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DISTRIBUTIONAL SYNTHETIC CONTROLS

F. F. GUNSILIUS
Department of Economics, University of Michigan, Ann Arbor

The method of synthetic controls is a fundamental tool for evaluating causal effects
of policy changes in settings with observational data. In many settings where it is ap-
plicable, researchers want to identify causal effects of policy changes on a treated unit
at an aggregate level while having access to data at a finer granularity. This article
proposes an extension of the synthetic controls estimator that takes advantage of this
additional structure and provides nonparametric estimates of the heterogeneity within
the aggregate unit. The idea is to replicate the quantile function associated with the
treated unit by a weighted average of quantile functions of the control units. This es-
timator relies on the same mathematical theory as the changes-in-changes estimator
and can be applied in both repeated cross-sections and panel data with as little as a
single pre-treatment period. It also provides a unique counterfactual quantile function
for any type of distribution.

KEYWORDS: Causal inference, comparative case studies, heterogeneous treatment
effects, quantile functions, synthetic controls, Wasserstein distance.

1. INTRODUCTION

THE METHOD OF SYNTHETIC CONTROLS, introduced in Abadie and Gardeazabal (2003)
and Abadie, Diamond, and Hainmueller (2010), has become a main tool for estimat-
ing causal effects in comparative case studies with aggregate interventions and a limited
number of large units. It is designed for settings where some units are subject to a pol-
icy intervention and others are not. The respective outcomes of interest are measured in
each population before and after the policy intervention, potentially for many periods.
The control units are used to account for unobserved trends in the outcome over time
that are unrelated to the effect of the policy intervention. The insight is that an optimally
weighted average of the available potential controls, the synthetic control unit, often pro-
vides a more appropriate comparison than a single control unit alone (Abadie (2021)).

The original method of synthetic controls is designed for settings with aggregate scalar-
or vector-valued quantities where linear regression approaches are not applicable because
of data limitations (Abadie (2021)). Researchers and policy makers are frequently inter-
ested in estimating the causal impacts of interventions on aggregate units while having
access to data at a finer granularity, however. A classical example is assessing the effects
of minimum wage policies, where the intervention is at the state level, but researchers
have access to individual-level data within a state (e.g., Card and Krueger (1994, 2000),
Neumark and Wascher (2000), Dube (2019)). These additional data could be used to es-
timate heterogeneous treatment effects of the causal effect of the policy change on the
population within a state.1

F. F. Gunsilius: ffg@umich.edu
I want to thank Alberto Abadie, Meng Hsuan Hsieh, Philippe Rigollet, Kaspar Wüthrich, and three anony-

mous referees for helpful discussions and comments, as well as Siyun He and David van Dijcke for excellent
research assistance. Support through a MITRE research award from the University of Michigan is gratefully
acknowledged. All errors are mine. A replication file is posted (Gunsilius (2023)).

1An example for the relevance of estimating heterogeneous treatment effects is Ropponen (2011), who
utilized the additional data structure by applying the changes-in-changes estimator by Athey and Imbens (2006)

© 2023 The Econometric Society https://doi.org/10.3982/ECTA18260

https://www.econometricsociety.org/
mailto:ffg@umich.edu
https://www.econometricsociety.org/
https://doi.org/10.3982/ECTA18260


1106 F. F. GUNSILIUS

We develop an extension of the synthetic controls estimator that can take advantage of
the additional information in the data and estimate heterogeneous treatment effects. The
idea is to replicate the quantile function associated with the treated unit by a weighted
average of quantile functions of the control units, and to use this weighted average to
construct the counterfactual quantile function of the treated unit had it not received
treatment. From the quantile function one can obtain other quantities of interest such
as Lorenz curves (Gastwirth (1971)) or interquartile ranges. We also provide a permuta-
tion test analogous to the one developed in Abadie, Diamond, and Hainmueller (2010)
for the classical synthetic control method.

The proposed method provides a synthetic control unit at the level of interest, that
is, the aggregate level. For every control unit it finds an optimal weight for the entire
quantile function. This setting is of practical relevance, as the method can be applied
in panel data settings where individuals cannot be followed over time. The goal is to
identify the shape of the counterfactual distribution, not treatment effects for individuals
within an aggregate unit. By contrast, linear point-wise approaches like Chen (2020), or
approaches that (i) decompose distributions into bins and (ii) match these bins between
the different distributions, are local: they obtain different weights for each quantile and
hence obtain weight functions for each individual unit instead of one set of weights at the
aggregate level. As a result, these synthetic controls methods are sensitive to the choice
of quantiles or bins; in particular, they require the assumption that the optimal weights
for each point on the quantile curve or in each bin are the same or at least similar within
a given state (e.g., Assumption 1(ii) in Chen (2020)), something that can be difficult to
satisfy in practice.

Focusing on replicating quantile functions allows for the replication of the support of
the distribution of the treated unit, even in settings where the supports are non-nested.
This allows for interpolation, analogous to the classical method of synthetic controls.2
It also guarantees a unique counterfactual quantile function, irrespective of whether the
distributions are continuous, discrete, or mixed.

2. A SYNTHETIC CONTROLS ESTIMATOR USING QUANTILE FUNCTIONS

The setup and notation for the proposed method are analogous to the classical synthetic
controls approach (Abadie and Gardeazabal (2003), Abadie, Diamond, and Hainmueller
(2010), Abadie (2021)).

We have data on a set of J + 1 units, where the first unit j = 1 is the treated unit and
j = 2� � � � � J + 1 are the potential control units. These units are observed over T time
periods, where T0 < T denotes the last time period prior to the treatment intervention
in unit j = 1. We call t ≤ T0 the pre-intervention or pre-treatment periods and t > T0 the
post-intervention or post-treatment periods. In the following, we assume there is only one
post-intervention period, that is, T = T0 + 1, as the extension to several post-treatment
periods is straightforward.

2.1. The Causal Model in the Classical Setting

The classical method of synthetic controls focuses on an aggregated outcome Yjt that
is observed for each unit j = 1� � � � � J over the time periods t = 1� � � � �T . We denote by

to estimate the heterogeneous treatment effects of minimum wage changes on employment levels. This allows
the author to disentangle estimates of aggregate causal effects in Card and Krueger (1994) and Neumark and
Wascher (2000).

2On the flip side, this also means that it can be susceptible to interpolation bias, just as the classical method.
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Yjt�N the outcome of group j that would have been observed at time t in the absence of the
intervention; analogously, we denote by Yjt�I the outcome of group j that would have been
observed at time t if the unit was exposed to the treatment at time t > T0. The standard
assumption in this setting is that the intervention has no effect on the outcome before the
implementation period, so that we have Yjt�N = Yjt�I for all units j and all pre-intervention
periods t ≤ T0.

The key quantity to estimate in the classical setting is Y1t�N , the outcome of the treat-
ment unit had it not received the treatment in the post-intervention periods. Based on
this, one defines the effect αjt = Yjt�I − Yjt�N of the intervention for unit j at time t, so
that one can write the observable outcome in terms of the counterfactual notation as
Yjt = Yjt�N + αjtDjt , where Djt = 1 if j = 1 and t > T0 and 0 otherwise.

The goal in the synthetic controls literature is to estimate the treatment effect on the
treated group in the post-treatment period, that is, α1t = Y1t�I − Y1t�N = Y1t − Y1t�N for
t > T0. The fact that Yjt�N = Yjt for t > T0 and j = 2� � � � � J + 1 implies the treatment
effect on the treated unit can be estimated by a weighted average

α̂1t = Y1t −
J+1∑
j=2

λ∗
j Yjt = Y1t�I −

J+1∑
j=2

λ∗
j Yjt�N�

where {λ∗
j}j=2�����J is an optimal set of weights.

2.2. The Causal Model in the Distributional Setting

The distributional setting is analogous to the classical setting, but with the quantile
function F−1

Yjt
of Yjt as the quantity of interest. The quantile function is defined as

F−1(q) := inf
y∈R

{
F (y) ≥ q

}
� q ∈ (0�1)�

where F (y) is the corresponding cumulative distribution function. A common setting for
this is if the researcher is interested in a policy change at an aggregated level and has
access to data at a finer granularity. An example is data on household income when the
policy change of interest is at the state level, such as in analyses of changes in the minimum
wage (e.g., Dube (2019)). In this case, it is possible to estimate the quantile function of
household income within each state.

The goal is to estimate the counterfactual quantile function F−1
Y1t �N

of the treated unit
had it not received treatment by an optimally weighted average of the control quantile
functions F−1

Yjt
, j = 2� � � � � J + 1, that is,

F−1
Y1t �N

(q) =
J+1∑
j=2

λ∗
j F

−1
Yjt

(q) for all q ∈ (0�1)�

The assumptions on the model are hence different from classical assumptions in nonlin-
ear econometric panel data: for each time period t and unit j, the counterfactual measures
PYjt�N

are generated from a latent distribution PUjt
, which evolves over time to account for

trends. We show in the Appendix that the proposed synthetic controls method identi-
fies the correct counterfactual distribution if these latent dynamics of PUjt

as well as the
connection between the counterfactual measures PYjt�N

and the latent measures PUjt
are

linear.
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At an abstract level, this model can therefore be written as

PYjt�N
= ht�PUjt

for PUjt
= gt�PUj(t−1) �

where PYjt
is the probability measure corresponding to the probability distribution FYjt

,
ht (u) ≡ αt +βt ·u and gt (u) ≡ γt +δu are linear functions, and ht�PUjt

and gt�PUjt
denote

the pushforward measure of PUjt
via ht and gt .3 Note that the measures are defined at the

aggregate level j and do not need individual-level data to be defined in principle.
In practice, the counterfactual measures PYjt�N

and PYjt�I
are usually generated based on

data available at a finer granularity. We model this by assuming we observe independent
and identically distributed individual draws Yijt�N for each unit j. This leads to the causal
model

Yijt�N = αt +βtUijt for Uijt = γt + δtUij(t−1)� (1)

where for each j = 1� � � � � J + 1 and t ≤ T , Uij(t−1) are independent and identically dis-
tributed draws from the unobservable distribution FUjt

.4

This causal model is different from classical nonlinear panel data models in that it
shifts the focus from the individual level i to the aggregate level j. In particular, we do not
assume that the functions h(t� ·) are strictly increasing and continuous in the unobserv-
able U . Therefore, the proposed method does not identify individual effects at the level i
within a quantile function, but only identifies the entire counterfactual distribution PY1t�N

via its quantile function.
Having this causal model also means that the method is applicable to panel data where

the individuals i can change over time within a unit j. In a stylized schooling example,
where the unobservable variable is ability and the outcome of interest is wages earned
after graduation, this means that we can allow for observing different students within a
class over time. The causal effect of interest is at the classroom level: we identify the
counterfactual quantile function of outcomes in each classroom j, but do not claim to
identify causal effects for a specific individual i within a classroom.

3. IMPLEMENTATION OF THE METHOD

The optimal weights �λ∗
t ∈ 
J in every time period t ≤ T0 in the synthetic controls es-

timator are obtained in such a way that the corresponding weighted average of quantile
functions of the control units is “as close as possible” to the treated unit. To quantify this
mathematically, we introduce a distance on the set of all quantile functions. We choose
the 2-Wasserstein distance5 (Villani (2003, Section 2.2)) for this purpose because it re-
duces the problem of finding the optimal weights λ∗ to a simple regression problem. The
2-Wasserstein distance, denoted W2(P1�P2), between two probability measures P1 and P2

3The pushforward measure of PUj
via ht is defined as PYjt�N

(A) = PUj
(h−1

t (A)) for all (Borel-) sets A, where
h−1(A) denotes the pre-image of the function h.

4This model only introduces explicit randomness at the individual level i, not the aggregate j. One could
introduce randomness at the aggregate level by assuming that there exist random measures P̃ which in expec-
tation coincide with the measures PYjt

. However, for practical purposes, these two forms of randomness cannot
be distinguished, so that we only model randomness at the level i and via the fact that the PUjt

are unobserved
and unspecified.

5Also called Mallows distance, Monge–Kantorovich distance, or earth mover’s distance.
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with finite second moments is defined as (Villani (2003, Theorem 2.18))

W2(P1�P2) =
(∫ 1

0

∣∣F−1
1 (q) − F−1

2 (q)
∣∣2
dq

)1/2

�

where F−1
1 and F−1

2 are the quantile functions corresponding to P1 and P2, respectively.

3.1. Details of the Implementation

To obtain the optimal weights �λ∗
t ∈ 
J in each pre-intervention period t ≤ T0, we com-

pute

�λ∗
t = argmin

�λ∈
J

∫ 1

0

∣∣∣∣∣
J+1∑
j=2

λjF
−1
Yjt

(q) − F−1
Y1t

(q)

∣∣∣∣∣
2

dq� (2)

Mathematically, the weighted sum of the quantile functions is a barycenter (Agueh and
Carlier (2011)), or Fréchet mean (Fréchet (1948)), in the 2-Wasserstein space. Therefore,
the method formally consists of finding the optimal weights �λ∗ ≡ (λ∗

2� � � � � λ
∗
J+1) such that

the corresponding barycenter
∑J+1

j=2 λ
∗
j F

−1
Yjt

(q) is as close as possible to the target F−1
Y1t

in the

2-Wasserstein space. One could also replace the unit simplex 
J by the set �J = {�λ ∈ R
J :

�λ��1 = 1} of all weights that sum to unity.6 This would allow for extrapolation beyond the
unit simplex, just as in the classical method (Abadie, Diamond, and Hainmueller (2015)),
and would not change the implementation of the method.

The optimization (2) is a convex problem for the weights �λ∗
t with a unique solution.

In practice, one can approximate the integral by randomly sampling a large number M
of independent draws {Vm}Mm=1 from the uniform distribution on the unit interval Vm ∼
U[0�1] and solving

�λ∗
t = argmin

�λ∈
J

1
M

M∑
m=1

∣∣∣∣∣
J+1∑
j=2

λjtF
−1
Yjt

(Vm) − F−1
Y1t

(Vm)

∣∣∣∣∣
2

�

So if the quantile functions F−1
Yjt

are known, one can construct an artificial sample Ỹjtm =
F−1
Yjt

(Vm) indexed by the sample size m chosen by the researcher. One can then write the
last expression as a linear regression constrained to the unit simplex, that is,

�λ∗
t = argmin

�λ∈
J

1
M

M∑
m=1

∣∣∣∣∣
J+1∑
j=2

λjtỸjtm − Ỹ1tm

∣∣∣∣∣
2

= argmin
�λ∈
J

‖Ỹt
�λt − �̃Y1t‖2

2� (3)

where Ỹt is the m×J-matrix with entry Ỹjtm at position (m�j), �̃Y1t is the vector of elements
Ỹ1tm for m= 1� � � � �M , and ‖ · ‖2 is the Euclidean norm on R

M . Since we approximate the
integral by simulations from a uniform distribution, we can make the approximation error
as small as desired by choosing a sufficiently large number of simulation samples. By the
convexity and continuity of the objective function in �λ, the optimal weights obtained from
the approximation converge to the optimal weights of the integral expression as M → ∞
(Newey and McFadden (1994)).

6�1 ={1�1� � � � �1} ∈R
J denotes the unit vector and a�b denotes the inner product in R

J .
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In practice, the quantile functions F−1
Yjt

are not known and have to be estimated from
the data via empirical quantile functions F̂−1

Yjtn
(q) of the sample {Yijt}, i = 1� � � � � n, j =

1� � � � � J + 1. One way to do this is via order statistics: F̂−1
Yjtn

(q) = Yn(k) , where k is chosen
such that (k− 1)/n < q < k/n and Yn(k) are the order statistics of the data sample {Yijt},
i = 1� � � � � n, j = 1� � � � � J + 1.

This approach works for any type of distributions, regardless of whether they are ab-
solutely continuous, discrete, or mixed, as long as they have finite second moments—
otherwise the Wasserstein distance can be infinite and the problem becomes trivial.7 We
can then compute the optimal weights �λ∗ as a weighted average of the weights �λ∗

t over all
pre-intervention periods, that is,

�λ∗ =
∑
t≤T0

wt
�λ∗
t for wt ≥ 0 and

∑
t≤T0

wt = 1�

Arkhangelsky, Athey, Hirshberg, Imbens, and Wager (2021) provided potential choices
of weights wt that can also be used in our case. In our simulations and applications, equal
weights wt = 1

T0
perform well; see Section 5.

At every time point t > T0 in the post-intervention period, we compute the counter-
factual quantile function for the treatment unit had it not received the treatment by
F−1
Y1t�N

= ∑J+1
j=2 λ

∗
j F

−1
Yjt

.

3.2. Summary of the Proposed Method

In summary, the abstract procedure for a data-generating process of the form Yijt , i =
1� � � � � nj , j = 1� � � � � J + 1, t = 1� � � � �T is shown in Algorithm 1.

Algorithm 1 Distributional Synthetic Controls.
Input: 1. data-generating process Yijt with i = 1� � � � � nj , j = 1� � � � � J + 1, t = 1� � � � �T

2. weights {wt}t≤T0 ⊂ 
T0

1: procedure DSC
2: for each time period t ≤ T do
3: for each unit ι = 1� � � � � J + 1 do
4: estimate the empirical quantile functions F̂−1

Yιtn

5: end for
6: end for
7: for each time period t ≤ T0 do
8: obtain the optimal weights �λ∗

t by solving (2) via the regression (3)
9: end for

10: obtain the optimal weights �λ∗ = ∑T0
t=1 wt

�λ∗
t over all t ≤ T0

11: for each time period t = T0 + 1� � � � � T do
12: obtain the counterfactual quantile function F̂−1

Y1nt�N
= ∑J+1

j=2 λ
∗
j F̂

−1
Yjnt

13: end for
14: end procedure

7All results hold for the p-Wasserstein distance, p ≥ 1. For p = 1, we only need to require that all distribu-
tions have a finite first moment. We focus on p= 2 because it provides a regression approach.
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From the estimated counterfactual quantile function, one can obtain other quanti-
ties, such as averages E[Y1t�N] = ∫ 1

0 F−1
Y1t�N

(q) dq, counterfactual Lorenz curves (Gastwirth
(1971)), Gini-coefficients, or interquartile ranges. Mirroring the classical setting (Abadie,
Diamond, and Hainmueller (2010, equation (2))), the proposed method identifies the
true counterfactual distribution for the causal model in (1) in the case where there exists
a set of weights �λ∗, which allows us to perfectly replicate the target in each time period,
that is, F−1

Y1t
= ∑J+1

j=2 λ
∗
j F

−1
Yjt

for all t ≤ T0.

3.3. A Placebo Permutation Test

In order to perform inference on the estimated causal effect, we use a placebo permu-
tation test as in the classical setting (Abadie, Diamond, and Hainmueller (2010)). The
idea is to apply the synthetic controls estimator to each control unit by pretending this
control unit is the treated one. If there is an actual treatment effect only in the treatment
group post-intervention, then the estimated effect for the actual treatment unit should be
among the most extreme. Algorithm 2 provides the pseudo-code for the placebo permu-
tation test. The obtained probability pt provides the probability of observing a difference
between the observable F−1

Y1t
and the estimated counterfactual F−1

Y1t�N
given all permuta-

tions of the treatment and control units.
The difference compared to the classical method is that our outcome of interest, F−1

Y1t�N
,

is a functional quantity. Thus, in contrast to the classical setting, we use the 2-Wasserstein
distances dιt to rank the difference between the observed FYιt and the computed FYιt�N

.
These distances are always non-negative, in contrast to the classical setting (Abadie, Dia-
mond, and Hainmueller (2010)).

Algorithm 2 Placebo Test.
Input: 1. quantile functions F−1

Yjt
, j = 1� � � � � J + 1, y = 1� � � � �T

2. weights {wt}t≤T0 ⊂ 
T0

1: procedure PERMUTATION INFERENCE FOR CAUSAL EFFECTS AT TIMES t ≥ T0

2: for each unit ι = 1� � � � � J + 1 do
3: for each time period t = 1� � � � �T0 do
4: obtain and record the optimal weights λ∗

st�ι using (2)
5: end for
6: compute the overall optimal weights λ∗

s�ι = ∑
t≤T0

wtλ
∗
st�ι

7: for each time period t = 1� � � � �T do
8: compute 2-Wasserstein barycenter using the weights λ∗

s�ι to obtain F−1
Yιt�N

9: record the squared distances d2
ιt :=

∫ 1
0 |F−1

Yιt�N
(q) − F−1

Yιt
(q)|2 dq

10: end for
11: end for
12: for each time period t = 1� � � � �T do
13: sort dιt decreasingly in ι
14: record the rank r(d1t), e.g., r(d1t) = 1 if d1t is largest
15: compute the probability pt of obtaining a value of d1t as pt = r(d1t )

J+1
16: end for
17: end procedure
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4. COMPARISON TO OTHER APPROACHES

By using quantile functions the proposed method becomes an extension of the classical
synthetic controls estimator in two ways: first, it can replicate target distributions whose
support is not nested in the control distributions, hence allowing for interpolation, as the
classical method of synthetic controls; second, it rests on the same mathematical founda-
tion, the p-Wasserstein space, as the changes-in-changes estimator by Athey and Imbens
(2006). This makes it a complementary approach to the changes-in-changes estimator in
the same way that the synthetic controls estimator is a complementary approach to the
classical difference-in-differences estimator. In this section, we formalize these connec-
tions. We also introduce an alternative approach that uses averages of cumulative distri-
bution functions and compare the proposed method to it.

4.1. Relation to the Classical Synthetic Controls Method

The proposed method is an extension of the classical method in a rigorous sense: if
we apply it to probability measures supported on one point, that is, Dirac measures of
the form δy (A), taking the value 1 if y ∈ A and 0 otherwise, then we obtain the same
results as the classical method.8 This means the proposed method reduces to the classical
estimator when we are only given aggregate values and not distributions.

Note that this does not imply a relation between the proposed method and the classical
method applied to moments of a given distribution, such as averages. The proposed esti-
mator provides different optimal weights than the classical estimator applied to averages.
Intuitively, the reason for this is that the distributional synthetic controls method finds
optimal weights that replicate all moments of the target distribution as closely as possi-
ble. In contrast, applying the classical method to averages of the distributions will find the
optimal weights based on replicating the first moment. It follows from Jensen’s inequality
that the optimal weights can replicate the average at least as well as whole distributions.

4.2. Relation to the Changes-in-Changes Estimator

The proposed method is the complementary approach to the changes-in-changes es-
timator in the sense that the latter is also based on the p-Wasserstein space. Recall the
approach of the changes-in-changes estimator: in the case of only one pre- and one post-
intervention period, as well as only one control group, it constructs the counterfactual
distribution FY11�N as FY10 (F−1

Y00
(FY01 )), where the first index is with respect to the treat-

ment group (0 for control and 1 for treatment) and the second index is with respect to the
time period (0 is pre-intervention and 1 is post-intervention).

The monotone rearrangement F−1
Y00

(FY01 ) is the optimal transport map between F00 and
F01 with respect to the p-Wasserstein distance. In particular, when FY01 is absolutely con-
tinuous, one can compute the p-Wasserstein distance between FY01 and FY00 as (Villani
(2003, Remark 2.19(iv)))

W2(PY01�PY00 ) =
(∫ ∣∣x− F−1

Y00

(
FY01 (x)

)∣∣2
dFY01 (x)

)1/2

�

8To see this, note that the quantile function F−1
y (q) corresponding to a Dirac measure δy (A) at a point y is

the constant function with value y .
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Hence, the changes-in-changes estimator relies on the same mathematical theory as our
proposed method in the form of the p-Wasserstein distance.

Both approaches are complementary and suited for different settings. In a nutshell:
the proposed distributional synthetic controls method estimates between units and ex-
trapolates over time, while the changes-in-changes method estimates changes over time
and extrapolates between units. This implies different assumptions for each method. The
proposed method requires a linear function h in the causal model (1) due to the ex-
trapolation over time, while the changes-in-changes estimator requires that h is strictly
increasing and continuous in the unobservable. This fact makes the changes-in-changes
estimator invariant to nonlinear increasing transformations. This does not hold for the
proposed synthetic controls estimator: if the distributions are transformed in a nonlin-
ear fashion, then the optimal weights obtained will in general be different. On the other
hand, synthetic control methods are designed for settings where several control units are
available over potentially multiple time periods. It also provides point-identification in
the sense of a unique counterfactual distribution for any type of distribution.

4.3. A Synthetic Controls Method Based on Cumulative Distribution Functions

An alternative for estimating the optimal weights �λ∗
t in time period t is a mixture of

distribution functions:

�λ∗
t = argmin

�λ∈
J

∫
R

∣∣∣∣∣
J+1∑
j=2

λjFYjt
(y) − FY1t (y)

∣∣∣∣∣dy� (4)

The L1-distance is chosen because it is the 1-Wasserstein distance between the weighted
average of the distribution functions of the control units and the distribution function of
the target (Villani (2003, Section 2.2)). This is not the case for any other p > 1, which
are defined via quantile functions. In principle, one could use any other distance or di-
vergence as well, but Wasserstein distances have the benefit that they are applicable for
measures with potentially different supports. This can be relevant in finite sample settings
and in settings where supports are non-nested.

The main difference between a method based on mixtures of quantiles in contrast to
mixtures of distribution functions is that the former replicates the target also at points that
lie outside of the support of the control distributions, while the latter is confined to the
union of the supports of the control distributions. However, solving (4) is preferred if it is
known that the distributions are mixtures of other distributions themselves. An example
for this is a setting where the treatment group consists of outcomes of both employed
and unemployed workers, and the two control units consist of unemployed workers only
and employed workers only. In this setting, a mixture of distributions is sensible. From a
computational perspective, the mixture of quantiles approach relies on the 2-Wasserstein
distance, which allows for a practical implementation via linear regression, as shown in
(3), while the analogous method using mixture of distributions relies on the L1-distance
and is implemented via a convex optimization routine.

Figure 1 illustrates the differences between the two concepts in a theoretical setting
with four Gaussians of equal variance. The equally weighted average of the quantile
functions is the Gaussian with the same variance as the control distributions and a mean
which is the average of the means of the control distributions. The average of the equally
weighted distribution function (solid) is the multimodal function supported on the joint
support of the control units.
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FIGURE 1.—Four Gaussian distributions with equal variance (dashed), the equally weighted average of their
quantiles (dash-dotted), and their equally weighted linear mixture (solid). Left: densities; right: cumulative
distribution functions.

5. EMPIRICAL APPLICATION

This section illustrates the performance of the proposed method (2) with economic
data. We also apply the approach based on mixtures of distribution functions (4) for com-
parison. We use a subset of the data provided in Dube (2019) on minimum wages in the
United States. The data consist of all 50 states and the District of Columbia. The outcome
of interest is the distribution of equalized family income from wages and salary, defined
as multiples of the federal poverty threshold as in Dube (2019). We focus on the years
1998–2004 and the state of Alaska as our treated unit, because Alaska increased its min-
imum wage from $ 5�65 to $ 7�15 in 2003. The 33 other states that did not change their
nominal minimum wage during this period are the control units, and T0 = 2002.

Figure 2 captures the performance of our proposed method (2) and the mixture of
distribution function (4) for replicating the target distribution during the years 1999 and
2003 using an equally weighted average of the optimal weights �λ∗ := 1

2002−1998

∑2002
t=1998 λ

∗
t .

FIGURE 2.—Depiction of the proposed estimator (2) (dashed) and the mixture of distributions estimator
(4) (solid) for replicating the target distribution (dash-dotted) of adjusted family income in 1999 (left) and
2003 (right) in AK.
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FIGURE 3.—Placebo permutation test following Algorithm 2 with target AK.

Both methods manage to replicate the target well. The reason is that the distribution
functions of all units are regular with similar supports and shapes, with very little variation
between them. The weights obtained in each approach differ, but are qualitatively similar.
They are sparse in both approaches, with around 15–20% of control units receiving a
weight greater than 1% and about 10% of the control units receiving a weight of greater
than 10% in each time period. Taking the uniform average of these weights over all pre-
intervention time periods removes the sparsity of the weights, with about 2/3 of all units
receiving a weight of 1% or more. The four control states with the largest weights for
the proposed method are: VA (0�11), NH (0�11), MD (0�09), UT (0�07). The five control
states with the largest weights for the method relying on the mixture of distributions are:
MI (0�12), OH (0�10), MD (0�10), NV (0�07), VA (0�07). This demonstrates that the
two approaches do give different weights in general, which is expected since both define a
different metric and definition of average on the space of probability measures in general.

It is also possible to estimate confidence intervals for the distribution functions based
on standard resampling techniques. In this example, the 99%-confidence intervals for our
proposed method are so tight that they are imperceptible from the replication, so they
are not included.

Figure 2 indicates that there is no immediate treatment effect on the equalized family
income in Alaska from raising the minimum wage in 2002. Figure 3 depicting the results
of a placebo permutation test following Algorithm 2 corroborates this.

6. DISCUSSION

We have developed an extension of the classical synthetic controls estimator that can
take advantage of data at a finer granularity within treatment and control units. The idea is
to replicate the quantile function of the treated unit in pre-intervention periods by an opti-
mally weighted mixture of the quantile functions of the control units. In post-intervention
periods, these weights are used to construct the counterfactual quantile function of the
treated unit had it not received the treatment. We also provide a complementary approach
based on cumulative distribution functions using the 1-Wasserstein distance.

The proposed method provides one scalar weight for entire quantile functions, hence
produces the counterfactual at the aggregate level. This allows researchers to perform
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causal inference on outcomes of interest beyond averages, such as Lorenz curves or in-
terquartile ranges. Furthermore, it makes the proposed method applicable in relevant
practical settings with panel data where individuals cannot be tracked over time. We also
provide a placebo permutation test analogous to the classical test introduced in Abadie,
Diamond, and Hainmueller (2010) and a linear causal model for which our estimator
estimates the counterfactual quantile function.

APPENDIX: FORMAL ARGUMENT FOR THE IDENTIFICATION OF THE CAUSAL EFFECT

This section develops a formal argument that the proposed method identifies the coun-
terfactual quantile function in the population for the linear causal model and there exists
a set of weights �λ∗ which allows us to replicate the counterfactual quantile function in all
pre-intervention time periods, that is, F−1

Y1t
= ∑J+1

j=2 λ
∗
jtF

−1
Yjt

for all t ≤ T0.
To see this, focus first on the case where the unobservables Uj do not change over time.

Recall that the optimal weights λ∗ obtained over the pre-intervention periods are used
in the post-intervention period to construct the counterfactual quantile function of the
treated unit had it not received treatment. This implies that the relative distances between
the quantile functions of the unobservables and the outcomes of the control units cannot
change over time. Otherwise, the weights obtained in pre-intevention periods would not
be optimal in post-intervention periods. This further implies the functions h(t�Uj) in the
causal model need to preserve relative distances. Functions that preserve distances are
called isometries.

DEFINITION 1: A map f :X →Y between two metric spaces (X � dx) and (Y� dy) is an
isometry if dy (f (x)� f (x′)) = dx(x�x′) for all x�x′ ∈ X . We call f (x) a scaled isometry if it
satisfies dy (f (x)� f (x′)) = τdx(x�x′) for some τ ∈ (0�+∞).

In the above definition, dx and dy are distances on the respective spaces. Since we can
allow for functions to only preserve relative distances, we only need to require that the
functions h(t�Uj) are scaled isometries. Since we work in the 2-Wasserstein space, we
require that h(t�Uj) are scaled isometries in the 2-Wasserstein space and hence preserve
the 2-Wasserstein distances.

We now show this formally. Without loss of generality, let τh, the scaling parameter
of the isometry h(t� ·), be equal to unity. The reason is that the scaling does not affect
the relative distance between the respective measures which is needed to determine the
counterfactual quantile function. The proof is then straightforward with the definition of
isometries. In particular, as h(t� ·) is a (surjective) isometry in the 2-Wasserstein space on
the real line for all t, it holds by definition that

W2(PUj
�PUi

) = W2(ht�PUj
�ht�PUi

) = W2(PYjt
� PYit

)

for j� i = 1� � � � � J + 1. This holds for all time periods t.
This implies that the map mt�t′ := ht′ ◦ h−1

t is also an isometry for all t, t ′, as the compo-
sition of (surjective) isometries is a (surjective) isometry. But since isometries retain the
weighted averages, this implies that using the weights λ∗

t obtained in the pre-intervention
periods is still optimal in the post-intervention periods, so PYjt�N

obtained by the method
of distributional synthetic controls provides the correct counterfactual distribution for the
model where h(t� ·) are scaled isometries.

Linear maps of the form h(t�Uj) = αt +βtUj are scaled isometries in the 2-Wasserstein
space (Kloeckner (2010)). This implies that for fixed PUjt

, the optimal weights λ∗ obtained
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via the proposed method stay optimal in post-intervention periods. Therefore, the esti-
mated counterfactual quantile function using these weights is the correct counterfactual
quantile function with respect to the causal model (1).

The same argument holds when we assume that the unobservables Ujt change linearly
over time. Since this change over time is linear, the relative distances between unobserv-
ables stay the same over time. The same argument above then proves identification for
this setting, too.
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