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Abstract: Consider the setting where (i) individual-level data are collected to build a regression model for the association between an
event of interest and certain covariates, and (ii) some risk calculators predicting the risk of the event using less detailed covariates
are available, possibly as algorithmic black boxes with little information available about how they were built. We propose a general
empirical-likelihood-based framework to integrate the rich auxiliary information contained in the calculators into fitting the regression
model, to make the estimation of regression parameters more efficient. Two methods are developed, one using working models to
extract the calculator information and one making a direct use of calculator predictions without working models. Theoretical and
numerical investigations show that the calculator information can substantially reduce the variance of regression parameter estimation.
As an application, we study the dependence of the risk of high grade prostate cancer on both conventional risk factors and newly
identified molecular biomarkers by integrating information from the Prostate Biopsy Collaborative Group (PBCG) risk calculator,
which was built based on conventional risk factors alone. The Canadian Journal of Statistics xx: 1–1; 2022 © 2022 Statistical
Society of Canada

Résumé: Insérer votre résumé ici. We will supply a French abstract for those authors who can’t prepare it themselves. La revue
canadienne de statistique xx: 1–1; 2022 © 2022 Société statistique du Canada

1. INTRODUCTION

In the era of data science, it is common that data are collected from several sources and all provide useful information
for answering the same scientific question. An analysis based on a single data source may yield biases in estimation or
results that are not accurate enough. Integrating data from multiple sources becomes essential in order to pull together
different pieces of information to draw more accurate conclusions and to make more insightful decisions. A common
issue for data integration is that different sources usually provide information in different forms: some studies release the
actual collected individual-level data whereas others only release aggregate data after the analysis. Different methods
are needed to integrate different forms of data and to conduct inference.

This paper considers the setting where a current study collects individual-level data and builds a regression model to
study the association between the risk of experiencing an event of interest and certain covariates, and where some risk
prediction models for the same event using less detailed covariates have been built by previous studies and are accessible
as risk calculators with little model detail released. These risk calculators contain rich information about the association
of interest and thus it is highly desirable to integrate such information into fitting the regression model in order to
improve the estimation efficiency and better understand how the risk is affected by different covariates, especially when
the sample size of the current-study data is not large.

We consider the situation where some of the covariates are conventional risk factors known to be associated with the
event and/or are typically adjusted for, and others are new potential factors whose association with the event has not been
well studied. An example is our data application in Section 4 that studies the risk for high grade prostate cancer. Most
existing studies on prostate cancer do not consider risk factors that are related to the molecular mechanisms of prostate
cancer progression. However, it has been shown that prostate cancer antigen 3 (PCA 3) and TMPRSS2:ERG gene
fusions are two biomarkers that have better specificity than prostate-specific antigen (PSA), a well-known conventional
predictor, for early detection of prostate cancer (Tomlins et al., 2016). Therefore, in our data application we will build
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an expanded regression model by including both biomarkers in addition to some conventional risk factors, such as age,
race, PSA, digital rectal examination (DRE) findings, prior biopsy results, and family history. The setting we consider
has a current study that collects individual-level data on both types of covariates. On the other hand, for the same event of
interest, some existing studies have developed risk calculators that output the predicted risk of the event based on certain
conventional factors. Many such risk calculators are accessible online. For instance, for prostate cancer, some widely
used online risk calculators include the Prostate Cancer Prevention Trial (PCPT) risk calculator (Version 1, Thompson
et al., 2006; Version 2, Ankerst et al., 2014) and the more recent Prostate Biopsy Collaborative Group (PBCG) risk
calculator (Ankerst et al., 2018). Such risk calculators contain useful auxiliary information about the association of
interest, but they are sometimes available as a black box with little detail released about the actual models used to build
them, especially when they are built based on machine learning techniques (e.g. Mocellin et al., 2009).

The setting we consider is substantially different from the ones in the existing literature which assume that external
study model details are available. Such details typically include the specification of the model, the estimated parameter
values, and sometimes the corresponding standard errors (e.g. Imbens & Lancaster, 1994; Qin, 2000; Chatterjee et al.,
2016; Cheng et al., 2018; Cheng et al., 2019; Han & Lawless, 2019; Huang and Qin, 2020; Sheng et al., 2021). It is also
different from the settings where the population values of certain quantities are available and can be used as calibration
factors to increase the efficiency of estimation (e.g. Deville & Sarndal, 1992; Chen & Qin, 1993; Chaudhuri et al., 2008;
Lumley et al., 2011; Chen & Kim, 2014; Qin et al., 2015; Huang et al., 2016). The lack of such concrete information in
our setting presents a unique challenge. Without assuming any detailed knowledge about the risk calculator models, we
will develop methods to extract the auxiliary information contained in the risk calculators and integrate it into fitting the
regression model of interest. Integrating such auxiliary information can considerably improve the estimation efficiency.
Our setting is similar to that in Gu et al. (2019), who considered only one risk calculator and proposed a synthetic data
method based on multiple imputation, fundamentally different from our development.

Our development is based on the empirical likelihood (EL) method (Owen, 1988, 2001; Qin & Lawless, 1994). The
EL method has been widely adopted to integrate auxiliary information to improve the estimation efficiency, especially in
survey sampling (e.g. Chen & Qin, 1993; Chen et al., 2002; Chaudhuri et al., 2008; Chen & Kim, 2014) and medicine and
public health related research (e.g. Qin et al., 2015; Huang et al., 2016; Qin, 2017; Cheng et al., 2018; Han & Lawless,
2019). The constrained maximum likelihood estimation proposed in Chatterjee et al. (2016) has a strong connection to
the EL method (Han & Lawless 2016). Compared to existing alternatives, such as those based on the generalized method
of moments (e.g. Imbens & Lancaster, 1994), the generalized regression (e.g. Chen & Chen, 2000), weight calibration
(e.g. Lumley et al., 2011), and others (e.g. Boonstra et al., 2013; Grill et al., 2015; Estes et al., 2018), the EL-type
methods provide a likelihood-based framework for estimation and inference. Details about many superior properties of
the EL method can be found in Owen (2001) and Qin (2017). Our development in this paper also extends the EL method
to new settings of data integration and expands its applicability and effectiveness.

The rest of the paper is organized as follows. Section 2 contains our proposed methods, one based on postulating
working models and one without. Section 3 gives simulation studies and Section 4 provides an application to prostate
cancer research. Some discussions are given in Section 5. The Appendix includes some technical details for the results
established in Section 2.

2. THE PROPOSED METHODS

2.1. Notation and Setup
The main interest is to study the association between the risk of experiencing an event and certain covariates, including
both the conventional and the newly discovered risk factors. Let Y denote the binary outcome indicating if a subject
experiences the event (Y = 1 if yes and Y = 0 if no), X the vector of conventional risk factors, and Z the vector
of newly discovered risk factors. A regression model P (Y = 1 | X,Z;β) is specified for the risk P (Y = 1 | X,Z),
where β is the vector of regression parameters and has the true value β0 such that P (Y = 1 | X,Z;β0) = P (Y = 1 |
X,Z). A widely used regression model is the logistic regression

P (Y = 1 | X,Z;β) = exp(βc + βT
XX + βT

ZZ)/{1 + exp(βc + βT
XX + βT

ZZ)}.
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Let (Yi,Xi,Zi), i = 1, . . . , n, denote the individual-level data collected based on a random sample of size n. Then
the maximum likelihood estimator (MLE) for β0 is

β̂mle ≡ argmax
β

n∏
i=1

f(Yi | Xi,Zi;β), (1)

where f(Y | X,Z;β) = P (Y = 1 | X,Z;β)I(Y=1)P (Y = 0 | X,Z;β)I(Y=0) and I(·) is the indicator function.
Write s(β) ≡ s(Y,X,Z;β) = ∂ log f(Y | X,Z;β)/∂β and S(β) = E{s(β)s(β)T}. From the theory of MLE (e.g.
Lehmann & Casella, 2003), as n → ∞, we know that β̂mle

p−→ β0,
√
n(β̂mle − β0)

d−→ N(0,S−1), and β̂mle has the
optimal efficiency when no auxiliary information about β0 is available, where S ≡ S(β0).

Previous studies on the same event of interest have usually produced rich auxiliary information about the associ-
ation, and such information can be used to improve the estimation efficiency over the MLE β̂mle. In this paper we
consider the case where the results from previous studies are available through risk calculators. Suppose that there are
J risk calculators for calculating the risk of experiencing the event. It is common that some risk factors collected in a
current study were not used or available in previous studies, and, for those that were indeed used, the current study may
take a finer measurement (e.g. a continuous measurement instead of a categorical one). To take these possibilities into
consideration, let Z be the risk factors that are available only in the current study. For the jth calculator, j = 1, . . . , J ,
let X(j) be a possibly coarsened version of X . For example, the variables in X(j) may be a subset and/or a categorized
version of those in X . In other words, X(j) is a many-to-one function of X: the value of X(j) can be completely
determined by X but not the reverse. The jth calculator uses X(j) as the predictors to calculate the risk of experiencing
the event, P (Y = 1 | X(j)), and let p̂(j) denote the corresponding predicted value for P (Y = 1 | X(j)). Thus, based on
the collected individual-level data, the jth calculator produces data (X(j)i, p̂(j)i), i = 1, . . . , n. To keep the generality
of our development, we do not assume any other knowledge about these risk calculators.

2.2. A Method Based on Working Models
To extract information from the data (X(j)i, p̂(j)i) produced by the jth calculator, we postulate a working model
p(j)(X(j);θ(j)) ≡ P (Y = 1 | X(j);θ(j)) for P (Y = 1 | X(j)) with parameter vector θ(j). Such a working model
represents our knowledge/belief about how the association between Y and X(j) should be modeled. This working
model may be different from the actual unknown model used to build the calculator and it may be incorrectly speci-
fied for P (Y = 1 | X(j)), but this does not prevent the working model from providing a reasonable approximation to
P (Y = 1 | X(j)) and extracting the calculator information.

A challenge when fitting the working model p(j)(X(j);θ(j)) based on the data (X(j)i, p̂(j)i) is that the p̂(j) is
a fixed function of X(j) determined by the jth calculator with no randomness. If the output from the jth calculator
were a random binary value Ŷ(j) ∼ Bernoulli(p̂(j)), we could fit the working model p(j)(X(j);θ(j)) by maximizing the
likelihood

n∏
i=1

p(j)(X(j)i;θ(j))
Ŷ(j)i{1− p(j)(X(j)i;θ(j))}1−Ŷ(j)i ,

which would lead to estimating θ(j) by solving the corresponding score equation

n∑
i=1

Ŷ(j)i − p(j)(X(j)i;θ(j))

p(j)(X(j)i;θ(j)){1− p(j)(X(j)i;θ(j))}
∂p(j)(X(j)i;θ(j))

∂θ(j)
= 0.

With the fixed value p̂(j), we replace the Ŷ(j) in the above equation by p̂(j) and estimate θ(j) by θ̂(j) that solves

n∑
i=1

p̂(j)i − p(j)(X(j)i;θ(j))

p(j)(X(j)i;θ(j)){1− p(j)(X(j)i;θ(j))}
∂p(j)(X(j)i;θ(j))

∂θ(j)
= 0. (2)
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Therefore, the information contained in the jth calculator is summarized by the working model p(j)(X(j);θ(j)) and the
parameter estimate θ̂(j) that satisfies (2).

Another justification for fitting the model p(j)(X(j);θ(j)) by solving (2) is to consider the weighted least squares
discrepancy

n∑
i=1

(
p̂(j)i − p(j)(X(j)i;θ(j))√

p̂(j)i(1− p̂(j)i)

)2

between p(j)(X(j);θ(j)) and p̂(j), where p̂(j)(1− p̂(j)) is an estimate of the variance of the binary outcome Y at X(j).
Minimizing this discrepancy amounts to solving

n∑
i=1

p̂(j)i − p(j)(X(j)i;θ(j))

p̂(j)i(1− p̂(j)i)

∂p(j)(X(j)i;θ(j))

∂θ(j)
= 0.

Equation (2) is the same as this equation with p̂(j)(1− p̂(j)) replaced by p(j)(X(j);θ(j)){1− p(j)(X(j);θ(j))}, which
is an estimate of the variance of Y based on the working model. Thus, θ̂(j) actually makes p(j)(X(j);θ(j)), the predic-
tion of P (Y = 1 | X(j)) based on the working model, as close as possible to p̂(j), the prediction based on the calculator.

To transform the summarized information into a form that can be integrated into the estimation of β0, consider for a
moment the hypothetical scenario where the calculators output the exact true risk of experiencing the event; i.e. p̂(j) ≡
P (Y = 1 | X(j)). Then, because θ̂(j) solves (2), we have E(Y,X,Z){h(j)(Y,X(j);θ

∗
(j))} = 0, where θ̂(j)

p−→ θ∗
(j) as

n → ∞ and

h(j)(Y,X(j);θ(j)) =
Y − p(j)(X(j);θ(j))

p(j)(X(j);θ(j)){1− p(j)(X(j);θ(j))}
∂p(j)(X(j);θ(j))

∂θ(j)
.

Here and after, we occasionally use a subscript to explicitly indicate under which distribution is the expectation taken;
e.g., E(Y,X,Z)(·) is taken under the joint distribution of (Y,X,Z). Write

u(j)(X,Z;β,θ(j)) =
P (Y = 1 | X,Z;β)− p(j)(X(j);θ(j))

p(j)(X(j);θ(j)){1− p(j)(X(j);θ(j))}
∂p(j)(X(j);θ(j))

∂θ(j)
,

we then have

E(Y,X,Z){h(j)(Y,X(j);θ
∗
(j))} = E(X,Z)[E(Y |X,Z){h(j)(Y,X(j);θ

∗
(j)) | X,Z}]

= E(X,Z){u(j)(X,Z;β0,θ
∗
(j))},

and thus

E(X,Z){u(j)(X,Z;β0,θ
∗
(j))} = 0. (3)

Therefore, through fitting the working model p(j)(X(j);θ(j)), (3) summarizes the information regarding β0 contained
in the jth calculator as a moment constraint under the marginal distribution of (X,Z).
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To take the moment constraint (3) into account when estimating β0, we consider a discrete distribution qi =

dF (Xi,Zi) on the data points (Xi,Zi), i = 1, . . . , n, and propose to estimate β0 by β̂el1 defined through

max
β,q1,...,qn

n∏
i=1

{f(Yi | Xi,Zi;β)qi} subject to

qi > 0,

n∑
i=1

qi = 1,

n∑
i=1

qiu(j)(Xi,Zi;β, θ̂(j)) = 0 (j = 1, . . . , J). (4)

Compared to (1), the maximization in (4) is over the joint distribution of (Y,X,Z), where the conditional distribution
of Y | (X,Z) is parametrically modeled and the marginal distribution of (X,Z) is nonparametrically modeled subject
to certain constraints that are a data version of (3). Therefore, β̂el1 integrates the auxiliary information about β0 and
thus should have higher efficiency compared to the MLE β̂mle. The maximization (4) is similar to that in Qin (2000).

With J calculators, write

θ =


θ(1)

θ(2)

...
θ(J)

 and u(β,θ) ≡ u(X,Z;β,θ) =


u(1)(X,Z;β,θ(1))

u(2)(X,Z;β,θ(2))

...
u(J)(X,Z;β,θ(J))

 .

In the Appendix we show that β̂el1 is the component of (β̂el1, ρ̂) that satisfies

n∑
i=1

si(β̂el1) +

n∑
i=1

∂ui(β̂el1, θ̂)/∂β
T

1− ρ̂Tui(β̂el1, θ̂)
ρ̂ = 0, (5)

n∑
i=1

ui(β̂el1, θ̂)

1− ρ̂Tui(β̂el1, θ̂)
= 0, (6)

Equivalently, β̂el1 is also the component of (β̂el1, ρ̂, θ̂) that satisfies (5), (6) and (2) simultaneously.
When studying the asymptotic properties of β̂el1, a complication is that, for each risk calculator, the output risk

prediction is based on a fixed function of the input covariates and does not accommodate the uncertainty associated
with the model fitting when building the risk calculators. If the fixed function of X(j) used by the jth calculator is not
the same as P (Y = 1 | X(j)), β̂el1 will not be theoretically consistent for β0, although the bias may be small if the
output p̂(j) is close to P (Y = 1 | X(j)). This is intuitive because the calculator information needs to compatible with
that of the current study to yield improvements after data integration. Incompatible information will bias the estimation.
Therefore, for the purpose of establishing asymptotic properties of β̂el1, we assume that

p̂(j) = P (Y = 1 | X(j)), j = 1, . . . , J. (7)

We then have the following theorem on β̂el1.

Theorem 1
Under Regularity Conditions 1 specified in the Appendix, assuming (7) and as n → ∞, we have (i) β̂el1

p−→ β0, and
(ii)

√
n(β̂el1 − β0) has an asymptotic normal distribution with mean 0 and variance

{
S +GT

1Ω
−1G1 −GT

1(Ω
−1U1 − I)(G1S

−1GT
1 +U1Ω

−1U1)
−1(U1Ω

−1 − I)G1

}−1
, (8)
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where G1 ≡ E{∂u(β0,θ
∗)/∂β}, Ω ≡ E

[
u(β0,θ

∗)− Ẽ{u(β0,θ
∗)}
]⊗2

with

Ẽ{u(β,θ)} ≡


E{u(1)(X,Z;β,θ(1)) | X(1)}

...

E{u(J)(X,Z;β,θ(J)) | X(J)}


and EA⊗2 = E(AAT) for any matrix A, U1 ≡ E{u(β0,θ

∗)u(β0,θ
∗)T}, I is the identity matrix, and

θ∗ ≡ (θ∗
(1), . . . ,θ

∗
(J)).

The proof of Theorem 1 is given in the Appendix. Due to the complexity of (8), there is no general clear comparison
to S−1, the asymptotic variance of the MLE β̂mle. But an efficiency improvement over β̂mle can be anticipated when
the calculators are not poorly built and when the working models are reasonably postulated. Indeed, in such settings
comprehensive simulation studies have shown that β̂el1 provides a substantial efficiency gain over β̂mle. In the next
subsection we will propose an alternative estimator that is guaranteed to improve over β̂mle.

2.3. A Method Without Working Models
The working model approach summarizes the auxiliary information contained in the calculators by fitting a working
model to the data (X(j)i, p̂(j)i). As seen from (8), the estimation of θ(j) introduced by the working models has a very
complex effect on the asymptotic variance of β̂el1. In this section we consider an alternative method without working
models, the efficiency of which will not be compromised by the estimation of any nuisance parameters.

For any arbitrary vector function d(j)(X(j)) of X(j), assuming all relevant moments exist, we have

E(X,Z)[d(j)(X(j)){P (Y = 1 | X,Z)− P (Y = 1 | X(j))}] = 0. (9)

Since P (Y = 1 | X,Z) = P (Y = 1 | X,Z;β0) and the jth calculator outputs p̂(j) as a prediction for P (Y = 1 |
X(j)), (9) provides an alternative to (3) to summarize the auxiliary information contained in the jth calculator, again
in the form of a moment equality under the distribution of (X,Z). To integrate this summary information into the
estimation of β0, let qi = dF (Xi,Zi) and define another estimator β̂el2 through

max
β,q1,...,qn

n∏
i=1

{f(Yi | Xi,Zi;β)qi} subject to qi > 0,

n∑
i=1

qi = 1,

n∑
i=1

qid(j)(X(j)i){P (Yi = 1 | Xi,Zi;β)− p̂(j)i} = 0 (j = 1, . . . , J). (10)

This estimator of β0 directly uses the outputs from the calculators instead of postulating working models. For each
calculator, a vector function d(j)(X(j)) needs to be chosen. For a chosen d(j)(X(j)), the constraints in (10) are similar
to those in (4) when the working model p(j)(X(j);θ(j)) is the logistic regression

exp{d(j)(X(j))
Tθ(j)}

1 + exp{d(j)(X(j))Tθ(j)}
, (11)

because in this case the last constraint in (4) becomes

n∑
i=1

qid(j)(X(j)i){P (Yi = 1 | Xi,Zi;β)− p(j)(X(j)i; θ̂(j))},

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:
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and thus the only difference between (4) and (10) is in which prediction of P (Y = 1 | X(j)) is used, the p(j)(X(j); θ̂(j))
from the working model or the p̂(j) from the calculator. In this case, intuitively, because the maximization in (10) does not
involve estimation of any nuisance parameters, β̂el2 should have a higher efficiency compared to β̂el1, as the asymptotic
variance of β̂el2 will not have a component coming from the estimation of θ(j). This intuition is confirmed by our
theoretical results below.

For ease of notation, write

u(β) ≡ u(X,Z;β) =


d(1)(X(1)){P (Y = 1 | X,Z;β)− p̂(1)}
d(2)(X(2)){P (Y = 1 | X,Z;β)− p̂(2)}

...
d(J)(X(J)){P (Y = 1 | X,Z;β)− p̂(J)}

 .

Based on derivations similar to those leading to (5) and (6), β̂el2 is the component of (β̂el2, ρ̂) that satisfies (5) and (6)
but with u(β,θ) replaced by u(β). Following the same proof as that for Theorem 1, the properties of β̂el2 are given
below.

Theorem 2
Under Regularity Conditions 2 specified in the Appendix, assuming (7) and as n → ∞, we have (i) β̂el2

p−→ β0, and
(ii)

√
n(β̂el2 − β0) has an asymptotic normal distribution with mean 0 and variance{

S +GT
2U

−1
2 G2

}−1
, (12)

where G2 ≡ E{∂u(β0)/∂β} and U2 ≡ E{u(β0)u(β0)
T}.

It is clear that (12) is smaller than S−1, the asymptotic variance of the MLE β̂mle. Thus, β̂el2 is expected to be
more efficient than β̂mle when the calculators were not poorly built. There is no general comparison between (8) and
(12) because (8) depends on the working models postulated and (12) depends on the d(j)(X(j)) chosen. However, in
the setting where all working models for β̂el1 are logistic regression as in (11) and all vector functions d(j)(X(j))

for β̂el2 are taken to be the same as those in (11), a direct comparison between (8) and (12) is possible. In this case,
some calculation shows that G1 = G2 and Ω = U2. Therefore, (12) is smaller than (8) because the third term that is
subtracted in (8) is semi-positive definite. In this case β̂el2 has a higher efficiency than β̂el1. Because of the popularity
of logistic regression, this efficiency comparison is widely applicable in practice. Another important observation from
(12) is that, since GT

2U
−1
2 G2 becomes larger in the positive-definite sense as the dimension of u(β) increases, (12)

becomes smaller as more calculators are integrated, as long as the calculators output correct predictions and do not use
exactly the same predictors.

2.4. Some Discussion and Remarks
Because of the efficiency properties of β̂el2 and the direct use of the output probabilities p̂(j) from the calculators without
introducing any nuisance parameters, it is more desirable to implement β̂el2 in practice, which requires specifying the
d(j)(X(j)). In theory, the asymptotic variance (12) becomes smaller as more functions are included in d(j)(X(j)). In
practice, however, a large dimension of d(j)(X(j)) may jeopardize the numerical performance. The specification of
the d(j)(X(j)) can be guided by first building working models, such as logistic regression models, and then taking
the d(j)(X(j)) to be the corresponding regressors. The working models should be specified based both on existing
scientific knowledge about the association of interest and on the calculator data (X(j), p̂(j)). When partial information
is available about the original models used to build the calculators, such as the inclusion of certain interactions, it
should be accommodated when specifying the working models. Intuitively, working models that are close to the possibly
unknown true calculator models should lead to good final performance, because the true models contain all the calculator
information. After the working models are specified as in (11), the corresponding d(j)(X(j)) can be used to implement
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β̂el2. The resulting β̂el2 is guaranteed to be more efficient than both β̂mle and the β̂el1 based on the specified working
models. In this way the working models are specified only as a guideline for choosing the d(j)(X(j)), and the efficiency
of β̂el2 is not affected by the estimation of any nuisance parameters.

The large sample properties of β̂el1 and β̂el2 are established under the assumption that p̂(j) = P (Y = 1 | X(j)). In
reality, due to model specification and random errors when building the calculators, p̂(j) is not the same as P (Y = 1 |
X(j)). For example, the model of interest P (Y = 1 | X,Z;β) implicitly imposes restrictions on modeling P (Y = 1 |
X(j)), which may not be met by the calculator models. However, the proposed methods should still lead to small finite-
sample bias and considerable efficiency gains compared to β̂mle if p̂(j) is a good approximation to P (Y = 1 | X(j)).
This should be the case when the calculators were built based on carefully specified models and decent sample sizes so
that they captured most of the association between the risk of interest and corresponding covariates. In practice, there
are ways to quickly check the quality of this approximation. One way is to compare the data (X(j)i, p̂(j)i) produced by
the calculators to the data (X(j)i, Yi) using some simple quantities, such as the means of p̂(j) and Y within each level of
X(j). Another way is to compare the coefficients of the regression of Yi on X(j)i to the coefficients of the regression of
p̂(j)i on X(j)i. The comparison can be made by constructing confidence intervals for the former coefficients and check
if they cover the latter coefficients. In our data application in Section 4 we carry out such a comparison.

The proposed methods are very flexible in the sense that they apply to black-box-type calculators where little in-
formation is available about how the calculators were built, especially when they were built based on machine learning
techniques. Some extra care may be needed when there are multiple calculators based on similar covariates. In this case,
the auxiliary information provided by these calculators may be similar because the information is about the association
between the outcome of interest and the corresponding covariates. Although in theory β̂el2 will keep gaining efficiency
when integrating more calculators, using all these calculators simultaneously might jeopardize numerical performance
because some constraints in (4) and (10) may become highly correlated. Therefore, in the presence of multiple calcula-
tors with similar inputs, we would recommend using the one(s) based on large sample sizes and based on populations
similar to the current study, which may be checked by the procedures mentioned in the previous paragraph.

A simple way to implement the proposed methods might seem to be to solve the equations in (5) and (6). However,
this procedure is not recommended owing to its unstable behavior: Equation (6), viewed as an equation for ρ for fixed
β and θ, typically has many roots (Han & Wang, 2013). Here we need the ρ̂ such that the q̂i maximizing (4) or (10) are
between 0 and 1. Solving (5) and (6) directly can lead to an unwanted root. Please refer to the derivation of (5) and (6) in
the Appendix for an expression for q̂i. A more reliable implementation is to follow the Newton-Raphson-type algorithm
provided in Han & Lawless (2019).

3. SIMULATION STUDIES

In this section we carry out simulation studies to investigate the finite-sample performance of the proposed methods.
The covariates X = (X1, X2) and Z are generated from a three dimensional multivariate normal distribution, where
the means are all zero, the variances are all one, and the correlations are all 0.4. Given the covariates, the response Y is
generated from a Bernoulli distribution with

P (Y = 1 | X, Z) = expit(0.5− 0.5X1 − 0.5X2 + 0.5Z + 0.5X2Z),

where expit(x) = ex/(1 + ex). Therefore we have β0 = (βc, βX1
, βX2

, βZ , βX2Z) = (0.5,−0.5,−0.5, 0.5, 0.5). We
consider Calculators 1, 2 and 3 constructed based on the generated data using covariates X(1) = X1, X(2) = (X1, X̃2),
and X(3) = (X1, X2), respectively, where X̃2 = I(X2 > 0). Calculator 1 for P (Y = 1 | X(1)) is based on the semi-
parametric single index model in Klein & Spady (1993) implemented in R (R Core Team, 2021) with package np
(Hayfield & Racine, 2008). Because there is only one covariate, this semiparametric model becomes nonparametric.
Calculator 2 for P (Y = 1 | X(2)) is based on the same nonparametric model but for X̃2 = 1 and X̃2 = 0 separately.
Calculator 3 for P (Y = 1 | X(3)) is based on the random forest method (Breiman, 2001) implemented in the R package
randomForest (Liaw & Wiener, 2002). The nonparametric nature of these models requires a large sample size to achieve
a good quality for risk prediction, and we used a sample size of 50000 to build these calculators to ensure their good
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quality.
First, we compare estimators β̂el1 based on working models, β̂el2 without using working models, and the MLE β̂mle

without integrating calculator information. In this comparison we fix the working models or the d(j)(X(j)) for each cal-
culator j = 1, 2, 3. Specifically, for β̂el1, the postulated working models for the calculators are all logistic regression as
specified in (11), where d(j)(X(j)) contains the intercept and corresponding main effects; i.e., d(j)(X(j)) = (1,X(j)),
j = 1, 2, 3. These same d(j)(X(j)) are used for β̂el2. For both β̂el1 and β̂el2, we consider seven versions, β̂el-1, β̂el-2,
β̂el-3, β̂el-12, β̂el-13, β̂el-23, and β̂el-123, where the numbers indicate which calculators are incorporated into the
estimation.

Tables 1 and 2 contain the simulation results based on n = 400 and n = 1000, respectively, both using 1000 repli-
cations. Compared to β̂mle, the empirical standard errors of β̂el1 and β̂el2 for those covariates also used by the corre-
sponding calculators are substantially smaller, confirming our theoretical conclusion of efficiency gains by integrating
calculator information. Note that, for β̂el1-23 and β̂el1-123, the empirical standard errors corresponding to those covari-
ates not used by the calculators (i.e. Z and X2Z) become larger compared to β̂mle. This is caused by the estimation
of nuisance parameters in the working models. As seen from (8), the effect of estimating nuisance parameters on the
efficiency of β̂el1 is quite complex. Although in general we anticipate efficiency gains for β̂el1, the gains are typically
small for the coefficients that do not appear in the calculators and may even be negative due to estimation of nuisance
parameters.

The comparison of empirical standard errors between β̂el1 and β̂el2 confirms that the latter is more efficient, es-
pecially when more than one calculator is used. Empirical standard errors for β̂el2 either decrease or stay about the
same as more calculators are integrated, consistent with our theory, whereas those for β̂el1 may increase considerably
due to the estimation of more nuisance parameters. It is also seen that, for all considered estimators, the mean of esti-
mated standard errors over 1000 replications is very close to the corresponding empirical standard error, especially when
n = 1000, confirming the derived asymptotic variances for both β̂el1 and β̂el2.

Second, we vary the d(j)(X(j)) for each calculator to assess its effects. We also make a comparison of the proposed
method to that in Gu et al. (2019). Since β̂el2 is superior to β̂el1 both theoretically and numerically, we now only include
β̂el2. We focus on the three versions β̂el2-1, β̂el2-2 and β̂el2-3 since the method in Gu et al. (2019) deals with one
calculator. The three versions of Gu et al.’s estimator are β̂GTCM -1, β̂GTCM -2 and β̂GTCM -3. For our estimators we
consider the following specifications of the d(j)(X(j)). For β̂el2-1, take d(1)(X(1)) to be (1, X(1)) and (1, X(1), X

2
(1)),

resulting in β̂el2-1-1 and β̂el2-1-2, respectively. For β̂el2-2, take d(2)(X(2)) to be (1, X1, X̃2), (1, X1, X̃2, X1X̃2) and
(1, X1, X̃2, X1X̃2, X

2
1 ), resulting in β̂el2-2-1 and β̂el2-2-2 and β̂el2-2-3, respectively. For β̂el2-3, take d(3)(X(3)) to

be (1, X1, X2), (1, X1, X2, X1X2) and (1, X1, X2, X1X2, X
2
1 , X

2
2 ), resulting in β̂el2-3-1 and β̂el2-3-2 and β̂el2-3-3,

respectively.
Table 3 contains the simulation results based on n = 400 and n = 1000 using 1000 replications. The MLE β̂mle is

also included as the benchmark for comparison. When varying the d(j)(X(j)) for the proposed estimator β̂el2 based
on either Calculator 2 or Calculator 3, an inclusion of the interaction between the calculator covariates (i.e. X1X̃2 for
Calculator 2 or X1X2 for Calculator 3) in addition to the main effects leads to further efficiency gains for estimating
βX2Z (i.e. comparing EL2-2-2 to EL2-2-1 or comparing EL2-3-2 to EL2-3-1). A further inclusion of the quadratic
effects does not lead to additional efficiency gains. These observations suggest that interactions should be included in
d(j)(X(j)) if the current study model includes interactions that involve the calculator covariates. We leave a detailed
theoretical and numerical study of this as a future research topic. Overall, the estimators GTCM-1, GTCM-2 and GTCM-
3 based on Gu et al. (2019) sometimes have small biases, and the latter two have roughly the same or slightly larger
empirical standard errors compared to our estimators EL2-2-2 and EL2-3-2 that include interactions in d(j)(X(j)).
For all the estimators under comparison, the efficiency for estimating βZ does not change much from the MLE. This
observation makes sense because the calculators provide little auxiliary information about the regression coefficients
for the covariates not used by the calculators. This observation is also in full agreement with findings in the existing
literature (e.g. Chatterjee et al., 2016; Cheng et al., 2018; Han & Lawless, 2019).
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4. DATA APPLICATION

As an application, we fit an expanded regression model for high grade prostate cancer by including two biomarkers,
prostate cancer antigen 3 (PCA 3) and TMPRSS2:ERG gene fusions, measured from urine, in addition to the con-
ventional risk factors: prostate-specific antigen (PSA), age, race, digital rectal examination (DRE) findings, prior biopsy
results, and family history. To improve efficiency, we will integrate information from an online accessible risk calculator,
the Prostate Biopsy Collaborative Group (PBCG) risk calculator (Ankerst et al., 2018).

The PBCG risk calculator was built as a state-of-the-art risk prediction tool, an alternative to the widely used Prostate
Cancer Prevention Trial (PCPT) risk calculator (Version 1, Thompson et al., 2006; Version 2, Ankerst et al., 2014). The
PCPT calculator was the first online prostate cancer risk assessment tool and was built based on data collected in the
1990s from 5519 men, mostly white, in the placebo group of the PCPT. In contrast, the PBCG risk calculator was built
on data from 15611 men undergoing prostate biopsies during 2006-2017 at eight North American institutions and three
European institutions participating in the PBCG. The heterogeneity in the study cohorts in PBCG endows the PBCG
risk calculator with a much wider applicability compared to the PCPT calculator.

The data set we use is the validation cohort from Tomlins et al. (2016), who investigated whether including two
additional biomarkers, PCA 3 and TMPRSS2:ERG, could give a more accurate risk prediction compared to the PCPT
calculator. This cohort consists of 1244 men presenting for diagnostic biopsy at seven community clinics throughout
the United States. Since the PBCG risk calculator requires an input PSA level between 2 and 50 ng/ml and an input
age between 40 and 90 years old, in our analysis we remove subjects with PSA and age outside those range. The final
analysis is based on 1014 men.

The logistic regression model of interest is

log
π

1− π
= βc + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7Z1 + β8Z2,

where π is the probability of observing high grade prostate cancer, X1 = log2(PSA) (log transformation of the PSA
level with base 2), X2 = age, X3 = DRE (a binary indicator of an abnormal digital rectal exam), X4 = biopsy (a
binary indicator of prior negative biopsy), X5 = race (a binary indicator of African Ancestry) and X6 = family history
(a binary indicator of first-degree family history of prostate cancer) are the conventional risk predictors, and Z1 =
log2(PCA3 + 1) and Z2 = T2:ERG are the two biomarkers. Here, following Cheng et al. (2019), we take the log2
transformation of PCA3 and dichotomize TMPRSS2:ERG by splitting at the median. The PBCG risk calculator uses
X1 through X6 as the input and the exact formula for predicting the risk of high grade prostate cancer is given in the
supplementary material of Ankerst et al. (2018). In the same supplementary Ankerst et al. (2018) also gave formulas for
risk prediction when some or all of X3, X4 and X6 are not available. Therefore, as an illustration, in our application
we also consider predictions based only on X1, X2 and X5 as input, and refer to this prediction as calculator PBCG-2.
Note that, since these two calculators were built using the same data and the input of PBCG-2 is a subset of PBCG, we
do not anticipate an efficiency improvement by integrating PBCG-2 in addition to PBCG.

As a checking of the assumption that p̂(j) should be close to P (Y = 1 | X(j)), we construct 95% confidence inter-
vals for the regression coefficients of X(j) based on a logistic regression of Y on X(j), and then check if these intervals
cover the corresponding coefficients based on a logistic model for p̂(j) conditional on X(j), where the latter coefficients
are computed by solving equation (2). We found coverage for all coefficients for both calculators. When looking at the
68% confidence intervals instead, we found coverage for all coefficients but not that of X1 for both calculators. These
findings show that it is reasonable to assume p̂(j) is close to P (Y = 1 | X(j)).

Table 4 contains the analysis results based on both β̂mle and β̂el2. For β̂el2, the d(j)(X(j)) is taken to be
(1, X1, X2, X3, X4, X5, X6) and (1, X1, X2, X5) for the PBCG and PBCG-2 calculators, respectively. Results based
on β̂el1 are very similar to those based on β̂el2 and are thus omitted. A major observation is that, after integrating in-
formation from the PBCG calculator, the standard errors corresponding to X1 through X6, the covariates also used by
the PBCG calculator, reduce to a third or a quarter of those for the MLE. Standard errors corresponding to Z1 and Z2

also become smaller. Similar observations can be made when integrating the PBCG-2 calculator. These are in full agree-
ment with our theoretical results. Integrating both calculators simultaneously produces more or less the same results
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as integrating the PBCG calculator alone, which is what we anticipated. Another major observation is that integrating
information from the PBCG calculator reveals a marginal significance of African Ancestry (p-value= 0.062) and a high
significance of family history (p-value< 0.001) for their association with high grade prostate cancer. This significance
is not detected without integrating the PBCG information.

5. DISCUSSION

We have proposed two methods for integrating information contained in existing risk calculators into estimation of
regression parameters. The first method relies on working models to extract information contained in the calculators
and the second method directly uses the risk predictions without working models. The second method is recommended
in practice because its efficiency gain is not compromised by the estimation of any nuisance parameters introduced by
working models. Given that many risk calculators have been developed for various diseases and many of them are of
black-box-type, our proposed methods have a broad range of applications.

A potential issue when integrating information from multiple calculators is that these calculators may target different
populations, either because of an original design or because of the sample based on which they were built. When the
population from which the current study sample is taken is different from the populations the existing calculators can be
applied to, p̂(j) may no longer be a good approximation to P (Y = 1 | X(j)), and in this case integrating information
from such calculators will introduce bias. Thus, it is crucial to use calculators whose target population is the same as the
current one. This indeed was the consideration in our data application when choosing the PBCG calculator over the PCPT
calculator, as the former was built based on multiple heterogeneous cohorts and thus has a wider applicability. Recently
Estes et al. (2018) and Sheng et al. (2021) proposed methods to address the population heterogeneity problem, under
the setting where external models and parameter estimates are directly available. These methods can be combined with
the techniques developed in this paper to deal with black-box calculators in the presence of population heterogeneity.
New methods dealing with population heterogeneity could also be developed for data integration purposes. For example,
as pointed out by one referee, the instance weighting method for domain adaption in the natural language processing
literature may be adopted (e.g. Jiang & Zhai, 2007).

In this paper we considered binary outcomes that indicate whether experiencing an event or not. The proposed
methods can be directly applied to continuous outcomes under linear regression models with calculators predicting the
outcome values. A desirable extension is to the setting of survival outcomes where calculators are available that give
the, say, 5-year survival probabilities based on a set of risk factors. Because of the importance of survival outcomes in
many areas, including medicine and public health, such an extension is highly desirable and will be investigated in our
future research.
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Appendix

Derivation of (5) and (6)
Using the Lagrange multiplier method, the Lagrangian corresponding to the constrained optimization problem (4) is

L =

n∑
i=1

log fi(β) +

n∑
i=1

log qi + nρT
n∑

i=1

qiui(β, θ̂)− µ(

n∑
i=1

qi − 1),
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where ρ and µ are the Lagrange multipliers. At the solution β̂el1 and q̂i we must have ∂L/∂qi = 0 and ∂L/∂β = 0

for some ρ̂ and µ̂. Multiplying both sides of ∂L/∂qi = 1/q̂i + nρ̂Tui(β̂el1, θ̂)− µ̂ = 0 by q̂i and summing over i,
the constraints in (4) lead to µ̂ = n, which, combined with ∂L/∂qi = 0 yields q̂i = 1/[n{1− ρ̂Tui(β̂el1, θ̂)}]. Then
∂L/∂β = 0 gives (5) and the constraint

∑n
i=1 qiui(β̂el1, θ̂) = 0 gives (6).

Regularity conditions
Regularity Conditions 1. (1) The parameter spaces B for β and Θ for θ are compact. β0 is an interior point of B and θ∗

is an interior point of Θ. (2) E[log f(Y |X,Z;β)] is uniquely maximized at β0 and E[u(X,Z;β0,θ)] = 0 has a unique
solution θ∗. (3) E[sup(β,θ)∈B×Θ ∥u(X,Z;β,θ)∥α] < ∞ for some α > 2. (4) E[∂2 log f(Y |X,Z;β0)/∂β∂β

T ] and
E{u(X,Z;β0,θ

∗)u(X,Z;β0,θ
∗)T } are non-singular. (5) sup(β,θ)∈B×Θ n−1/2

∑n
i=1{li(β,θ)− E[l(β,θ)]} =

Op(1) for l(β,θ) = log f(Y |X,Z;β) and u(X,Z;β,θ). (6) u(X,Z;β,θ) is continuously differentiable,
E[sup(β,θ)∈B×Θ ∥∂u(β,θ)/∂β∥] < ∞, and E[sup(β,θ)∈B×Θ ∥∂u(β,θ)/∂θ∥] < ∞. (7) log f(Y |X,Z;β) is twice
continuously differentiable and E[supβ∈B ∥∂s(β)/∂β∥] < ∞.
Regularity Conditions 2. (1) The parameter space B for β is compact. β0 is an interior point of B. (2)
E[log f(Y |X,Z;β)] is uniquely maximized at β0. (3) E[supβ∈B ∥u(X,Z;β)∥α] < ∞ for some α > 2. (4)
E[∂2 log f(Y |X,Z;β0)/∂β∂β

T ] and E{u(X,Z;β0)u(X,Z;β0)
T } are non-singular. (5) supβ∈B n−1/2

∑n
i=1{li(β)−

E[l(β)]} = Op(1) for l(β) = log f(Y |X,Z;β) and u(X,Z;β). (6) u(X,Z;β) is continuously differ-
entiable and E[supβ∈B ∥∂u(β)/∂β∥] < ∞. (7) log f(Y |X,Z;β) is twice continuously differentiable and
E[supβ∈B ∥∂s(β)/∂β∥] < ∞.

Proof of Theorem 1
For (i), because E{u(β0,θ

∗)} = 0, an application of the M-estimator theory (e.g., van der Vaart 1998) to (5) and (6)
leads to (β̂el1, ρ̂)

p−→ (β0,0) as n → ∞. Thus β̂el1
p−→ β0.

For (ii), applying the mean-value theorem to (5) and (6) around (β0,ρ = 0) leads to

0 =
1

n

n∑
i=1

(
si(β0)

ui(β0, θ̂)

)
+

1

n

n∑
i=1

 ∂si(β̄)
∂β , ∂ui(β̂el1,θ̂)/∂β

T

1−ρ̂Tui(β̂el1,θ̂)

∂ui(β̄,θ̂)/∂β

1−ρ̄Tui(β̂el1,θ̂)
, ui(β̄,θ̂)ui(β̂el1,θ̂)

T

{1−ρ̄Tui(β̂el1,θ̂)}2

( β̂el1 − β0

ρ̂

)
,

where β̄ is some value between β̂el1 and β0 and ρ̄ is some value between ρ̂ and 0. Then we have

√
n

(
β̂el1 − β0

ρ̂

)

= −

(
−S, GT

1

G1, U1

)−1
1√
n

n∑
i=1

(
si(β0)

ui(β0, θ̂)

)
+ op(1)

= −

(
−S, GT

1

G1, U1

)−1{
1√
n

n∑
i=1

(
si(β0)

ui(β0,θ
∗)

)
+

(
0{

1
n

∑n
i=1

∂ui(β0,θ̄)
∂θ

}√
n(θ̂ − θ∗)

)}
+ op(1)

= −

(
−S, GT

1

G1, U1

)−1{
1√
n

n∑
i=1

(
si(β0)

ui(β0,θ
∗)

)
+

(
0

Q
√
n(θ̂ − θ∗)

)}
+ op(1)

where Q ≡ E{∂u(β0,θ
∗)/∂θ} and θ̄ is some value between θ̂ and θ∗. On the other hand, since θ̂(j) solves (2) and we

assume p̂(j) = P (Y = 1 | X(j)), it is seen that θ̂ actually solves
∑n

i=1 Ẽi{u(β0,θ)} = 0. Then some algebra shows
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that

√
n(θ̂ − θ∗) = −Q−1 1√

n

n∑
i=1

Ẽi{u(β0,θ
∗)}+ op(1).

Therefore we have

√
n

(
β̂el1 − β0

ρ̂

)
= −

(
−S, GT

1

G1, U1

)−1
1√
n

n∑
i=1

(
si(β0)

ui(β0,θ
∗)− Ẽi{u(β0,θ

∗)}

)
+ op(1).

Some calculation leads to

Var

(
s(β0)

u(β0,θ
∗)− Ẽ{u(β0,θ

∗)}

)
=

(
S 0

0 Ω

)
,

and thus from the central limit theorem we have

asyVar

{
√
n

(
β̂el1 − β0

ρ̂

)}
=

(
−S, GT

1

G1, U1

)−1(
S 0

0 Ω

)(
−S, GT

1

G1, U1

)−1

.

Some further calculation then yields (8).
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TABLE 1: Simulation results for comparisons between methods with and without using working models based on n = 400 and 1000

replications. emp: empirical standard error. est: mean of estimated standard errors over 1000 replications. cov: percentage over 1000
replications that the 95% confidence intervals constructed based on asymptotic distributions cover the true value.

Method 1: with working models Method 2: without working models

βc βX1 βX2 βZ βX2Z βc βX1 βX2 βZ βX2Z

MLE

bias 0.003 -0.005 -0.014 0.006 0.015 0.003 -0.005 -0.014 0.006 0.015

emp 0.123 0.137 0.139 0.140 0.143 0.123 0.137 0.139 0.140 0.143

est 0.120 0.135 0.139 0.139 0.141 0.120 0.135 0.139 0.139 0.141

cov 95.0 94.8 95.1 95.6 94.8 95.0 94.8 95.1 95.6 94.8

EL-1

bias -0.001 0.018 -0.014 0.006 0.015 -0.001 0.019 -0.014 0.006 0.015

emp 0.052 0.071 0.139 0.140 0.143 0.052 0.071 0.139 0.140 0.143

est 0.052 0.073 0.138 0.138 0.140 0.052 0.073 0.138 0.138 0.140

cov 95.4 94.2 94.9 95.3 94.8 95.4 94.0 95.0 95.3 94.7

EL-2

bias -0.000 0.020 -0.035 0.006 0.016 0.000 0.020 -0.035 0.006 0.015

emp 0.049 0.059 0.061 0.140 0.142 0.049 0.059 0.061 0.140 0.142

est 0.048 0.062 0.059 0.138 0.140 0.048 0.061 0.059 0.138 0.140

cov 95.4 92.3 94.4 95.4 95.0 95.5 92.0 94.1 95.4 95.0

EL-3

bias -0.006 -0.002 -0.017 0.006 0.015 -0.005 -0.002 -0.015 0.006 0.013

emp 0.064 0.072 0.076 0.140 0.143 0.063 0.071 0.075 0.140 0.143

est 0.061 0.074 0.076 0.138 0.140 0.060 0.073 0.074 0.138 0.140

cov 95.3 95.5 95.3 95.2 94.9 95.5 94.4 94.7 95.3 94.7

EL-12

bias 0.003 0.021 -0.036 0.005 0.015 0.000 0.022 -0.036 0.005 0.015

emp 0.050 0.060 0.061 0.140 0.142 0.049 0.059 0.061 0.140 0.142

est 0.049 0.062 0.060 0.138 0.140 0.048 0.061 0.059 0.138 0.140

cov 94.9 91.7 94.1 95.4 95.4 95.8 91.5 93.8 95.4 95.3

EL-13

bias 0.002 0.004 -0.011 0.005 0.009 -0.001 0.017 -0.017 0.006 0.014

emp 0.074 0.072 0.082 0.140 0.143 0.049 0.062 0.075 0.140 0.143

est 0.073 0.074 0.085 0.138 0.140 0.049 0.062 0.074 0.138 0.140

cov 94.6 94.8 96.1 95.2 95.1 95.5 92.5 94.5 95.3 94.6

EL-23

bias -0.001 -0.003 -0.023 0.024 0.026 -0.003 0.016 -0.032 0.005 0.022

emp 0.072 0.072 0.078 0.146 0.159 0.048 0.060 0.060 0.141 0.141

est 0.068 0.072 0.079 0.141 0.149 0.047 0.061 0.058 0.138 0.138

cov 93.6 95.1 95.0 94.9 92.7 95.5 92.3 94.3 94.8 94.5

EL-123

bias 0.003 -0.002 -0.019 0.027 0.020 -0.003 0.018 -0.033 0.005 0.022

emp 0.078 0.075 0.080 0.149 0.166 0.048 0.060 0.059 0.141 0.141

est 0.077 0.073 0.080 0.142 0.154 0.047 0.060 0.058 0.138 0.138

cov 93.6 94.6 95.2 93.9 92.8 95.9 91.7 94.2 94.9 94.6
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TABLE 2: Simulation results for comparisons between methods with and without using working models based on n = 1000 and
1000 replications. emp: empirical standard error. est: mean of estimated standard errors over 1000 replications. cov: percentage over

1000 replications that the 95% confidence intervals constructed based on asymptotic distributions cover the true value.

Method 1: with working models Method 2: without working models

βc βX1 βX2 βZ βX2Z βc βX1 βX2 βZ βX2Z

MLE

bias 0.004 -0.004 -0.003 0.003 0.008 0.004 -0.004 -0.003 0.003 0.008

emp 0.075 0.087 0.087 0.086 0.091 0.075 0.087 0.087 0.086 0.091

est 0.076 0.085 0.087 0.087 0.088 0.076 0.085 0.087 0.087 0.088

cov 95.0 94.0 94.6 95.0 94.5 95.0 94.0 94.6 95.0 94.5

EL-1

bias 0.005 0.008 -0.003 0.003 0.008 0.005 0.008 -0.003 0.003 0.007

emp 0.031 0.046 0.087 0.086 0.091 0.031 0.046 0.087 0.086 0.091

est 0.032 0.045 0.087 0.087 0.088 0.032 0.045 0.087 0.087 0.088

cov 95.7 93.8 94.6 95.1 94.6 95.7 93.8 94.6 95.1 94.6

EL-2

bias 0.005 0.016 -0.012 0.003 0.008 0.005 0.017 -0.012 0.003 0.008

emp 0.029 0.039 0.035 0.086 0.090 0.029 0.039 0.035 0.086 0.090

est 0.030 0.038 0.036 0.087 0.087 0.030 0.038 0.036 0.087 0.087

cov 95.8 89.7 95.2 94.8 94.2 95.6 89.6 95.2 94.8 94.2

EL-3

bias -0.001 -0.002 0.007 0.003 0.007 -0.001 -0.002 0.006 0.003 0.007

emp 0.038 0.047 0.045 0.086 0.091 0.037 0.046 0.044 0.086 0.091

est 0.038 0.046 0.047 0.087 0.087 0.037 0.045 0.046 0.087 0.087

cov 95.5 94.6 95.2 94.9 94.2 95.3 93.9 94.7 95.0 94.3

EL-12

bias 0.002 0.016 -0.012 0.003 0.008 0.005 0.016 -0.012 0.003 0.007

emp 0.030 0.039 0.035 0.086 0.090 0.029 0.039 0.035 0.086 0.090

est 0.030 0.038 0.036 0.087 0.087 0.030 0.038 0.036 0.087 0.087

cov 95.2 90.6 95.4 94.7 94.3 95.4 89.7 95.4 94.8 94.3

EL-13

bias 0.001 0.001 0.010 0.002 0.005 0.004 0.005 0.006 0.003 0.007

emp 0.045 0.047 0.051 0.086 0.091 0.030 0.040 0.045 0.086 0.091

est 0.046 0.046 0.052 0.087 0.087 0.030 0.039 0.046 0.087 0.087

cov 95.7 94.2 93.6 95.0 93.8 95.8 93.6 94.7 95.1 94.3

EL-23

bias -0.001 -0.001 0.001 0.009 0.028 0.001 0.014 -0.010 0.001 0.016

emp 0.043 0.046 0.050 0.087 0.096 0.028 0.039 0.034 0.086 0.089

est 0.043 0.044 0.049 0.088 0.093 0.029 0.038 0.036 0.087 0.086

cov 94.7 93.1 94.5 95.1 94.2 95.6 90.5 96.0 94.8 93.9

EL-123

bias -0.003 0.000 0.004 0.009 0.027 0.002 0.014 -0.009 0.001 0.016

emp 0.046 0.047 0.050 0.088 0.098 0.028 0.039 0.034 0.086 0.089

est 0.049 0.044 0.049 0.088 0.096 0.029 0.038 0.036 0.087 0.086

cov 95.0 93.1 93.6 94.7 94.9 95.2 90.4 95.8 94.9 94.0
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TABLE 3: Simulation results for different choices of d(j)(X(j)) and comparisons to Gu et al. (2019) based on 1000 replications.
The proposed method here is Method 2 without using working models. emp: empirical standard error. GTCM-1,2 or 3: the method
in Gu et al. (2019) using Calculator 1, 2, or 3, respectively. EL2-j-1,2 or 3: the proposed Method 2 without working models using

Calculator j and different specifications of d(j)(X(j)).

n = 400 n = 1000

βc βX1 βX2 βZ βX2Z βc βX1 βX2 βZ βX2Z

MLE
bias 0.010 -0.005 -0.013 0.006 0.016 0.006 -0.006 -0.003 0.006 0.002

emp 0.122 0.136 0.144 0.140 0.139 0.076 0.084 0.087 0.083 0.085

GTCM-1
bias 0.036 0.015 0.008 0.044 -0.087 0.040 0.009 0.013 0.047 -0.093

emp 0.059 0.081 0.138 0.134 0.096 0.037 0.049 0.084 0.082 0.060

EL2-1-1
bias -0.000 0.018 -0.013 0.006 0.016 0.007 0.009 -0.003 0.006 0.002

emp 0.052 0.076 0.144 0.140 0.139 0.033 0.045 0.087 0.083 0.085

EL2-1-2
bias -0.000 0.018 -0.013 0.006 0.016 0.007 0.009 -0.002 0.006 0.003

emp 0.050 0.075 0.144 0.141 0.130 0.031 0.044 0.087 0.084 0.078

GTCM-2
bias 0.028 -0.017 0.087 0.044 -0.089 0.032 -0.016 0.098 0.048 -0.093

emp 0.054 0.071 0.076 0.133 0.095 0.035 0.042 0.047 0.081 0.060

EL2-2-1
bias 0.000 0.019 -0.033 0.006 0.015 0.006 0.018 -0.012 0.006 0.002

emp 0.048 0.065 0.062 0.141 0.138 0.030 0.037 0.035 0.083 0.085

EL2-2-2
bias -0.009 0.011 -0.034 0.008 0.049 -0.002 0.011 -0.013 0.008 0.028

emp 0.042 0.060 0.062 0.141 0.104 0.026 0.034 0.036 0.084 0.061

EL2-2-3
bias -0.010 0.011 -0.034 0.008 0.051 -0.002 0.011 -0.013 0.009 0.029

emp 0.042 0.060 0.062 0.142 0.104 0.026 0.034 0.036 0.084 0.061

GTCM-3
bias 0.031 0.001 0.001 0.044 -0.087 0.034 -0.001 0.018 0.047 -0.093

emp 0.064 0.081 0.081 0.134 0.095 0.041 0.049 0.049 0.082 0.060

EL2-3-1
bias -0.005 0.000 -0.012 0.006 0.014 0.000 -0.003 0.007 0.006 0.001

emp 0.059 0.076 0.075 0.140 0.139 0.039 0.044 0.045 0.083 0.085

EL2-3-2
bias -0.008 -0.001 -0.013 0.006 0.024 -0.002 -0.006 0.005 0.007 0.013

emp 0.057 0.073 0.073 0.140 0.114 0.036 0.043 0.044 0.083 0.069

EL2-3-3
bias -0.010 -0.001 -0.017 0.008 0.032 0.000 -0.008 0.012 0.005 0.005

emp 0.057 0.073 0.070 0.140 0.111 0.036 0.043 0.040 0.084 0.068
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TABLE 4: Prostate cancer study analysis results based on logistic regression (n = 1014). est: estimated value. s.e.: standard error. p:
p-value. DRE: a binary indicator of an abnormal digital rectal exam. biopsy: a binary indicator of prior negative biopsy. race: a

binary indicator of African Ancestry. history: a binary indicator of first-degree family history of prostate cancer. PCA3:
log2(PCA3 + 1). T2ERG: dichotomized TMPRSS2:ERG split at the median

Without calculators With PBCG calculator With PBCG-2 calculator With both calculators

est s.e. p est s.e. p est s.e. p est s.e. p

Intercept -7.421 0.769 < 0.001 -6.802 0.227 < 0.001 -7.276 0.315 < 0.001 -6.826 0.229 < 0.001

log2(PSA) 0.595 0.119 < 0.001 0.756 0.033 < 0.001 0.774 0.051 < 0.001 0.751 0.033 < 0.001

age 0.037 0.011 0.001 0.027 0.004 < 0.001 0.036 0.005 < 0.001 0.028 0.004 < 0.001

DRE 0.635 0.210 0.003 0.769 0.057 < 0.001 0.631 0.199 0.001 0.762 0.057 < 0.001

biopsy -0.895 0.245 < 0.001 -0.938 0.058 < 0.001 -0.901 0.216 < 0.001 -0.943 0.058 < 0.001

race 0.090 0.341 0.793 0.192 0.103 0.062 -0.050 0.120 0.675 0.181 0.103 0.079

history 0.248 0.209 0.235 0.413 0.049 < 0.001 0.249 0.191 0.193 0.414 0.049 < 0.001

PCA3 0.347 0.062 < 0.001 0.347 0.057 < 0.001 0.347 0.056 < 0.001 0.345 0.057 < 0.001

T2ERG 0.565 0.183 0.002 0.567 0.166 0.001 0.568 0.165 0.001 0.582 0.166 < 0.001
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