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Key Points: 16 

 We compare the clouds observed from space to the clouds in a medium range weather forecast 17 
system, where clouds are created from first principle physics alone. 18 

 We propose a metric, which allows the numerical assessments of the cloud fidelity of the current 19 
forecast system to be compared with future upgrades 20 

 On average, the  agreement between the forecast clouds and AIRS observations is very good, but, 21 
particularly in areas prone to deep convection, there are large cloudy areas which are not seen in 22 
the AIRS data, and vice versa. 23 

 24 

Abstract 25 

Weather forecasting centers mainly assimilate infrared sounder data in clear-conditions or in channels 26 
with their main sensitivity to the atmosphere well above the cloud tops. Sometimes channels with 27 
stronger cloud sensitivity are used in overcast conditions, but currently no cloud information is used from 28 
infrared sounders, and all-sky assimilation approaches are still under development. However, cloudy 29 
radiances could already be used for validating the quality of clouds in forecasts. We illustrate this by 30 
comparing the brightness temperatures observed (obs) with AIRS (Atmospheric Infrared Sounder) to 31 
those calculated  (cal) based on the clouds specified in the ECMWF (European Centre for Medium Range 32 
Weather Forecasting) Integrated Forecast System (IFS). Our analysis is based on a 12 hour ingest of AIRS 33 
data into the ECMWF assimilation system. We show that the standard deviation of (obs-cal) using the 34 
1231 cm-1 atmospheric window channel is a metric of the fidelity of the clouds in the IFS. The global 35 
standard deviation of 5 K after accounting for likely space/time interpolation errors, appears to be 36 
dominated by clouds in the IFS which are not seen in the AIRS data, and vice versa.  Our metric 37 
capitalizes on the unique sensitivity of infrared sounders to clouds for the routine monitoring of the 38 
fidelity of clouds in weather forecasts. 39 
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 41 

1 Introduction 42 

The spectral radiances from hyperspectral infrared (IR) sounders contain information about the 43 

vertical distribution of temperature T(p) and water vapor q(p) in clear air, where p is the pressure 44 

altitude. The IR radiances also contain information about ice and liquid water from the top layer 45 

of clouds down to where the clouds become opaque.  The radiances from the hyperspectral 46 

sounders in polar orbit are routinely ingested by the National Weather Centers (NWC) (e.g. 47 

Collard and McNally, 2009),  where they are combined with data from many other spaceborne 48 

and ground-based sensors to define the state of the atmosphere, including clouds. NWCs make 49 

use of cloudy infrared scenes for channels with weighting functions well above the cloud tops 50 

(McNally 2009, Guidard et al. 2011, Lavanant et al. 2011). State of the art cloud detection at 51 

NWCs diagnoses the cloud top altitude and uses collocated high-resolution imagers. This allows 52 

around 15 % of observations to be used in channels with weighting functions peaking at 900 hPa, 53 

increasing to 100 % for channels with only stratospheric sensitivity (Eresmaa, 2014). However, 54 

in atmospheric window channels as much as 95% of the ingested infrared sounder data can be 55 

deemed “too cloudy” to be used  (e.g. McNally and Watts 2003).  56 
 57 

The opacity of clouds in the field of view (with typically 60 µm particles) significantly decreases 58 

the brightness temperature expected in the thermal infrared (10 µm) under clear conditions. In 59 

contrast, the 1600 µm wavelength of the 183 GHz channels on the MHS (Microwave Humidity 60 

Sounder), ATMS (Advanced Technology Microwave Sounder), and even longer  wavelengths on 61 

other microwave sensors, are insensitive to 60 µm particles. They are more sensitive to the larger 62 

frozen particles (along with water cloud and rain) and successful all-sky assimilation has been 63 

possible (e.g. Geer et al., 2017). Unlike the current assimilation of infrared data, this makes use 64 

of the cloud information itself. Although there has been much recent progress on the 65 

experimental applications of all-sky assimilation of infrared radiances (e.g. Okamoto et. al. 2014, 66 

Geer et al., 2019, Okamoto et al. 2019, Otkin and Potthast, 2019, Sawada et al., 2019, Li et al. 67 

2021) this is not yet operationally done at any weather forecasting center.  68 
 69 
The full use of cloudy infrared data, even if not assimilated, has historically been stymied by 70 

concerns about the computational cost and accuracy of cloud-capable Radiative Transfer Models 71 

(RTMs). A number of RTMs have now been developed to allow the calculation of infrared 72 

sounder radiances, given the vertical distribution of T, q, and clouds, e.g. SARTA (Machado et al. 73 

2017) , CRTM (Ding et al. 2011),  RTTOV (Vidot et al. 2015), and PCRTM  (Liu et al.  2006, 74 

2009, 2016, and  Chen et al. 2013).  Aumann et al. (2018) evaluated the degree to which the 75 

calculated brightness temperature (cal) agreed with the AIRS observation (obs) based on 76 

ECMWF IFS (Integrated Forecasting System) data from March 2009. Using the 1231 cm-1 77 

thermal infrared window channel, they found that the RTMs agreed with each other with little 78 

bias and  6-10K  Standard Deviation (SD),  but the SD of (obs-cal) was as large as 22K. This 79 

large disagreement was attributed to the fact that the AIRS data were interpolated to match the 80 

ECMWF data on a 3 hour and 25 km grid. This grid was too coarse to allow a credible space and 81 

time interpolation of clouds in the IFS to the AIRS observations. The present work makes use of 82 

the much better space and time interpolation provided by the IFS. This more accurate 83 

interpolation should make it possible to better attribute remaining discrepancies between the 84 

calculated brightness temperatures and the observations. 85 
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 86 
Even in the absence of all-sky data assimilation, the statistics of (obs-cal) are very useful for 87 

understanding the quality of model cloud fields. Early use of infrared and broadband radiances in 88 

the validation of model cloud fields includes Chevallier and Kelly (2002) and Allan et al. (2007). 89 

With more recent weather forecasting models and more advanced radiative transfer approaches, 90 

comparisons to all-sky infrared radiances have shown deficiencies in ice cloud representations in 91 

several forecast models (e.g. Otkin et al. 2019, Okamoto et al. 2021). Systematic errors in the 92 

IFS cloud representation are significantly smaller but still present (Geer et al. 2019); these are 93 

discussed in more detail later. Infrared radiances are also simulated from climate models and 94 

compared to MODIS observations (MODerate resolution Imaging Spectradiometer, e.g. 95 

Masunaga et al., 2010, Bodas-Salcedo et al., 2011). However, this can only be done in a 96 

climatological sense, whereas comparisons to weather forecasting models can be done at the 97 

level of individual weather systems. The objective of our study is to further highlight the ability 98 

of the daily and scene-level statistics of (obs-cal) from all-sky infrared radiances to quantify the 99 

fidelity of the clouds in weather models, thus capitalizing on the unique sensitivity of infrared 100 

data to clouds.  101 

 102 

Along with much previous work, this is a case study, and the real benefits would come from 103 

routinely monitoring the all-sky infrared observations in operational data assimilation systems. In 104 

the following we illustrate this using the ECMWF IFS matched to AIRS data as an example, but 105 

our analysis is relevant to any other weather forecasting model and all hyperspectral infrared 106 

sounders. 107 

 108 
 109 

2  Data 110 
 111 
2.1. Observations 112 

 113 

NASA’s Atmospheric Infrared Sounder (AIRS, Aumann et al. 2003) became operational in 114 

September 2002. Since 2005 NOAA has distributed AIRS data to the NWCs (National Weather 115 

Centers) for assimilation in weather forecasting systems. AIRS data are distributed in 6 minute 116 

granules. Each granule covers an area of about 1500 x 2000 km with 90 (cross-track) x 135 117 

(along-track) observations. Each observation has a 1.1 degree field of view (15 km at nadir from 118 

707 km altitude), and produces a 2378 channel spectrum of calibrated radiances between 3.7 and 119 

15.5 µm. NOAA distributes spatially and spectrally subsampled AIRS data. The data are 120 

spectrally subsampled by distributing only the 324 of 2378 channels selected by the NWCs.  The 121 

data are spatially subsampled by dividing the 90x135 spatial pixels into 30x45 "golf balls" of 122 

3x3 pixels. From each golf ball NOAA selects the warmest pixel for distribution, with the 123 

assumption that the NWCs are mainly interested in clear data and that the warmest pixel in a golf 124 

ball would be the least cloudy pixel. Our comparisons are based on this subsampled data, since 125 

this is what is available to the NWCs. This selection  potentially creates a  warm bias, which will 126 

be discussed later.  127 

 128 

 129 

 130 

2.2. Model fields 131 

 132 
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The state of the atmosphere was obtained from a 12-hour background forecast from an 133 

experimental run of Cycle 46r1 of the IFS (ECMWF 2019). The IFS represents the atmosphere 134 

and clouds as profiles of cloud cover (cc), cloud ice water content (cic), cloud liquid water 135 

content (clc), temperature, water vapor and ozone at 137 pressure levels. Total cloud cover (tcc) 136 

is derived from the cloud cover profiles. The 12-hour forecast is initialized from an analysis that 137 

assimilates AIRS data and other hyperspectral infrared instruments only under clear sky 138 

conditions, and well above clouds. The IFS also assimilates radiances from MHS, MWHS2 139 

(MicroWave Humidity Sounder 2),  AMSR2 (Advanced Microwave Scanning Radiometer 2), 140 

GMI (GPM Microwave Imager) and SSMIS (Special Sensor Microwave Imaging Sounder) in 141 

atmospheric window channels over the oceans at 19 GHz, 22/24 GHz, 37 GHz, 89/92 GHz, 142 

150/166 GHz and channels around 183 GHz, under all-sky conditions (Geer et al., 2017). Clouds 143 

in the analysis are also indirectly constrained by the assimilation of temperature and moisture 144 

sensitive observations from other sensors. However, especially since a 12-hour forecast is being 145 

used here, the strongest constraint on the cloud fields is the model physics, which includes a 146 

large-scale prognostic cloud scheme and a diagnostic mass-flux convection scheme. The model 147 

fields are represented in the horizontal using a combination of spectral and gridded fields in a 148 

configuration referred to as Tco1279, which provides around 8 to 9 km sampling, depending on 149 

latitude. The model timestep is 7.5 minutes but only every 4th time step was used in the matchup 150 

process, so the maximum time offset between the IFS grid and AIRS observations was about 15 151 

minutes. The atmospheric profiles from the IFS internal 12-hour forecast grid were interpolated 152 

to the AIRS sample time and position using the operators for data assimilation in the IFS.  153 
 154 
We used the ECMWF profiles for the 12-hour period between 2018/10/31 2100 UTC and 155 

2018/11/01 0900 UTC. This time period was covered by 120 AIRS data granules. The AIRS data 156 

were merged with the IFS interpolated atmospheric states at the AIRS space/time locations. The 157 

model precipitation fields were not used in this work; this is a standard assumption when 158 

simulating all-sky infrared radiances. 159 

 160 
 161 

2.3. Radiative transfer models 162 
 163 
The IFS data were converted to brightness temperatures using SARTA, CRTM v2.3, and PCRTM 164 

3.4. The PCRTM calculations used the Chen et al. (2013) model with 2, 4 and 50 columns with 165 

the Maximum Random Overlap (MRO) and Exponential Random overlap (ERO) cloud overlap 166 

assumptions. In the following we refer to PCRTM MRO_50col as PCRTM unless stated 167 

otherwise.  CRTM was used in its default Advanced Doubling-Adding (ADA) MRO 2col mode. 168 

SARTA was used in a TwoSlab mode (effectively 2col),  with clouds placed at the median 169 

pressure altitude of the cloud ice and cloud liquid water profiles, with the Random Overlap (RO) 170 

assumption. Our choice of RTMs was intended to cover the range from the highest fidelity cloud 171 

calculation (PCRTM 50col) to RTMs which traded some cloud fidelity for a computational less 172 

stressing approach (SARTA and CRTM).  For the surface emissivity we used Masuda et al. 1988 173 

for ocean, Zhou et al (2011) for land.  174 

 175 

 176 

 177 

3 Results 178 

 179 
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The computationally most economical way to evaluate the fidelity of the clouds in the IFS is to 180 

simulate one atmospheric window channel. We selected the 1231.3 cm-1 channel, and calculated 181 

its brightness temperature, bt1231. We then evaluated the difference between the observed 182 

bt1231, obs, and the calculated bt1231, cal. This window channel was chosen since (a) all the 183 

current generation hyperspectral sounders have a similar channel, (b) it is not sensitive to the 184 

distribution of CO2, Ozone or other minor gases, (c)  it is only weakly influenced by the water 185 

vapor continuum, about 2K under clear conditions,  (d) Non-unity surface emissivity causes only 186 

slight decreases in bt1231. For example, the sea surface emissivity of 0.98 decreases bt1231 by 187 

typically 1 K.  Under ideal conditions all effects are accounted for in the RTM calculation.  188 

Under clear ocean conditions the mean(obs-cal) at 1231.3 cm-1 is less than 0.1K and the SD is 189 

typically 0.4K (Aumann et al. 2021). The bias and the SD change drastically with the presence of 190 

clouds, as will be discussed subsequently. We first discuss results for three granules. This allows 191 

us to define various metrics, which are then used for the interpretation of global results.   192 

 193 
3.1. Granule Analysis 194 
 195 

We selected three of the 120 granules to define the parameters used for the analysis of the 196 

differences between the AIRS observation and the RTM calculations. Figure 1 shows the 197 

locations of the granules. Granule 215 (red) is from the night mid-latitude ocean, granule 55 198 

(blue) represents the night tropical ocean, and granule 64 (green) is from the day tropical ocean 199 

warm pool.   200 

 201 
Figure 1. Locations of the three focus granules, numbers 215 (red), 64 (green) and 55 (blue). 202 

 203 

3.1.1 Granule 215 204 
 205 

The left panel of Figure 2 shows bt1231 for the NOAA subsampled AIRS observations. The 206 

surface temperatures in this granule range from 274K to 294K. The coldest cloud tops were at 207 

225K.  The warmest (darkest red) areas in term of the observed bt1231are relatively clear, 208 

although bt1231 is still 5K colder than the underlying sea surface. Since water vapor accounts for 209 

about 2K, emissivity for about 1K, clouds in this relatively clear area account for 2K. The clouds 210 

which create this 2K effect are not necessary uniformly distributed over the footprint.  If the 15 211 

km diameter footprint were totally free of clouds above a 295K surface, except for a 1x1 km 212 

thunderstorm with cloud top temperature of 225K, bt1231 would drop by only 0.3K. The 2K 213 

cloud effect could thus be the result of seven thunderstorms scattered in the footprint, or 50% of 214 
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the footprint covered with low stratus clouds 1 km above the surface. The colder (green and blue) 215 

areas are much more cloudy, with a band of high clouds stretching almost diagonally across the 216 

granule. 217 

 218 

The center panel of Figure 2 shows the water cloud fraction,  Σclw*cc / Σclw , the right panel 219 

shows the ice cloud fraction,  Σciw*cc / Σciw, based on the IFS profiles, with the sum being over 220 

the vertical model levels. The units of the x and y axis in this and all subsequent granule images 221 

are the cross-track and along-track positions, separated by approximately 45 km.  The most 222 

striking feature in the obs is the band of cold clouds, which extends from the mid left to the 223 

lower right corner in the granule, corresponds to a band of ice clouds.  224 

 225 

   
Figure 2. Granule 215 as seen in terms of observed brightness temperature, bt1231 (left), the 226 

water cloud fraction (center) and ice cloud fraction (right) as described by the IFS (see text for 227 

definitions). Coordinates are the observation location across the satellite track (x axis) and along 228 

the track (y axis). 229 

   
Figure 3. As Fig. 2 but showing the difference between observed and calculated brightness 230 

temperature, (obs-cal) for a) SARTA; b) PCRTM; along with c) the difference between the 231 

models themselves, PCRTM-SARTA. The two RTMs agree with each other better than with the 232 

observations. 233 
 234 
In Figure 3 we show (obs-cal) from SARTA (left) and PCRTM MRO 50col (center). The results 235 

from two RTMs differ from obs in the area of mixed clouds by as much as ±40K. Inspite of the 236 

fact that the differences between PCRTM and SARTA (right panel) include the inherent 237 
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randomness of the cloud overlap assumptions in areas of broken clouds, the two RTMs agree 238 

with each other better  than with the observations. The difference between the obs and cal may 239 

have two additional components: 1) NOAA only distributes the warmest bt1231 of each 3x3 240 

“golf balls”  and 2) spatial inhomogeneity and forecast errors. The spatial inhomogeneity in a 241 

golfball can be quantified by the cx1231 parameter, which is the difference between the warmest 242 

and the coldest bt1231 in a golfball,  calculated from the full spatial resolution AIRS data. The 243 

following provides two numerical examples. 244 
   245 
1. Assume that the center of the 3x3 is near the edge of a large cold cloud at 225K over a 295K  246 

clear surface. Based on the IFS, cal should be close to 225K. Now assume that one of the 3x3 247 

footprints extends half a footprint diameter (7 km) into the clear area at 295K. As a result, the 248 

observed bt1231 will be 270K, and NOAA will select the 270K footprint for distribution. Now 249 

obs will be 45K warmer than expected, and the footprint will be an extreme warm (obs-cal) 250 

outlier. The NOAA clearest of the 3x3 selection will produce only warm outliers. The cx1231 251 

parameter for this case will be about 50K.  252 
 253 

2. A similar situation can be caused by a space/time interpolation error, or equivalently by 254 

position errors in the clouds generated in the IFS forecast.  Assume the same situation as above, 255 

but the edge of  the cloud has shifted 7 km, such that the footprint is now further away from the 256 

edge, with bt1231=220K, or it has moved 7 km into the clear, and now bt1231=270K. This 257 

scenario can also be reversed, a 295K expected obs based on the IFS, can turn into a 270K 258 

observed. The interpolation error thus produces positive and negative outliers, statistically in 259 

equal number. The cx1231 parameter for this case will be about 50K.  260 

 261 

Areas of high spatial nonuniformity are sensitive to the interpolation or forecast error. The left 262 

panel of Figure 4 shows cx1231, the right panel shows (obs-cal) for SARTA (same as Figure 3a). 263 

There is an excellent visual correlation between areas of large positive and negative outliers and 264 

large spatial inhomogeneity. This may be the dominant source of the observed (obs-cal) outliers. 265 

However, outliers can also be created by other errors in the IFS or complicated multilayer clouds. 266 

The discussion section gives further details.  267 

 268 

We characterize the PDF of (obs-cal) using three methods.  269 

1. The gaussian mean and SD of all footprints in a granule. As discussed above, the (obs-cal) will 270 

include large outliers, which inflate the SD. 271 

2. We can argue that (obs-cal) in areas of high spatial inhomogeneity are unreliable and exclude 272 

observations where cx1231 exceeds a threshold from the calculation of the mean and SD of (obs-273 

cal). 274 

3. Since the NOAA distribution does not include the cx1231 parameter, we could also use 275 

quartile statistics.  Quartile statistics effectively eliminate all positive and negative outliers, 276 

regardless of their origin. Let Q1, Q2 and Q3 be the first, the median and the third quartile. The 277 

mean is replaced by Q2, and (Q3-Q1) becomes the effective SD. We define the quartile skew as 278 

(Q3-2*Q2+Q1)/SD. 279 

 280 

In Table 1 we summarize results (obs-cal) from SARTA and PCRTM MRO 50col in terms of 281 

mean and SD. Column #2 shows the gaussian statistics, Columns #3 and #4 are the results with 282 

cx1231<10K and cx1231<5K filtering, and column#5 shows the quartile statistics.  The first 283 

number is the mean, following the ± is the SD, the 3rd number, relevant only for cx1231 filtering, 284 
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is the number of cases from the granule used for the statistics. In granule 215 88% of the data are 285 

from relatively uniform, cx1231<10K,  areas. For the quartile statistics only 625 of the possible 286 

1350 points are used. As expected, the SD of (obs-cal) decreases, when outliers due to spatial 287 

inhomogeneity are removed. The effect is stronger with quartile statistics. In all cases there is 288 

little impact on the mean(obs-cal).  289 

 290 

We limited Table 1 to results from SARTA and PCRTM MRO 50col, since they represent the 291 

range from the computationally least and most demanding RTMs. The results are typical of other 292 

RTMs. As an example, the gaussian statistics, mean ±SD, from granule#215 for CRTM are +1.1 293 

±8.2K, for PCRTM MRO 2col they are +0.6 ±6.8K.  294 

 295 

  
Figure 4. Granule 215: The left panel shows an image of the scene inhomogeneity parameter 296 

cx1231. The right panel shows  (obs-cal) for SARTA, identical to Fig. 3a). The diagonal band of 297 

broken clouds seen in the cx1231 image is seen as a band of (obs-cal) outliers.  298 

 299 
 300 

3.1.2. Granule 55 301 
 302 

This granule is from a night overpass of the tropical atlantic ocean off the coast of Brazil. The surface 303 

temperature of the ocean ranged from 300K to 322K. Figure 5 shows the NOAA distribution of bt1231 304 

(left panel), the water cloud cover (center), and the ice cloud cover from the associated IFS data.  305 
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Figure 5. Granule 55. NOAA subsample of observed  bt1231 (left),  the water cloud cover  306 

(center), and the  ice cloud cover (right) from the IFS.   307 
 308 

   

Figure 6.  Granule 55: Comparison of (obs-cal) from SARTA, PCRTM.MRO.4col and 309 

PCRTM.MRO.50col. In the red pixels the IFS has ice clouds not seen by AIRS, in the blue pixels 310 

AIRS sees cold clouds which are not in the IFS. The red and blue pixels are seen as cluster of ten 311 

or more pixels. Each pixel subtends a 45x45 km area. 312 

 313 

In Figure 6 we compare (obs-cal.SARTA), (obs-cal.PCRTM.MRO.4col) and (obs-314 

cal.PCRTM.MRO.50col) in granule 55. The two red areas  at the center of the picture are ice 315 

clouds in the IFS  not seen in the AIRS data. All three RTMs are up to 40K warmer than AIRS 316 

(blue) in the lower left corner of the granule for ice clouds above water clouds. The red and blue 317 

pixels are typically not isolated incidents, but are seen in cluster of ten or more pixels. Since each 318 

pixel subtends a 45x45 km area, the discrepancies between observed and IFS clouds extend for 319 

100 km or more. We come back to this later. 320 

 321 

The left panel of Figure 7 shows cx1231, the right panels repeat (obs-cal.SARTA) from Figure 6. 322 

A visual correlation between cx1231 and obs-cal is seen in the lower left corner of granule 55, 323 

where (obs-cal) is negative, i.e. the clouds in the IFS are optically too thin or too warm (low). In 324 

the center area there is no correlation between cx1231 and the cold bias in cal (positive obs-cal).  325 

This indicates that in this granule some outliers are not due high spatial contrast, but are an 326 
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indication of the limited accuracy in the IFS cloud field on a 100 km scale. The (obs-cal) mean 327 

and SD, the cx1231<10K and cx1231<5K filtered mean and SD, and the quartile statistics are 328 

summarized in Table 1. Only 12% of the data from granule 55 are rejected by the cx1231<10K 329 

filter.  330 

  
Figure 7.  Granule 55: cx1231 (left) and SARTA (obs-cal) (right). A cx1231<10K indicates a 331 

relatively uniform cloud cover.  In the center area of the granule there is no visual correlation 332 

between cx1231 and the large positive (obs-cal). The extremely cold clouds in the IFS in this 333 

area are not seen by AIRS. 334 
  335 

3.1.2. Granule 64 336 
 337 

Granule 64 is from a daytime overpass of the tropical warm pool. The surface temperature of the ocean 338 

ranged from 300K to 304K. Figure 8 shows the NOAA distribution of bt1231 (left panel), the Cloud 339 

Liquid Water fraction  (center), and the Cloud Ice Water fraction (right) from the associated IFS data. 340 

Inspection of the AIRS bt1231 observations shows that the lower half of the granule is relatively clear 341 

(dark red). The IFS in this region has close to zero water cloud cover and low ice cloud cover. In the 342 

upper half of the granule AIRS obs show two areas of Deep Convective Clouds (DCC), blue area 343 

where bt1231<220K, but only the one on the right agrees loosely with an area of ice clouds in the IFS.  344 

 345 
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Figure 8. Granule 64 for the NOAA subsample of observed bt1231 (left panel), the water cloud cover 346 
(center), and the ice cloud cover (right) specified in the IFS. 347 
 348 

Figure 9. Granule 64. The lower half of this granule is relatively clear, as seen by the 300K obs, 349 

and spatial uniformity (low cx1231). The small (obs-cal) in this area  indicates that AIRS and the 350 

IFS agree.The disagreement between the observed (bt1231, left panel) and (obs-cal.PCRTM, 351 

center panel) is  most pronounced in areas of high spatial inhomogeneity (cx1231, right panel), i.e. 352 

broken clouds. 353 

 354 

The left panel of Figure 9 shows the observed bt1231 (same as left panel Figure 8), the center 355 

shows (obs-cal.PCRTM) and the right panel shows cx1231. Only PCRTM is shown, as all RTMs 356 

essentially agree.  The lower half of granule 64 is relatively clear, as seen by the 300K obs, and 357 

spatial uniformity (low cx1231). The small (obs-cal) shows that AIRS and the IFS agree. 358 

However, in the area centered on [col 7, row 15] in Figures 8 and 9, the IFS sees a 40K warmer 359 

area than the cold clouds seen in obs. But the area centered on [7,7], which is very cold in the 360 

IFS, is fairly warm in the obs. Neither area is associated with a large cx1231. It appears that the 361 

cold clouds seen in the obs are seen in the IFS shifted about 8 pixels to the north. This is a 362 

displacement of 8 x45=350 km. Spatial displacements of this magnitude largely cancel in the 363 

granule mean (obs-cal), but contribute to an enhanced SD. The granule  statistics are summarized 364 

in Table 1. 365 
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 366 
An additional perspective into granule 64 is provide by two scatter diagrams. The left panel of 367 

Figure 10 shows (obs-cal) as function of cx1231. Here, 35% of the data have cx1231>10K.   The 368 

outliers in (obs-cal) are relatively consistent from SARTA and PCRTM. Figure 10 (right panel) 369 

shows (obs-cal) as function of the local sea surface temperature (Canada Meteorological Center. 370 

2012). The big outliers are almost exclusively at surface temperature between 302.5 and 303.5K. 371 

Sea surface temperature warmer than 302K are associated with the rapid onset of deep 372 

convection and Deep Convective Clouds (DCCs) (Aumann et al.  2018). The observation that the 373 

presence of the DCCs results in almost symmetric large positive and negative outliers in (obs-cal) 374 

indicates that the IFS creates DCCs, but the space/time interpolation to the AIRS observations 375 

results in random hits and misses, which results in a large SD, with little impact on the granule 376 

mean.  377 

 
 

Figure 10. (obs-cal) for granule 64. The left panel shows (obs-cal) as function of cx1231 for 378 

SARTA and PCRTM. The results are very similar. The right panel shows (obs-cal) for PCRTM as 379 

function of the local sea surface temperature for all data, and for data from relatively spatially 380 

uniform scenes (cx1231<5K). The large positive and negative (obs-cal) outliers are correlated 381 

with cx1231>5K. These large  outliers are likely related to the onset of deep convection at 382 

surface temperatures above 302.5K.  The IFS creates DCCs, but the space/time interpolation to 383 

the AIRS observations results in random hits and misses.     384 
 385 
 386 

3.2. Global Results 387 
 388 

In Figure 11 we plot SARTA and PCRTM statistics for all granules as function of latitude. In all cases 389 

the mean is only weakly latitude dependent, and relatively close to zero considering the large cloud 390 

displacement errors seen in the individual granules. The SD increases steeply in the tropical zone (left 391 

panel). Averaged over all latitudes, the SD is 7.4K for SARTA,  7.5K for PCRTM. When the high scene 392 

inhomogeneity cases are removed with a cx1231<10K filter (center), this latitude dependence is almost 393 

totally suppressed. With cx1231<10K filtering, and averaged over all granules, the gaussian mean is -394 

0.61 K, SD=6.4 K for SARTA, compared to mean= +0.30 K, SD= 5.2 K for PCRTM. The PDF of (obs-395 

cal) is very symmetric. The quartile skew of the PDF is -0.0025 for SARTA, and +0.0046 for PCRTM. 396 
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The quartile statistics (right panel) effectively suppresses the latitude dependence and any skew. There is 397 

no significant change in the bias, and SARTA and PCRTM have SD=6.3K with quartile statistics. 398 

 399 

   
Figure 11. Latitude dependence of the SD of  (obs-cal) from SARTA and PCRTM MRO 50col. 401 

Left: all data, Center: with a cx1231<10K filter. Right: quartile statistics. The latitude 402 

dependence of the SD is flattened out almost equally well by cx1231<10K spatial coherence 403 

filtering and quartile statistics.  404 
 405 
 406 
 407 

4 Discussion 408 
 409 

4.1.  Granule statistics. 410 
 411 

Figure 2 is an example of how good the IFS can be away from the tropics, but even there the 412 

SD(obs-calc) after cx1231 filtering is about 5K. Using the [x=cross-track, y=scanline] notation 413 

in Figure 2, the band of cold clouds seen by AIRS extending from [0,15] on the center left to 414 

[35,40] in the lower righthand corner, matches the band of ice clouds. The band of ice clouds 415 

overlays a broader region of significant water clouds. This creates a complicated cloud overlap 416 

situation. This is seen by the fact that this band matches a band in (obs-cal.SARTA), where 417 

cal.SARTA is typically 10K warmer than obs. These cases are better handled by .PCRTM MRO 418 

50col. Figure 4 (left panel) shows that this band is filled with many cx1231>10K cases, i.e. 419 

broken clouds. If these cases are eliminated from the granule statistics, the performance of 420 

SARTA and PCRTM are very close, but we also excluded spatially non-uniform cases were 421 

PCRTM 50 col would represent the clouds with higher fidelity.   422 
 423 

Granule 55 provides more insights into differences between RTMs. Focus on the [27,23] area in 424 

Figure 6. The yellow/red (obs-cal) indicates that PCRTM MRO 50col is only slightly colder than 425 

AIRS, but the red PCRTM MRO 4col generates colder, while the dark red SARTA (2 col MO) 426 

generates much colder brightness temperatures, up to 40 K colder than AIRS. This area shows 427 

quite low ice cloud amounts, but the cloud tops are high (about 200 hPa according to SARTA). It 428 

seems that SARTA and PCRTM MRO 4col give too much weight to the high clouds. Since the 429 

50-col approaches agree best with AIRS, the IFS simulation appears to be not too far wrong for 430 

this cloud feature. The advantage of MRO 50col is in complicated high/low cloud overlap region. 431 

 432 

The spatial scales of (obs-cal) discrepancies are virtually never limited to single 45 km golf balls. 433 

This indicates that they are not simple mismatch issues. In Figure 6, lower left corner [1:10, 434 
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32:35] the simulations are typically warmer than AIRS in all RTMs, i.e. (obs-cal) is dark blue, 435 

and mean RTM differences reach 10 to 20 K. Yet, the IFS has high ice cloud tops (250 hPa or 436 

higher) and significant ice cloud amount (greater than 3 g/m3 product of TCC and column cloud). 437 

We can only speculate that the IFS may need to put the clouds even higher, or give higher ice 438 

contents or cloud fractions. The bigger picture is that the IFS and reality (AIRS) are not too far 439 

apart, at least in terms of the shape of this convective system. At [8, 22] the IFS has cloud tops 440 

near 250 hPa and with high ice cloud amount. This seems to be a clear case of the IFS generating 441 

deep convection where none exists in reality.  442 

 443 

4.2. Global statistics. 444 
 445 

The global (obs-cal) statistics shown in Figure 11 indicate little difference between the RTMs: 446 

The mean is close to +/-1K, with SD=7.5K, independent of the methodology. When spatial 447 

inhomogeneity cases are eliminated directly by cx1231 filtering, or indirectly using the quartile 448 

statistics, the global SD is still about 6K. One could argue that the main reason why the IFS and 449 

AIRS do not match up better is that we used a 12-hour forecast of the clouds, not a post-facto 450 

analysis of the IFS clouds. There is very little predictability of the smallest scales of cloud and 451 

precipitation e.g. (sub 100km) beyond a few hours, so it is natural that cloud features in the 12-452 

hour forecast may be displaced or mis-represented compared to the observations. Figure 10 453 

makes this point with the onset of deep convection in the tropical warm pool. However, even if 454 

we were looking at the analysis instead of the forecast, the 4D-Var assimilation technique would 455 

not get the clouds, particularly deep convection, in exactly the right place in the analysis, because 456 

4D-Var is usually constrained to follow a 12-hour forecast trajectory (all-sky assimilation 457 

systems with much shorter timescales, e.g. on the order of 10 minutes, do show promise at fitting 458 

clouds more exactly, e.g. Sawada et al., 2019). Hence, one may conclude that the displacement 459 

and misrepresentation of clouds on the smallest scales is just a natural feature of any forecast 460 

cloud dataset. However, as illustrated in the granule images, the displacements between observed 461 

and missing cold clouds can be much larger than 100 km. 462 
 463 
Compared to the bias(obs-cal), which is typically less than 1 K, the standard deviation of (obs-464 

cal) and the outliers are revealing. The three main reasons for discrepancies between “obs” and 465 

“cal” are 1) the IFS clouds in the 12 hour forecast are not necessarily correct. 2) Even when they 466 

are correct, the RTMs may not be capable of accurately converting the IFS clouds into “obs”. 3) 467 

In areas of high cloud inhomogeneity the AIRS “obs” may not represent a “truth” due to a spatial 468 

and/or temporal mismatch, which gives rise to positive and negative outliers. For a large 469 

ensemble the resulting bias averages to zero, but the outliers leave a tell-tale enlarged SD (e.g. of 470 

the order of 5 K in Fig. 11). 471 

 472 

Figure 11 shows that once the largest outliers are eliminated by removing spatially 473 

inhomogeneous scenes (either using the cx1231 filtering, or quartile statistics) the bias and SD 474 

are relatively independent of latitude and RTM, outside a few tropical locations. The concern that 475 

the NOAA selection of the warmest footprint in a 3x3 golfball may cause the PDF of (obs-cal) to 476 

lean toward the warm side, i.e. create a positive outlier skew, appears to be unfounded: Once the 477 

gross outliers are eliminated by cx1231<10K filtering, the skew is very small.  478 

 479 

Discrepancies between clouds in the IFS and in collocated observations have been reported 480 

previously, for example comparing to AMSR-E 19 and 37GHz data (Geer and Bauer 2011) and 481 
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to IASI (Infrared Atmospheric Sounding Interferometer, Geer et al. 2019). The latter used data as 482 

recent as February 2018, based on the immediate prior version of the IFS to the one used in our 483 

evaluation. The results indicated a lack of clouds in the IFS over the marine stratocumulus 484 

regions, which led to the calculated brightness temperatures being warmer than observed. In the 485 

inter-tropical convergence zone over ocean, the IFS appeared to overestimate convection as 486 

observed in the infrared, which lead to the calculated brightness temperature being colder than 487 

observed, i.e. a warm bias in (obs-cal). In the present study we see a rough balance between 488 

warm and cold bias, which results in a global and zonal mean bias close to zero, but with an 489 

enlarged SD compared to what is seen in clear-sky comparisons. Bias maps would likely reveal 490 

small spatial variations similar to those seen by Geer et al. (2019) but it would require many days 491 

of averaging to compute them; this is not available from our case study.  492 

 493 

4.3. Routine IFS cloud fidelity evaluation 494 
 495 

In the current IFS the mean and SD of (obs-cal) of many channels from infrared sounders are 496 

evaluated under clear-sky screened conditions, and their time series are routinely monitored to 497 

assess the quality of both the observations and forecast. Monitoring the global mean and SD of 498 

(obs-cal) using a cloud-enabled RTM could similarly provide information on the fidelity of the 499 

model cloud field. Making the all-sky SD a routine diagnostic product would allow most of the 500 

area covered by infrared sounders to be utilized, not just the limited clear areas. The routine 501 

availability of the SD of (obs-cal) would help monitor improvements in the representation of 502 

clouds in the IFS and other weather forecasting systems. Future consideration could also be 503 

given to statistics with reduced sensitivity to outliers induced by cloud displacements, such as 504 

filtering using the spatial inhomogenity measure (cx1231) or quartile statistics illustrated here. 505 

Other methods exist in the literature but can be substantially more complex to apply (e.g. Roberts 506 

and Lean, 2008).  507 
 508 
For the case study presented in this paper neither data volumes nor computational complexity 509 

were a major issue. However, for the routine monitoring of the cloud fidelity in any model, 510 

resource requirements impose severe limitations. Here, in order to generate sufficiently accurate 511 

colocations, we have made use of the internal IFS-grid time/space interpolation, which has 512 

access to the model fields every 30 minutes, something which is nearly impossible to archive or 513 

distribute externally. Hence, the routine generation of these statistics would need to be done 514 

online, within the weather forecasting model. Observation simulators for climate models (e.g. 515 

Bodas-Salcedo et al., 2011) are run online for similar reasons. The need for the highest fidelity 516 

cloud enabled RTM also needs to be considered. The runtime of any cloud enabled RTM is 517 

proportional to the number of channels, the complexity of the cloud microphysics and associated 518 

scattering code, and the number of columns. More columns should increase the fidelity of the 519 

calculation, particularly for broken clouds, but they also will increase to computer resource 520 

requirements. In Figure 11 SARTA and PCRTM MRO 50col represent two extremes in terms of 521 

the computational resource requirements: SARTA uses a simple two-slab approach for simulating 522 

the IFS clouds, while the PCRTM 50-column MRO (Maximum Random Overlap) is intended for 523 

a more faithful simulation of the IFS clouds. However, we find that the decrease in bias and SD 524 

of using the highest fidelity RTM is marginal compared to the increase in computational 525 

complexity. This finding has a simple explanation: PCRTM MRO 50 col is much better at 526 

handling broken clouds, but the cal under these conditions are also extremely sensitive to 527 

space/time interpolation errors. Filtering out the most broken cloud cases to suppress 528 
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interpolation or cloud displacement related outliers also removes cases where a computationally 529 

more demanding RTM could have had an advantage.  530 
 531 

Summary 532 
 533 

The objective of our study was to explore the use of simulated all-sky infrared radiances to 534 

quantify the fidelity of the clouds in model simulations, based on observation minus simulation 535 

(obs – cal). The all-sky approach capitalizes on the unique sensitivity of infrared observations to 536 

clouds. For our evaluation we used AIRS observations and the ECMWF IFS. A main step 537 

forward was to use the internal IFS interpolation to achieve colocations within 15 minutes and 5 538 

km, much better than achieved in our previous comparison (Aumann et al., 2018) and difficult to 539 

achieve outside of a forecast model (i.e. in an “offline” study). Detailed examination of the 540 

differences on the granule scale showed that modelled and observed clouds are often displaced, 541 

likely due to forecast error and remaining interpolation error. While some of the discrepancies 542 

between AIRS and the IFS could be explained by spatial and temporal mismatch issues in 543 

spatially inhomogeneous areas, there are cases in spatially relatively uniform areas where the IFS 544 

claims deep convection where none exists in reality or the deep convection is displaced by 545 

hundreds of kilometers. This leads to large standard deviations of (obs-cal) on the granule scale. 546 

However, granule averages are almost unaffected by these displacements, given the small 547 

granule mean of (obs-cal). The effect of these displacements can be reduced by eliminating 548 

scenes using measures of spatial inhomogeneity or quartile statistics. This work has also 549 

evaluated different RTMs, illustrating the benefits of using large numbers of columns to 550 

represent cloud overlap in complex cloud profiles. However, when the most complex scenes are 551 

removed using the spatial inhomogeneity filter or quartile statistics, little is gained from RTMs 552 

with more than 2 columns.  553 

 554 

A possible metric of the IFS cloud fidelity is the standard deviation of the all-sky (obs-cal) for a 555 

chosen window channel. We illustrated this with AIRS data, but the proposed metric applies to 556 

any hyperspectral infrared sounders. Even when the SD of all-sky (obs-cal) is filtered for the 557 

most spatially inhomogeneous cases, it still utilizes an order of magnitude more of the infrared 558 

sounder observations than in current clear-sky approaches. If calculated online within the 559 

processing chains of a weather forecasting system such as the IFS, the time series of all-sky (obs-560 

cal) statistics like SD would provide routine feedback on improvement in the quality of the 561 

clouds.  562 
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each of the 120 matchup file are the latitude, longitude, solar zenith angle and bt1231 of the 576 

NOAA distribution. The index eptr points to the matching atmospheric state in 577 

https://thunder.jpl.nasa.gov/ftp/hha/ECMWF_profiles_airs_ingest_2018110100.mat. The IFS 578 

profiles are under ECMWF copyright, but are used under a creative commons CC BY 4.0 attrib-579 

ution license (see https://apps.ecmwf.int/datasets/licences/general/).  580 
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 720 
 Gaussian statistics cx1231<10K filtered cx1231<5K filtered Quartile Statistics 

# 55 SARTA +0.3 ± 10.1  +1.3 ±  8.1   1193 +2.0 ±  6.5   1034 0.36±4.6 

# 55 PCRTM +0.5 ±  9.0  +1.3 ±  7.2   1193 +2.0 ±  5.5   1034 0.84±4.7  

#215 SARTA -2.6 ±  6.6 -2.2 ±  5.9   1200 -1.2 ±  4.4   854 -0.88±5.2 

# 215 PCRTM +0.1 ± 6.0  +0.1 ±  5.3  1200 +0.3 ±  4.1   854 +0.21±4.4  

#64 SARTA 5.8 ± 23.5 3.7 ± 17.1  888 2.5 ± 12.4  640 0.7 ±  9.9   

#64 PCRTM 5.6 ± 22.5  3.7 ± 16.3  888 2.5 ± 11.7  640 1.0 ± 10.4  

Table 1. (obs-cal) PDF characterization for granule #55, #64 and #215. The mean+/-SD are in 721 

degree K units. The 3rd number is the number of cases used for the statistics with cx1231 filtering. 722 

For gaussian statistics all 1350 points from a granule are used, the quartile statistics uses only 723 

half of the 1350 points.   724 
 725 
 726 

727 
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Figure Captions. 728 
 729 

Figure 1. Locations of the three focus granules, numbers 215 (red), 64 (green) and 55 (blue). 730 

 731 

Figure 2. Granule 215 as seen in terms of observed brightness temperature, bt1231 (left), the 732 

water cloud fraction (center) and ice cloud fraction (right) as described by the IFS (see text for 733 

definitions). Coordinates are the observation location across the satellite track (x axis) and along 734 

the track (y axis). 735 

 736 

Figure 3. As Fig. 2 but showing the difference between observed and calculated brightness 737 

temperature, (obs-cal) for a) SARTA; b) PCRTM; along with c) the difference between the 738 

models themselves, PCRTM-SARTA. The two RTMs agree with each other better than with the 739 

observations. 740 

 741 

Figure 4. Granule 215: The left panel shows an image of the scene inhomogeneity parameter 742 

cx1231. The right panel shows  (obs-cal) for SARTA, identical to Fig. 3a). The diagonal band of 743 

broken clouds seen in the cx1231 image is seen as a band of (obs-cal) outliers.  744 

 745 

Figure 5. Granule 55. NOAA subsample of observed  bt1231 (left),  the water cloud cover  746 

(center), and the  ice cloud cover (right) from the IFS. 747 
 748 
Figure 6.  Granule 55: Comparison of (obs-cal) from SARTA, PCRTM.MRO.4col and 749 

PCRTM.MRO.50col. In the red pixels the IFS has ice clouds not seen by AIRS, in the blue pixels 750 

AIRS sees cold clouds which are not in the IFS. The red and blue pixels are seen as cluster of ten 751 

or more pixels. Each pixel subtends a 45x45 km area. 752 

 753 

Figure 7.  Granule 55: cx1231 (left) and SARTA (obs-cal) (right). A cx1231<10K indicates a 754 

relatively uniform cloud cover.  In the center area of the granule there is no visual correlation 755 

between cx1231 and the large positive (obs-cal). The extremely cold clouds in the IFS in this 756 

area are not seen by AIRS. 757 

 758 
Figure 8. Granule 64 for the NOAA subsample of observed bt1231 (left panel), the water cloud cover 759 
(center), and the ice cloud cover (right) specified in the IFS. 760 

 761 

Figure 9. Granule 64. The disagreement between the observed (bt1231, left panel) and (obs-762 

cal.PCRTM, center panel) is  most pronounced in areas of high spatial inhomogeneity (cx1231, 763 

right panel),, i.e. broken clouds. 764 

 765 

Figure 10. (obs-cal) for granule 64. The left panel shows (obs-cal) as function of cx1231 for 766 

SARTA and PCRTM. The results are very similar. The right panel shows (obs-cal) for PCRTM as 767 

function of the local sea surface temperature for all data, and for data from relatively spatially 768 

uniform scenes (cx1231<5K). The large positive and negative (obs-cal) outliers are correlated 769 

with cx1231>5K. These large  outliers are likely related to the onset of deep convection at 770 

surface temperatures above 302.5K.  The IFS creates DCCs, but the space/time interpolation to 771 

the AIRS observations results in random hits and misses.     772 
 773 
 774 



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

Figure 11. Latitude dependence of the SD of  (obs-cal) from SARTA and PCRTM MRO 50col. 775 

Left: all data, Center: with a cx1231<10K filter. Right: quartile statistics. The latitude 776 

dependence of the SD is flattened out almost equally well by cx1231<10K spatial coherence 777 

filtering and quartile statistics.  778 
 779 
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