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Summary

Fitting a smoothing spline model on a large-scale dataset is daunting due to the high

computational cost. In this study, we develop an efficient basis selection method for

smoothing spline calculation. The key idea is to force a nonparametric function in an

infinite-dimensional functional space to reside in a relatively small and finite-dimensional

model space without the loss of too much prediction accuracy. Such an approximation nat-

urally allows for much faster numerical calculation, especially for large datasets. Among

various basis selection methods, space-filling basis selection has been proven to be more

efficient since its model space dimension is smaller than that of others. Despite algorith-

mic benefits, most of the space-filling selection methods only take the overall space-filling

property into account. These methods may be less efficient when the underlying response

surface is not isomorphic. To overcome this obstacle, we develop an efficient algorithm to

improve projective uniformity for space-filling basis selection. It has been proved that the

proposed estimator has the same convergence rate as the full bases estimator. Compared

with the standard approach, the proposed method significantly reduces the computational

cost. Simulation and real data studies demonstrate the efficiency and superiority of the

proposed method.
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1 INTRODUCTION

Consider the following nonparametric model:
yi = η(xi) + εi, i = 1, 2, . . . , N, (1)

where yi is the response for the i-th observation, η(·) is an unknown function, xi ∈ [0, 1]p denotes the covariate, εi’s are independent and
identically distributed errors with zero mean and finite variance, and N is the size of training data. In this study, we adopt the smoothing spline
to fit η(·) which is one of the most pervasive choices (Grace 1990; Gu 2013). To be precise, η(·) in Model (1) is assumed to have resided in a
reproducing kernel Hilbert space (RKHS), sayH. It can be estimated by minimizing the following penalized least squares

N−1
N∑
i=1

{yi − η(xi)}2 + λJ(η), (2)

where J(η) is a roughness penalty, and λ is the tuning parameter to control the smoothness of the estimator.
Despite impressive performance and solid theoretical foundations, solving the optimization problem (2) is a challenging task. Except for the

univariate case, which can be solved inO(N), the computational cost for calculating the smoothing spline with p ≥ 2 using the standard approach is
O(N3). This huge computational cost renders the smoothing spline impractical for a large-scale dataset. Great efforts have been made to alleviate
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the computational burden. Typical works include but are not limited to divide-and-conquer kernel ridge regressions (Xu & Wang 2018; Y. Zhang,
John, & Martin 2015) and basis selection algorithms (Gu & Kim 2002; Luo & Wahba 1997; Ma, Huang, & Zhang 2015; Meng, Zhang, Zhang,
Zhong, & Ma 2020).

Among various techniques designed to reduce the computational cost of the smoothing spline, basis selectionmethods have gained the attention
of data scientists due to the following two reasons. Firstly, it is possible to combine parallel-based strategies with basis selection methods to reap
more computational savings. Secondly, basis selection procedures are more flexible than divide-and-conquer kernel ridge regression strategies. The
idea of basis selection is to approximate the minimizer of (2) by restricting the estimator η̂ to a n-dimensional subspaceHS ⊂ H. When n � N ,
the computational cost can be efficiently reduced from O(N3) to O(Nn2). Numerous studies have been developed along this line of thinking.
For example, Hastie (1996) suggested fixing n basis functions to approximate splines. Such a method differs from constructing basis functions
in smoothing splines. Thus, it is also known as “pseudo splines” or P-splines. Ruppert (2002) considered basis selection for P-splines by adding a
penalty to control the number of basis functions. He, Shen, and Shen (2001), Sklar,Wu,Meiring, andWang (2013), and Yuan, Chen, and Zhou (2013)
further considered cases where the regression function has non-homogeneous smoothness across the input space. As for smoothing splines, Luo
and Wahba (1997) and H. Zhang Hao et al. (2004) proposed approximating the minimizer of (2) using variable selection techniques. Due to the
additional computational cost brought by variable screening, the computational benefits of the above two methods are unclear. Gu and Kim (2002)
proposed a uniform basis selection (UBS) method by randomly selecting some basis functions among the N basis functions in {GJ (xi, ·)}Ni=1,
facilitating quick analysis of large datasets. Here,GJ is the reproducing kernel. Ma et al. (2015) developed an adaptive basis selection (ABS) method
that uses an adaptive sampling scheme according to the values of the response variable. Meng et al. (2020) proposed a space-filling basis selection
(SBS) method that suggests selecting the basis functions {GJ (x∗i , ·)}ni=1 with {x∗i }ni=1 being roughly equally-spaced. Meng, Yu, Chen, Zhong, and
Ma (2021) extended the basis selection method to cases where the covariates are nonuniformly distributed in [0, 1]p. As the space-filling property
of the selected sub-data {x∗i }ni=1 is achieved through Hilbert curves, this method is the so-called Hilbert curve basis selection (HBS) method.

A fundamental question regarding basis selection methods is how to choose the basis functions in order to ensure that the restricted estimator
converges to the true function η at the identical rate as the full bases estimator η̂. It has been shown that both the UBS and ABS methods require
that n roughly be of the order O(N2/(dr+1)), where d ∈ [1, 2] and r ≈ 4 are constants, depending on the type of spline. In contrast, the SBS only
requires that n roughly be of the order O(N1/(dr+1)) when p ≤ dr + 1 and the covariates are uniformly distributed in [0, 1]p. Thus, the SBS is
regarded as a more efficient method. To relax the assumption that all covariates are uniformly distributed in [0, 1]p, HBS achieves a similar space-
filling property as SBS by increasing the number of bases to O(N2p/{(p+2)(dr+1)}). The additional basis functions are the price we pay for the
irregular distribution of the covariates. Nevertheless, HBS is also more efficient than both UBS and ABS.

To the best of our knowledge, the space-filling type basis selection methods (i.e., SBS and HBS) are only focused on the uniformity of the sub-
data {x∗i }ni=1 with respect to the whole input space [0, 1]p. Unfortunately, this can result in poor projections of lower-dimensional spaces, which
is undesirable when the response curve has non-homogeneous smoothness across the input space. Consider a case where a researcher fits a
smoothing spline on a two-dimensional space [0, 1]2 while the response curve is η(x) = sin(15x21), which depends solely on the first dimension of
the covariate. The true function and the {x∗i }ni=1 generated via UBS, ABS, SBS, HBS, and the proposed method are demonstrated in Figure 1. It
is observed that the covariates selected via the UBS and ABS methods are not uniformly distributed in the input space. In contrast, SBS, HBS, and
the proposed method enjoy space-filling properties in the whole input space [0, 1]2. It is worth mentioning that the three methods have different
behaviors when we only consider the projection on x1. One can conclude that the proposed RBS method has better uniformity when we consider
the projection on the subspace of the design region compared with the other methods. Thus, the selected basis functions are more likely to capture
the volatility in the first dimension in this case, which will undoubtedly lead to better estimation.

In this study, we propose a rotated lattice-based basis selection (RBS) method to improve the projection uniformity with space-filling properties
of the selected sub-data. The contributions of this work are three-fold as follows. Firstly, a novel sub-data selection is proposed for basis selection
when the covariates are not uniformly distributed in [0, 1]p and the response curve may have non-homogeneous smoothness across the input
space. Secondly, it has been proved that only O(N2p/{(dr+1)(p+2)}) basis functions are needed to achieve the same convergence rate as the
full bases estimator, which is the same as with HBS. This implies that our method increases the projective uniformity without involving additional
computational costs. Thirdly, numerical experiments show that the RBS method has comparative performance when compared to the HBS and
UBS methods and that it outperforms UBS and ABS when the response curves are isomorphic. Moreover, it is uniformly better than the UBS, ABS,
SBS, and HBS methods when the response curve has non-homogeneous smoothness.

The remainder of this paper is organized as follows. In Section 2, the preliminaries of smoothing splines and the sub-sampling of basis functions
are reviewed. In Section 3, we present the RBS method and an asymptotic analysis. In Section 4, simulation and real data examples are provided to
demonstrate the advantage of the proposed basis selection method. Several conclusions and remarks are given in Section 5. All proofs are provided
in the supplementary materials.
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Figure 1 Illustration of different basis selection methods. The leftmost panel at the top shows the heat map for the true function. The heat maps
for the spline estimates based on UBS, ABS, SBS, HBS, and the proposed method are presented in the other five panels, respectively. Black dots
are the sampled basis functions.

2 SMOOTHING SPLINES ESTIMATION AND THEIR BASIS SELECTION

In this section, we briefly review the basic background of smoothing splines and introduce the general basis selection methods. For ease of
presentation, all vectors are row vectors throughout this study.

Let H = {η : J(η) < ∞} be an RKHS equipped with a squared semi-norm J(·). Then, H can be decomposed by H = NJ ⊕ HJ with
NJ = {η : J(η) = 0} being the null space of J(η) andHJ being the orthogonal complement ofNJ inH. It is proved that the spaceHJ is also a
reproducing kernel space associated with a reproducing kernel GJ (·, ·) (Gu 2013).

Assume that NJ is a finite W -dimensional linear subspace of H with the basis functions {ωj(·)}Wj=1. According to the well-known Wahba’s
representer theorem (Grace 1990), the unique solution (usually called the smoothing spline estimator) to (2) can be represented by

η(x) =
W∑
j=1

αjωj(x) +
N∑
i=1

βiGJ (xi,x) x ∈ [0, 1]p.

Denote α = (α1, . . . , αW ) and β = (β1, . . . , βN ). The computation of the smoothing spline estimator is reduced to computing the coefficients
α and β. Denote Y as the response vector, Ω as theN ×W matrix, with the (i, j)-th element being ωj(xi), andG as theN ×N matrix, with the
(i, j)-th element being GJ (xi,xj). Then, the original problem (2) becomes that of solving

(α̂, β̂) = arg min
α∈RW ,β∈RN

{N−1(Y − ΩαT −GβT )(Y − ΩαT −GβT )T + λβGβT }.

The computational cost of the standard approach is O(N3), which is prohibitive when the observation size N is considerable. To reduce this
computational burden, basis selection is adopted. The key idea is to further restrict the unknown function η(·) in a smaller functional space
HS = NJ ⊕ span{GJ (x∗i , ·), i = 1, 2, . . . , n}, where {x∗i }ni=1 is a subset of {xi}Ni=1. Consequently, the computation of the smoothing spline
estimator is reduced to the computation of coefficients αS and βS by solving

(α̂S , β̂S) = arg min
αS∈RW ,βS∈Rn

{N−1(Y − ΩαTS −G∗β
T
S )(Y − ΩαTS −G∗β

T
S )T + λβSG∗∗β

T
S }, (3)
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Figure 2 The hexagonal partitioning of [0, 1]2 with the rotated thinnest covering lattice on the left and the 2-th Hilbert’s space-filling curve on the
right shows cells (blue squares or hexagons), centers (red crosses), and the 2-th Hilbert’s space-filling curve (black solid line).

whereG∗ is anN ×nmatrix, with the (i, j)-th entryGJ (xi,x
∗
j ) andG∗∗ is an n×nmatrix, with the (i, j)-th entryGJ (x∗i ,x

∗
j ). Evaluation of the

restricted estimator η̃ based on sample observations satisfies ĤT
S = Ωα̂TS +G∗β̂TS , where ĤS = {η̃(x1), . . . , η̃(xn)}. Obviously, when n� N ,

the computational cost is only O(N2n), which is a significant reduction compared with O(N3).

3 BASIS SELECTION USING ROTATED LATTICES

3.1 Rotated thinnest covering lattice

The thinnest covering lattice entails finding the best placement of the identical p-dimensional spheres that jointly cover the input space. For
2 ≤ p ≤ 22, one can systematically construct the rotated thinnest covering lattice (He 2017) via

L = {laMLR : a ∈ Zp}, (4)

where l is a positive constant giving the scale of the lattice cells,ML is a generator matrix, and R is a p × p rotated matrix. Let V be the volume
of the input space, i.e., the covariate space. A reasonable scaling parameter is l = n−1/p(p + 1)1/(2p)V 1/p, which yields n lattice cells in the
covariate space [0, 1]p (He 2017 2020). One of the most commonly used generator matrices isML = Ip− [{(1+p)1/2 +1+p}/{p(p+1)}]1Tp 1p,
where Ip is the p× p identity matrix, and 1p is the p-dimensional row vector with all elements as one. The rotated matrix R can be implemented
by any orthogonal matrix. More details can be refered to He (2017). Denote {ci}ni=1 as the elements of the lattice L in [0, 1]p; then, the Voronoi
cell of point ci is defined as the region Vor(ci) = {z|‖z− ci‖2 = min

c∈L
‖z− c‖2}, where ci is called the center of the Voronoi cell Vor(ci), and ‖·‖

denotes the Euclidean norm. Here, we focus on the best known thinnest coverings, other lattices such as the densest packings listed in Conway
and Sloane (1998) can also be applied. One may expect to use some other types of lattices to achieve the desired results when p is beyond 22.

A two-dimensional case for a rotated thinnest covering lattice in [0, 1]2 is demonstrated in the left panel of Figure 2. The hexagons are the
Voronoi cells with their centers marked by the crosses, which are the elements of the lattice L. Clearly, the hexagon partitioned the space [0, 1]2.
For comparison, we also show the space partitioned by Hilbert’s space-filling curve, which is the main ingredient in the HBS method. This is
presented in the right panel of Figure 2. From Figure 2, one can easily see that both the 2-dimensional rotated thinnest covering lattice and the 2-
th Hilbert’s space-filling curve yield reasonable partitions of [0, 1]2. Clearly, the 16 crosses in the two panels are uniform over the whole covariate
space; however, the uniformity in the left panel is better than that in the right panel. Moreover, all projections of the 16 crosses in the left panel
onto each axis have a space-filling character. However, some projections of the 16 crosses in the right panel onto any axis are coincident, and only
four different projection points are obtained. Judging from the projection uniformity of each subspace, the rotated thinnest covering lattice is far
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superior to Hilbert’s space-filling curve. Thus, the {x∗i }ni=1 selected by the rotated thinnest covering lattice will benefit cases where the response
curve has non-homogeneous smoothness. Proposition 1 gives the space-filling property for the general rotated thinnest covering lattice.

Proposition 1. For any two covariates x,x′ ∈ [0, 1]p located in Vor(ci), i = 1, 2, . . . , n, we have

‖x− x′‖ ≤ 2(p+ 1)1/(2p){p(p+ 2)}1/2{12(p+ 1)}−1/2n−1/p.

3.2 The rotated lattice-based basis selection algorithm

The proposed RBS algorithm includes the following three main steps:

Step 1. Generate a rotated thinnest covering lattice L with n Voronoi cells {Vor(ci)}ni=1 in [0, 1]p. Divide the covariates ofN observations into n
cells according to the distance information of p-dimensional covariates to Voronoi cells {Vor(ci)}ni=1;

Step 2. Adjust the estimated value of the volume of non-empty cells, so that the size of the non-empty cells n̂ is roughly equal to n;

Step 3. Randomly select one covariate from each non-empty cell to form {x∗i }ni=1, and then, estimate the smoothing spline on the spaceHS as
in (3).

A rotated thinnest covering lattice L is generated in the first step. After achieving the lattice L, we will map the covariates to the Voronoi cells
in L. Clearly, performing an exhaustive search of all the Voronoi cells in L and then deciding to which cell a particular covariate belongs requires
O(np2) time.

In the second step, denote n̂ as the size of non-empty cells. Then, we should adjust the estimated value of the volume of non-empty cells so that
n̂ is closer to n. For clarity, we denote the estimated value by V̂ . Initially, V̂ = 1, i.e., the volume of the covariate space [0, 1]p. Then, l is estimated
by n−1/p(p+ 1)1/(2p)V̂ 1/p. When the difference between n̂ and the target n is too large, we should adjust l according to a new estimated V̂ , so
that the difference between n̂ and the target n does not exceed 0.1n.

In the last step, we randomly select one covariate allocated in each non-empty cell. Then, the total n̂ covariates {x∗i }n̂i=1 are collected. If n > n̂,
we randomly add n − n̂ covariates from the remaining N − n̂ covariates {x∗i }Ni=n̂+1. If n < n̂, we randomly delete n̂ − n covariates from the
collected n̂ covariates {x∗i }n̂i=1. Suppose that, without loss of generality, the selected covariates are denoted as {x∗i }ni=1.

Finally, the selected covariates {x∗i }ni=1 are used to construct the effective subspaceHS . Then, the smoothing spline estimator η̃ of η is achieved
through (3). We summarize the proposed method in Algorithm 1.

Algorithm 1 Basis selection method using a rotated lattice

1: Compute l = n−1/p(p+ 1)1/(2p)V̂ 1/p with the initial V̂ = 1.
2: for 1 ≤ i ≤ N do
3: Determine to which cell xi belongs.
4: end for
5: Obtain the number of non-empty cells, denoted as n̂.
6: Adjust l according to a new estimated V̂ and repeat the above process until the difference between n̂ and n does not exceed 0.1n.
7: Randomly select one covariate from each non-empty cell; then, collect n̂ covariates {x∗i }n̂i=1.
8: if n̂ > n then
9: Randomly delete n̂− n covariates from the collected n̂ covariates {x∗i }n̂i=1.
10: else
11: Randomly add n− n̂ covariates from the remaining N − n̂ covariates {x∗i }Ni=n̂+1.
12: end if
13: Denote the selected sub-data as {x∗i }ni=1.
14: Minimize the penalized least squares criterion (2) over the effective subspaceHS = NJ ⊕ span{GJ (x∗i , ·), i = 1, 2, . . . , n}.

The computational cost for Algorithm 1 mainly depends on dividing N covariates into n cells and estimating the smoothing spline estimator
in the last step. Note that Algorithm 1 requires O(np) operations to obtain the cell closest to a given covariate. Therefore, the computational
complexity of finding the cells closest toN covariates is of the order O(Nnp). As discussed in Meng et al. (2021 2020), estimating the smoothing
spline estimator η̃ of η over the effective subspaceHS is of the orderO(Nn2). Since n is much larger than p,O(Nnp) is negligible compared with
O(Nn2). In summary, the overall computational cost of the RBS method in Algorithm 1 is in the order of O(Nn2).

This article is protected by copyright. All rights reserved.
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3.3 Theoretical analysis

In this section, the asymptotic properties of the smoothing spline estimator using the proposed RBS method are presented. Let fX denote the
probability density function of the covariate. Define the mean square error of the estimator η̂ in estimating η as the quadratic functional

Λ(η̂ − η) =
∫
X (η̂(x)− η(x))2fX(x)dx.

Conventionally, the rate of asymptotic convergence of η̂ is described by eigenvalue analysis of J(η) in (2) with respect to Λ(η). In the following,
we shall use Λ(·, ·) and J(·, ·) to represent the (semi) inner products associated with the square (semi) norms Λ and J .

Below, we introduce six primary regularity conditions, which are the same as in the HBS method. A more detailed discussion can be found in
Meng et al. (2021).

Condition 1. The functional Λ is completely continuous with respect to J , where Λ(φγ , φµ) = δγµ, J(φγ , φµ) = ργδγµ, φγ and φµ are the
eigenfunctions associated with Λ and J inH, ργ is the nonnegative eigenvalue associated with φγ , and δγµ denotes the Kronecker delta;

Condition 2. For some β > 0 and r > 1, ργ > βγr for sufficiently large γ;

Condition 3. For all µ, γ and a positive constant C , var{φγ(x)φµ(x)} ≤ C;

Condition 4. For all µ and γ, φγ(x)φµ(x) is Lipschitz continuous; that is, for any x,x′ ∈ X , there exists a positive constant B such that
|φγ(x)φµ(x)− φγ(x′)φµ(x′)| ≤ B‖x− x′‖;

Condition 5. Suppose max{(nNi)/N}ni=1 = OP (1), where Ni is the number of covariates in the i-th cell;

Condition 6. The number of bases n satisfy that n1+2/p = O(N).

The first four conditions are the regularity conditions for smoothing spline estimators even if the full bases are used. Condition 5 prevents the
extreme case of the probability density function fX , i.e., when there is only one non-empty cell; then, we have max{(nNj)/N}nj=1 = nN/N = n,
which conflicts with Condition 5. Lastly, Condition 6 naturally holds when n is a manageable size. For example, when p = 2, Condition 6 holds for
n = O(N1/2).

Denote η̃R as the estimator of η obtained by the basis functions {GJ (x∗i , ·)}ni=1 selected using the RBS method. The following theorem shows
that η̃R converges to the true function η0 at the same rate as η̂, whose proof is provided in the supplementary materials.

Theorem 1. Assume that
∑
γ
ρdγΛ(η0, φγ)2 < ∞ for some d ∈ [1, 2]. Under Conditions 1-6, as λ → 0 and n1+2/pλ2/r → ∞, we have (Λ +

λJ)(η̃R − η0) = OP (N−1λ−1/r + λd). Particularly, when λ � N−r/(dr+1), η̃R achieves the optimal convergence rate (Λ + λJ)(η̃R − η0) =

OP (N−dr/(dr+1)).

Denote η̃U , η̃A, η̃S , and η̃H as the estimators of η obtained based on observations selected using the UBS, ABS, SBS, and HBS methods,
respectively. Obviously, the convergence rates of η̃U , η̃A, η̃S , and η̃H are identical to that of η̂with different essential choices ofn. The convergence
rates of η̃U and η̃A are the same as that of η̂ when the size of the basis functions n is of the orderO(N2/(dr+1)). For the estimator η̃R, n is of the
orderO(N2p/(dr+1)(p+2)), which is smaller than those of η̃U and η̃A. The order ofn in estimating η̃S isO(N1/(dr+1)), which is smaller than that for
the proposed η̃R. However, the estimator η̃S requires that the covariates be uniformly distributed in thewhole covariate space. Once the covariates
are not uniformly distributed, η̃S may not perform well, compared with the proposed η̃R. The order of n in η̃H is the same as η̃R for the response
curve in general. When the response curve has homogeneous smoothness across the covariate space, our method performs similarly to the HBS
method. Additionally, the selected sub-data enjoy a pretty projection property in lower-dimensional subspaces through a well-designed rotation,
instead of increasing the sub-data size. Thus, it has some advantages in cases where the response curves have non-homogeneous smoothness.

The values of d and r are determined by the roughness of η and the order of the fitted spline, respectively. More details can be found in Gu and
Kim (2002), Ma et al. (2015), Meng et al. (2020), and Meng et al. (2021). In our numerical study, we set r to 4, as Ma et al. (2015) and Gu and Kim
(2002) have suggested. Hence, we can obtain that n is roughly located in the interval (O(N2p/{9(p+2)}), O(N2p/{5(p+2)})). In the following real
data analysis, we take the dimension n of the effective subspaceHS to be between 15N2/9 and 30N2/9.

4 SIMULATION AND REAL DATA STUDIES

In this section, we compare our proposed basis selection method to several other methods using five numerical examples and two real data
examples in terms of prediction accuracy with the log mean absolute error (MAE) given by

log(MAE) = log

N−1
test

Ntest∑
i=1

|η̃(xi)− η0(xi)|

 ,

This article is protected by copyright. All rights reserved.
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where Ntest is the size of the test data, {xi}Ntest
i=1 is an independent test dataset generated using the same probability density function as in

the training data, and η0(xi) and η̃(xi) denote the real and fitted response values from the i-th test data point, respectively. The methods in the
comparison are the UBS method in Gu and Kim (2002), the ABS method in Ma et al. (2015), the SBS method in Meng et al. (2020), and the HBS
method in Meng et al. (2021).

4.1 Simulation studies

We generate a synthetic training dataset with N = 2000 from each of the following four probability density functions, and then, the covariate is
scaled to [0, 1]p. The signal-to-noise ratio, defined as var(η(x))/σ2, is set to two. We then use the five basis selection methods to obtain a subset
of n = {40, 60, 80, 100, 120} observations and fit the smoothing spline model.

We consider four distributions of the covariate variable x over the domain of interest, identical to those considered in Meng et al. (2021). The
p in the following dataset are adapt to the functions f1 to f5.

d1: The p-dimension covariate variable x is uniformly distributed in [0, 1]p;

d2: The p-dimension covariate variable x follows a mixture t−distribution (T1, . . . , Tp), where {Ti}pi=1 are independently generated from
t(10,−5)/2 + t(10, 5)/2;

d3: The p-dimension covariate variable x obeys a banana-shaped distribution, which is generated by (Z1, Z2 +Z2
1/1.2, . . . , Zp+Z2

1/1.2), where
(Z1, Z2, . . . , Zp) is generated from the standard multivariate Gaussian distribution;

d4: The p-dimension covariate variable x obeys a multivariate Gaussian distributionGP (0,Σ), where the (i, j)-th element of Σ is Σi,j = 0.9|i−j|,
i, j = 1, . . . , p.

We adopt five different regression function settings. The first four are the same as those considered in Meng et al. (2021), and the last one is
similar to that in Ma et al. (2015):

f1: A two-dimension function given by
f1(x) = sin{10/(x1 + x2 + 0.15)};

f2: A two-dimension function given by
f2(x) = h1(x1, x2) + h2(x1, x2),

where
h1(x1, x2) = {0.75/(πσ1σ2)} × exp{−(x1 − 0.2)2/σ2

1 − (x2 − 0.3)2/σ2
2},

h2(x1, x2) = {0.75/(πσ1σ2)} × exp{−(x1 − 0.7)2/σ2
1 − (x2 − 0.5)2/σ2

2},

σ1 = 0.1, and σ2 = 0.2;

f3: A three-dimension function given by
f3(x) = sin{π(x1 + x2 + x3)/3} − x1 − x22;

f4: A four-dimension function given by

f4(x) =x1 + (2x2 − 1)2/2 + [sin(10πx3)/{2− sin(10πx3)}]/3 + {0.1 sin(2πx4)

+ 0.2 cos(4πx4) + 0.3 sin(6πx4)2 + 0.4 cos(8πx4)3 + 0.5 sin(10πx4)3}/4;

f5: A copula function with only two important covariates given by

f5(x̃) = (2π)−1|Σ|−1/2 exp{−1/2(g1(x̃1), g2(x̃2))TΣ−1(g1(x̃1), g2(x̃2))}|g′1(x̃1)g′2(x̃2)|,

where g1(x̃1) = 2sign(x̃1)|x̃1|2, g2(x̃2) = 3x̃32, x̃j = 2.3(xj − 0.5) for j = 1, 2, and Σ is a 2 × 2 matrix, with the (i, j)-th entry being
0.5|i−j|, i, j = 1, 2.

Figure 3 predictsNtest = 2000 testing data, records the log(MAE), and calculates the standard errors shown in vertical bars, which are obtained
from a hundred replicates. The full bases estimator is omitted here due to the high computation cost. Figure 3 illustrates that all the methods
in the first column have similar performances, while the proposed RBS method performs slightly better and the UBS method performs slightly
worse, in which cases the observed values are uniformly distributed in a hypercube. Meanwhile, in the right three columns, we observe that the
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Figure 3 log(MAE) values from the smoothing spline model for simulation under five different regression functions (from upper to lower) and four
different probability density functions (from left to right) are plotted versus different n.

proposed RBS method yields perfect performance compared with the UBS, ABS, and SBS methods, followed by the HBS method, in cases where
the covariates are not uniformly distributed in a hypercube. Moreover, the UBS, ABS, and SBS methods perform unstably in the nonuniformly
distributed case. Overall, our RBS method has the upper hand in all settings, yielding lower log(MAE) and smaller standard errors, which implies
that the RBS method is feasible for a broad range of covariate distributions, surface functions, and dimensions and thus emerges as the best
estimator of the true function, compared with other methods.

In the following, we consider a scenario in which the underlying response surface is not isomorphic to further illustrate the advantages of the
proposed method. To be precise, we consider a smoothing spline on d5 with p varying from three to eight. The underlying response surface is
taken as f5 which only relies on the first two dimensions of d5. Note that there is at least one redundant covariate in this example which makes
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Figure 4 log(MAE) values from the smoothing spline model for simulation under regression function f5 and probability density function d4 with 1,
2, 3, 4, 5, and 6 redundant covariates (from upper to lower and left to right) are plotted versus different n. The response surface is not isomorphic
due to the existence of redundant covariates.

the response surface not isomorphic. Figure 4 reports the log(MAE)s of all five basis selection methods when redundant covariates exist in the
settings of regression functions and the dataset is not uniformly generated in a hypercube.

The results show that the performance of the RBS method is remarkably better when the function has non-homogeneous smoothness and
that the performance of the RBS method is comparable with that of the HBS method when the function is isomorphic. This is because when the
response surface is not isomorphic, the uniformity on the subspacewith relatively large volatility is more important than other subspaces. Compared
with the uniformity in full data space, the projective uniformity is much more appreciated in this scenario since it achieves a better uniformity on
all k(< p) dimensional subspace than the uniform design in full space. Consequently, the proposed RBS method is more advantageous than the
other four methods since it achieves better projective uniformity.

To clearly see the projective uniformity of the proposed method, we evaluate the proposed method together with the other four methods by
the log maximum projection criterion proposed in Joseph, Gul, and Ba (2015). To be precise, the log maximum projection is calculated by

log(ψ(D)) = log

 1

n(n− 1)

∑
1≤i<j≤n

p∏
k=1

(x∗i,k − x
∗
j,k)−2

1/p

,

withD = {x∗i }ni=1, which is the data set we use to construct the basis functions inHS . Clearly, a smaller value implies better projection uniformity
since the data points inDwill not be close to each other in any dimensions. For cases where (x∗i,k−x

∗
j,k) = 0 for some i, j, and k, we simply denote

the results as NA, implying that projective uniformity is not available for the sub-dataD. The projection uniformity as measured by log(ψ(D)) for
the five methods is shown in Table 1 under f5 and d4 with redundant covariates. Based on the result presented in Table 1, one can clearly see that
the log{ψ(D)} value of RBS is the smallest among the other four methods, which implies the data points selected via our methods have a better
projective uniformity on the subspace spanned by the first two covariates.

In the following, we will evaluate the performance of all five methods in computing time. Since all the cases have similar performance, we
only illustrate the results that the covariates are generated as d4 and the regression function is f5 with n varying from 40 to 120. We record
the computing time for our desktop PC with 8 G memory and a 2.4 GHz Celeron processor. Each method has been repeated 100 times and the
corresponding results are reported in Table 2.
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Table 1 log{ψ(D)} values of the five basis selection methods for simulation under regression function f5 and probability density function d4 with
n = 80 basis functions. NA represents that log{ψ(D)} is not applicable to the sub-dataD.

p UBS ABS SBS HBS RBS

3 9.551428 9.501454 NA NA 8.357445

4 9.108542 8.869277 NA NA 7.794891

5 8.710636 8.749605 NA NA 7.684428

6 8.642750 8.738538 NA 8.865160 7.744047

7 8.358219 8.379835 NA 8.198035 7.439442

8 8.105443 7.993638 NA 7.989379 7.290941

Table 2 Computing time (in seconds) of the five basis selection methods and full data for simulation under regression function f5 and probability
density function d4 with n = {40, 60, 80, 100, 120} basis functions.

n UBS ABS SBS HBS RBS full data

40 1.2402 1.2221 1.2063 1.2610 1.5928
60 1.5383 1.5937 1.3282 1.6333 1.9558
80 1.7584 1.7986 1.5685 1.8367 2.2261 37.7657
100 1.9162 1.9991 1.7520 2.0945 2.5139
120 2.0824 2.1675 1.9644 2.3453 2.7677

From Table 2, it can be clearly seen that all methods significantly reduce the computing time compared with the full data approach since
the computational results are reduced from O(N3) to O(Nn2). As discussed in Section 3.3, all the basis selection methods have comparable
performance since fitting the smoothing spline ANOVA model takes the most computing time.

4.2 White river pollutant data

This dataset contains the pollutant concentrations at different locations in China’s White River. The main task is to predict the pollutant concen-
tration of unmonitored locations. The variable pollutant concentration is treated as the response, and the corresponding longitude and latitude are
treated as two covariates. The dataset contains N = 3, 965 training data and Ntest = 396 test data. We select n = N2/9{15, 20, 25, 30} basis
functions from the N = 3, 965 training data using the UBS, ABS, SBS, HBS, and RBS methods. We fit the cubic tensor product smoothing spline
analysis of the variance model to the dataset and consider the following model settings:

M1: An additive smoothing spline regression model with all two main effects and the two-way interaction function of corresponding covariates,

yi = η∅ + η1(xi1) + η2(xi2) + η1,2(xi1, xi2) + εi, i = 1, 2, . . . , N ;

M2: A redundant covariate xi3, for example, the depth of the river, independently generated through a uniform distribution on [0, 1], is added to
the respected model. To be precise, an additive smoothing spline regression model with all three main effects and the two-way interaction
of xi1 and xi2,

yi = η∅ + η1(xi1) + η2(xi2) + η3(xi3) + η1,2(xi1, xi2) + εi, i = 1, 2, . . . , N,

where yi is the contaminant concentration measurement at the i-th observation, xij is the value of the j-th dimension at the i-th covariate, η∅
is a constant function, {ηj}3j=1 are main effect functions, η1,2 is the two-way interaction function of the corresponding covariate, and {εi}Ni=1

represent the independent and identically distributed random errors with zero mean and unknown variance σ2. It is worth mentioning that the
R2 = 0.7543which implies the fitness ofM1. By applyingmodel checking tools in (Gu 2013, Chapter 3.7), one can find a strong correlation between
all three terms with the response. To show the effectiveness of the proposed estimator, we compare it with four mainstream competitors, as
mentioned in the previous section, in terms of the prediction log(MAE), calculated on a holdout testing set, and summarize the results in Figure 5.

As shown in the left panel of Figure 5, the log(MAE)s of all five basis selection methods come closer with the increasing basis function size n.
As expected, in models M1 and M2, RBS is superior to the other four basis selection methods, which echoes the results in Section 4.1.
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Figure 5 log(MAE) values versus different n under model settingM1 andM2 from the smoothing splinemodel for the pollutant data. The horizontal
line represents the performance for all the training data.

4.3 Debutanizer column data

This dataset comprises debutanizer distillation column data from the process of separating butane from gasoline. The task is to predict the butane
content by using the conditions of the debutanizer columns and other relevant informationmeasured using soft sensors in the process of petroleum
refining. Seven relevant features are provided in the dataset, such as temperature, pressure, flow, and so forth. More details about the dataset can
be found in Fortuna, Graziani, Rizzo, and Maria (2007).

We first scale the dataset to [0, 1]7, then fit the cubic tensor product smoothing spline analysis of the variance model to the scaled dataset. We
consider the following model setting:

M3: An additive smoothing spline regression model with all main effects,

yi = η∅ +

7∑
j=1

ηj(xij) + εi, i = 1, 2, . . . , N,

where yi is the butane concentration of the i-th observation, xij is the value of the j-th dimension of the i-th covariate, η∅ is a constant function,
{ηj}7j=1 are main effect functions, and {εi}Ni=1 represent the independent and identically distributed random errors with zero mean and unknown
variance. It is worth mentioning that the cosine values of all possible interaction terms are no more than 0.29. Thus, according to Gu (2013), we
opt to consider this smoothing spline ANOVA model with main effects only for model brevity.

The simulation is performed under the setting that the size of the full data is 2, 395, 10% of the full data is randomly selected without repetition
as test data, the remaining data is used as training data, and set n = N2/9{15, 20, 25, 30}.

As shown in Figure 6, with the increase of the size n of the basis functions, the log(MAE)s of all the five basis selection methods come closer
to one another. Furthermore, as expected, in Figure 6, RBS is superior to the other four basis selection methods, which is identical to the results in
Section 4.1 and Section 4.2.

5 CONCLUSION AND DISCUSSION

This study introduces a new basis selectionmethod called RBS for largeN datasets. The RBSmethod is an efficient stratified basis selectionmethod
in which the strata are Voronoi cells of rotated thinnest covering lattices, which does not require the assumption that the covariates are uniformly
distributed on a hypercube and that there is homogeneous smoothness across the covariate space.
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Figure 6 log(MAE) values versus different n under model setting M3 from the smoothing spline model for the debutanizer distillation column data.
The horizontal line represents the performance for all the training data.

Theoretically, we prove that for the proposed RBS method, when the size of the basis functions n is roughly in the orderO{N2p/(dr+1)(p+2)},
the convergence rate of η̃R is identical to that of η̂, which is the same as that of the HBS method, and is also faster than that of the UBS and ABS
methods. Furthermore, comprehensive simulation and real data studies were conducted to illustrate the performance of the RBS method, and the
numerical results are consistent with our theoretical results. Compared with the other four existing methods, the RBS method is more effective,
especially when the covariates are not uniformly distributed on a hypercube and the response is not isotropic since the RBS method improve the
projective uniformity substantially via rotating the lattice.

The newly proposed basis selection method may be suitable for other nonparametric models, including but not limited to the Gaussian process
model and the nearest neighbor model. However, more work needs to be done to verify its performance. It would also be interesting to explore
whether the new method can be modified by considering the response information.
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