∗ (respectively,
all faces ( − )(𝑏) for 𝑏 ∈ Γ) are degenerate; see Figure 11. Therefore, vertices of  + 
(respectively,  − ) are in bijection with vertices of Γ∗ (respectively, Γ). Moreover, let𝑤 ∈ ♢

correspond to the intersection of an edge 𝑒 of Γ and the dual edge 𝑒∗ of Γ∗. Then,

( + )(𝑤) = 2Pr( (𝑤), 𝜂𝑤ℝ) = ort(𝑒
∗)

as 𝜂𝑤 is the direction of ort(𝑒
∗) and  (𝑤) is a rectangle. The same argument applies to the

degenerate T-graph  − .
(ii) Let 𝐻 be a real-valued harmonic function on Γ∗ =  + . Both the harmonicity condition

on Γ∗ (i.e., the condition Δort𝐻 = 0) and the harmonicity on the degenerate T-graph  + )
boil down to the condition that the discrete gradient

D[𝐻](𝑢◦) = 𝐻(𝑏∗
+) − 𝐻(𝑏∗

−))∕(𝑏∗
+ − 𝑏∗

−) = 2[𝜕ort𝐻](𝑢◦), 𝑢◦ ∈ ♢,

is a t-black-holomorphic function (recall that this is equivalent to saying that 𝜕∗
ort(D[𝐻]) = 0).

A similar argument applies for functions defined on Γ =  − . □

8.1.3 Square tilings

We now briefly discuss a link of t-embeddingswith a classical notion of square (or, more generally,
rectangular) tilings introduced in [6]. As above, letort ∶ Λ → ℂ be an orthodiagonal embedding
and  ∶ 𝐺∗

𝐷
→ ℂ be a t-embedding of the (dual of the) corresponding dimer graph; see Figure 10.

(One can also start with a pair harm ∶ Γ → ℂ, ∗
harm

∶ Γ∗ → ℂ of dual harmonic embeddings
and consider the corresponding t-embedding  = 1

2
(harm + ∗

harm
).)

We now claim the following: if we consider T-graphs  + 𝛼2, what appears is a tiling by rect-
angles and, in the particular case of all conductances equal to 1, a square tiling; see Figure 12.More
precisely, if all conductances equal 1, then a corresponding orthodiagonal embedding restricted to
Γ forms a classical Tutte (or barycentric) embedding and the corresponding T-graphs are square
tilings defined by projections ofort. As above, we assume that the origami square root function 𝜂

is chosen so that 𝜂𝑏 = ±1 on Γ and 𝜂𝑏 = ±𝑖 on Γ∗.

Proposition 8.3. For each 𝛼 in the unit circle, the T-graph ( + 𝛼2)(𝐺∗
𝐷
) of an orthodiagonal

t-embedding  forms a tiling by rectangles. Moreover, for all 𝑏 ∈ Γ and 𝑏∗ ∈ Γ∗ the segments ( +

𝛼2)(𝑏) and ( + 𝛼2)(𝑏∗) have directions 𝛼ℝ and 𝑖𝛼ℝ, respectively, and

Pr(( +𝛼2)(𝑏), 𝑖𝛼ℝ) = Pr(ort(𝑏), 𝑖𝛼ℝ) + cst𝑖𝛼,

Pr(( +𝛼2)(𝑏∗), 𝛼ℝ) = Pr(ort(𝑏
∗), 𝛼ℝ) + cst𝛼,

where cst𝛼 ∈ 𝛼ℝ and cst𝑖𝛼 ∈ 𝑖𝛼ℝ are constants depending on 𝛼 only.

Proof. Proposition 4.3 (see also Section 5) imply that all edges ( + 𝛼2)(𝑏), 𝑏 ∈ Γ, are segments
with the direction 𝛼ℝ. Moreover, for each 𝑢◦ ∈ ♢ the image ( + 𝛼2)(𝑢◦) is a translate of the
rectangle (1 + 𝛼2𝜂2

𝑢◦
) (𝑢◦), where 𝜂𝑢◦ is given by (8.6). It is easy to deduce from this fact that

Pr(( +𝛼2)(𝑏+) − ( +𝛼2)(𝑏−), 𝑖𝛼ℝ) = Pr(ort(𝑏+) − ort(𝑏−), 𝑖𝛼ℝ)
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F IGURE 1 2 A t-embedding  obtained from an orthodiagonal embedding (left) and the corresponding
T-graph  +  with flattened black faces (right). The black faces  (𝑏) with 𝑏 ∈ Γ are projected onto the
horizontal direction and give rise to horizontal edges of  +  while 𝑏∗ ∈ Γ∗ give rise to vertical ones. White
rectangular faces have aspect ratios (8.1) both in  and in  + .

for all pairs of adjacent vertices 𝑏± ∈ Γ. Similar arguments apply to the images of vertices 𝑏∗ ∈ Γ∗

in  + 𝛼2. □

8.2 S-Embeddings

In this section, we recall a link between s-embeddings of planar graphs carrying the Ising model
and t-embeddings of the corresponding bipartite dimer model; see also [33, section 7] and [10,
section 2.3]. Let 𝐺Ising be a planar graph and ΛIsing be its “diamond graph” (see Subsection 8.1;
recall that vertex set of ΛIsing is the union of those of 𝐺Ising and 𝐺∗

Ising
). According to [9, 10],

an s-embedding  ∶ ΛIsing → ℂ satisfies the condition that every face of (ΛIsing) is a tangen-
tial quadrilateral (i.e., admits an inscribed circle). Note that, given  , there is also a natural way
to embed the graph ♢Ising ∶= Λ∗

Ising
by placing its vertices at the centers of the inscribed circles of

the corresponding faces of ΛIsing.
Let us construct a bipartite graph Υ∙ ∪ Υ◦ associated to 𝐺Ising by putting a black and a white

vertices to each edge of the graph ΛIsing (or, equivalently, to each “corner” of the graph 𝐺Ising) as
shown in Figure 13. Due to [19], there exists a natural correspondence between the Ising model
on 𝐺Ising and the bipartite dimer model on Υ∙ ∪ Υ◦ with weights

𝜒(𝑏10𝑤10)
= 1, 𝜒(𝑏11𝑤10)

= cos 𝜃𝑒, 𝜒(𝑏00𝑤10)
= sin 𝜃𝑒, (8.8)

where vertices 𝑏10, 𝑏11, 𝑏00 and 𝑤10 are as shown in Figure 13 and 𝜃𝑒 parameterize the Ising
interaction constants 𝐽𝑒 so that tanh[𝛽𝐽𝑒] = 𝑥𝑒 = tan 1

2
𝜃𝑒.

Let Υ be the set of “corners” of the graph 𝐺Ising and denote by Υ× the double-cover of Υ

that branches over each vertex of ΛIsing ∪ ♢Ising. Recall that each corner 𝑐 ∈ Υ corresponds to
an edge (𝑣∙(𝑐)𝑣◦(𝑐)) of ΛIsing and let 𝑤(𝑐) ∈ Υ◦, 𝑏(𝑐) ∈ Υ∙ denote the corresponding vertices of
the bipartite graph Υ◦ ∪ Υ∙ so that (𝑤(𝑐)𝑏(𝑐))∗ = (𝑣∙(𝑐)𝑣◦(𝑐)).
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F IGURE 13 An s-embedding  of the “diamond graph” ΛIsing obtained from a planar graph 𝐺Ising can be
viewed as a t-embedding of (the dual of) the bipartite graph Υ◦ ∪ Υ∙ if one places vertices of ♢Ising = Λ∗

Ising
at the

centers of the circles inscribed into faces of ΛIsing. We draw vertices of 𝐺∗
Ising

as black squares but now denote
them as 𝑣◦ in order to keep the notation consistent with [10].

It is easy to see that an s-embedding of a graph 𝐺Ising can be viewed as a t-embedding  of the
graph (Υ◦ ∪ Υ∙)∗ = ΛIsing ∪ ♢Ising. Indeed, the angle condition is satisfied at each vertex: if 𝑣 ∈

ΛIsing, then for each edge 𝑒 adjacent to 𝑣 the segment (𝑣𝑧𝑒) is the bisector of the corresponding
angle (as (𝑧𝑒) is the center of the circle inscribed into the corresponding quad) and for each 𝑧𝑒 ∈

♢Ising the sum of two white adjacent to (𝑧𝑒) angles is 𝜋; see Figure 13. Moreover, the geometrical
weights |𝑑 (𝑏𝑤∗)| are gauge equivalent to the weights (8.8) provided that the s-embedding  =

 ∶ ΛIsing → ℂ is constructed by the rule

 (𝑣∙
𝑝) −  (𝑣◦𝑞) = ((𝑐𝑝𝑞))

2, (8.9)

where a Dirac spinor  ∶ Υ× → ℂ satisfies the propagation equation

(𝑐𝑝𝑞) = (𝑐𝑝,1−𝑞) cos 𝜃𝑒 + (𝑐1−𝑝,𝑞) sin 𝜃𝑒 (8.10)

for any three consecutive vertices 𝑐𝑝𝑞 ∈ Υ× surrounding 𝑧𝑒; see [10, Definition 1.1].
Further, note that

𝜂𝑏(𝑐) = 𝜂𝑤(𝑐) ∶= exp[− 𝑖

2
arg((𝑣∙(𝑐)) − (𝑣◦(𝑐)))] (8.11)

defines an origami square root function on  . Moreover, one can make the choice of the signs in
the right-hand side canonical (cf. Remark 2.5) by passing from Υ to its double cover Υ× and defin-
ing a spinor 𝜂𝑐, 𝑐 ∈ Υ×, as 𝜍𝜂𝑐 ∶= 𝜂𝑏(𝑐) = 𝜂𝑤(𝑐), where the global factor 𝜍 is such that |𝜍| = 1. (The
particular choice of 𝜍 is not important; in the planar Ising model literature it is sometimes fixed
as 𝜍 = 𝑒𝑖 𝜋

4 following [15, 45].) Vice versa, each choice of a section of Υ× (i.e., a choice of the square
root in the definition of 𝜂𝑐 at each “corner” 𝑐 ∈ Υ) defines Kasteleyn signs on Υ∙ ∪ Υ◦ according
to the following rule: one always assigns the “−” sign to edges of the form (𝑏(𝑐)𝑤(𝑐)) while the
signs of all other edges (𝑏𝑤) of Υ∙ ∪ Υ◦ are given by the signs of Re[𝜂𝑏𝜂𝑤]. (The fact that these
signs satisfy the Kasteleyn condition directly follows from the branching structure of the double
cover Υ× on which the Dirac spinor 𝜂 is defined.) Once a section of Υ× and the corresponding
Kasteleyn signs are fixed, the values  ∙

gauge(𝑏(𝑐)) ∶= (𝑐) and ◦
gauge(𝑤(𝑐)) ∶= (𝑐) are nothing

but the Coulomb gauge giving rise to the t-embedding  .
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Definition 8.4 (see [9, 10, 15, 45]). A function 𝐹 ∶ ♢Ising → ℂ is called s-holomorphic (on an
s-embedding ) if

Pr(𝐹(𝑧), 𝜂𝑐ℝ) = Pr(𝐹(𝑧′), 𝜂𝑐ℝ) (8.12)

for each pair 𝑧, 𝑧′ ∈ ♢Ising adjacent to the same edge (𝑣∙(𝑐)𝑣◦(𝑐)) of ΛIsing.

It is easy to see that this definition essentially (up to the factor 𝜍) matches the definition
of t-holomorphic functions on the corresponding t-embedding  . Indeed, let 𝐹𝔴 be, say, a
t-white-holomorphic function. Then, its “true” complex values at two vertices 𝑤10, 𝑤01 ∈ Υ◦

corresponding to the same edge of 𝐺Ising match because

Pr(𝐹◦
𝔴(𝑤10), 𝜂𝑏00

ℝ) = 𝐹∙
𝔴(𝑏00) = Pr(𝐹◦

𝔴(𝑤01), 𝜂𝑏00
ℝ) ,

Pr(𝐹◦
𝔴(𝑤10), 𝜂𝑏11

ℝ) = 𝐹∙
𝔴(𝑏11) = Pr(𝐹◦

𝔴(𝑤01), 𝜂𝑏11
ℝ) ;

see Figure 13 for the notation. This allows to associate these values to the quads 𝑧𝑒 ∈ ♢Ising instead
of 𝑤 ∈ Υ◦ and one immediately sees that the function

𝐹(𝑧𝑒) ∶= 𝜍 ⋅ 𝐹◦
𝔴(𝑤10) = 𝜍 ⋅ 𝐹◦

𝔴(𝑤10) (8.13)

satisfies the s-holomorphicity condition (8.12); vice versa, given an s-holomorphic function
on ♢Ising one can view it as a t-white-holomorphic one using the same rule. As Υ∙ and Υ◦

play fully symmetric roles, the same discussion applies to the “true” complex values 𝐹∙
𝔟
of

t-black-holomorphic functions.
The next result gives an interpretation of the values𝐹∙

𝔴 of t-white-holomorphic functions onΥ∙;
a similar consideration applies to values of functions 𝐹◦

𝔟
on Υ◦.

Proposition 8.5 (see also [10, Proposition 2.5]). Let 𝐹𝔴 be a t-white-holomorphic function on the
t-embedding  ∶ ΛIsing ∪ ♢Ising → ℂ associated with the s-embedding  =  ∶ ΛIsing → ℂ. Then,
a real-valued spinor 𝑐 ↦ 𝐹∙

𝔴(𝑏(𝑐))(𝑐) satisfies the propagation equation (8.10) on Υ×.
Vice versa, each real-valued spinor 𝑋 satisfying the propagation equation (8.10) on Υ× gives rise

to a t-white-holomorphic function whose values on Υ∙ are defined as 𝑏(𝑐) ↦ 𝑋(𝑐)∕(𝑐).

Proof. Note that (𝑐) ⋅ 𝐹∙
𝔴(𝑏(𝑐)) ∈ (𝑐)𝜂𝑏(𝑐)ℝ = ℝ due to (8.11) and (8.9). Further, recall that

 (𝑣∙
1
) −  (𝑧𝑒) = (𝑐10)(𝑐11) ⋅ cos 𝜃𝑒 ,

 (𝑧𝑒) −  (𝑣◦
0
) = (𝑐10)(𝑐00) ⋅ sin 𝜃𝑒 ,

 (𝑣∙
1) −  (𝑣◦0) = ((𝑐10))

2

provided that the lifts of the corners 𝑐00, 𝑐10, 𝑐11 are neighbors on the double cover Υ× (e.g., see
[10, eq. (2.5)] or [9, eq. (6.1)]). Therefore, the condition

0 = ∮𝜕𝑤10

𝐹∙
𝔴 𝑑

=
(
𝐹∙

𝔴(𝑏10)(𝑐10) − 𝐹∙
𝔴(𝑏11)(𝑐11) cos 𝜃𝑒 − 𝐹∙

𝔴(𝑏00)(𝑐00) sin 𝜃𝑒

)
⋅ (𝑐10)

is equivalent to the propagation equation (8.10) for the spinor 𝐹∙
𝔴(𝑏(𝑐))(𝑐).
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The computation around 𝑤01 is similar. Vice versa, if 𝑋 is a real-valued spinor satisfying the
propagation equation (8.10) on Υ×, then 𝑋(𝑐)∕(𝑐) ∈ 𝜂𝑏(𝑐)ℝ and ∮𝜕𝑤(𝑋∕)𝑑 = 0 for all𝑤 ∈ Υ◦

due to the same computation. □

The case of s-embeddings is special in many respects as compared to general t-embeddings. In
particular, in this setup the origami map  is essentially one-dimensional and coincides with the
function  =  ∶ ΛIsing → ℝ defined (up to a global additive constant) by the rule

 (𝑣∙(𝑐)) −  (𝑣◦(𝑐)) ∶= | (𝑣∙(𝑐)) −  (𝑣◦(𝑐))| = |(𝑐)|2 (8.14)

for all 𝑐 ∈ Υ×; see [10, Definition 2.2]. (As  satisfies the propagation equation (8.10), this defini-
tion is consistent; geometrically itmeans that all quads of the s-embedding =  are tangential.)
Indeed, it is easy to see that the origami map  sends all vertices of ΛIsing onto the same line: for
example, if one folds the plane along the edge  (𝑣∙

1
) (𝑧𝑒), then the images of  (𝑣∙

1
),  (𝑣◦

1
) and

 (𝑣◦
0
) lie on a line because  (𝑣∙

1
) (𝑧𝑒) is the bisector of the angle  (𝑣◦

1
) (𝑣∙

1
) (𝑣◦

0
). A similar

consideration applies to all other edges, one also sees that |ΛIsing
=  up to a rotation and a

translation. Moreover,  sends all vertices of ♢Ising into the same half-plane with respect to the
line containing the image of ΛIsing.
We conclude this section by mentioning a reformulation of Proposition 3.10 in the context of

s-embeddings: for each s-holomorphic function 𝐹 defined on (a subset of) ♢Ising, the differential
form

1

2
Re(𝜍

2
𝐹2𝑑 + |𝐹|2𝑑) (8.15)

is closed (as this is nothing but the differential form (3.5) under the correspondence (8.13)). The
primitive of the differential form (8.15) plays a very important role in the analysis of fermionic and
spinor observables appearing in the planar Ising model on s-embeddings; see [10].

8.3 Isoradial grids

Isoradial grids (or, equivalently, rhombic lattices) provide a nice setup for discrete complex analy-
sis that goes beyond amore straightforward discretization on the square grid; this was first pointed
out by Duffin [21] in late 1960s. The interest to this setup in connection with the planar Ising and
the bipartite dimer models reappeared in the work of Mercat [39] and Kenyon [28] in early 2000s,
respectively; see also [14, 15]. One says that Γ𝛿 = Γ∙,𝛿 is an isoradial grid of mesh size 𝛿 if Γ𝛿 is
a planar graph in which each face is inscribed into a circle of a common radius 𝛿. Suppose that
all circle centers are inside the corresponding faces, then the dual graph Γ∗,𝛿 = Γ◦,𝛿 is also iso-
radial with the same radius. The associated rhombic lattice Λ𝛿 is the graph on the union of the
vertex sets of Γ𝛿 and Γ∗,𝛿 with natural incidence relations. Clearly, all faces ofΛ𝛿 are rhombi with
edge length 𝛿. Isoradial grids form a subclass of the intersection of orthodiagonal embeddings
and s-embeddings and therefore there are two notions of t-holomorphicity associated with them
according to Subsections 8.1 and 8.2.
We begin by recalling the definition of discrete holomorphic functions on the set ♢𝛿 = (Λ𝛿)∗

from Subsection 8.1 in the isoradial setup; see Figure 14 for the notation. Given 𝑧 ∈ ♢𝛿, let 𝜃𝑧

denote the half-angle of the corresponding rhombus (𝑣∙
−𝑣◦−𝑣∙

+𝑣◦+) along the edge (𝑣∙
−𝑣∙

+) of Γ. The
face weights (8.2) and (8.3) are given by

𝜇♢(𝑧) = 𝛿2 sin(2𝜃𝑧), 𝑧 ∈ ♢𝛿, 𝜇Λ(𝑣) =
1

4
𝛿2

∑
𝑧𝑘∼𝑣

sin(2𝜃𝑧𝑘
), 𝑣 ∈ Λ𝛿,
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F IGURE 14 Two t-embeddings associated with an isoradial graph Γ, its dual isoradial graph Γ∗, and the
corresponding rhombic lattice Λ of mesh size 𝛿. Left: a t-embedding of the (dual of the) bipartite graph Λ ∪ ♢,
where ♢ = Λ∗, is a particular case of orthodiagonal embeddings discussed in Subsection 8.1. Right: a t-embedding
of the graph (Υ∙ ∪ Υ◦)∗ = Λ ∪ ♢ is a particular case of s-embeddings discussed in Subsection 8.2.

the edge conductances (8.1) are equal to tan 𝜃𝑧, and one has

[𝜕𝐹](𝑧) =
1

2

(
𝐹(𝑣∙

+) − 𝐹(𝑣∙
−)

𝑣∙
+ − 𝑣∙

−

+
𝐹(𝑣◦+) − 𝐹(𝑣◦−)

𝑣◦+ − 𝑣◦−

)
, 𝑧 ∈ ♢𝛿

[𝜕∗𝐺](𝑣∙) =
𝑖

4𝜇Λ(𝑣∙)

∑
𝑧𝑘∼𝑣∙

(𝑣◦
𝑘+1

− 𝑣◦
𝑘
) ⋅ 𝐺(𝑧𝑘), 𝑣

∙ ∈ Γ𝛿,

[Δ𝐻](𝑣∙) = [−4𝜕∗𝜕𝐻](𝑣∙) =
1

2𝜇Λ(𝑣∙)

∑
𝑣∙
𝑘
∼𝑣∙

tan 𝜃𝑘 ⋅ 𝐻(𝑣∙
𝑘
)
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and similarly for 𝑣◦ ∈ Γ∗,𝛿; see (8.4) and (8.5). Recall that a function 𝐺 defined on (a subset of)♢𝛿

is called discrete holomorphic at 𝑣∙ if [𝜕∗𝐺](𝑣∙) = 0 and that a function 𝐻 defined on (a subset
of) Γ𝛿 is called discrete harmonic at 𝑣∙ if [Δ𝐻](𝑣∙) = 0. All results mentioned in Subsection 8.1
apply on isoradial grids, in particular, the following holds.

∙ If 𝐹𝔟 is a t-black-holomorphic function (in the sense of Subsection 8.1), then 𝐹◦
𝔟
is discrete

holomorphic (i.e., 𝜕∗𝐹◦
𝔟

= 0 on Λ𝛿) and satisfies the condition 𝐹◦
𝔟
(𝑧) ∈ (𝑣

◦
+ − 𝑣

◦
−)ℝ for all 𝑧 ∈

♢𝛿.
∙ Vice versa, each discrete holomorphic function 𝐺 defined on (a subset of) ♢𝛿 and such
that 𝐺(𝑧) ∈ (𝑣

◦
+ − 𝑣

◦
−)ℝ is a t-black-holomorphic function in the sense of Subsection 8.1.

∙ Locally (or in simply connected domains), such discrete holomorphic functions are nothing
but the discrete gradients of real-valued harmonic functions on Γ∗ = Γ◦,𝛿 or, equivalently, the
discrete gradients of 𝑖ℝ-valued harmonic functions on Γ = Γ∙,𝛿.

Remark 8.6. It is worth noting that the condition 𝐺(𝑧) ∈ 𝜂𝑧ℝ = (𝑣
◦
+ − 𝑣

◦
−)ℝ that specifies t-black-

holomorphic functions 𝐹◦
𝔟
out of all discrete holomorphic functions on ♢𝛿 can be equivalently

formulated as the requirement that 𝐺 is invariant under the involution 𝐺(𝑧) ↦ 𝜂2
𝑧𝐺(𝑧) on the set

of discrete holomorphic functions on ♢𝛿; see Equation (8.7) and Remark 3.5.

For the notion of discrete harmonicity inherited from orthodiagonal embedding, themain sim-
plification in the isoradial setup comes from the fact that the discrete Laplacian approximates
the continuous one up to the second order: one has Δ𝐻 = 2(𝑎 + 𝑐) if𝐻 = 𝑎𝑥2 + 2𝑏𝑥𝑦 + 𝑐𝑦2. This
means that the covariance matrix Var𝑋𝑡 of the corresponding continuous time random walk 𝑋𝑡

on Γ (see Section 4 and Proposition 8.2) not only satisfies the normalization Tr Var𝑋𝑡 = 𝑡 but
is rotationally invariant, that is, one has Var𝑋𝑡 = 1

2
𝑡 ⋅ Id; see [14, eq. (1.2)]. In particular, we see

that this random walk must converge as 𝛿 → 0 to a standard 2D Brownian motion (as opposed
to a centered diffusion with nontrivial covariance depending on the point that arises for general
orthodiagonal embeddings; see Remark 6.20).
We now move on to the second approach to discrete holomorphic functions in the isoradial

setup that comes from the notion of s-holomorphicity discussed in Subsection 8.2; see Figure 14.
Clearly, a rhombic latticeΛ𝛿 of mesh size 𝛿 can be viewed as an s-embedding 𝛿 = 𝛿 , where the
Dirac spinor 𝛿 is given by

𝛿(𝑐) = (𝑣∙(𝑐) − 𝑣◦(𝑐))1∕2 = 𝛿1∕2𝜂𝑏(𝑐) = 𝛿1∕2𝜂𝑤(𝑐) = 𝛿1∕2𝜍𝜂𝑐, 𝑐 ∈ Υ×;

see (8.11). Moreover, in the isoradial setup the parameter 𝜃𝑒 involved into the propagation
equation (8.10) is nothing but the half-angle of the corresponding rhombus.
Recall that the notion of t-holomorphicity on s-embeddings boils down to Definition 8.4 and

that the correspondence between t-holomorphic and s-holomorphic functions is given by (8.13):
one can assign the “true” complex values of t-holomorphic functions to 𝑧 ∈ ♢ and the result is an
s-holomorphic function (up to a fixed global factor 𝜍 such that |𝜍| = 1). A major simplification in
the isoradial setup as compared to general s-embeddings is that the function 𝛿 defined by (8.14)
(or, equivalently, the origami map 𝛿 associated to the corresponding t-embedding) becomes
completely explicit: one can choose an additive constant in its definition so that

𝛿(𝑣∙) = 1

2
𝛿 for all 𝑣∙ ∈ Γ𝛿 and 𝛿(𝑣◦) = −1

2
𝛿 for all 𝑣◦ ∈ Γ∗,𝛿. (8.16)
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(Moreover, one easily sees that |𝛿(𝑧)| = 𝛿

2
for all 𝑧 ∈ ♢ and that the image of 𝛿 is contained in

the intersection of the ball 𝐵(0, 𝛿

2
) and the upper half plane.)

Proposition 8.7 (see also [15, Lemma 3.2]). Let 𝐹 be an s-holomorphic function defined on (a
subset of) the rhombic lattice ♢𝛿 = (Λ𝛿)∗. Then, 𝐹 is discrete holomorphic, that is, [𝜕∗𝐹](𝑣) = 0 at
all points 𝑣 ∈ Λ𝛿 = Γ𝛿 ∪ Γ∗,𝛿 where this discrete derivative is defined.

Proof. This is a trivial combination of the definition (8.4) of 𝜕∗𝐹, the fact that the differential
form𝐹𝑑 + 𝜍2𝐹𝑑 is closed onΛ𝛿 (see (8.13) and Proposition 3.7) and of the identity (8.16), which
implies that the second term disappears if we restrict this form onto Γ𝛿 (or Γ∗,𝛿) only. □

Remark 8.8. Let 𝐹 be an s-holomorphic function on an isoradial grid. Due to (8.16), restricting
the differential form (8.15) onto Γ (or, similarly, onto Γ∗) one obtains a consistent definition of
the discrete primitive 1

2
∫ Re[𝜍

2
(𝐹(𝑧))2𝑑𝑧], which reads as 1

2
∫ Im[(𝐹(𝑧))2𝑑𝑧] if 𝜍 = 𝑒𝑖 𝜋

4 ; see [15,
section 3.3].

Let us now briefly recall a characterization of s-holomorphic functions within the (strictly
larger) class of discrete holomorphic functions on ♢𝛿; see also [15, section 3.2] for more details.
If 𝐹 is an s-holomorphic function, then one can easily see that there exists a real-valued spinor

𝑋(𝑐) ∶= Re[𝜂𝑐𝐹(𝑧)] satisfying the propagation equation (8.10) on Υ× and such that

𝐹(𝑧) = 𝜂𝑐00
𝑋(𝑐00) + 𝜂𝑐11

𝑋(𝑐11) = 𝜂𝑐01
𝑋(𝑐01) + 𝜂𝑐10

𝑋(𝑐10), (8.17)

where 𝑐𝑝𝑞 ∈ Υ× are the four “corners” of Γ (or, equivalently, edges ofΛ) that surround 𝑧; note that
the right-hand side is a product of two spinors (𝑋 and 𝜂) on Υ× and thus does not depend on the
choice of the lifts of 𝑐𝑝𝑞 from Υ onto Υ×. In fact, one can show that a similar representation holds
for all discrete holomorphic functions 𝐹 defined on simply connected subsets of ♢𝛿: for example,
it follows from [15, Lemma 3.3] that each such a function 𝐹 admits a decomposition 𝐹 = 𝐹1 +

𝑖𝐹2 with s-holomorphic 𝐹1 and 𝐹2, which gives a complex-valued spinor 𝑋 = 𝑋1 + 𝑖𝑋2 solving
Equation (8.17). Moreover, one can easily see that 𝑋 is defined uniquely up to adding a constant
multiple of 𝜂𝑐.
As the propagation equation (8.10) has real coefficients, there exists a trivial involution 𝑋 ↦ 𝑋

on the set of spinors satisfying this equation. One can now use the representation (8.17) in order
to obtain the corresponding involution on the set of discrete holomorphic functions on ♢𝛿. (As 𝑋

in (8.17) is defined only up to adding a constant multiple of 𝜂𝑐, one should also remove from
the consideration constant multiples of 𝜂𝑐, which correspond to constant discrete holomorphic
functions on ♢𝛿.) The class of s-holomorphic functions is the invariant subspace of discrete holo-
morphic functions under this involution. It is worth pointing out a similarity with Remark 8.6:
in the isoradial setup both real-linear notions of t-holomorphicity (inherited from orthodiagonal
embeddings and from s-embeddings, respectively) can be used to obtain the same complex-
linear discrete holomorphicity relations [𝜕∗𝐺](𝑣) = 0, 𝑣 ∈ Λ. However, the conventions to select
a real-linear subspace of such functions 𝐺 are different.

8.3.1 Kite embeddings

It is easy to see that the intersection of the two setups discussed in Subsection 8.1 (orthodiago-
nal embeddings) and in Subsection 8.2 (s-embeddings) is strictly bigger than the isoradial grids
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F IGURE 15 Left: A splitting  ◦,𝛿
spl

(see Section 5) of the white squares of 𝛿ℤ2 by diagonals and the types of
values (𝜂𝑏ℝ or ℂ) of t-white-holomorphic functions on this t-embedding. The vertices from the set 𝛿

⋄ are shown
as black squares. Right: Local notation near a vertex 𝑧 ∈ 𝛿

⋄ , note that one has 𝐹◦
𝔴(𝑧◦

𝜆
) = 𝐹◦

𝔴(𝑧◦
𝑖𝜆
).

discussed in this section: the two diagonals of a tangential quad (𝑣∙
−𝑣◦−𝑣∙

+𝑣◦+) are orthodiagonal
if and only if this quad is a kite. It is also natural to assume that all these kites are symmetric
with respect to, say, edges (𝑣∙

−𝑣∙
+) of Γ; note that this assumption breaks the symmetry between Γ

and Γ∗. A convenient way to think about such embeddings is to view them as circle patterns: each
vertex of Γ becomes a center of a circle and vertices of Γ∗ are their intersection points. This setup
appeared in the planar Ising model context in the work of Lis [38] as a generalization of the class
of isoradial embeddings. Clearly, all results of Subsections 8.1 and 8.2 still apply in this case and
two notions of t-holomorphic functions arise. However, to the best of our knowledge there is no
simple link between these two notions. Let us also emphasize that the circle patterns mentioned
above are not the ones discussed in [33], where the intersections of circles form the dual to a bipar-
tite dimer graph; this is why one should be precise when speaking about the “discrete complex
analysis on circle patterns.”

8.4 Regular lattices

8.4.1 Square lattice

In this section, we briefly discuss the most classical discretization of complex analysis: that on the
square lattice. This notion dates back at least to 1940s, for example, it explicitly appeared in the
work of Ferrand [23]. Consider a checkerboard tiling ℂ𝛿 of the complex plane with squares, each
square has side 𝛿 and is centered at a lattice point of {(𝛿𝑛, 𝛿𝑚) |𝑛,𝑚 ∈ ℤ}. Let us call (𝑛,𝑚) the
coordinates of the corresponding square and define the sets 𝐵𝛿

𝑅
and 𝐵𝛿

𝐼
of black squares and the

sets𝑊𝛿
𝜆
and𝑊𝛿

𝑖𝜆
of white squares by the following properties:

∙ (𝐵𝛿
𝑅
) both coordinates are even;

∙ (𝐵𝛿
𝐼
) both coordinates are odd;

∙ (𝑊𝛿
𝜆
) the first coordinate is even and the second one is odd, where 𝜆 ∶= 𝑒𝑖 𝜋

4 ;
∙ (𝑊𝛿

𝑖𝜆
) the first coordinate is odd and the second one is even;

see Figure 15. Classically, a function 𝐹 defined on (a subset of) 𝐵𝛿
𝑅

∪ 𝐵𝛿
𝐼
is called discrete holomor-

phic if it has purely real values on 𝐵𝛿
𝑅
, purely imaginary values on 𝐵𝛿

𝐼
, and the following identity

holds for odd 𝑛 + 𝑚:

𝐹(𝛿𝑛, 𝛿(𝑚+1)) − 𝐹(𝛿𝑛, 𝛿(𝑚−1)) = 𝑖(𝐹(𝛿(𝑛+1), 𝛿𝑚) − 𝐹(𝛿(𝑛−1), 𝛿𝑚)). (8.18)
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Note that this definition can be viewed as a particular case of t-white-holomorphic functions on
orthodiagonal embeddings if we set Γ ∶= 𝐵𝛿

𝑅
and Γ∗ ∶= 𝐵𝛿

𝐼
; see Subsection 8.1.1.

Clearly, the checkerboard tiling ℂ𝛿 is an example of a t-embedding with square faces. Accord-
ing to Section 5, in order to speak about the “true” complex values of, say, t-white-holomorphic
functions on ℂ𝛿 one should fix a splitting of its white faces; a similar discussion applies to t-black-
holomorphic functions. This splitting can be done, for example, by drawing diagonals of white
squares as shown in Figure 15. Let us call thus obtained t-embedding  ◦,𝛿

spl
and denote by𝛿

⋄ the set
of its vertices that arenot adjacent to these diagonals. If 𝜂𝑏 = ±1 for 𝑏 ∈ 𝐵𝛿

𝑅
and 𝜂𝑏 = ±𝑖 for 𝑏 ∈ 𝐵𝛿

𝐼
,

then the origami square root function 𝜂𝑏 has the values ±𝜆 and ±𝑖𝜆 on diagonals splitting white
squares 𝑤 ∈ 𝑊𝛿

𝜆
and 𝑤 ∈ 𝑊𝛿

𝑖𝜆
, respectively. The following notion was introduced by Smirnov in

his seminal work [45] on the conformal invariance in the critical Ising model on ℤ2 (the name
s-holomorphicity was coined in a later paper [15] devoted to the isoradial setup).

Definition 8.9. A function 𝐹⋄ defined on (a subset of) the grid 𝛿
⋄ is called s-holomorphic if for

each pair of vertices 𝑧1, 𝑧2 ∈ 𝛿
⋄ of the same square 𝑠 ∈ 𝐵𝛿 ∪ 𝑊𝛿 the following holds:

Pr(𝐹⋄(𝑧1), 𝜂(𝑠)ℝ) = Pr(𝐹⋄(𝑧2), 𝜂(𝑠)ℝ), (8.19)

where 𝜂(𝑠) is 1, 𝑖, 𝜆 or 𝑖𝜆 if 𝑠 has the type 𝐵𝛿
𝑅
, 𝐵𝛿

𝐼
,𝑊𝛿

𝜆
or𝑊𝛿

𝑖𝜆
, respectively.

Let 𝐹𝔴 be a t-white-holomorphic function on  ◦,𝛿
spl

. By definition, its values at two white trian-
gles 𝑧◦

𝜆
, 𝑧◦

𝑖𝜆
adjacent to a vertex 𝑧 ∈ 𝛿

⋄ have matching real parts as well as matching imaginary
parts; see Figure 15. Thus, one can define a function

𝐹⋄(𝑧) ∶= 𝐹◦
𝔴(𝑧◦

𝜆
) = 𝐹◦

𝔴(𝑧◦
𝑖𝜆
), 𝑧 ∈ 𝛿

⋄ . (8.20)

It is easy to see that this function is s-holomorphic (provided that 𝐹𝔴 is t-white-holomorphic) and
that, vice versa, starting with an s-holomorphic function𝐹⋄ one can define a t-white-holomorphic
function 𝐹𝔴 by the same rule. It is also easy to see that Definition 8.9 actually coincides with the
definition of s-holomorphic functions on isoradial grids or, more generally, on s-embeddings (see
Definition 8.4 and Subsection 8.3) if we set ♢Ising ∶= 𝛿

⋄ ; note that the mesh size of thus obtained
rhombic lattice is

√
2𝛿.

Finally, it is known (e.g., see [45, Remark 3.3]) that the notion of s-holomorphic functions on𝛿
⋄

is actually equivalent to the classical definition (8.18) of discrete holomorphic functions on 𝐵𝛿
𝑅

∪

𝐵𝛿
𝐼
. More precisely, the following holds (see also [43]).

∙ Let 𝐹◦
𝔴 be a t-white-holomorphic function defined on (a subset of)  ◦,𝛿

spl
. Then, the function 𝐹∙

𝔴

is discrete holomorphic on 𝐵𝛿
𝑅

∪ 𝐵𝛿
𝐼
because Equation (8.18) can be equivalently written as the

condition ∮𝜕𝑤 𝐹∙
𝔴𝑑 = 0, where the contour integral is computed around the white square 𝑤

(split into two triangles) centered at the point (𝛿𝑛, 𝛿𝑚).
∙ Vice versa, let a function 𝐹 be defined on (a subset of) 𝐵𝛿

𝑅
∪ 𝐵𝛿

𝐼
so that it has purely real values

on 𝐵𝛿
𝑅
and purely imaginary ones on 𝐵𝛿

𝐼
. If this function satisfies the discrete holomorphicity

condition (8.18), then the function 𝐹⋄(𝑧) ∶= 𝐹(𝑏𝑅) + 𝐹(𝑏𝐼) is s-holomorphic and hence can be
also viewed as a t-white-holomorphic function on  ◦,𝛿

spl
via (8.20). Indeed, the identities (8.19)

with 𝜂(𝑠) = 1 or 𝜂(𝑠) = 𝑖 are tautological while the similar identities with 𝜂(𝑠) = 𝜆 or 𝜂(𝑠) = 𝑖𝜆

turn out to be equivalent to Equation (8.18).
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F IGURE 16 Left: in the notation of [22, section 4], a real-valued function defined on the triangular grid𝑊

(white nodes) is called discrete holomorphic if the sum of its values at the three vertices of each black triangle
vanishes. Right: a regular t-embedding  ∶ (𝐵 ∪ 𝑊)∗ → ℂ of the (dual of the) honeycomb lattice 𝐵 ∪ 𝑊;
vectors 𝑒1, 𝑒2, 𝑒3 have directions 1, 𝑒2𝜋𝑖∕3, 𝑒4𝜋𝑖∕3, respectively.

Let us emphasize that the equivalence of the two notions of discrete holomorphicity discussed
in this section heavily relies upon the special structure of the square grid and does not hold, for
example, in a more general setup of isoradial grids.

8.4.2 Special definitions on the triangular/honeycomb lattices

We conclude this paper by mentioning two special notions of discrete holomorphic functions on
triangular/honeycomb lattices: the first was suggested by Dynnikov and Novikov [22] in the dis-
creteHodge theory context, the second appeared in a recentwork [11] on the discrete stress-energy
tensor in 2D lattice models.

Definition 8.10. A real-valued function 𝐺 defined on vertices of a regular triangular lattice𝑊 is
called discrete holomorphic in the sense of [22, section 4] if the equation

𝐺(𝑤1) + 𝐺(𝑤2) + 𝐺(𝑤3) = 0, 𝑤1,2,3 ∼ 𝑏 (8.21)

holds for the three vertices 𝑤1,2,3 of each black triangle of𝑊; see Figure 16.

Denote by 𝐵 the set of centers of these black triangles and note that the set 𝐵 ∪ 𝑊 forms a
honeycomb lattice. Let us now consider a regular t-embedding  of this set; see Figure 16. As all
faces of the honeycomb lattice have degree 6 ∈ 2 + 4ℤ, one can consistently define the square root
origami function 𝜂𝑤 (and not only 𝜂2

𝑤; cf. Remark 2.5) so that 𝜂𝑤 ∈ {1, 𝑒2𝜋𝑖∕3, 𝑒4𝜋𝑖∕3} for all𝑤 ∈ 𝑊;
each of these three values appears exactly once around each black triangle of  .
Now let 𝐹𝔟 be a t-black-holomorphic function on  . By definition, one has 𝐹◦

𝔟
(𝑤) ∈ 𝜂𝑤ℝ for

all 𝑤 ∈ 𝑊 and

∮𝜕𝑏
𝐹◦

𝔟
𝑑 = 𝛿𝜂𝑏 ⋅ (𝐹

◦
𝔟
(𝑤1)𝜂𝑤1

+ 𝐹◦
𝔟
(𝑤2)𝜂𝑤2

+ 𝐹◦
𝔟
(𝑤3)𝜂𝑤3

) = 0,

where 𝑤1,2,3 ∈ 𝑊 denote the three neighbors of 𝑏 ∈ 𝐵 and 𝛿 is the mesh size of (𝐵 ∪ 𝑊)∗ (or,
equivalently, themesh size of𝑊). These conditions can be equivalently formulated as follows: the
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F IGURE 17 A discrete holomorphic function 𝐺 defined on edges of a regular honeycomb grid H (see
Definition 8.11 and [11]) can be viewed as an s-holomorphic function on the rhombic lattice obtained fromH (left
picture) or, equivalently, as a t-holomorphic function on the corresponding t-embedding (right picture).

function 𝐺(𝑤) ∶= 𝜂𝑤𝐹◦
𝔟
(𝑤), 𝑤 ∈ 𝑊, is real-valued and satisfies Equation (8.21) around each 𝑏 ∈

𝐵. In other words, the definition of discrete holomorphic functions on a regular triangular grid
discussed in [22, section 4] trivially fits the t-holomorphicity framework.

Definition 8.11 (see [11]). A real-valued function 𝐺 defined on edges of a regular honeycomb
lattice H is called discrete holomorphic if it satisfies local identities

𝐺(𝑒4) − 𝐺(𝑒1) = 𝐺(𝑒2) − 𝐺(𝑒5) = 𝐺(𝑒6) − 𝐺(𝑒3),

𝐺(𝑒1) + 𝐺(𝑒2) + 𝐺(𝑒3) + 𝐺(𝑒4) + 𝐺(𝑒5) + 𝐺(𝑒6) = 0

on edges 𝑒1, … , 𝑒6 (listed counterclockwise) of each face of H; see Figure 17.

Let Γ be the triangular grid formed by half of the vertices of H and Γ∗ be its dual honey-
comb grid; see Figure 17. We claim that Definition 8.11 can be equivalently reformulated as the
s-holomorphicity property for functions defined on the graph ♢ = Λ∗, where, as usual, Λ stands
for the “diamond graph” of Γ. To this end, recall that s-holomorphic functions on ♢ can be equiv-
alently viewed as real-valued spinors 𝑋 satisfying the propagation equation (8.10) on the double
cover Υ× of the medial graph of Λ. (Note that in our setup one has 𝜃𝑒 = 𝜋

6
for all rhombi of Λ.)

Let us fix a section of Υ× by choosing the values

𝜂𝑏(𝑐) = 𝜂𝑤(𝑐) ∈ {1, 𝑒2𝜋𝑖∕3, 𝑒4𝜋𝑖∕3, 𝑖, 𝑖𝑒2𝜋𝑖∕3, 𝑖𝑒4𝜋𝑖∕3}

in the definition (8.11). If we only know the values of 𝑋 at the edges 𝑒1, … , 𝑒6 surrounding a given
face 𝑓 ofH, then the consistency relations required to define the values 𝑋(𝑒23), 𝑋(𝑒45) and 𝑋(𝑒61)

so that the propagation equation (8.10) holds for the three rhombi inside 𝑓 read as

1

2
𝑋(𝑒1) + 𝑋(𝑒2) = −

√
3

2
𝑋(𝑒23) = −(𝑋(𝑒3) + 1

2
𝑋(𝑒4)) ,

1

2
𝑋(𝑒3) + 𝑋(𝑒4) = −

√
3

2
𝑋(𝑒45) = −(𝑋(𝑒5) + 1

2
𝑋(𝑒6)) ,

1

2
𝑋(𝑒5) + 𝑋(𝑒6) = −

√
3

2
𝑋(𝑒61) = −(𝑋(𝑒1) + 1

2
𝑋(𝑒2)) ;
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see Figure 17 for the notation. A simple algebraic manipulation shows that this is equivalent to
saying that the values𝑋(𝑒1), … , 𝑋(𝑒6) satisfy the equations given inDefinition 8.11. In otherwords,
this definition also fits the general t-holomorphicity framework developed in our paper.
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