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Fitting a smoothing spline model on a large-scale dataset is daunting due to the high

computational cost. In this study, we develop an efficient basis selection method for

smoothing spline calculation. The key idea is to force a nonparametric function in an

infinite-dimensional functional space to reside in a relatively small and finite-

dimensional model space without the loss of too much prediction accuracy. Such an

approximation naturally allows for much faster numerical calculation, especially for

large datasets. Among various basis selection methods, space-filling basis selection

has been proven to be more efficient since its model space dimension is smaller than

that of others. Despite algorithmic benefits, most of the space-filling selection

methods only take the overall space-filling property into account. These methods

may be less efficient when the underlying response surface is not isomorphic. To

overcome this obstacle, we develop an efficient algorithm to improve projective

uniformity for space-filling basis selection. It has been proved that the proposed

estimator has the same convergence rate as the full bases estimator. Compared with

the standard approach, the proposed method significantly reduces the computational

cost. Simulation and real data studies demonstrate the efficiency and superiority of

the proposed method.
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1 | INTRODUCTION

Consider the following nonparametric model:

yi ¼ ηðxiÞþϵi, i¼1,2,…,N, ð1Þ

where yi is the response for the ith observation, ηð�Þ is an unknown function, xi � ½0,1�p denotes the covariate, ϵi 's are independent and identically

distributed errors with zero mean and finite variance, and N is the size of training data. In this study, we adopt the smoothing spline to fit ηð�Þ,
which is one of the most pervasive choices (Grace, 1990; Gu, 2013). To be precise, ηð�Þ in Model (1) is assumed to have resided in a reproducing

kernel Hilbert space (RKHS), say H. It can be estimated by minimizing the following penalized least squares

N�1
XN
i¼1

fyi�ηðxiÞg2þλJðηÞ, ð2Þ

where JðηÞ is a roughness penalty and λ is the tuning parameter to control the smoothness of the estimator.
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Despite impressive performance and solid theoretical foundations, solving the optimization problem (2) is a challenging task. Except for the

univariate case, which can be solved in OðNÞ, the computational cost for calculating the smoothing spline with p≥2 using the standard approach

is OðN3Þ. This huge computational cost renders the smoothing spline impractical for a large-scale dataset. Great efforts have been made to

alleviate the computational burden. Typical works include but are not limited to divide-and-conquer kernel ridge regressions (Xu & Wang, 2018;

Zhang et al., 2015) and basis selection algorithms (Gu & Kim, 2002; Luo & Wahba, 1997; Ma et al., 2015; Meng et al., 2020).

Among various techniques designed to reduce the computational cost of the smoothing spline, basis selection methods have gained the

attention of data scientists due to the following two reasons. First, it is possible to combine parallel-based strategies with basis selection methods

to reap more computational savings. Second, basis selection procedures are more flexible than divide-and-conquer kernel ridge regression

strategies. The idea of basis selection is to approximate the minimizer of (2) by restricting the estimator η̂ to a n-dimensional subspace HS �H.

When n�N, the computational cost can be efficiently reduced from OðN3Þ to OðNn2Þ. Numerous studies have been developed along this line of

thinking. For example, Hastie (1996) suggested fixing n basis functions to approximate splines. Such a method differs from constructing basis

functions in smoothing splines. Thus, it is also known as “pseudo splines” or P-splines. Ruppert (2002) considered basis selection for P-splines by

adding a penalty to control the number of basis functions. He et al. (2001), Sklar et al. (2013), and Yuan et al. (2013) further considered cases

where the regression function has non-homogeneous smoothness across the input space. As for smoothing splines, Luo and Wahba (1997) and

Zhang et al. (2004) proposed approximating the minimizer of (2) using variable selection techniques. Due to the additional computational cost

brought by variable screening, the computational benefits of the above two methods are unclear. Gu and Kim (2002) proposed a uniform basis

selection (UBS) method by randomly selecting some basis functions among the N basis functions in fGJðxi, �ÞgNi¼1, facilitating quick analysis of large

datasets. Here, GJ is the reproducing kernel. Ma et al. (2015) developed an adaptive basis selection (ABS) method that uses an adaptive sampling

scheme according to the values of the response variable. Meng et al. (2020) proposed a space-filling basis selection (SBS) method that suggests

selecting the basis functions fGJðx ∗
i , �Þgni¼1 with fx ∗

i gni¼1 being roughly equally-spaced. Meng et al. (2021) extended the basis selection method to

cases where the covariates are nonuniformly distributed in ½0,1�p. As the space-filling property of the selected sub-data fx ∗
i gni¼1 is achieved

through Hilbert curves, this method is the so-called Hilbert curve basis selection (HBS) method.

A fundamental question regarding basis selection methods is how to choose the basis functions in order to ensure that the restricted

estimator converges to the true function η at the identical rate as the full bases estimator η̂. It has been shown that both the UBS and ABS

methods require that n roughly be of the order OðN2=ðdrþ1ÞÞ, where d� ½1,2� and r≈4 are constants, depending on the type of spline. In contrast,

the SBS only requires that n roughly be of the order OðN1=ðdrþ1ÞÞ when p≤ drþ1 and the covariates are uniformly distributed in ½0,1�p. Thus, the
SBS is regarded as a more efficient method. To relax the assumption that all covariates are uniformly distributed in ½0,1�p, HBS achieves a similar

space-filling property as SBS by increasing the number of bases to OðN2p=fðpþ2Þðdrþ1ÞgÞ. The additional basis functions are the price we pay for the

irregular distribution of the covariates. Nevertheless, HBS is also more efficient than both UBS and ABS.

To the best of our knowledge, the space-filling type basis selection methods (i.e., SBS and HBS) are only focused on the uniformity of the

sub-data fx ∗
i gni¼1 with respect to the whole input space ½0,1�p. Unfortunately, this can result in poor projections of lower dimensional spaces,

which is undesirable when the response curve has non-homogeneous smoothness across the input space. Consider a case where a researcher fits

a smoothing spline on a two-dimensional space ½0,1�2 while the response curve is ηðxÞ¼ sinð15x21Þ, which depends solely on the first dimension of

the covariate. The true function and the fx ∗
i gni¼1 generated via UBS, ABS, SBS, HBS, and the proposed method are demonstrated in Figure 1. It is

observed that the covariates selected via the UBS and ABS methods are not uniformly distributed in the input space. In contrast, SBS, HBS, and

the proposed method enjoy space-filling properties in the whole input space ½0,1�2. It is worth mentioning that the three methods have different

behaviours when we only consider the projection on x1. One can conclude that the proposed RBS method has better uniformity when we

consider the projection on the subspace of the design region compared with the other methods. Thus, the selected basis functions are more likely

to capture the volatility in the first dimension in this case, which will undoubtedly lead to better estimation.

In this study, we propose a rotated lattice-based basis selection (RBS) method to improve the projection uniformity with space-filling

properties of the selected sub-data. The contributions of this work are threefold as follows. First, a novel sub-data selection is proposed for basis

selection when the covariates are not uniformly distributed in ½0,1�p, and the response curve may have non-homogeneous smoothness across the

input space. Second, it has been proved that only OðN2p=fðdrþ1Þðpþ2ÞgÞ basis functions are needed to achieve the same convergence rate as the full

bases estimator, which is the same as with HBS. This implies that our method increases the projective uniformity without involving additional

computational costs. Third, numerical experiments show that the RBS method has comparative performance when compared to the HBS and

UBS methods and that it outperforms UBS and ABS when the response curves are isomorphic. Moreover, it is uniformly better than the UBS,

ABS, SBS, and HBS methods when the response curve has non-homogeneous smoothness.

The remainder of this paper is organized as follows. In Section 2, the preliminaries of smoothing splines and the sub-sampling of basis

functions are reviewed. In Section 3, we present the RBS method and an asymptotic analysis. In Section 4, simulation and real data examples are

provided to demonstrate the advantage of the proposed basis selection method. Several conclusions and remarks are given in Section 5. All proofs

are provided in the supporting information.
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2 | SMOOTHING SPLINES ESTIMATION AND THEIR BASIS SELECTION

In this section, we briefly review the basic background of smoothing splines and introduce the general basis selection methods. For ease of

presentation, all vectors are row vectors throughout this study.

Let H¼fη : JðηÞ<∞g be an RKHS equipped with a squared semi-norm Jð�Þ. Then, H can be decomposed by H¼N J
LHJ with N J ¼fη :

JðηÞ¼0g being the null space of JðηÞ and HJ being the orthogonal complement of N J in H. It is proved that the space HJ is also a reproducing

kernel space associated with a reproducing kernel GJð�, �Þ (Gu, 2013).
Assume that N J is a finite W-dimensional linear subspace of H with the basis functions fωjð�ÞgWj¼1. According to the well-known Wahba's

representer theorem (Grace, 1990), the unique solution (usually called the smoothing spline estimator) to (2) can be represented by

ηðxÞ¼
XW
j¼1

αjωjðxÞþ
XN
i¼1

βiGJðxi ,xÞ x� ½0,1�p:

Denote α¼ðα1,…,αWÞ and β¼ðβ1,…,βNÞ. The computation of the smoothing spline estimator is reduced to computing the coefficients α and β.

Denote Y as the response vector, Ω as the N�W matrix, with the ði, jÞth element being ωjðxiÞ, and G as the N�N matrix, with the ði, jÞth element

being GJðxi ,xjÞ. Then, the original problem (2) becomes that of solving

ðα̂, β̂Þ¼ arg min
α �RW ,β �RN

fN�1ðY�ΩαT �GβTÞðY�ΩαT �GβTÞT þλβGβTg:

The computational cost of the standard approach is OðN3Þ, which is prohibitive when the observation size N is considerable. To reduce this

computational burden, basis selection is adopted. The key idea is to further restrict the unknown function ηð�Þ in a smaller functional space

HS ¼N J
L

spanfGJðx ∗
i , �Þ, i¼1,2,…,ng, where fx ∗

i gni¼1 is a subset of fxigNi¼1. Consequently, the computation of the smoothing spline estimator is

reduced to the computation of coefficients αS and βS by solving

F IGURE 1 Illustration of different basis selection methods. The leftmost panel at the top shows the heat map for the true function. The heat
maps for the spline estimates based on uniform basis selection (UBS), adaptive basis selection (ABS), space-filling basis selection (SBS), Hilbert
curve basis selection (HBS), and the proposed method are presented in the other five panels, respectively. Black dots are the sampled basis
functions.
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ðα̂S, β̂SÞ¼ arg min
αS �RW ,βS �Rn

fN�1ðY�ΩαT
S �G ∗ β

T
S ÞðY�ΩαT

S �G ∗ β
T
S Þ

T þλβSG ∗ ∗ β
T
Sg, ð3Þ

where G ∗ is an N�n matrix, with the ði, jÞth entry GJðxi,x ∗
j Þ and G ∗ ∗ is an n�n matrix, with the ði, jÞth entry GJðx ∗

i ,x
∗
j Þ. Evaluation of the

restricted estimator ~η based on sample observations satisfies Ĥ
T
S ¼Ωα̂T

S þG ∗ β̂
T
S , where ĤS ¼f~ηðx1Þ,…,~ηðxnÞg. Obviously, when n�N, the computa-

tional cost is only OðN2nÞ, which is a significant reduction compared with OðN3Þ.

3 | BASIS SELECTION USING ROTATED LATTICES

3.1 | Rotated thinnest covering lattice

The thinnest covering lattice entails finding the best placement of the identical p-dimensional spheres that jointly cover the input space. For

2≤ p≤22, one can systematically construct the rotated thinnest covering lattice (He, 2017) via

L¼flaMLR : a�Zpg, ð4Þ

where l is a positive constant giving the scale of the lattice cells, ML is a generator matrix, and R is a p�p rotated matrix. Let V be the volume of

the input space, that is, the covariate space. A reasonable scaling parameter is l¼ n�1=pðpþ1Þ1=ð2pÞV1=p, which yields n lattice cells in the covariate

space ½0,1�p (He, 2017, 2020). One of the most commonly used generator matrices is ML ¼ Ip�½fð1þpÞ1=2þ1þpg=fpðpþ1Þg�1T
p1p, where Ip is

the p�p identity matrix and 1p is the p-dimensional row vector with all elements as one. The rotated matrix R can be implemented by any orthog-

onal matrix. More details can be referred to He (2017). Denote fcigni¼1 as the elements of the lattice L in ½0,1�p; then, the Voronoi cell of point ci is

defined as the region VorðciÞ¼fzjkz�cik2 ¼ min
c � L

kz�ck2g, where ci is called the centre of the Voronoi cell VorðciÞ and k �k denotes the Euclidean

norm. Here, we focus on the best known thinnest coverings; other lattices such as the densest packings listed in Conway and Sloane (1998) can

also be applied. One may expect to use some other types of lattices to achieve the desired results when p is beyond 22.

A two-dimensional case for a rotated thinnest covering lattice in ½0,1�2 is demonstrated in the left panel of Figure 2. The hexagons are the

Voronoi cells with their centres marked by the crosses, which are the elements of the lattice L. Clearly, the hexagon partitioned the space ½0,1�2.
For comparison, we also show the space partitioned by Hilbert's space-filling curve, which is the main ingredient in the HBS method. This is pres-

ented in the right panel of Figure 2. From Figure 2, one can easily see that both the two-dimensional rotated thinnest covering lattice and the

second-order Hilbert's space-filling curve yield reasonable partitions of ½0,1�2. Clearly, the 16 crosses in the two panels are uniform over the whole

covariate space; however, the uniformity in the left panel is better than that in the right panel. Moreover, all projections of the 16 crosses in the

left panel onto each axis have a space-filling character. However, some projections of the 16 crosses in the right panel onto any axis are

coincident, and only four different projection points are obtained. Judging from the projection uniformity of each subspace, the rotated thinnest

covering lattice is far superior to Hilbert's space-filling curve. Thus, the fx ∗
i gni¼1 selected by the rotated thinnest covering lattice will benefit cases

F IGURE 2 The hexagonal partitioning of ½0,1�2 with the rotated thinnest covering lattice on the left and the second-order Hilbert's space-
filling curve on the right shows cells (blue squares or hexagons), centres (red crosses), and the second-order Hilbert's space-filling curve (black
solid line).
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where the response curve has non-homogeneous smoothness. Proposition 1 gives the space-filling property for the general rotated thinnest

covering lattice.

Proposition 1. For any two covariates x,x0 � ½0,1�p located in VorðciÞ, i¼1,2,…,n, we have

kx�x0k≤2ðpþ1Þ1=ð2pÞfpðpþ2Þg1=2f12ðpþ1Þg�1=2n�1=p:

3.2 | The rotated lattice-based basis selection algorithm

The proposed RBS algorithm includes the following three main steps:

Step 1. Generate a rotated thinnest covering lattice L with n Voronoi cells fVorðciÞgni¼1 in ½0,1�p. Divide the covariates of N observations into n

cells according to the distance information of p-dimensional covariates to Voronoi cells fVorðciÞgni¼1;

Step 2. Adjust the estimated value of the volume of non-empty cells, so that the size of the non-empty cells n̂ is roughly equal to n;

Step 3. Randomly select one covariate from each non-empty cell to form fx ∗
i gni¼1, and then, estimate the smoothing spline on the space HS as

in (3).

A rotated thinnest covering lattice L is generated in the first step. After achieving the lattice L, we will map the covariates to the Voronoi cells

in L. Clearly, performing an exhaustive search of all the Voronoi cells in L and then deciding to which cell a particular covariate belongs requires

Oðnp2Þ time.

In the second step, denote n̂ as the size of non-empty cells. Then, we should adjust the estimated value of the volume of non-empty cells so

that n̂ is closer to n. For clarity, we denote the estimated value by V̂. Initially, V̂¼1, that is, the volume of the covariate space ½0,1�p. Then, l is esti-
mated by n�1=pðpþ1Þ1=ð2pÞV̂1=p

. When the difference between n̂ and the target n is too large, we should adjust l according to a new estimated V̂,

so that the difference between n̂ and the target n does not exceed 0:1n.

In the last step, we randomly select one covariate allocated in each non-empty cell. Then, the total n̂ covariates fx ∗
i gn̂i¼1 are collected. If n> n̂,

we randomly add n� n̂ covariates from the remaining N� n̂ covariates fx ∗
i gNi¼n̂þ1. If n< n̂, we randomly delete n̂�n covariates from the collected n̂

covariates fx ∗
i gn̂i¼1. Suppose that, without loss of generality, the selected covariates are denoted as fx ∗

i gni¼1.

Finally, the selected covariates fx ∗
i gni¼1 are used to construct the effective subspace HS. Then, the smoothing spline estimator ~η of η is

achieved through (3). We summarize the proposed method in Algorithm 1.

The computational cost for Algorithm 1 mainly depends on dividing N covariates into n cells and estimating the smoothing spline estimator in

the last step. Note that Algorithm 1 requires OðnpÞ operations to obtain the cell closest to a given covariate. Therefore, the computational com-

plexity of finding the cells closest to N covariates is of the order OðNnpÞ. As discussed in Meng et al. (2020, 2021), estimating the smoothing spline
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estimator ~η of η over the effective subspace HS is of the order OðNn2Þ. Since n is much larger than p,OðNnpÞ is negligible compared with OðNn2Þ.
In summary, the overall computational cost of the RBS method in Algorithm 1 is in the order of OðNn2Þ.

3.3 | Theoretical analysis

In this section, the asymptotic properties of the smoothing spline estimator using the proposed RBS method are presented. Let fX denote the

probability density function of the covariate. Define the mean square error of the estimator η̂ in estimating η as the quadratic functional

Λðη̂�ηÞ¼
ð
X
ðη̂ðxÞ�ηðxÞÞ2fXðxÞdx:

Conventionally, the rate of asymptotic convergence of η̂ is described by eigenvalue analysis of JðηÞ in (2) with respect to ΛðηÞ. In the following, we

shall use Λð�, �Þ and Jð�, �Þ to represent the (semi) inner products associated with the square (semi) norms Λ and J.

Below, we introduce six primary regularity conditions, which are the same as in the HBS method. A more detailed discussion can be found in

Meng et al. (2021).

Condition 1. The functional Λ is completely continuous with respect to J, where Λðϕγ ,ϕμÞ¼ δγμ, Jðϕγ ,ϕμÞ¼ ργδγμ,ϕγ , and ϕμ are the eigenfunctions

associated with Λ and J in H, ργ is the nonnegative eigenvalue associated with ϕγ , and δγμ denotes the Kronecker delta;

Condition 2. For some β >0 and r > 1, ργ > βγ
r for sufficiently large γ;

Condition 3. For all μ, γ and a positive constant C, varfϕγðxÞϕμðxÞg≤C;
Condition 4. For all μ and γ,ϕγðxÞϕμðxÞ is Lipschitz continuous; that is, for any x,x0 �X , there exists a positive constant B such that

jϕγðxÞϕμðxÞ�ϕγðx0Þϕμðx0Þj≤Bkx�x0k;
Condition 5. Suppose maxfðnNiÞ=Ngni¼1 ¼OPð1Þ, where Ni is the number of covariates in the ith cell;

Condition 6. The number of bases n satisfy that n1þ2=p ¼OðNÞ.
The first four conditions are the regularity conditions for smoothing spline estimators even if the full bases are used. Condition 5 prevents

the extreme case of the probability density function fX , that is, when there is only one non-empty cell; then, we have

maxfðnNjÞ=Ngnj¼1 ¼ nN=N¼ n, which conflicts with Condition 5. Lastly, Condition 6 naturally holds when n is a manageable size. For example,

when p¼2, Condition 6 holds for n¼OðN1=2Þ.
Denote ~ηR as the estimator of η obtained by the basis functions fGJðx ∗

i , �Þgni¼1 selected using the RBS method. The following theorem shows

that ~ηR converges to the true function η0 at the same rate as η̂, whose proof is provided in the supporting information.

Theorem 1. Assume that
P
γ
ρdγΛðη0,ϕγÞ2 <∞ for some d� ½1,2�. Under Conditions 1–6, as λ!0 and n1þ2=pλ2=r !∞, we have

ðΛþλJÞð~ηR�η0Þ¼OPðN�1λ�1=r þλdÞ. Particularly, when λ�N�r=ðdrþ1Þ, ~ηR achieves the optimal convergence rate

ðΛþλJÞð~ηR�η0Þ¼OPðN�dr=ðdrþ1ÞÞ.

Denote ~ηU, ~ηA , ~ηS, and ~ηH as the estimators of η obtained based on observations selected using the UBS, ABS, SBS, and HBS methods, respec-

tively. Obviously, the convergence rates of ~ηU, ~ηA, ~ηS, and ~ηH are identical to that of η̂ with different essential choices of n. The convergence rates

of ~ηU and ~ηA are the same as that of η̂ when the size of the basis functions n is of the order OðN2=ðdrþ1ÞÞ. For the estimator ~ηR, n is of the order

OðN2p=ðdrþ1Þðpþ2ÞÞ, which is smaller than those of ~ηU and ~ηA. The order of n in estimating ~ηS is OðN1=ðdrþ1ÞÞ, which is smaller than that for the pro-

posed ~ηR. However, the estimator ~ηS requires that the covariates be uniformly distributed in the whole covariate space. Once the covariates are

not uniformly distributed, ~ηS may not perform well, compared with the proposed ~ηR. The order of n in ~ηH is the same as ~ηR for the response curve

in general. When the response curve has homogeneous smoothness across the covariate space, our method performs similarly to the HBS

method. Additionally, the selected sub-data enjoy a pretty projection property in lower dimensional subspaces through a well-designed rotation,

instead of increasing the sub-data size. Thus, it has some advantages in cases where the response curves have non-homogeneous smoothness.

The values of d and r are determined by the roughness of η and the order of the fitted spline, respectively. More details can be found in Gu

and Kim (2002), Ma et al. (2015), and Meng et al. (2020, 2021). In our numerical study, we set r to 4, as Ma et al. (2015) and Gu and Kim (2002)

have suggested. Hence, we can obtain that n is roughly located in the interval ðOðN2p=f9ðpþ2ÞgÞ,OðN2p=f5ðpþ2ÞgÞÞ. In the following real data analysis,

we take the dimension n of the effective subspace HS to be between 15N2=9 and 30N2=9.

4 | SIMULATION AND REAL DATA STUDIES

In this section, we compare our proposed basis selection method to several other methods using five numerical examples and two real data exam-

ples in terms of prediction accuracy with the log mean absolute error (MAE) given by
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logðMAEÞ¼ log N�1
test

XNtest

i¼1

j~ηðxiÞ�η0ðxiÞj
 !

,

where Ntest is the size of the test data, fxigNtest
i¼1 is an independent test dataset generated using the same probability density function as in the

training data, and η0ðxiÞ and ~ηðxiÞ denote the real and fitted response values from the ith test data point, respectively. The methods in the

comparison are the UBS method in Gu and Kim (2002), the ABS method in Ma et al. (2015), the SBS method in Meng et al. (2020), and the HBS

method in Meng et al. (2021).

4.1 | Simulation studies

We generate a synthetic training dataset with N¼2000 from each of the following four probability density functions, and then, the covariate is

scaled to ½0,1�p. The signal-to-noise ratio, defined as varðηðxÞÞ=σ2, is set to two. We then use the five basis selection methods to obtain a subset

of n¼f40,60,80,100,120g observations and fit the smoothing spline model.

We consider four distributions of the covariate variable x over the domain of interest, identical to those considered in Meng et al. (2021). The

p in the following dataset are adapted to the functions f1 to f5.

d1: The p-dimensional covariate variable x is uniformly distributed in ½0,1�p;
d2: The p-dimensional covariate variable x follows a mixture t-distribution ðT1,…,TpÞ, where fTigpi¼1 are independently generated from

tð10, �5Þ=2þ tð10,5Þ=2;
d3: The p-dimensional covariate variable x obeys a banana-shaped distribution, which is generated by ðZ1,Z2þZ2

1=1:2,…,ZpþZ2
1=1:2Þ, where

ðZ1,Z2,…,ZpÞ is generated from the standard multivariate Gaussian distribution;

d4: The p-dimensional covariate variable x obeys a multivariate Gaussian distribution GPð0,ΣÞ, where the ði, jÞth element of Σ is

Σi,j ¼0:9ji�jj , i, j¼1,…,p.

We adopt five different regression function settings. The first four are the same as those considered in Meng et al. (2021), and the last one is

similar to that in Ma et al. (2015):

f1: A two-dimensional function given by

f1ðxÞ¼ sinf10=ðx1þx2þ0:15Þg;

f2: A two-dimensional function given by

f2ðxÞ¼ h1ðx1,x2Þþh2ðx1,x2Þ,

where

h1ðx1,x2Þ¼ f0:75=ðπσ1σ2Þg� expf�ðx1�0:2Þ2=σ21�ðx2�0:3Þ2=σ22g,
h2ðx1,x2Þ¼ f0:75=ðπσ1σ2Þg� expf�ðx1�0:7Þ2=σ21�ðx2�0:5Þ2=σ22g,

σ1 ¼0:1, and σ2 ¼0:2;

f3: A three-dimensional function given by

f3ðxÞ¼ sinfπðx1þx2þx3Þ=3g�x1�x22;

f4: A four-dimensional function given by

f4ðxÞ¼ x1þð2x2�1Þ2=2þ½sinð10πx3Þ=f2� sinð10πx3Þg�=3þf0:1sinð2πx4Þ
þ0:2cosð4πx4Þþ0:3sinð6πx4Þ2þ0:4cosð8πx4Þ3þ0:5sinð10πx4Þ3g=4;

f5: A copula function with only two important covariates given by

f5ð~xÞ¼ ð2πÞ�1jΣj�1=2 expf�1=2ðg1ð~x1Þ,g2ð~x2ÞÞTΣ�1ðg1ð~x1Þ,g2ð~x2ÞÞgjg01ð~x1Þg02ð~x2Þj

where g1ð~x1Þ¼2signð~x1Þj~x1j2, g2ð~x2Þ¼3~x32, ~xj ¼2:3ðxj�0:5Þ for j¼1,2, and Σ is a 2�2 matrix, with the ði, jÞth entry being 0:5ji�jj , i, j¼1,2.
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Figure 3 predicts Ntest ¼2000 testing data, records the logðMAEÞ, and calculates the standard errors shown in vertical bars, which are

obtained from a hundred replicates. The full bases estimator is omitted here due to the high computation cost. Figure 3 illustrates that all the

methods in the first column have similar performances, while the proposed RBS method performs slightly better and the UBS method performs

slightly worse, in which cases the observed values are uniformly distributed in a hypercube. Meanwhile, in the right three columns, we observe

that the proposed RBS method yields perfect performance compared with the UBS, ABS, and SBS methods, followed by the HBS method, in cases

where the covariates are not uniformly distributed in a hypercube. Moreover, the UBS, ABS, and SBS methods perform unstably in the non-

uniformly distributed case. Overall, our RBS method has the upper hand in all settings, yielding lower logðMAEÞ and smaller standard errors, which

implies that the RBS method is feasible for a broad range of covariate distributions, surface functions, and dimensions and thus emerges as the

best estimator of the true function, compared with other methods.

In the following, we consider a scenario in which the underlying response surface is not isomorphic to further illustrate the advantages of the

proposed method. To be precise, we consider a smoothing spline on d5 with p varying from three to eight. The underlying response surface is

taken as f5, which only relies on the first two dimensions of d5. Note that there is at least one redundant covariate in this example, which makes

F IGURE 3 logðMAEÞ values from the smoothing spline model for simulation under five different regression functions (from upper to lower)
and four different probability density functions (from left to right) are plotted versus different n. ABS, adaptive basis selection; HBS, Hilbert curve
basis selection; MAE, mean absolute error; RBS, rotated lattice-based basis selection; SBS, space-filling basis selection; UBS, uniform basis
selection.
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the response surface not isomorphic. Figure 4 reports the logðMAEÞs of all five basis selection methods when redundant covariates exist in the

settings of regression functions and the dataset is not uniformly generated in a hypercube.

The results show that the performance of the RBS method is remarkably better when the function has non-homogeneous smoothness and

that the performance of the RBS method is comparable with that of the HBS method when the function is isomorphic. This is because when the

response surface is not isomorphic, the uniformity on the subspace with relatively large volatility is more important than other subspaces.

Compared with the uniformity in full data space, the projective uniformity is much more appreciated in this scenario since it achieves a better

uniformity on all kð< pÞ dimensional subspace than the uniform design in full space. Consequently, the proposed RBS method is more

advantageous than the other four methods since it achieves better projective uniformity.

To clearly see the projective uniformity of the proposed method, we evaluate the proposed method together with the other four methods by

the log maximum projection criterion proposed in Joseph et al. (2015). To be precise, the log maximum projection is calculated by

logðψðDÞÞ¼ log
1

nðn�1Þ
X

1≤ i< j≤ n

Yp
k¼1

ðx ∗
i,k�x ∗

j,kÞ�2

 !1=p

,

with D¼fx ∗
i gni¼1, which is the dataset we use to construct the basis functions in HS. Clearly, a smaller value implies better projection uniformity

since the data points in D will not be close to each other in any dimensions. For cases where ðx ∗
i,k�x ∗

j,kÞ¼0 for some i, j, and k, we simply denote

the results as NA, implying that projective uniformity is not available for the sub-data D. The projection uniformity as measured by logðψðDÞÞ for
the five methods is shown in Table 1 under f5 and d4 with redundant covariates.

F IGURE 4 logðMAEÞ values from the smoothing spline model for simulation under regression function f5 and probability density function d4
with one, two, three, four, five, and six redundant covariates (from upper to lower and left to right) are plotted versus different n. The response
surface is not isomorphic due to the existence of redundant covariates. ABS, adaptive basis selection; HBS, Hilbert curve basis selection; MAE,
mean absolute error; RBS, rotated lattice-based basis selection; SBS, space-filling basis selection; UBS, uniform basis selection.
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Based on the result presented in Table 1, one can clearly see that the logfψðDÞg value of RBS is the smallest among the other four methods,

which implies the data points selected via our methods have a better projective uniformity on the subspace spanned by the first two covariates.

In the following, we will evaluate the performance of all five methods in computing time. Since all the cases have similar performance, we only

illustrate the results that the covariates are generated as d4 and the regression function is f5 with n varying from 40 to 120. We record the

computing time for our desktop PC with 8 G memory and a 2.4 GHz Celeron processor. Each method has been repeated 100 times, and the

corresponding results are reported in Table 2.

From Table 2, it can be clearly seen that all methods significantly reduce the computing time compared with the full data approach since the

computational results are reduced from OðN3Þ to OðNn2Þ. As discussed in Section 3.3, all the basis selection methods have comparable

performance since fitting the smoothing spline ANOVA model takes the most computing time.

4.2 | White River pollutant data

This dataset contains the pollutant concentrations at different locations in China's White River. The main task is to predict the pollutant concen-

tration of unmonitored locations. The variable pollutant concentration is treated as the response, and the corresponding longitude and latitude

are treated as two covariates. The dataset contains N¼3,965 training data and Ntest ¼396 test data. We select n¼N2=9f15,20,25,30g basis func-

tions from the N¼3,965 training data using the UBS, ABS, SBS, HBS, and RBS methods. We fit the cubic tensor product smoothing spline analysis

of the variance model to the dataset and consider the following model settings:

M1: An additive smoothing spline regression model with all two main effects and the two-way interaction function of corresponding covariates,

yi ¼ η; þη1ðxi1Þþη2ðxi2Þþη1,2ðxi1,xi2Þþϵi, i¼1,2,…,N;

M2: A redundant covariate xi3, for example, the depth of the river, independently generated through a uniform distribution on ½0,1�, is added to

the respected model. To be precise, an additive smoothing spline regression model with all three main effects and the two-way interaction of xi1

and xi2,

TABLE 1 logfψðDÞg values of the five basis selection methods for simulation under regression function f5 and probability density function d4
with n¼80 basis functions.

p UBS ABS SBS HBS RBS

3 9.551428 9.501454 NA NA 8.357445

4 9.108542 8.869277 NA NA 7.794891

5 8.710636 8.749605 NA NA 7.684428

6 8.642750 8.738538 NA 8.865160 7.744047

7 8.358219 8.379835 NA 8.198035 7.439442

8 8.105443 7.993638 NA 7.989379 7.290941

Note: The best performance of each setting is highlighted in boldface.

Abbreviations: ABS, adaptive basis selection; HBS, Hilbert curve basis selection; NA, logfψðDÞg is not applicable to the sub-data D; RBS, rotated lattice-

based basis selection; SBS, space-filling basis selection; UBS, uniform basis selection.

TABLE 2 Computing time (in seconds) of the five basis selection methods and full data for simulation under regression function f5 and
probability density function d4 with n¼f40,60,80,100,120g basis functions.

n UBS ABS SBS HBS RBS Full data

40 1.2402 1.2221 1.2063 1.2610 1.5928

60 1.5383 1.5937 1.3282 1.6333 1.9558

80 1.7584 1.7986 1.5685 1.8367 2.2261 37.7657

100 1.9162 1.9991 1.7520 2.0945 2.5139

120 2.0824 2.1675 1.9644 2.3453 2.7677

Abbreviations: ABS, adaptive basis selection; HBS, Hilbert curve basis selection; RBS, rotated lattice-based basis selection; SBS, space-filling basis

selection; UBS, uniform basis selection.
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yi ¼ η; þη1ðxi1Þþη2ðxi2Þþη3ðxi3Þþη1,2ðxi1,xi2Þþϵi , i¼1,2,…,N,

where yi is the contaminant concentration measurement at the ith observation, xij is the value of the jth dimension at the ith covariate, η; is a con-

stant function, fηjg3j¼1
are main effect functions, η1,2 is the two-way interaction function of the corresponding covariate, and fϵigNi¼1 represent the

independent and identically distributed random errors with zero mean and unknown variance σ2. It is worth mentioning that the R2 ¼0:7543,

which implies the fitness of M1. By applying model checking tools in (Gu, 2013, Chapter 3.7), one can find a strong correlation between all three

terms with the response. To show the effectiveness of the proposed estimator, we compare it with four mainstream competitors, as mentioned in

the previous section, in terms of the prediction logðMAEÞ, calculated on a holdout testing set, and summarize the results in Figure 5.

As shown in the left panel of Figure 5, the logðMAEÞs of all five basis selection methods come closer with the increasing basis function size n.

As expected, in models M1 and M2, RBS is superior to the other four basis selection methods, which echoes the results in Section 4.1.

4.3 | Debutanizer column data

This dataset comprises debutanizer distillation column data from the process of separating butane from gasoline. The task is to predict the butane

content by using the conditions of the debutanizer columns and other relevant information measured using soft sensors in the process of

petroleum refining. Seven relevant features are provided in the dataset, such as temperature, pressure, flow, and so forth. More details about the

dataset can be found in Fortuna et al. (2007).

We first scale the dataset to ½0,1�7 and then fit the cubic tensor product smoothing spline analysis of the variance model to the scaled dataset.

We consider the following model setting:

M3: An additive smoothing spline regression model with all main effects,

yi ¼ η; þ
X7
j¼1

ηjðxijÞþϵi , i¼1,2,…,N,

where yi is the butane concentration of the ith observation, xij is the value of the jth dimension of the ith covariate, η; is a constant function,

fηjg7j¼1
are main effect functions, and fϵigNi¼1 represent the independent and identically distributed random errors with zero mean and unknown

variance. It is worth mentioning that the cosine values of all possible interaction terms are no more than 0.29. Thus, according to Gu (2013), we

opt to consider this smoothing spline ANOVA model with main effects only for model brevity.

The simulation is performed under the setting that the size of the full data is 2395, 10% of the full data is randomly selected without repeti-

tion as test data, the remaining data are used as training data, and set n¼N2=9f15,20,25,30g.

F IGURE 5 logðMAEÞ values versus different n under model setting M1 and M2 from the smoothing spline model for the pollutant data. The
horizontal line represents the performance for all the training data. ABS, adaptive basis selection; HBS, Hilbert curve basis selection; MAE, mean
absolute error; RBS, rotated lattice-based basis selection; SBS, space-filling basis selection; UBS, uniform basis selection.
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As shown in Figure 6, with the increase of the size n of the basis functions, the logðMAEÞs of all the five basis selection methods come closer

to one another. Furthermore, as expected, in Figure 6, RBS is superior to the other four basis selection methods, which is identical to the results

in Section 4.1 and Section 4.2.

5 | CONCLUSION AND DISCUSSION

This study introduces a new basis selection method called RBS for large N datasets. The RBS method is an efficient stratified basis selection

method in which the strata are Voronoi cells of rotated thinnest covering lattices, which does not require the assumption that the covariates are

uniformly distributed on a hypercube and that there is homogeneous smoothness across the covariate space.

Theoretically, we prove that for the proposed RBS method, when the size of the basis functions n is roughly in the order OfN2p=ðdrþ1Þðpþ2Þg,
the convergence rate of ~ηR is identical to that of η̂, which is the same as that of the HBS method, and is also faster than that of the UBS and ABS

methods. Furthermore, comprehensive simulation and real data studies were conducted to illustrate the performance of the RBS method, and the

numerical results are consistent with our theoretical results. Compared with the other four existing methods, the RBS method is more effective,

especially when the covariates are not uniformly distributed on a hypercube and the response is not isotropic since the RBS method improve the

projective uniformity substantially via rotating the lattice.

F IGURE 6 logðMAEÞ values versus different n under model setting M3 from the smoothing spline model for the debutanizer distillation
column data. The horizontal line represents the performance for all the training data. ABS, adaptive basis selection; HBS, Hilbert curve basis
selection; MAE, mean absolute error; RBS, rotated lattice-based basis selection; SBS, space-filling basis selection; UBS, uniform basis selection.
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The newly proposed basis selection method may be suitable for other nonparametric models, including but not limited to the Gaussian

process model and the nearest neighbour model. However, more work needs to be done to verify its performance. It would also be interesting to

explore whether the new method can be modified by considering the response information.
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