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1 Proof of Proposition 1 in Section 3.1

Proposition 1. For any two covariates x,x′ ∈ [0, 1]p located in Vor(ci), i = 1, 2, . . . , n,

we have

‖x− x′‖ ≤ 2(p+ 1)1/(2p){p(p+ 2)}1/2{12(p+ 1)}−1/2n−1/p.

Proof. Because Voronoi cells {Vor(ci)}ni=1 from the lattice L are identical and central sym-

metric spheres with volume |det(lML)|, a reasonable scaling parameter l = n−1/p(p+1)1/(2p),

and one of the most commonly used generator matrices ML = Ip − [{(1 + p)1/2 + 1 +

p}/{p(p + 1)}]1Tp 1p, then |det(lML)| = n−1. Moreover, according to He (2017), we have

|det(lML)| = Ψ%p/Θ. Where Ψ is the volume of a unit ball in Rp and Θ = Ψ(p+1)1/2[p(p+

2){12(p + 1)}−1]p/2 is the volume of a ball in Rp with radius % divided by the volume

of one Voronoi cell. Therefore, for any two covariates x,x′ ∈ [0, 1]p located in Vor(ci),

i = 1, 2, . . . , n, we have ‖x− x′‖ ≤ 2%, that is

‖x− x′‖ ≤ 2(p+ 1)1/(2p){p(p+ 2)}1/2{12(p+ 1)}−1/2n−1/p.
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2 Proof of essential lemmas to Theorem 1

Lemma 1. If n1+2/p = O(N), under Conditions 4−6, for all µ and γ,
∑n

i=1(Ni/N)φγ(x
∗
i )φµ(x∗i )

is an asymptotically unbiased estimate for
∫
X φγ(x)φµ(x)fX(x)dx. when X ⊆ [0, 1]p, we

have {∫
X
φγ(x)φµ(x)fX(x)dx−

n∑
i=1

Ni

N
φγ(x

∗
i )φµ(x∗i )

}2

= OP (n−1−2/p).

Proof. Let {x∗i }ni=1 represent the collected covariates from the training dataset {xt}Nt=1. We

start by showing that
∑n

i=1(Ni/N)φγ(x
∗
i )φµ(x∗i ) is an asymptotically unbiased estimate for∫

X φγ(x)φµ(x)fX(x)dx. Let the partition {Vor(ci)}ni=1 be the cells of L in [0, 1]p and

IVor(cj)(x) =


1 x ∈ Vor(cj)

0 x 6∈ Vor(cj)

be the indicator function. Furthermore, denote Nj as the number of covariates located in

Vor(cj), j = 1, 2, . . . , n. Obviously, Vor(cj) does not depend on the training data. Recall

a random sampling procedure is performed in the cell Vor(cj) of Algorithm 1. Thus, for

any j ∈ {1, 2, . . . , n}, we have

E

[
n∑
i=1

φγ(x
∗
i )φµ(x∗i )IVor(cj)(x

∗
i )

∣∣∣∣{xt}Nt=1

]
=

1

Nj

N∑
t=1

φγ(xt)φµ(xt)IVor(cj)(xt). (1)

Equation (1) indicates

E

[
n∑
j=1

n∑
i=1

Nj

N
φγ(x

∗
i )φµ(x∗i )IVor(cj)(x

∗
i )

∣∣∣∣{xt}Nt=1

]
=

1

N

N∑
t=1

φγ(xt)φµ(xt). (2)
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Moreover, because Ni is the number of covariates allocated in the cell that x∗i lies in and

only one covariate is randomly selected from each non-empty cell,

n∑
j=1

Nj

N
φγ(x

∗
i )φµ(x∗i )IVor(cj)(x

∗
i ) =


(Ni/N)φγ(x

∗
i )φµ(x∗i ) x∗i ∈ Vor(cj);

0 x∗i /∈ Vor(cj).

Consequently, we have

n∑
j=1

n∑
i=1

Nj

N
φγ(x

∗
i )φµ(x∗i )IVor(cj)(x

∗
i ) =

n∑
i=1

{
n∑
j=1

Nj

N
φγ(x

∗
i )φµ(x∗i )IVor(cj)(x

∗
i )

}

=
n∑
i=1

Nj

N
φγ(x

∗
i )φµ(x∗i ). (3)

Combining Equation (2) and Equation (3), we have

E

{
n∑
i=1

Ni

N
φγ(x

∗
i )φµ(x∗i )

}
=

1

N

N∑
t=1

φγ(xt)φµ(xt). (4)

Therefore,
∑n

i=1(Ni/N)φγ(x
∗
i )φµ(x∗i ) is an asymptotically unbiased estimate for

∫
X φγ(x)φµ(x)fX(x)dx.

We now derive the convergence rate for
∑n

i=1(Ni/N)φγ(x
∗
i )φµ(x∗i ) in the following. Recall

the Proposition 1 in Section 3.1. For any two covariates x,x′ ∈ Vor(cj), j = 1, 2, . . . , n,

we have

‖x− x′‖ ≤ 2(p+ 1)1/(2p){p(p+ 2)}1/2{12(p+ 1)}−1/2n−1/p.

Consequently, under Condition 4, we get

∣∣φγ(x)φµ(x)− φγ(x′)φµ(x′)
∣∣

≤ B‖x− x′‖

≤ 2B(p+ 1)1/(2p){p(p+ 2)}1/2{12(p+ 1)}−1/2n−1/p. (5)
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Because Nj represents the number of covariates located in Vor(cj), Inequality (5) indicates

that for any x∗i ∈ Vor(cj), j = 1, 2, . . . , n,∣∣∣∣φγ(x∗i )φµ(x∗i )IVor(cj)(x
∗
i )−

1

Nj

N∑
t=1

φγ(xt)φµ(xt)IVor(cj)(xt)
∣∣∣∣

=

∣∣∣∣ 1

Nj

Njφγ(x
∗
i )φµ(x∗i )IVor(cj)(x

∗
i )−

1

Nj

N∑
t=1

φγ(xt)φµ(xt)IVor(cj)(xt)
∣∣∣∣

≤ 1

Nj

∑
x∗
i ,xt∈Vor(cj)

∣∣∣∣φγ(x∗i )φµ(x∗i )IVor(cj)(x
∗
i )− φγ(xt)φµ(xt)IVor(cj)(xt)

∣∣∣∣
≤ 2B(p+ 1)1/(2p){p(p+ 2)}1/2{12(p+ 1)}−1/2n−1/p.

In other words, the conditional variance of (Nj/N)φγ(x
∗
i )φµ(x∗i )IVor(cj)(x∗i ) is bounded by

var

[
Nj

N
φγ(x

∗
i )φµ(x∗i )IVor(cj)(x

∗
i )

∣∣∣∣{xt}Nt=1

]
=
N2
j

N2

{
φγ(x

∗
i )φµ(x∗i )IVor(cj)(x

∗
i )−

1

Nj

N∑
t=1

φγ(xt)φµ(xt)IVor(cj)(xt)

}2

≤
N2
j

N2
4B2(p+ 1)1/p{p(p+ 2)}{12(p+ 1)}−1n−2/p. (6)

Consequently, the conditional variance of
∑n

j=1(Nj/N)φγ(x
∗
i )φµ(x∗i )IVor(cj)(x∗i ) is

var

[
n∑
j=1

Nj

N
φγ(x

∗
i )φµ(x∗i )IVor(cj)(x

∗
i )

∣∣∣∣{xt}Nt=1

]

= var

[
n∑
i=1

Ni

N
φγ(x

∗
i )φµ(x∗i )

∣∣∣∣{xt}Nt=1

]

≤
n∑
i=1

N2
j

N2
4B2(p+ 1)1/p{p(p+ 2)}{12(p+ 1)}−1n−2/p

≤ max
1≤i≤n

N2
j

N2
× n× 4B2(p+ 1)1/p{p(p+ 2)}{12(p+ 1)}−1n−2/p

= {OP (1)n−1} × 4B2(p+ 1)1/p{p(p+ 2)}{12(p+ 1)}−1n−2/p

= OP (n−1−2/p) (7)
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Under Condition 4, we have{
1

N

N∑
t=1

φγ(xt)φµ(xt)−
∫
X
φγ(x)φµ(x)fX(x)dx

}2

= OP (N−1). (8)

Then, combining Condition 6, Equation (4), Inequality (7), and Equation (8), we obtain

var

[
n∑
i=1

Ni

N
φγ(x

∗
i )φµ(x∗i )

]

= E

[
var

{
n∑
j=1

Nj

N
φγ(x

∗
i )φµ(x∗i )

∣∣∣∣{xt}Nt=1

}]
+ var

[
E

{
n∑
j=1

Nj

N
φγ(x

∗
i )φµ(x∗i )

∣∣∣∣{xt}Nt=1

}]

= OP (n−1−2/p) +OP (N−1)

= OP (n−1−2/p). (9)

Therefore, because of Equation (8), Equation (9), and Holder’s inequality, we obtain{∫
X
φγ(x)φµ(x)fX(x)dx−

n∑
i=1

φγ(x
∗
i )φµ(x∗i )

}2

≤ 2

{∫
X
φγ(x)φµ(x)fX(x)dx− 1

N

N∑
t=1

φγ(xt)φµ(xt)

}2

+ 2

{
1

N

N∑
t=1

φγ(xt)φµ(xt)−
n∑
i=1

φγ(x
∗
i )φµ(x∗i )

}2

= OP (n−1−2/p) +OP (N−1)

= OP (n−1−2/p). (10)
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Lemma 2. Under Condition 2, when λ→ 0, we have

∑
γ

(1 + λρλ)
−1 = O(λ−1/r),

∑
γ

(1 + λρλ)
−2 = O(λ−1/r),

∑
γ

λρλ(1 + λρλ)
−2 = O(λ−1/r). (11)

Proof. We prove the first equation, and the proof of the other two equations can be obtained

similarly.

∑
γ

(1 + λρλ)
−1 =

 ∑
γ<λ−1/r

+
∑

γ≥λ−1/r

 (1 + λρλ)
−1

= O(λ−1/r) +O

(∫ +∞

λ−1/r

(1 + λxr)−1dx

)
= O(λ−1/r) + λ−1/rO

(∫ +∞

1

(1 + xr)−1dx

)
= O(λ−1/r).

Lemma 3. Under Conditions 1-5, when λ→ 0 and n1+2/pλ2/r →∞, for any h ∈ H	HS,

we obtain Λ(h) = oP{λJ(h)}, where H 	 HS is the orthogonal complement of HS in the

reproducing kernel Hilbert space H.

Proof. For any h ∈ H 	 HS and i ∈ {1, 2, . . . , N}, we have h(xi) = J(GJ(xi, ·), h) = 0.
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Therefore, we obtain
∑n

j=1(Nj/N)h2(x∗j) = 0. Write h =
∑

γ hγφγ, then, it satisfies that

Λ(h) =

∫
X
h2(x)fX(x)dx

=
∑
γ

∑
µ

hγhµ

∫
X
φγ(x)φµ(x)dx

=
∑
γ

∑
µ

hγhµ

{∫
X
φγ(x)φµ(x)dx−

n∑
j=1

(Nj/N)φγ(x
∗
j)φµ(x∗j)

}
. (12)

Following the Cauchy inequality, we have

Λ(h) ≤

∑
γ

∑
µ

(1 + λργ)
−1(1 + λρµ)−1

{∫
X
φγ(x)φµ(x)dx−

n∑
j=1

Nj

N
φγ(x

∗
j)φµ(x∗j)

}2
1/2

×

{∑
γ

∑
µ

(1 + λργ)(1 + λρµ)h2γh
2
µ

}1/2

. (13)

According to Lemma 2, we get

∑
γ

∑
µ

(1 + λργ)
−1(1 + λρµ)−1 = O(λ−2/r). (14)

Meanwhile, form Lemma 1, we have{∫
X
φγ(x)φµ(x)fX(x)dx−

n∑
i=1

Ni

N
φγ(x

∗
i )φµ(x∗i )

}2

= OP (n−1−2/p). (15)

Because φγ’s simultaneously diagonalize Λ and J ,

∑
γ

(1 + λργ)h
2
γ = (Λ + λJ)(h). (16)

Moreover, together with equations (14), (15), and (16), the desired result follows by the

Equation (13), i.e.,

Λ(h) ≤
{
OP (n−1−2/p)λ−2/r

}
(Λ + λJ)(h). (17)
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Finally, when n1+2/pλ2/r →∞, from Inequality (17), we obtain

Λ(h) = oP {λJ(h)} . (18)

3 Proof of Theorem 1 in Section 3.3

Theorem 1. Assume that
∑
γ

ρdγΛ(η0, φγ)
2 < ∞ for some d ∈ [1, 2]. Under Conditions

1-6, as λ → 0 and n1+2/pλ2/r → ∞, we have (Λ + λJ)(η̃R − η0) = OP (N−1λ−1/r + λd).

Particularly, when λ � N−r/(dr+1), η̃R achieves the optimal convergence rate (Λ+λJ)(η̃R−

η0) = OP (N−dr/(dr+1)).

The condition in Theorem 9.17 in Gu (2013) is nλ2/r → ∞, compared with that in

Theorem 1, the condition is n1+2/pλ2/r →∞. Therefore, η̃R has the same convergence rate

as the full bases estimator with a smaller n. Under this condition and conditions 1-5, as

λ → 0, ∀h ∈ H 	 HS, Λ(h) is dominated by λJ(h), which is guaranteed by Lemma 3.

Theorem 1 can therefore be proved directly according to the proof of Theorem 9.17 in Gu

(2013).

4 Additional Simulation Results

Aside from MAE, log mean squared error (MSE) given by log
(
N−1test

∑Ntest

i=1 (η̃(xi)− η0(xi))2
)

is another commonly used measurement. In this section, we will further evaluate the perfor-
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mance of all five methods in Section 4 via log(MSE). Except the performance measurement,

all the settings are the same as Section 4.

As can be seen from Figure 1, as expected, the performance under MSE is quite similar

compared with MAE. The RBS method is still superior to the other four basis selection

methods, which is identical to the results in Section 4.
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Figure 1: log(MSE) values from the smoothing spline model for simulation under five

different regression functions (from upper to lower) and four different probability density

functions (from left to right) are plotted versus different n.
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