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Abstract: Consider the setting where (i) individual-level data are collected to build a regression model for
the association between an event of interest and certain covariates, and (ii) some risk calculators predicting
the risk of the event using less detailed covariates are available, possibly as algorithmic black boxes with
little information available about how they were built. We propose a general empirical-likelihood-based
framework to integrate the rich auxiliary information contained in the calculators into fitting the regression
model, to make the estimation of regression parameters more efficient. Two methods are developed: one
using working models to extract the calculator information and the other making a direct use of calculator
predictions without working models. Theoretical and numerical investigations show that the calculator
information can substantially reduce the variance of regression parameter estimation. As an application, we
study the dependence of the risk of high-grade prostate cancer on both conventional risk factors and newly
identified molecular biomarkers by integrating information from the Prostate Biopsy Collaborative Group
(PBCG) risk calculator, which was built based on conventional risk factors alone. The Canadian Journal
of Statistics 51: 355–374; 2023 © 2022 Statistical Society of Canada
Résumé: Les auteurs de cet article considèrent la situation suivante (i) la collecte des données au niveau
individuel a pour but la construction d’un modèle de régression pour l’association entre un événement
d’intérêt et des covariables données (ii) le risque de l’événement en question peut être prédit grâce
à des calculateurs de risque basés sur des covariables moins détaillées, possiblement sous forme de
boîtes noires algorithmiques avec peu d’informations sur la manière dont ils ont été construits. Afin
de rendre l’estimation des paramètres de régression plus efficace, ils proposent un cadre général basé
sur la vraisemblance empirique qui intègre, lors de l’ajustement du modèle de régression, les riches
informations auxiliaires contenues dans les calculateurs de risque. Deux méthodes sont développées, l’une
utilisant des modèles de travail pour extraire les informations des calculateurs de risque et l’autre utilisant
directement les prédictions de ces calculateurs, et ce sans recourir aux modèles de travail. Une recherche
combinant des approches théorique et numérique montrent que les informations du calculateur peut réduire
considérablement la variance de l’estimation des paramètres de régression. Pour illustrer comment cette
méthode peut être mise en application, les auteurs étudient la dépendance du risque de cancer de la prostate
de haut grade sur les facteurs de risque conventionnels et sur les biomarqueurs moléculaires nouvellement
identifiés, en intégrant des informations du calculateur de risque du Prostate Biopsy Collaborative Group
(PBCG), qui a été construit sur la base des seuls facteurs de risque conventionnels. La revue canadienne de
statistique 51: 355–374; 2023 © 2022 Société statistique du Canada
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1. INTRODUCTION

In the era of data science, it is common that data are collected from several sources and all provide
useful information for answering the same scientific question. An analysis based on a single
data source may yield biases in estimation or results that are not accurate enough. Integrating
data from multiple sources becomes essential to pull together different pieces of information to
draw more accurate conclusions and to make more insightful decisions. A common issue for
data integration is that different sources usually provide information in different forms: some
studies release the actual collected individual-level data, whereas others release only aggregate
data after the analysis. Different methods are needed to integrate different forms of data and to
draw inference.

This article considers the setting in which a current study collects individual-level data and
builds a regression model to study the association between the risk of experiencing an event
of interest and certain covariates, and where some risk prediction models for the same event
using less detailed covariates have been built by previous studies and are accessible as risk
calculators with little model detail released. These risk calculators contain rich information about
the association of interest, and thus, it is highly desirable to integrate such information into fitting
the regression model to improve the estimation efficiency and better understand how the risk
is affected by different covariates, especially when the sample size of the data from the current
study data is not large.

We consider the situation where some of the covariates are conventional risk factors known to
be associated with the event and/or are typically adjusted for, and others are new potential factors
whose association with the event has not been well studied. An example is our data application
in Section 4, which studies the risk for high-grade prostate cancer. Most existing studies on
prostate cancer do not consider risk factors that are related to the molecular mechanisms
of prostate cancer progression. However, it has been shown that prostate cancer antigen 3
(PCA3) and TMPRSS2:ERG gene fusions are two biomarkers that have better specificity than
prostate-specific antigen (PSA), a well-known conventional predictor, for the early detection
of prostate cancer (Tomlins et al., 2016). Therefore, in our data application, we will build an
expanded regression model by including both biomarkers in addition to some conventional risk
factors, such as age, race, PSA, digital rectal examination (DRE) findings, prior biopsy results,
and family history. The setting we consider has a current study that collects individual-level data
on both types of covariates. On the other hand, for the same event of interest, some existing
studies have developed risk calculators that output the predicted risk of the event based on certain
conventional factors. Many such risk calculators are accessible online. For instance, for prostate
cancer, some widely used online risk calculators include the prostate cancer prevention trial
(PCPT) risk calculator (Version 1, Thompson et al., 2006; Version 2, Ankerst et al., 2014) and the
more recent Prostate Biopsy Collaborative Group (PBCG) risk calculator (Ankerst et al., 2018).
Such risk calculators contain useful auxiliary information about the association of interest, but
they are sometimes available as a black box with little detail released about the actual models
used to build them, especially when they are built based on machine learning techniques (e.g.,
Mocellin et al., 2009).

The setting we consider is substantially different from the ones in the existing literature,
which assume that external study model details are available. Such details typically include the
specification of the model, the estimated parameter values, and sometimes the corresponding
standard errors (e.g., Imbens & Lancaster, 1994; Qin, 2000; Chatterjee et al., 2016; Cheng
et al., 2018; Cheng et al., 2019; Han & Lawless, 2019; Huang & Qin, 2020; Sheng et al., 2021). It
is also different from the settings where the population values of certain quantities are available
and can be used as calibration factors to increase the efficiency of estimation (e.g., Deville &
Särndal, 1992; Chen & Qin, 1993; Chaudhuri, Handcock & Rendall, 2008; Lumley, Shaw &
Dai, 2011; Chen & Kim, 2014; Qin et al., 2015; Huang, Qin & Tsai, 2016). The lack of such
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concrete information in our setting presents a unique challenge. Without assuming any detailed
knowledge about the risk calculator models, we will develop methods to extract the auxiliary
information contained in the risk calculators and integrate it into fitting the regression model
of interest. Integrating such auxiliary information can considerably improve the estimation
efficiency. Our setting is similar to that in Gu et al. (2019), who considered only one risk
calculator and proposed a synthetic data method based on multiple imputation, fundamentally
different from our development.

Our development is based on the empirical likelihood (EL) method (Owen, 1988, 2001; Qin
& Lawless, 1994). The EL method has been widely adopted to integrate auxiliary information
to improve the estimation efficiency, especially in survey sampling (e.g., Chen & Qin, 1993;
Chen, Sitter & Wu, 2002; Chaudhuri, Handcock & Rendall, 2008; Chen & Kim, 2014) and
medicine and public-health-related research (e.g., Qin et al., 2015; Huang, Qin & Tsai, 2016;
Qin, 2017; Cheng et al., 2018; Han & Lawless, 2019). The constrained maximum likelihood
estimation proposed in Chatterjee et al. (2016) has a strong connection to the EL method (Han
& Lawless, 2016). Compared to existing alternatives, such as those based on the generalized
method of moments (e.g., Imbens & Lancaster, 1994), the generalized regression (e.g., Chen &
Chen, 2000), weight calibration (e.g., Lumley, Shaw & Dai, 2011), and others (e.g., Boonstra,
Taylor & Mukherjee, 2013; Grill et al., 2015; Estes, Mukherjee & Taylor, 2018), the EL-type
methods provide a likelihood-based framework for estimation and inference. Details about many
superior properties of the EL method can be found in Owen (2001) and Qin (2017). Our
development in this article also extends the EL method to new settings of data integration and
expands its applicability and effectiveness.

The rest of the article is organized as follows. Section 2 contains our proposed methods, one
based on postulating working models and the other without. Section 3 gives simulation studies,
and Section 4 provides an application to prostate cancer research. Some discussions are given in
Section 5. The Appendix includes some technical details for the results established in Section 2.

2. PROPOSED METHODS

2.1. Notation and Setup
Our main interest is to study the association between the risk of experiencing an event and
certain covariates, including both the conventional and the newly discovered risk factors. Let
Y denote the binary outcome indicating whether a subject experiences the event (Y = 1 if
yes and Y = 0 if no), X is the vector of conventional risk factors, and Z is the vector of
newly discovered risk factors. A regression model P(Y = 1|X,Z;𝜷) is specified for the risk
P(Y = 1|X,Z), where 𝜷 is the vector of regression parameters and has the true value 𝜷0 such that
P(Y = 1|X,Z;𝜷0) = P(Y = 1|X,Z). A widely used regression model is the logistic regression

P(Y = 1|X,Z;𝜷) = exp
(
𝛽c + 𝜷T

XX + 𝜷T
ZZ
)
∕
{

1 + exp
(
𝛽c + 𝜷T

XX + 𝜷T
ZZ
)}
.

Let (Yi,Xi,Zi), i = 1,… , n, denote the individual-level data collected based on a random
sample of size n. Then, the maximum likelihood estimator (MLE) for 𝜷0 is

̂𝜷mle ≡ arg max
𝜷

n∏

i=1

𝑓 (Yi|Xi,Zi;𝜷), (1)

where 𝑓 (Y|X,Z; 𝜷) = P(Y = 1|X,Z;𝜷)I(Y=1)P(Y = 0|X,Z;𝜷)I(Y=0) and I(⋅) is the indicator func-
tion. Write s(𝜷) ≡ s(Y ,X,Z;𝜷) = 𝜕 log 𝑓 (Y|X,Z;𝜷)∕𝜕𝜷 and S(𝜷) = E{s(𝜷)s(𝜷)T}. From the

theory of MLE (e.g., Lehmann & Casella, 2003), as n →∞, we know that ̂𝜷mle
p
−→ 𝜷0,
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√
n( ̂𝜷mle − 𝜷0)

d
−→ N(0,S−1), and ̂𝜷mle has the optimal efficiency when no auxiliary information

about 𝜷0 is available, where S ≡ S(𝜷0).
Previous studies on the same event of interest have usually produced rich auxiliary information

about the association, and such information can be used to improve the estimation efficiency
over the MLE ̂𝜷mle. In this article, we consider the case where the results from previous studies
are available through risk calculators. Suppose that there are J risk calculators for calculating the
risk of experiencing the event. It is common that some risk factors collected in a current study
were not used or available in previous studies, and, for those that were indeed used, the current
study may take a finer measurement (e.g., a continuous measurement instead of a categorical
one). To take these possibilities into consideration, let Z be the risk factors that are available only
in the current study. For the 𝑗th calculator, 𝑗 = 1,… , J, let X(𝑗) be a possibly coarsened version
of X. For example, the variables in X(𝑗) may be a subset and/or a categorized version of those
in X. In other words, X(𝑗) is a many-to-one function of X: the value of X(𝑗) can be completely
determined by X, but not the reverse. The 𝑗th calculator uses X(𝑗) as the predictors to calculate
the risk of experiencing the event P

(
Y = 1|X(𝑗)

)
, and let p̂(𝑗) denote the corresponding predicted

value for P
(
Y = 1|X(𝑗)

)
. Thus, based on the collected individual-level data, the 𝑗th calculator

produces data
(
X(𝑗)i, p̂(𝑗)i

)
, i = 1,… , n. To keep the generality of our development, we do not

assume any other knowledge about these risk calculators.

2.2. A Method Based on Working Models
To extract information from the data

(
X(𝑗)i, p̂(𝑗)i

)
produced by the 𝑗th calculator, we postulate

a working model p(𝑗)
(
X(𝑗);𝜽(𝑗)

)
≡ P
(
Y = 1|X(𝑗);𝜽(𝑗)

)
for P
(
Y = 1|X(𝑗)

)
with parameter vector

𝜽(𝑗). Such a working model represents our knowledge/belief about how the association between
Y and X(𝑗) should be modelled. This working model may be different from the actual unknown
model used to build the calculator and it may be incorrectly specified for P

(
Y = 1|X(𝑗)

)
, but this

does not prevent the working model from providing a reasonable approximation to P
(
Y = 1|X(𝑗)

)

and extracting the calculator information.
A challenge when fitting the working model p(𝑗)

(
X(𝑗);𝜽(𝑗)

)
based on the data

(
X(𝑗)i, p̂(𝑗)i

)
is

that p̂(𝑗) is a fixed function of X(𝑗) determined by the 𝑗th calculator with no randomness. If the
output from the 𝑗th calculator were a random binary value ̂Y(𝑗) ∼ Bernoulli

(
p̂(𝑗)
)
, we could fit

the working model p(𝑗)
(
X(𝑗);𝜽(𝑗)

)
by maximizing the likelihood

n∏

i=1

p(𝑗)
(
X(𝑗)i;𝜽(𝑗)

) ̂Y(𝑗)i{1 − p(𝑗)
(
X(𝑗)i;𝜽(𝑗)

)}1− ̂Y(𝑗)i
,

which would lead to estimating 𝜽(𝑗) by solving the corresponding score equation

n∑

i=1

̂Y(𝑗)i − p(𝑗)
(
X(𝑗)i;𝜽(𝑗)

)

p(𝑗)
(
X(𝑗)i;𝜽(𝑗)

){
1 − p(𝑗)

(
X(𝑗)i;𝜽(𝑗)

)}
𝜕p(𝑗)
(
X(𝑗)i;𝜽(𝑗)

)

𝜕𝜽(𝑗)
= 0.

With the fixed value p̂(𝑗), we replace ̂Y(𝑗) in the above equation by p̂(𝑗) and estimate 𝜽(𝑗) by ̂𝜽(𝑗)
that solves

n∑

i=1

p̂(𝑗)i − p(𝑗)
(
X(𝑗)i;𝜽(𝑗)

)

p(𝑗)
(
X(𝑗)i;𝜽(𝑗)

){
1 − p(𝑗)

(
X(𝑗)i;𝜽(𝑗)

)}
𝜕p(𝑗)
(
X(𝑗)i;𝜽(𝑗)

)

𝜕𝜽(𝑗)
= 0. (2)

Therefore, the information contained in the 𝑗th calculator is summarized by the working model
p(𝑗)
(
X(𝑗);𝜽(𝑗)

)
and the parameter estimate ̂𝜽(𝑗) that satisfies (2).
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Another justification for fitting the model p(𝑗)
(
X(𝑗);𝜽(𝑗)

)
by solving (2) is to consider the

weighted least squares discrepancy

n∑

i=1

(
p̂(𝑗)i − p(𝑗)

(
X(𝑗)i;𝜽(𝑗)

)

√
p̂(𝑗)i(1 − p̂(𝑗)i)

)2

between p(𝑗)
(
X(𝑗);𝜽(𝑗)

)
and p̂(𝑗), where p̂(𝑗)

(
1 − p̂(𝑗)

)
is an estimate of the variance of the binary

outcome Y at X(𝑗). Minimizing this discrepancy amounts to solving

n∑

i=1

p̂(𝑗)i − p(𝑗)
(
X(𝑗)i;𝜽(𝑗)

)

p̂(𝑗)i
(
1 − p̂(𝑗)i

)
𝜕p(𝑗)
(
X(𝑗)i;𝜽(𝑗)

)

𝜕𝜽(𝑗)
= 0.

Equation (2) is the same as this equation with p̂(𝑗)
(
1 − p̂(𝑗)

)
replaced by p(𝑗)

(
X(𝑗);𝜽(𝑗)

)

{
1 − p(𝑗)(X(𝑗);𝜽(𝑗)

)}
, which is an estimate of the variance of Y based on the working model.

Thus, ̂𝜽(𝑗) actually makes p(𝑗)
(
X(𝑗);𝜽(𝑗)

)
, the prediction of P

(
Y = 1|X(𝑗)

)
based on the working

model, as close as possible to p̂(𝑗), the prediction based on the calculator.
To transform the summarized information into a form that can be integrated into the

estimation of 𝜷0, consider for a moment the hypothetical scenario where the calculators output
the exact true risk of experiencing the event; i.e., p̂(𝑗) ≡ P

(
Y = 1|X(𝑗)

)
. Then, because ̂𝜽(𝑗) solves

(2), we have E(Y ,X,Z)
{

h(𝑗)
(
Y ,X(𝑗);𝜽∗(𝑗)

)}
= 0, where ̂𝜽(𝑗)

p
−→ 𝜽∗(𝑗) as n → ∞ and

h(𝑗)
(
Y ,X(𝑗);𝜽(𝑗)

)
=

Y − p(𝑗)
(
X(𝑗);𝜽(𝑗)

)

p(𝑗)
(
X(𝑗);𝜽(𝑗)

){
1 − p(𝑗)

(
X(𝑗);𝜽(𝑗)

)}
𝜕p(𝑗)
(
X(𝑗);𝜽(𝑗)

)

𝜕𝜽(𝑗)
.

Here and later, we occasionally use a subscript to explicitly indicate under which distribution is
the expectation taken; e.g., E(Y ,X,Z)(⋅) is taken under the joint distribution of (Y ,X,Z). Write

u(𝑗)
(
X,Z;𝜷,𝜽(𝑗)

)
=

P(Y = 1|X,Z;𝜷) − p(𝑗)
(
X(𝑗);𝜽(𝑗)

)

p(𝑗)
(
X(𝑗);𝜽(𝑗)

){
1 − p(𝑗)(X(𝑗);𝜽(𝑗)

)}
𝜕p(𝑗)
(
X(𝑗);𝜽(𝑗)

)

𝜕𝜽(𝑗)
.

We then have

E(Y ,X,Z)
{

h(𝑗)
(
Y ,X(𝑗);𝜽∗(𝑗)

)}
= E(X,Z)

[
E(Y|X,Z)

{
h(𝑗)
(
Y ,X(𝑗);𝜽∗(𝑗)

)
|X,Z
}]

= E(X,Z)
{

u(𝑗)
(
X,Z;𝜷0,𝜽

∗
(𝑗)
)}
,

and thus
E(X,Z)

{
u(𝑗)
(
X,Z;𝜷0,𝜽

∗
(𝑗)
)}
= 0. (3)

Therefore, through fitting the working model p(𝑗)
(
X(𝑗);𝜽(𝑗)

)
, (3) summarizes the information

regarding𝜷0 contained in the 𝑗th calculator as a moment constraint under the marginal distribution
of (X,Z).

To take the moment constraint (3) into account when estimating 𝜷0, we consider a discrete
distribution qi = dF(Xi,Zi) on the data points (Xi,Zi), i = 1,… , n, and propose to estimate 𝜷0
by ̂𝜷el1 defined through

max
𝜷,q1,…,qn

n∏

i=1

{
𝑓 (Yi|Xi,Zi;𝜷)qi

}
subject to
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qi > 0,
n∑

i=1

qi = 1,
n∑

i=1

qiu(𝑗)
(
Xi,Zi;𝜷, ̂𝜽(𝑗)

)
= 0 (𝑗 = 1,… , J). (4)

Compared to (1), the maximization in (4) is over the joint distribution of (Y ,X,Z), where the
conditional distribution of Y|(X,Z) is parametrically modelled and the marginal distribution of
(X,Z) is nonparametrically modelled subject to certain constraints that are a data version of
(3). Therefore, ̂𝜷el1 integrates the auxiliary information about 𝜷0 and thus should have higher
efficiency compared to the MLE ̂𝜷mle. The maximization (4) is similar to that in Qin (2000).

With J calculators, write

𝜽 =

⎛
⎜
⎜
⎜
⎜
⎝

𝜽(1)

𝜽(2)

⋮

𝜽(J)

⎞
⎟
⎟
⎟
⎟
⎠

and u(𝜷,𝜽) ≡ u(X,Z;𝜷,𝜽) =

⎛
⎜
⎜
⎜
⎜
⎝

u(1)
(
X,Z;𝜷,𝜽(1)

)

u(2)
(
X,Z;𝜷,𝜽(2)

)

⋮

u(J)
(
X,Z;𝜷,𝜽(J)

)

⎞
⎟
⎟
⎟
⎟
⎠

.

In the Appendix, we show that ̂𝜷el1 is the component of ( ̂𝜷el1, �̂�) that satisfies

n∑

i=1

si( ̂𝜷el1) +
n∑

i=1

𝜕ui( ̂𝜷el1,
̂𝜽)∕𝜕𝜷T

1 − �̂�Tui( ̂𝜷el1,
̂𝜽)
�̂� = 0, (5)

n∑

i=1

ui( ̂𝜷el1,
̂𝜽)

1 − �̂�Tui( ̂𝜷el1,
̂𝜽)
= 0. (6)

Equivalently, ̂𝜷el1 is also the component of ( ̂𝜷el1, �̂�,
̂𝜽) that satisfies (5), (6), and (2)

simultaneously.
When studying the asymptotic properties of ̂𝜷el1, a complication is that, for each risk

calculator, the output risk prediction is based on a fixed function of the input covariates and
does not accommodate the uncertainty associated with the model fitting when building the
risk calculators. If the fixed function of X(𝑗) used by the 𝑗th calculator is not the same as
P
(
Y = 1|X(𝑗)

)
, ̂𝜷el1 will not be theoretically consistent for 𝜷0, although the bias may be small

if the output p̂(𝑗) is close to P
(
Y = 1|X(𝑗)

)
. This is intuitive because the calculator information

needs to be compatible with that of the current study to yield improvements after data integration.
Incompatible information will bias the estimation. Therefore, for the purpose of establishing
asymptotic properties of ̂𝜷el1, we assume that

p̂(𝑗) = P
(
Y = 1|X(𝑗)

)
, 𝑗 = 1,… , J. (7)

We then have the following theorem on ̂𝜷el1.

Theorem 1. Under Regularity Conditions 1 specified in the Appendix, assuming (7) and as

n → ∞, we have (i) ̂𝜷el1
p
−→ 𝜷0, and (ii)

√
n( ̂𝜷el1 − 𝜷0) has an asymptotic normal distribution

with mean 0 and variance

{
S + GT

1𝛀
−1G1 − GT

1 (𝛀
−1U1 − I)(G1S−1GT

1 + U1𝛀−1U1)−1(U1𝛀−1 − I)G1
}−1

, (8)
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where G1 ≡ E{𝜕u(𝜷0,𝜽
∗)∕𝜕𝜷}, 𝛀 ≡ E

[
u(𝜷0,𝜽

∗) − ̃E{u(𝜷0,𝜽
∗)}
]
⊗2 with

̃E{u(𝜷,𝜽)} ≡
⎛
⎜
⎜
⎜
⎝

E
{

u(1)
(
X,Z;𝜷,𝜽(1)

)
|X(1)
}

⋮

E
{

u(J)
(
X,Z;𝜷,𝜽(J)

)
|X(J)
}

⎞
⎟
⎟
⎟
⎠

and EA⊗2 = E(AAT) for any matrix A, U1 ≡ E{u(𝜷0,𝜽
∗)u(𝜷0,𝜽

∗)T}, I is the identity matrix,
and 𝜽∗ ≡

(
𝜽∗(1),… ,𝜽∗(J)

)
.

The proof of Theorem 1 is given in the Appendix. Because of the complexity of (8),
there is no general clear comparison to S−1, the asymptotic variance of the MLE ̂𝜷mle. But an
efficiency improvement over ̂𝜷mle can be anticipated when the calculators are not poorly built
and when the working models are reasonably postulated. Indeed, in such settings, comprehensive
simulation studies have shown that ̂𝜷el1 provides a substantial efficiency gain over ̂𝜷mle. In
the next subsection, we will propose an alternative estimator that is guaranteed to improve
over ̂𝜷mle.

2.3. A Method Without Working Models
The working model approach summarizes the auxiliary information contained in the calculators
by fitting a working model to the data

(
X(𝑗)i, p̂(𝑗)i

)
. As seen from (8), the estimation of 𝜽(𝑗)

introduced by the working models has a very complex effect on the asymptotic variance of ̂𝜷el1.
In this section, we consider an alternative method without working models, the efficiency of
which will not be compromised by the estimation of any nuisance parameters.

For any arbitrary vector function d(𝑗)
(
X(𝑗)
)

of X(𝑗), assuming all relevant moments exist, we
have

E(X,Z)
[
d(𝑗)
(
X(𝑗)
){

P(Y = 1|X,Z) − P
(
Y = 1|X(𝑗)

)}]
= 0. (9)

Since P(Y = 1|X,Z) = P(Y = 1|X,Z;𝜷0) and the 𝑗th calculator outputs p̂(𝑗) as a prediction
for P

(
Y = 1|X(𝑗)

)
, (9) provides an alternative to (3) to summarize the auxiliary information

contained in the 𝑗th calculator, again in the form of a moment equality under the distribution of
(X,Z). To integrate this summary information into the estimation of 𝜷0, let qi = dF(Xi,Zi) and
define another estimator ̂𝜷el2 through

max
𝜷,q1,…,qn

n∏

i=1

{
𝑓 (Yi|Xi,Zi;𝜷)qi

}
subject to qi > 0,

n∑

i=1

qi = 1,

n∑

i=1

qid(𝑗)
(
X(𝑗)i
){

P(Yi = 1|Xi,Zi;𝜷) − p̂(𝑗)i
}
= 0 (𝑗 = 1,… , J). (10)

This estimator of 𝜷0 directly uses the outputs from the calculators instead of postulating
working models. For each calculator, a vector function d(𝑗)(X(𝑗)) needs to be chosen. For a
chosen d(𝑗)

(
X(𝑗)
)
, the constraints in (10) are similar to those in (4) when the working model

p(𝑗)
(
X(𝑗);𝜽(𝑗)

)
is the logistic regression

exp
{

d(𝑗)
(
X(𝑗)
)T
𝜽(𝑗)
}

1 + exp
{

d(𝑗)
(
X(𝑗)
)T
𝜽(𝑗)
} , (11)
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because in this case, the last constraint in (4) becomes

n∑

i=1

qid(𝑗)
(
X(𝑗)i
){

P(Yi = 1|Xi,Zi;𝜷) − p(𝑗)
(
X(𝑗)i; ̂𝜽(𝑗)

)}
,

and thus the only difference between (4) and (10) is in which prediction of P
(
Y = 1|X(𝑗)

)
is

used, p(𝑗)
(
X(𝑗); ̂𝜽(𝑗)

)
from the working model or p̂(𝑗) from the calculator. In this case, intuitively,

because the maximization in (10) does not involve estimation of any nuisance parameters, ̂𝜷el2
should have a higher efficiency compared to ̂𝜷el1, as the asymptotic variance of ̂𝜷el2 will not have
a component coming from the estimation of 𝜽(𝑗). This intuition is confirmed by our theoretical
results below.

For ease of notation, write

u(𝜷) ≡ u(X,Z;𝜷) =

⎛
⎜
⎜
⎜
⎜
⎝

d(1)
(
X(1)
){

P(Y = 1|X,Z;𝜷) − p̂(1)
}

d(2)
(
X(2)
){

P(Y = 1|X,Z;𝜷) − p̂(2)
}

⋮

d(J)
(
X(J)
){

P(Y = 1|X,Z;𝜷) − p̂(J)
}

⎞
⎟
⎟
⎟
⎟
⎠

.

Based on derivations similar to those leading to (5) and (6), ̂𝜷el2 is the component of ( ̂𝜷el2, �̂�)
that satisfies (5) and (6) but with u(𝜷,𝜽) replaced by u(𝜷). Following the same proof as that for
Theorem 1, the properties of ̂𝜷el2 are given below:

Theorem 2. Under Regularity Conditions 2 specified in the Appendix, assuming (7) and as

n → ∞, we have (i) ̂𝜷el2
p
−→ 𝜷0, and (ii)

√
n( ̂𝜷el2 − 𝜷0) has an asymptotic normal distribution

with mean 0 and variance {
S + GT

2 U−1
2 G2
}−1

, (12)

where G2 ≡ E{𝜕u(𝜷0)∕𝜕𝜷} and U2 ≡ E{u(𝜷0)u(𝜷0)T}.

It is clear that (12) is smaller than S−1, the asymptotic variance of the MLE ̂𝜷mle. Thus, ̂𝜷el2
is expected to be more efficient than ̂𝜷mle when the calculators are not poorly built. There is no
general comparison between (8) and (12) because (8) depends on the working models postulated
and (12) depends on the d(𝑗)

(
X(𝑗)
)

chosen. However, in the setting where all the working models
for ̂𝜷el1 are logistic regression as in (11) and all vector functions d(𝑗)

(
X(𝑗)
)

for ̂𝜷el2 are taken to
be the same as those in (11), a direct comparison between (8) and (12) is possible. In this case,
some calculation shows that G1 = G2 and 𝛀 = U2. Therefore, (12) is smaller than (8) because
the third term that is subtracted in (8) is semipositive definite. In this case, ̂𝜷el2 has a higher
efficiency than ̂𝜷el1. Because of the popularity of logistic regression, this efficiency comparison
is widely applicable in practice. Another important observation from (12) is that, since GT

2 U−1
2 G2

becomes larger in the positive-definite sense as the dimension of u(𝜷) increases, (12) becomes
smaller as more calculators are integrated, as long as the calculators output correct predictions
and do not use exactly the same predictors.

2.4. Some Discussion and Remarks
Because of the efficiency properties of ̂𝜷el2 and the direct use of the output probabilities p̂(𝑗) from
the calculators without introducing any nuisance parameters, it is more desirable to implement
̂𝜷el2 in practice, which requires specifying the d(𝑗)

(
X(𝑗)
)
. In theory, the asymptotic variance
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(12) becomes smaller as more functions are included in d(𝑗)
(
X(𝑗)
)
. In practice, however, a

large dimension of d(𝑗)
(
X(𝑗)
)

may jeopardize the numerical performance. The specification of
d(𝑗)
(
X(𝑗)
)

can be guided by first building working models, such as logistic regression models,
and then taking the d(𝑗)

(
X(𝑗)
)

to be the corresponding regressors. The working models should be
specified based both on existing scientific knowledge about the association of interest and on the
calculator data

(
X(𝑗), p̂(𝑗)

)
. When partial information is available about the original models used

to build the calculators, such as the inclusion of certain interactions, it should be accommodated
when specifying the working models. Intuitively, working models that are close to the possibly
unknown true calculator models should lead to good final performance, because the true models
contain all the calculator information. After the working models are specified as in (11), the
corresponding d(𝑗)

(
X(𝑗)
)

can be used to implement ̂𝜷el2. The resulting ̂𝜷el2 is guaranteed to be
more efficient than both ̂𝜷mle and ̂𝜷el1 based on the specified working models. In this way, the
working models are specified only as a guideline for choosing the d(𝑗)

(
X(𝑗)
)
, and the efficiency

of ̂𝜷el2 is not affected by the estimation of any nuisance parameters.
The large-sample properties of ̂𝜷el1 and ̂𝜷el2 are established under the assumption that

p̂(𝑗) = P
(
Y = 1|X(𝑗)

)
. In reality, owing to model specification and random errors when building

the calculators, p̂(𝑗) is not the same as P
(
Y = 1|X(𝑗)

)
. For example, the model of interest P(Y =

1|X,Z;𝜷) implicitly imposes restrictions on modelling P
(
Y = 1|X(𝑗)

)
, which may not be met by

the calculator models. However, the proposed methods should still lead to small finite-sample
bias and considerable efficiency gains compared to ̂𝜷mle if p̂(𝑗) is a good approximation to
P
(
Y = 1|X(𝑗)

)
. This should be the case when the calculators are built based on carefully

specified models and decent sample sizes so that they capture most of the association between
the risk of interest and the corresponding covariates. In practice, there are ways to quickly check
the quality of this approximation. One way is to compare the data

(
X(𝑗)i, p̂(𝑗)i

)
produced by the

calculators to the data
(
X(𝑗)i,Yi

)
using some simple quantities, such as the means of p̂(𝑗) and

Y within each level of X(𝑗). Another way is to compare the coefficients of the regression of Yi
on X(𝑗)i to the coefficients of the regression of p̂(𝑗)i on X(𝑗)i. The comparison can be made by
constructing confidence intervals for the former coefficients and checking whether they cover
the latter coefficients. In our data application in Section 4, we carry out such a comparison.

The proposed methods are very flexible in the sense that they apply to black-box-type
calculators where little information is available about how the calculators were built, especially
when they were built based on machine learning techniques. Some extra care may be needed
when there are multiple calculators based on similar covariates. In this case, the auxiliary
information provided by these calculators may be similar because the information is about the
association between the outcome of interest and the corresponding covariates. Although in theory
̂𝜷el2 will keep gaining efficiency when integrating more calculators, using all these calculators
simultaneously might jeopardize numerical performance because some constraints in (4) and
(10) may become highly correlated. Therefore, in the presence of multiple calculators with
similar inputs, we would recommend using the one(s) based on large sample sizes and based on
populations similar to the current study, which may be checked by the procedures mentioned in
the previous paragraph.

A simple way to implement the proposed methods might seem to be to solve the equations
in (5) and (6). However, this procedure is not recommended owing to its unstable behaviour:
Equation (6), viewed as an equation for 𝝆 for fixed 𝜷 and 𝜽, typically has many roots (Han
& Wang, 2013). Here, we need �̂� such that q̂i maximizing (4) or (10) are between 0 and 1.
Solving (5) and (6) directly can lead to an unwanted root. Refer to the derivation of (5) and
(6) in the Appendix for an expression for q̂i. A more reliable implementation is to follow the
Newton–Raphson-type algorithm provided in Han & Lawless (2019).
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3. SIMULATION STUDIES

In this section, we carry out simulation studies to investigate the finite-sample performance of
the proposed methods. The covariates X = (X1,X2) and Z are generated from a three-dimensional
multivariate normal distribution, where the means are all 0, the variances are all 1, and the
correlations are all 0.4. Given the covariates, the response Y is generated from a Bernoulli
distribution with

P(Y = 1|X,Z) = expit(0.5 − 0.5X1 − 0.5X2 + 0.5Z + 0.5X2Z),

where expit(x) = ex∕(1 + ex). Therefore, we have 𝜷0 = (𝛽c, 𝛽X1
, 𝛽X2

, 𝛽Z , 𝛽X2Z) = (0.5,−0.5,−0.5,
0.5, 0.5). We consider Calculators 1, 2, and 3 constructed based on the generated data using
covariates X(1) = X1, X(2) =

(
X1,

̃X2
)
, and X(3) = (X1,X2), respectively, where ̃X2 = I(X2 > 0).

Calculator 1 for P
(
Y = 1|X(1)

)
is based on the semiparametric single-index model in Klein

& Spady (1993) implemented in R (R Core Team, 2021) with package np (Hayfield &
Racine, 2008). Because there is only one covariate, this semiparametric model becomes
nonparametric. Calculator 2 for P

(
Y = 1|X(2)

)
is based on the same nonparametric model but

for ̃X2 = 1 and ̃X2 = 0 separately. Calculator 3 for P
(
Y = 1|X(3)

)
is based on the random forest

method (Breiman, 2001) implemented in the R package randomForest (Liaw & Wiener, 2002).
The nonparametric nature of these models requires a large sample size to achieve a good quality
for risk prediction, and we used a sample size of 50,000 to build these calculators to ensure their
good quality.

First, we compare estimators ̂𝜷el1 based on working models ̂𝜷el2 without using working
models, and the MLE ̂𝜷mle without integrating calculator information. In this comparison, we
fix the working models or the d(𝑗)

(
X(𝑗)
)

for each calculator 𝑗 = 1, 2, 3. Specifically, for ̂𝜷el1,
the postulated working models for the calculators are all logistic regression as specified in (11),
where d(𝑗)

(
X(𝑗)
)

contains the intercept and corresponding main effects; i.e., d(𝑗)
(
X(𝑗)
)
=
(
1,X(𝑗)

)
,

𝑗 = 1, 2, 3. These same d(𝑗)
(
X(𝑗)
)

are used for ̂𝜷el2. For both ̂𝜷el1 and ̂𝜷el2, we consider seven
versions, ̂𝜷el-1, ̂𝜷el-2, ̂𝜷el-3, ̂𝜷el-12, ̂𝜷el-13, ̂𝜷el-23, and ̂𝜷el-123, where the numbers indicate
which calculators are incorporated into the estimation.

Tables 1 and 2 contain the simulation results based on n = 400 and n = 1000, respectively,
both using 1000 replications. Compared to ̂𝜷mle, the empirical standard errors of ̂𝜷el1 and ̂𝜷el2 for
those covariates also used by the corresponding calculators are substantially smaller, confirming
our theoretical conclusion of efficiency gains by integrating calculator information. Note that,
for ̂𝜷el1-23 and ̂𝜷el1-123, the empirical standard errors corresponding to those covariates not
used by the calculators (i.e., Z and X2Z) become larger compared to ̂𝜷mle. This is caused by
the estimation of nuisance parameters in the working models. As seen from (8), the effect of
estimating nuisance parameters on the efficiency of ̂𝜷el1 is quite complex. Although in general
we anticipate efficiency gains for ̂𝜷el1, the gains are typically small for the coefficients that do not
appear in the calculators and may even be negative due to the estimation of nuisance parameters.

The comparison of empirical standard errors between ̂𝜷el1 and ̂𝜷el2 confirms that the latter
is more efficient, especially when more than one calculator is used. Empirical standard errors
for ̂𝜷el2 either decrease or stay about the same as more calculators are integrated, consistent
with our theory, whereas those for ̂𝜷el1 may increase considerably due to the estimation of more
nuisance parameters. It is also seen that, for all considered estimators, the mean of the estimated
standard errors over 1000 replications is very close to the corresponding empirical standard error,
especially when n = 1000, confirming the derived asymptotic variances for both ̂𝜷el1 and ̂𝜷el2.

Second, we vary d(𝑗)
(
X(𝑗)
)

for each calculator to assess its effects. We also make a
comparison of the proposed method with that in Gu et al. (2019). Since ̂𝜷el2 is superior to ̂𝜷el1
both theoretically and numerically, we now include only ̂𝜷el2. We focus on the three versions,
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TABLE 1: Simulation results for comparisons between methods with and without using working models
based on n = 400 and 1000 replications.

Method 1: with working models Method 2: without working models

𝛽c 𝛽X1
𝛽X2

𝛽Z 𝛽X2Z 𝛽c 𝛽X1
𝛽X2

𝛽Z 𝛽X2Z

MLE Bias 0.003 −0.005 −0.014 0.006 0.015 0.003 −0.005 −0.014 0.006 0.015

emp 0.123 0.137 0.139 0.140 0.143 0.123 0.137 0.139 0.140 0.143

est 0.120 0.135 0.139 0.139 0.141 0.120 0.135 0.139 0.139 0.141

cov 95.0 94.8 95.1 95.6 94.8 95.0 94.8 95.1 95.6 94.8

EL-1 Bias −0.001 0.018 −0.014 0.006 0.015 −0.001 0.019 −0.014 0.006 0.015

emp 0.052 0.071 0.139 0.140 0.143 0.052 0.071 0.139 0.140 0.143

est 0.052 0.073 0.138 0.138 0.140 0.052 0.073 0.138 0.138 0.140

cov 95.4 94.2 94.9 95.3 94.8 95.4 94.0 95.0 95.3 94.7

EL-2 Bias −0.000 0.020 −0.035 0.006 0.016 0.000 0.020 −0.035 0.006 0.015

emp 0.049 0.059 0.061 0.140 0.142 0.049 0.059 0.061 0.140 0.142

est 0.048 0.062 0.059 0.138 0.140 0.048 0.061 0.059 0.138 0.140

cov 95.4 92.3 94.4 95.4 95.0 95.5 92.0 94.1 95.4 95.0

EL-3 Bias −0.006 −0.002 −0.017 0.006 0.015 −0.005 −0.002 −0.015 0.006 0.013

emp 0.064 0.072 0.076 0.140 0.143 0.063 0.071 0.075 0.140 0.143

est 0.061 0.074 0.076 0.138 0.140 0.060 0.073 0.074 0.138 0.140

cov 95.3 95.5 95.3 95.2 94.9 95.5 94.4 94.7 95.3 94.7

EL-12 Bias 0.003 0.021 −0.036 0.005 0.015 0.000 0.022 −0.036 0.005 0.015

emp 0.050 0.060 0.061 0.140 0.142 0.049 0.059 0.061 0.140 0.142

est 0.049 0.062 0.060 0.138 0.140 0.048 0.061 0.059 0.138 0.140

cov 94.9 91.7 94.1 95.4 95.4 95.8 91.5 93.8 95.4 95.3

EL-13 Bias 0.002 0.004 −0.011 0.005 0.009 −0.001 0.017 −0.017 0.006 0.014

emp 0.074 0.072 0.082 0.140 0.143 0.049 0.062 0.075 0.140 0.143

est 0.073 0.074 0.085 0.138 0.140 0.049 0.062 0.074 0.138 0.140

cov 94.6 94.8 96.1 95.2 95.1 95.5 92.5 94.5 95.3 94.6

EL-23 Bias −0.001 −0.003 −0.023 0.024 0.026 −0.003 0.016 −0.032 0.005 0.022

emp 0.072 0.072 0.078 0.146 0.159 0.048 0.060 0.060 0.141 0.141

est 0.068 0.072 0.079 0.141 0.149 0.047 0.061 0.058 0.138 0.138

cov 93.6 95.1 95.0 94.9 92.7 95.5 92.3 94.3 94.8 94.5

EL-123 Bias 0.003 −0.002 −0.019 0.027 0.020 −0.003 0.018 −0.033 0.005 0.022

emp 0.078 0.075 0.080 0.149 0.166 0.048 0.060 0.059 0.141 0.141

est 0.077 0.073 0.080 0.142 0.154 0.047 0.060 0.058 0.138 0.138

cov 93.6 94.6 95.2 93.9 92.8 95.9 91.7 94.2 94.9 94.6

Note: cov, percentage over 1000 replications that the 95% confidence intervals constructed based on asymptotic
distributions cover the true value; emp, empirical standard error; est, mean of estimated standard errors over 1000
replications.
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TABLE 2: Simulation results for comparisons between methods with and without using working models
based on n = 1000 and 1000 replications.

Method 1: with working models Method 2: without working models

𝛽c 𝛽X1
𝛽X2

𝛽Z 𝛽X2Z 𝛽c 𝛽X1
𝛽X2

𝛽Z 𝛽X2Z

MLE Bias 0.004 −0.004 −0.003 0.003 0.008 0.004 −0.004 −0.003 0.003 0.008

emp 0.075 0.087 0.087 0.086 0.091 0.075 0.087 0.087 0.086 0.091

est 0.076 0.085 0.087 0.087 0.088 0.076 0.085 0.087 0.087 0.088

cov 95.0 94.0 94.6 95.0 94.5 95.0 94.0 94.6 95.0 94.5

EL-1 Bias 0.005 0.008 −0.003 0.003 0.008 0.005 0.008 −0.003 0.003 0.007

emp 0.031 0.046 0.087 0.086 0.091 0.031 0.046 0.087 0.086 0.091

est 0.032 0.045 0.087 0.087 0.088 0.032 0.045 0.087 0.087 0.088

cov 95.7 93.8 94.6 95.1 94.6 95.7 93.8 94.6 95.1 94.6

EL-2 Bias 0.005 0.016 −0.012 0.003 0.008 0.005 0.017 −0.012 0.003 0.008

emp 0.029 0.039 0.035 0.086 0.090 0.029 0.039 0.035 0.086 0.090

est 0.030 0.038 0.036 0.087 0.087 0.030 0.038 0.036 0.087 0.087

cov 95.8 89.7 95.2 94.8 94.2 95.6 89.6 95.2 94.8 94.2

EL-3 Bias −0.001 −0.002 0.007 0.003 0.007 −0.001 −0.002 0.006 0.003 0.007

emp 0.038 0.047 0.045 0.086 0.091 0.037 0.046 0.044 0.086 0.091

est 0.038 0.046 0.047 0.087 0.087 0.037 0.045 0.046 0.087 0.087

cov 95.5 94.6 95.2 94.9 94.2 95.3 93.9 94.7 95.0 94.3

EL-12 Bias 0.002 0.016 −0.012 0.003 0.008 0.005 0.016 −0.012 0.003 0.007

emp 0.030 0.039 0.035 0.086 0.090 0.029 0.039 0.035 0.086 0.090

est 0.030 0.038 0.036 0.087 0.087 0.030 0.038 0.036 0.087 0.087

cov 95.2 90.6 95.4 94.7 94.3 95.4 89.7 95.4 94.8 94.3

EL-13 Bias 0.001 0.001 0.010 0.002 0.005 0.004 0.005 0.006 0.003 0.007

emp 0.045 0.047 0.051 0.086 0.091 0.030 0.040 0.045 0.086 0.091

est 0.046 0.046 0.052 0.087 0.087 0.030 0.039 0.046 0.087 0.087

cov 95.7 94.2 93.6 95.0 93.8 95.8 93.6 94.7 95.1 94.3

EL-23 Bias −0.001 −0.001 0.001 0.009 0.028 0.001 0.014 −0.010 0.001 0.016

emp 0.043 0.046 0.050 0.087 0.096 0.028 0.039 0.034 0.086 0.089

est 0.043 0.044 0.049 0.088 0.093 0.029 0.038 0.036 0.087 0.086

cov 94.7 93.1 94.5 95.1 94.2 95.6 90.5 96.0 94.8 93.9

EL-123 Bias −0.003 0.000 0.004 0.009 0.027 0.002 0.014 −0.009 0.001 0.016

emp 0.046 0.047 0.050 0.088 0.098 0.028 0.039 0.034 0.086 0.089

est 0.049 0.044 0.049 0.088 0.096 0.029 0.038 0.036 0.087 0.086

cov 95.0 93.1 93.6 94.7 94.9 95.2 90.4 95.8 94.9 94.0

Note: cov, percentage over 1000 replications that the 95% confidence intervals constructed based on asymptotic
distributions cover the true value; emp, empirical standard error; est, mean of estimated standard errors over 1000
replications.
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̂𝜷el2-1, ̂𝜷el2-2, and ̂𝜷el2-3, because the method in Gu et al. (2019) deals with one calculator.
The three versions of Gu et al.’s estimator are ̂𝜷GTCM-1, ̂𝜷GTCM-2, and ̂𝜷GTCM-3. For our
estimators, we consider the following specifications of d(𝑗)

(
X(𝑗)
)
: For ̂𝜷el2-1, take d(1)

(
X(1)
)

to be
(
1,X(1)

)
and
(
1,X(1),X

2
(1)
)
, resulting in ̂𝜷el2-1-1 and ̂𝜷el2-1-2, respectively. For ̂𝜷el2-2,

take d(2)
(
X(2)
)

to be (1,X1,
̃X2), (1,X1,

̃X2,X1
̃X2), and (1,X1,

̃X2,X1
̃X2,X

2
1), resulting in ̂𝜷el2-2-1,

̂𝜷el2-2-2, and ̂𝜷el2-2-3, respectively. For ̂𝜷el2-3, take d(3)
(
X(3)
)

to be (1,X1,X2), (1,X1,X2,X1X2),
and
(
1,X1,X2,X1X2,X

2
1 ,X

2
2

)
, resulting in ̂𝜷el2-3-1, ̂𝜷el2-3-2, and ̂𝜷el2-3-3, respectively.

Table 3 contains the simulation results based on n = 400 and n = 1000 using 1000 repli-
cations. The MLE ̂𝜷mle is also included as the benchmark for comparison. When varying the
d(𝑗)
(
X(𝑗)
)

for the proposed estimator ̂𝜷el2 based on either Calculator 2 or Calculator 3, inclusion
of the interaction between the calculator covariates (i.e., X1

̃X2 for Calculator 2 or X1X2 for
Calculator 3) in addition to the main effects leads to further efficiency gains for estimating 𝛽X2Z
(i.e., comparing EL2-2-2 to EL2-2-1 or comparing EL2-3-2 to EL2-3-1). Further inclusion of
the quadratic effects does not lead to additional efficiency gains. These observations suggest
that interactions should be included in d(𝑗)

(
X(𝑗)
)

if the current study model includes interactions
that involve the calculator covariates. We leave a detailed theoretical and numerical study
of this as a future research topic. Overall, the estimators GTCM-1, GTCM-2, and GTCM-3
based on Gu et al. (2019) sometimes have small biases, and the latter two have roughly the
same or slightly larger empirical standard errors compared to our estimators EL2-2-2 and
EL2-3-2, which include interactions in d(𝑗)

(
X(𝑗)
)
. For all the estimators under comparison, the

efficiency for estimating 𝛽Z does not change much from the MLE. This observation makes sense
because the calculators provide little auxiliary information about the regression coefficients
for the covariates not used by the calculators. This observation is also in full agreement with
findings in the existing literature (e.g., Chatterjee et al., 2016; Cheng et al., 2018; Han &
Lawless, 2019).

4. DATA APPLICATION

As an application, we fit an expanded regression model for high-grade prostate cancer by
including two biomarkers, i.e., PCA3 and TMPRSS2:ERG gene fusions, measured from urine,
in addition to the conventional risk factors such as PSA, age, race, DRE findings, prior biopsy
results, and family history. To improve the efficiency, we will integrate information from an
online accessible risk calculator, the PBCG risk calculator (Ankerst et al., 2018).

The PBCG risk calculator was built as a state-of-the-art risk prediction tool, an alternative
to the widely used PCPT risk calculator (Version 1, Thompson et al., 2006; Version 2, Ankerst
et al., 2014). The PCPT calculator was the first online prostate cancer risk assessment tool and
was built based on data collected in the 1990s from 5519 men, mostly White, in the placebo
group of the PCPT. In contrast, the PBCG risk calculator was built on data from 15,611 men
undergoing prostate biopsies during 2006–2017 at eight North American institutions and three
European institutions participating in the PBCG. The heterogeneity in the study cohorts in
PBCG endows the PBCG risk calculator with a much wider applicability compared to the PCPT
calculator.

The dataset we use is the validation cohort from Tomlins et al. (2016), who investigated
whether including two additional biomarkers, i.e., PCA3 and TMPRSS2:ERG, could give a more
accurate risk prediction compared to the PCPT calculator. This cohort consists of 1244 men
presenting for diagnostic biopsy at seven community clinics throughout the United States. Since
the PBCG risk calculator requires an input PSA level between 2 and 50 ng/ml and an input age
between 40 and 90 years, in our analysis we remove subjects with PSA and age outside those
ranges. The final analysis is based on 1014 men.
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TABLE 3: Simulation results for different choices of d(𝑗)
(
X(𝑗)
)

and comparisons to Gu et al. (2019) based
on 1000 replications.

n = 400 n = 1000

𝛽c 𝛽X1
𝛽X2

𝛽Z 𝛽X2Z 𝛽c 𝛽X1
𝛽X2

𝛽Z 𝛽X2Z

MLE Bias 0.010 −0.005 −0.013 0.006 0.016 0.006 −0.006 −0.003 0.006 0.002

emp 0.122 0.136 0.144 0.140 0.139 0.076 0.084 0.087 0.083 0.085

GTCM-1 Bias 0.036 0.015 0.008 0.044 −0.087 0.040 0.009 0.013 0.047 −0.093

emp 0.059 0.081 0.138 0.134 0.096 0.037 0.049 0.084 0.082 0.060

EL2-1-1 Bias −0.000 0.018 −0.013 0.006 0.016 0.007 0.009 −0.003 0.006 0.002

emp 0.052 0.076 0.144 0.140 0.139 0.033 0.045 0.087 0.083 0.085

EL2-1-2 Bias −0.000 0.018 −0.013 0.006 0.016 0.007 0.009 −0.002 0.006 0.003

emp 0.050 0.075 0.144 0.141 0.130 0.031 0.044 0.087 0.084 0.078

GTCM-2 Bias 0.028 −0.017 0.087 0.044 −0.089 0.032 −0.016 0.098 0.048 −0.093

emp 0.054 0.071 0.076 0.133 0.095 0.035 0.042 0.047 0.081 0.060

EL2-2-1 Bias 0.000 0.019 −0.033 0.006 0.015 0.006 0.018 −0.012 0.006 0.002

emp 0.048 0.065 0.062 0.141 0.138 0.030 0.037 0.035 0.083 0.085

EL2-2-2 Bias −0.009 0.011 −0.034 0.008 0.049 −0.002 0.011 −0.013 0.008 0.028

emp 0.042 0.060 0.062 0.141 0.104 0.026 0.034 0.036 0.084 0.061

EL2-2-3 Bias −0.010 0.011 −0.034 0.008 0.051 −0.002 0.011 −0.013 0.009 0.029

emp 0.042 0.060 0.062 0.142 0.104 0.026 0.034 0.036 0.084 0.061

GTCM-3 Bias 0.031 0.001 0.001 0.044 −0.087 0.034 −0.001 0.018 0.047 −0.093

emp 0.064 0.081 0.081 0.134 0.095 0.041 0.049 0.049 0.082 0.060

EL2-3-1 Bias −0.005 0.000 −0.012 0.006 0.014 0.000 −0.003 0.007 0.006 0.001

emp 0.059 0.076 0.075 0.140 0.139 0.039 0.044 0.045 0.083 0.085

EL2-3-2 Bias −0.008 −0.001 −0.013 0.006 0.024 −0.002 −0.006 0.005 0.007 0.013

emp 0.057 0.073 0.073 0.140 0.114 0.036 0.043 0.044 0.083 0.069

EL2-3-3 Bias −0.010 −0.001 −0.017 0.008 0.032 0.000 −0.008 0.012 0.005 0.005

emp 0.057 0.073 0.070 0.140 0.111 0.036 0.043 0.040 0.084 0.068

Note: The proposed method here is Method 2 without using working models. emp, empirical standard error; EL2-𝑗-1,
2, or 3, the proposed Method 2 without working models using Calculator 𝑗 and different specifications of d(𝑗)(X(𝑗));
GTCM-1, 2, or 3, the method in Gu et al. (2019) using Calculator 1, 2, or 3, respectively.

The logistic regression model of interest is

log 𝜋

1 − 𝜋
= 𝛽c + 𝛽1X1 + 𝛽2X2 + 𝛽3X3 + 𝛽4X4 + 𝛽5X5 + 𝛽6X6 + 𝛽7Z1 + 𝛽8Z2,

where 𝜋 is the probability of observing high-grade prostate cancer, X1 = log2(PSA) (log
transformation of the PSA level with base 2), X2 = age, X3 = DRE (a binary indicator of an
abnormal digital rectal exam), X4 = biopsy (a binary indicator of prior negative biopsy), X5 = race
(a binary indicator of African ancestry), and X6 = family history (a binary indicator of first-degree
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TABLE 4: Prostate cancer study analysis results based on logistic regression (n = 1014).

Without

calculators

With PBCG

calculator

With PBCG-2

calculator

With both

calculators

est SE P est SE P est SE P est SE P

Intercept −7.421 0.769 < 0.001 −6.802 0.227 < 0.001 −7.276 0.315 < 0.001 −6.826 0.229 < 0.001

log2(PSA) 0.595 0.119 < 0.001 0.756 0.033 < 0.001 0.774 0.051 < 0.001 0.751 0.033 < 0.001

Age 0.037 0.011 0.001 0.027 0.004 < 0.001 0.036 0.005 < 0.001 0.028 0.004 < 0.001

DRE 0.635 0.210 0.003 0.769 0.057 < 0.001 0.631 0.199 0.001 0.762 0.057 < 0.001

Biopsy −0.895 0.245 < 0.001 −0.938 0.058 < 0.001 −0.901 0.216 < 0.001 −0.943 0.058 < 0.001

Race 0.090 0.341 0.793 0.192 0.103 0.062 −0.050 0.120 0.675 0.181 0.103 0.079

History 0.248 0.209 0.235 0.413 0.049 < 0.001 0.249 0.191 0.193 0.414 0.049 < 0.001

PCA3 0.347 0.062 < 0.001 0.347 0.057 < 0.001 0.347 0.056 < 0.001 0.345 0.057 < 0.001

T2ERG 0.565 0.183 0.002 0.567 0.166 0.001 0.568 0.165 0.001 0.582 0.166 < 0.001

Note: Biopsy, a binary indicator of prior negative biopsy; DRE, a binary indicator of an abnormal digital rectal exam; est, estimated value;
History, a binary indicator of first-degree family history of prostate cancer; PCA3, log2(PCA3 + 1); Race, a binary indicator of African
ancestry; SE, standard error; T2ERG, dichotomized TMPRSS2:ERG split at the median.

family history of prostate cancer) are the conventional risk predictors, and Z1 = log2(PCA3 + 1)
and Z2 = T2:ERG are the two biomarkers. Here, following Cheng et al. (2019), we take the
log2 transformation of PCA3 and dichotomize TMPRSS2:ERG by splitting at the median. The
PBCG risk calculator uses X1 –X6 as the input. The exact formula for predicting the risk of
high-grade prostate cancer is given in the supplementary material of Ankerst et al. (2018). In
the same supplementary, Ankerst et al. (2018) also give formulas for risk prediction when some
or all of X3, X4, and X6 are not available. Therefore, as an illustration, in our application, we
also consider predictions based only on X1, X2, and X5 as input, and refer to this prediction as
calculator PBCG-2. Note that, since these two calculators were built using the same data and
the input of PBCG-2 is a subset of PBCG, we do not anticipate an efficiency improvement by
integrating PBCG-2 in addition to PBCG.

As a check of the assumption that p̂(𝑗) should be close to P
(
Y = 1|X(𝑗)

)
, we construct 95%

confidence intervals for the regression coefficients of X(𝑗) based on a logistic regression of
Y on X(𝑗), and then check whether these intervals cover the corresponding coefficients based
on a logistic model for p̂(𝑗) conditional on X(𝑗), where the latter coefficients are computed by
solving (2). We found coverage for all coefficients for both calculators. When looking at the 68%
confidence intervals, instead, we found coverage for all coefficients but not that of X1 for both
calculators. These findings show that it is reasonable to assume p̂(𝑗) is close to P

(
Y = 1|X(𝑗)

)
.

Table 4 contains the analysis results based on both ̂𝜷mle and ̂𝜷el2. For ̂𝜷el2, d(𝑗)
(
X(𝑗)
)

is
taken to be (1,X1,X2,X3,X4,X5,X6) and (1,X1,X2,X5) for the PBCG and PBCG-2 calculators,
respectively. Results based on ̂𝜷el1 are very similar to those based on ̂𝜷el2 and are thus omitted. A
major observation is that, after integrating information from the PBCG calculator, the standard
errors corresponding to X1 –X6, the covariates also used by the PBCG calculator, reduce to a
third or a quarter of those for the MLE. Standard errors corresponding to Z1 and Z2 also become
smaller. Similar observations can be made when integrating the PBCG-2 calculator. These are in
full agreement with our theoretical results. Integrating both calculators simultaneously produces
more or less the same results as integrating the PBCG calculator alone, which is what we
anticipated. Another major observation is that integrating information from the PBCG calculator
reveals a marginal significance of African ancestry (P = 0.062) and a high significance of family
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history (P < 0.001) for their association with high-grade prostate cancer. This significance is not
detected without integrating the PBCG information.

5. DISCUSSION

We have proposed two methods for integrating information contained in existing risk calculators
into estimation of regression parameters. The first method relies on working models to extract
information contained in the calculators, and the second method directly uses the risk predictions
without working models. The second method is recommended in practice because its efficiency
gain is not compromised by the estimation of any nuisance parameters introduced by working
models. Given that many risk calculators have been developed for various diseases and many of
them are of black-box type, our proposed methods have a broad range of applications.

A potential issue when integrating information from multiple calculators is that these
calculators may target different populations, either because of an original design or because
of the sample based on which they were built. When the population from which the current
study sample is taken is different from the populations the existing calculators can be applied
to, p̂(𝑗) may no longer be a good approximation to P

(
Y = 1|X(𝑗)

)
, and in this case integrating

information from such calculators will introduce bias. Thus, it is crucial to use calculators whose
target population is the same as the current one. This indeed was the consideration in our data
application when choosing the PBCG calculator over the PCPT calculator, as the former was
built based on multiple heterogeneous cohorts and thus has a wider applicability. Recently, Estes,
Mukherjee & Taylor (2018), Sheng et al. (2021) and Zhai & Han (2022) proposed methods
to address the population heterogeneity problem under the setting where external models and
parameter estimates are directly available. These methods can be combined with the techniques
developed here to deal with black-box calculators in the presence of population heterogeneity.
New methods dealing with population heterogeneity could also be developed for data integration
purposes. For example, as pointed out by one referee, the instance weighting method for domain
adaption in the natural language processing literature may be adopted (e.g., Jiang & Zhai, 2007).

In this article, we considered binary outcomes that indicate whether experiencing an event
or not. The proposed methods can be directly applied to continuous outcomes under linear
regression models with calculators predicting the outcome values. A desirable extension is to the
setting of survival outcomes where calculators are available that give the, say, 5-year survival
probabilities based on a set of risk factors. Because of the importance of survival outcomes in
many areas, including medicine and public health, such an extension is highly desirable and will
be investigated in our future research.

ACKNOWLEDGEMENTS

The authors thank the Editor, Associate Editor, and two referees for their constructive comments
that have helped us improve the quality of this article. The research of the first author was partially
supported by a University of Michigan start-up grant, the research of the second author was
partially supported by the US National Institutes of Health grant CA129102, and the research of
the third author was partially supported by the National Science Foundation grant DMS 1712933
and National Institutes of Health grant R01-HG008773-01.

REFERENCES
Ankerst, D. P., Hoefler, J., Bock, S., Goodman, P. J., Vickers, A., Hernandez, J., Sokoll, L. J. et al. (2014).

The prostate cancer prevention trial risk calculator 2.0 for the prediction of low- vs high-grade prostate
cancer. Urology, 83, 1362–1367.

Ankerst, D. P., Straubinger, J., Selig, K., Guerrios, L., Hoedt, A. D., Hernandez, J., Liss, M. A., & Leach,
R. J. (2018). A contemporary prostate biopsy risk calculator based on multiple heterogeneous cohorts.
European Urology, 74, 197–203.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11701



2023 INTEGRATING INFORMATION FROM RISK PREDICTION MODELS 371

Boonstra, P. S., Taylor, J. M. G., & Mukherjee, B. (2013). Incorporating auxiliary information for improved
prediction in high-dimensional datasets: An ensemble of shrinkage approaches. Biostatistics, 14,
259–272.

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
Chatterjee, N., Chen, Y. H., Maas, P., & Carroll, R. J. (2016). Constrained maximum likelihood estimation

for model calibration using summary-level information from external big data sources. Journal of the
American Statistical Association, 111, 107–117.

Chaudhuri, S., Handcock, M. S., & Rendall, M. S. (2008). Generalized linear models incorporating
population level information: An empirical-likelihood-based approach. Journal of the Royal Statistical
Society Series B, 70, 311–328.

Chen, J. & Qin, J. (1993). Empirical likelihood estimation for finite populations and the effective usage of
auxiliary information. Biometrika, 80, 107–116.

Chen, J., Sitter, R. R., & Wu, C. (2002). Using empirical likelihood methods to obtain range restricted
weights in regression estimators for surveys. Biometrika, 89, 230–237.

Chen, S. & Kim, J. K. (2014). Population empirical likelihood for nonparametric inference in survey
sampling. Statistica Sinica, 24, 335–355.

Chen, Y. H. & Chen, H. (2000). A unified approach to regression analysis under double sampling design.
Journal of the Royal Statistical Society, Series B, 62, 449–460.

Cheng, W., Taylor, J. M. G., Gu, T., Tomlins, S. A., & Mukherjee, B. (2019). Informing a risk prediction
model for binary outcomes with external coefficient information. Journal of the Royal Statistical
Society: Series C, 68, 121–139.

Cheng, W., Taylor, J. M. G., Vokonas, P. S., Park, S. K., & Mukherjee, B. (2018). Improving estimation and
prediction in linear regression incorporating external information from an established reduced model.
Statistics in Medicine, 37, 1515–1530.

Deville, J. & Särndal, C. (1992). Calibration estimators in survey sampling. Journal of the American
Statistical Association, 87(418), 376–382.

Estes, J. P., Mukherjee, B., & Taylor, J. M. G. (2018). Empirical Bayes estimation and prediction using
summary-level information from external big data sources adjusting for violations of transportability.
Statistics in Biosciences, 10, 568–586.

Grill, S., Fallah, M., Leach, R., Thompson, I., Hemminki, K., & Ankerst, D. (2015). A simple-to-use method
incorporating genomic markers into prostate cancer risk prediction tools facilitated future validation.
Journal of Clinical Epidemiology, 68, 563–573.

Gu, T., Taylor, J. M. G., Cheng, W., & Mukherjee, B. (2019). Synthetic data method to incorporate external
information into a current study. Canadian Journal of Statistics, 47, 580–603.

Han, P. & Lawless, J. F. (2016). Discussion of “Constrained maximum likelihood estimation for model
calibration using summary-level information from external big data sources”. Journal of the American
Statistical Association, 111, 118–121.

Han, P. & Lawless, J. F. (2019). Empirical likelihood estimation using auxiliary summary information with
different covariate distributions. Statistica Sinica, 29, 1321–1342.

Han, P. & Wang, L. (2013). Estimation with missing data: Beyond double robustness. Biometrika, 100,
417–430.

Hayfield, T. & Racine, J. S. (2008). Nonparametric econometrics: The np package. Journal of Statistical
Software, 27(5), 1–32.

Huang, C.-Y. & Qin, J. (2020). A unified approach for synthesizing population-level covariate effect
information in semiparametric estimation with survival data. Statistics in Medicine, 39, 1573–1590.

Huang, C.-Y., Qin, J., & Tsai, H.-T. (2016). Efficient estimation of the Cox model with auxiliary subgroup
survival information. Journal of the American Statistical Association, 111, 787–799.

Imbens, G. W. & Lancaster, T. (1994). Combining micro and macro data in microeconometric models.
Review of Economic Studies, 61, 655–680.

Jiang, J. & Zhai, C. (2007). Instance weighting for domain adaptation in NLP. In Proceedings of the 45th
Annual Meeting of the Association of Computational Linguistics, 264–271.

Klein, R. W. & Spady, R. H. (1993). An efficient semiparametric estimator for binary response models.
Econometrica, 61, 387–421.

Lehmann, E. L. & Casella, G. (2003). Theory of Point Estimation, Springer, New York, NY.
Liaw, A. & Wiener, M. (2002). Classification and regression by randomForest. R News, 2(3), 18–22.

DOI: 10.1002/cjs.11701 The Canadian Journal of Statistics / La revue canadienne de statistique



372 HAN, TAYLOR AND MUKHERJEE Vol. 51, No. 2

Lumley, T., Shaw, P. A., & Dai, J. Y. (2011). Connections between survey calibration estimators and
semiparametric models for incomplete data. International Statistical Review, 79, 200–220.

Mocellin, S., Thompson, J. F., Pasquali, S., Montesco, M. C., Pilati, P., Nitti, D., Saw, R. P., Scolyer, R. A.,
Stretch, J. R., & Rossi, C. R. (2009). Sentinel node status prediction by four statistical models: Results
from a large bi-institutional series (n = 1132). Annals of Surgery, 250, 964–969.

Owen, A. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika, 75,
237–249.

Owen, A. (2001). Empirical Likelihood, Chapman & Hall/CRC Press, New York, NY.
Qin, J. (2000). Combining parametric and empirical likelihoods. Biometrika, 87, 484–490.
Qin, J. (2017). Biased Sampling, Over-identified Parameter Problems and Beyond, Springer Nature, Cham,

Switzerland.
Qin, J. & Lawless, J. (1994). Empirical likelihood and general estimating equations. Annals of Statistics,

22, 300–325.
Qin, J., Zhang, H., Li, P., Albanes, D., & Yu, K. (2015). Using covariate specific disease prevalence

information to increase the power of case-control study. Biometrika, 102, 169–180.
R Core Team (2021). R: A Language and Environment for Statistical Computing, R Foundation for

Statistical Computing, Vienna, Austria.
Sheng, Y., Sun, Y., Huang, C.-Y., & Kim, M. (2021). Synthesizing external aggregated information in the

presence of population heterogeneity: A penalized empirical likelihood approach. Biometrics. https://
doi.org/10.1111/biom.13429

Thompson, I. M., Ankerst, D. P., Chi, C., Goodman, P. J., Tangen, C. M., Lucia, M. S., Feng, Z., Parnes,
H. L., & Coltman, C. A. (2006). Assessing prostate cancer risk: Results from the prostate cancer
prevention trial. Journal of the National Cancer Institute, 98, 529–534.

Tomlins, S. A., Day, J. R., Lonigro, R. J., Hovelson, D. H., Siddiqui, J., Kunju, L. P., Dunn, R. L. et al.
(2016). Urine TMPRSS2:ERG plus PCA3 for individualized prostate cancer risk assessment. European
Urology, 70, 45–53.

van der Vaart, A. W. (1998). Asymptotic Statistics, Cambridge University Press, Cambridge, UK.
Zhai, Y. & Han, P. (2022). Data integration with oracle use of external information from heterogeneous

populations. Journal of Computational and Graphical Statistics. https://doi.org/10.1080/10618600
.2022.2050248

APPENDIX

Derivation of (5) and (6)
Using the Lagrange multiplier method, the Lagrangian corresponding to the constrained opti-
mization problem (4) is

 =
n∑

i=1

log 𝑓i(𝜷) +
n∑

i=1

log qi + n𝝆T
n∑

i=1

qiui(𝜷, ̂𝜽) − 𝜇

(
n∑

i=1

qi − 1

)

,

where 𝝆 and 𝜇 are the Lagrange multipliers. At the solution ̂𝜷el1 and q̂i, we must have 𝜕∕𝜕qi = 0
and 𝜕∕𝜕𝜷 = 0 for some �̂� and �̂�. Multiplying both sides of 𝜕∕𝜕qi = 1∕q̂i + n�̂�Tui( ̂𝜷el1,

̂𝜽) −
�̂� = 0 by q̂i and summing over i, the constraints in (4) lead to �̂� = n, which, combined with
𝜕∕𝜕qi = 0, yields q̂i = 1∕[n{1 − �̂�Tui( ̂𝜷el1,

̂𝜽)}]. Then 𝜕∕𝜕𝜷 = 0 gives (5), and the constraint
∑n

i=1qiui( ̂𝜷el1,
̂𝜽) = 0 gives (6).

Regularity Conditions
Regularity Conditions 1. (1) The parameter spaces  for 𝜷 and Θ for 𝜽 are compact.
𝜷0 is an interior point of , and 𝜽∗ is an interior point of Θ. (2) E[log 𝑓 (Y|X,Z;𝜷)]
is uniquely maximized at 𝜷0, and E[u(X,Z;𝜷0,𝜽)] = 0 has a unique solution 𝜽∗. (3)
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E[sup(𝜷,𝜽)∈×Θ ||u(X,Z;𝜷,𝜽)||𝛼] <∞ for some 𝛼 > 2. (4) E[𝜕2 log 𝑓 (Y|X,Z;𝜷0)∕𝜕𝜷𝜕𝜷T ]
and E{u(X,Z;𝜷0,𝜽

∗)u(X,Z;𝜷0,𝜽
∗)T} are nonsingular. (5) sup(𝜷,𝜽)∈×Θ n−1∕2∑n

i=1{li(𝜷,𝜽) −
E[l(𝜷,𝜽)]} = Op(1) for l(𝜷,𝜽) = log 𝑓 (Y|X,Z;𝜷) and u(X,Z;𝜷,𝜽). (6) u(X,Z;𝜷,𝜽) is continu-
ously differentiable, E[sup(𝜷,𝜽)∈×Θ ‖𝜕u(𝜷,𝜽)∕𝜕𝜷‖] <∞, and E[sup(𝜷,𝜽)∈×Θ ‖𝜕u(𝜷,𝜽)∕𝜕𝜽‖] <
∞. (7) log 𝑓 (Y|X,Z;𝜷) is twice continuously differentiable and E[sup𝜷∈ ‖𝜕s(𝜷)∕𝜕𝜷‖] <∞.

Regularity Conditions 2. (1) The parameter space  for 𝜷 is compact. 𝜷0 is an interior point
of . (2) E[log 𝑓 (Y|X,Z;𝜷)] is uniquely maximized at 𝜷0. (3) E[sup𝜷∈ ||u(X,Z;𝜷)||𝛼] < ∞
for some 𝛼 > 2. (4) E[𝜕2 log 𝑓 (Y|X,Z;𝜷0)∕𝜕𝜷𝜕𝜷T ] and E{u(X,Z;𝜷0)u(X,Z;𝜷0)T} are nonsin-
gular. (5) sup𝜷∈ n−1∕2∑n

i=1{li(𝜷) − E[l(𝜷)]} = Op(1) for l(𝜷) = log 𝑓 (Y|X,Z;𝜷) and u(X,Z;𝜷).
(6) u(X,Z;𝜷) is continuously differentiable and E[sup𝜷∈ ‖𝜕u(𝜷)∕𝜕𝜷‖]< ∞. (7) log𝑓 (Y|X,Z;𝜷)
is twice continuously differentiable and E[sup𝜷∈ ‖𝜕s(𝜷)∕𝜕𝜷‖] < ∞.

Proof of Theorem 1
For (i), because E{u(𝜷0,𝜽

∗)} = 0, an application of the M-estimator theory (e.g., van der

Vaart, 1998) to (5) and (6) leads to ( ̂𝜷el1, �̂�)
p
−→ (𝜷0, 0) as n → ∞. Thus, ̂𝜷el1

p
−→ 𝜷0.

For (ii), applying the mean value theorem to (5) and (6) around (𝜷0,𝝆 = 0) leads to

0 = 1
n

n∑

i=1

(
si(𝜷0)

ui(𝜷0,
̂𝜽)

)

+ 1
n

n∑

i=1

⎛
⎜
⎜
⎜
⎝

𝜕si(𝜷)
𝜕𝜷

,

𝜕ui( ̂𝜷el1, ̂𝜽)∕𝜕𝜷T

1−�̂�Tui( ̂𝜷el1, ̂𝜽)

𝜕ui(𝜷, ̂𝜽)∕𝜕𝜷
1−𝝆Tui( ̂𝜷el1, ̂𝜽)

,

ui(𝜷, ̂𝜽)ui( ̂𝜷el1, ̂𝜽)T

{1−𝝆Tui( ̂𝜷el1, ̂𝜽)}2

⎞
⎟
⎟
⎟
⎠

(
̂𝜷el1 − 𝜷0

�̂�

)

,

where 𝜷 is some value between ̂𝜷el1 and 𝜷0, and 𝝆 is some value between �̂� and 0. Then, we
have

√
n

(
̂𝜷el1 − 𝜷0

�̂�

)

= −

(
−S, GT

1

G1, U1

)−1
1
√

n

n∑

i=1

(
si(𝜷0)

ui(𝜷0,
̂𝜽)

)

+ op(1)

= −

(
−S, GT

1

G1, U1

)−1 ⎧
⎪
⎨
⎪
⎩

1
√

n

n∑

i=1

(
si(𝜷0)

ui(𝜷0,𝜽
∗)

)

+
⎛
⎜
⎜
⎝

0
{

1
n

∑n
i=1

𝜕ui(𝜷0,𝜽)
𝜕𝜽

}√
n( ̂𝜽 − 𝜽∗)

⎞
⎟
⎟
⎠

⎫
⎪
⎬
⎪
⎭

+ op(1)

= −

(
−S, GT

1

G1, U1

)−1{

1
√

n

n∑

i=1

(
si(𝜷0)

ui(𝜷0,𝜽
∗)

)

+

(
0

Q
√

n( ̂𝜽 − 𝜽∗)

)}

+ op(1),

where Q ≡ E{𝜕u(𝜷0,𝜽
∗)∕𝜕𝜽} and 𝜽 is some value between ̂𝜽 and 𝜽∗. On the other hand,

since ̂𝜽(𝑗) solves (2) and we assume p̂(𝑗) = P
(
Y = 1|X(𝑗)

)
, it is seen that ̂𝜽 actually solves

∑n
i=1
̃Ei{u(𝜷0,𝜽)} = 0. Then, some algebra shows that

√
n( ̂𝜽 − 𝜽∗) = −Q−1 1

√
n

n∑

i=1

̃Ei{u(𝜷0,𝜽
∗)} + op(1).
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Therefore, we have

√
n

(
̂𝜷el1 − 𝜷0

�̂�

)

= −

(
−S, GT

1

G1, U1

)−1
1
√

n

n∑

i=1

(
si(𝜷0)

ui(𝜷0,𝜽
∗) − ̃Ei{u(𝜷0,𝜽

∗)}

)

+ op(1).

Some calculation leads to

Var

(
s(𝜷0)

u(𝜷0,𝜽
∗) − ̃E{u(𝜷0,𝜽

∗)}

)

=

(
S 0
0 𝛀

)

,

and thus from the central limit theorem, we have

asyVar

{
√

n

(
̂𝜷el1 − 𝜷0

�̂�

)}

=

(
−S, GT

1

G1, U1

)−1(
S 0
0 𝛀

)(
−S, GT

1

G1, U1

)−1

.

Some further calculation then yields (8).
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