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Abstract20

Distributed Acoustic Sensing (DAS) is a promising technique to improve the rapid de-21

tection and characterization of earthquakes. Previous DAS studies mainly focus on the22

phase information but less on the amplitude information. In this study, we compile earth-23

quake data from two DAS arrays in California, USA, and one submarine array in San-24

riku, Japan. We develop a data-driven method to obtain the first scaling relation between25

DAS amplitude and earthquake magnitude. Our results reveal that the earthquake am-26

plitudes recorded by DAS in different regions follow a similar scaling relation. The scal-27

ing relation can provide a rapid earthquake magnitude estimation and effectively avoid28

uncertainties caused by the conversion to ground motions. Our results show that the scal-29

ing relation appears transferable to new regions with calibrations. The scaling relation30

highlights the great potential of DAS in earthquake source characterization and early31

warning.32

Plain Language Summary33

Distributed Acoustic Sensing (DAS) is an emerging technique that can convert an34

optical fiber cable into a dense array to record seismic waves from earthquakes. The recorded35

seismic signals contain essential information about earthquakes. For example, DAS can36

record high-amplitude signals from earthquakes with large magnitudes. However, the ex-37

act setting of the optical cables (i.e., installation conditions and coupling with the sur-38

rounding medium) is often unknown, thus preventing quantitative estimations of earth-39

quake magnitudes with DAS. In this study, we analyze earthquake data recorded by dif-40

ferent DAS arrays and develop a data-driven method to obtain an empirical relation be-41

tween the earthquake magnitude and the amplitude of DAS signals. We show that this42

empirical relation can accurately estimate the earthquake magnitude directly from the43

DAS data. Furthermore, the empirical relation we obtain from one area can also be ap-44

plied to new regions with slight calibrations. Our empirical relation can significantly ex-45

pand the applications of DAS in earthquake research, such as seismic hazard assessment46

and earthquake early warning.47

1 Introduction48

Rapid earthquake source characterization is critical to monitor earthquakes, pro-49

vide Earthquake Early Warning (EEW) alerts and prompt reactions to seismic hazards.50

However, this is still challenging for many remote areas with insufficient seismic station51

coverage. For example, subduction zones, which can hold the largest earthquakes, are52

generally poorly instrumented due to the large expenses involved in deploying and main-53

taining offshore seismic instruments. In this context, Distributed Acoustic Sensing (DAS),54

which can utilize pre-existing telecommunication fiber-optic cables in both onshore and55

offshore regions, appears to be a promising complementary sensing method to fill the ge-56

ographical gaps of conventional seismic networks.57

DAS is an emerging technique that has great potential in seismology. It converts58

every few meters of an optical fiber into a single-component strainmeter (Benioff, 1935)59

to provide spatially coherent signals with high sensitivity. One single DAS array often60

consists of thousands of channels covering tens of kilometers and can serve as a dense61

seismic array to achieve great spatial resolution. DAS has proved to be an effective tool62

to refine regional seismic structure (Ajo-Franklin et al., 2019; Trainor-Guitton et al., 2019;63

Yu et al., 2019; Spica, Nishida, et al., 2020; Yang et al., 2022; Spica, Perton, et al., 2020;64

Viens, Perton, et al., 2022) and to detect local earthquakes (Ajo-Franklin et al., 2019;65

Li et al., 2021; Li & Zhan, 2018; Atterholt et al., 2022), and seismic signals from vari-66

ous sources (Williams et al., 2019; X. Wang et al., 2020; Zhan et al., 2021; Viens, Bonilla,67

et al., 2022). The phase information of DAS has been well-validated to be accurate in68

the multiple aforementioned applications. However, DAS amplitudes, which commonly69
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represent the direct strain/strain-rate output from an interrogator unit, are rarely con-70

sidered for earthquake source characterization and early-warning purposes.71

The direct use of DAS amplitude information is mainly circumscribed by a few lim-72

itations, such as unknown cable coupling, single-component sensing, uncertain instru-73

mental response, and uncommon amplitude saturation behaviors (Lindsey et al., 2020).74

DAS instruments record phase shifts of light traveling in the optical fiber, and the phase75

information is then converted into the strain along the cable direction (Lindsey et al.,76

2017; Fernández-Ruiz et al., 2020; Lindsey & Martin, 2021). However, the instrumen-77

tal strain is not necessarily equal to the strain of the medium surrounding the cable due78

to different installation methods of telecommunication cables (Ajo-Franklin et al., 2019).79

This coupling issue commonly exists but varies with the unknown cable installation in80

different regions (Ajo-Franklin et al., 2019; Lindsey et al., 2020; Trainor-Guitton et al.,81

2019; Paitz et al., 2020). Moreover, the instrumental response of DAS is highly frequency-82

dependent (Lindsey et al., 2020; Paitz et al., 2020) and often hard to quantify without83

co-located seismometers. The frequency-dependent instrumental response can contam-84

inate frequency components of the DAS data and may prevent robust spectral analysis.85

The DAS amplitude saturation is another issue and is sometimes observed for earthquakes86

close to DAS instruments (Viens, Bonilla, et al., 2022). DAS amplitude saturation is of-87

ten presented by a flip from maximum to minimum due to the phase wrapping of the88

sensing laser pulse in the cable (Ajo-Franklin et al., 2022), making this behavior hard89

to identify and recover. All these instrumental limitations aggravate the accurate con-90

version of DAS amplitude to ground motions (e.g., velocity and acceleration), thus fur-91

ther challenging the incorporation of DAS data into many seismology applications (Lindsey92

& Martin, 2021; Farghal et al., 2022). There have been many attempts to convert DAS-93

recorded strain to ground motions (Daley et al., 2016; H. F. Wang et al., 2018; Yu et al.,94

2019; Lindsey et al., 2020; Lior et al., 2021). For example, H. F. Wang et al. (2018) showed95

a good match between DAS amplitude and strain derived from individual co-located nodal96

sensors. However, in the same experiment, Muir and Zhan (2022) systematically recon-97

structed the strain-rate wavefield with the entire nodal array and found that the DAS-98

recorded amplitudes are, on average, twice that of conventional sensors. In general, ac-99

curate conversion requires good knowledge of the local geology, seismic velocity struc-100

ture, and instrumental information; and is still an active research direction in the DAS101

community.102

Instead of converting DAS-strain data to ground motion measurements (i.e., ve-103

locity or acceleration), we propose a data-driven way to explore the relationship between104

the peak amplitude of DAS data and earthquake magnitude. This study presents the first105

DAS amplitude scaling relation for a rapid magnitude estimation of DAS-recorded earth-106

quakes. Previous studies using conventional strainmeters show that the peak strain am-107

plitude follows an empirical relation that can be used to estimate the magnitude of earth-108

quakes (Barbour & Crowell, 2017; Barbour et al., 2021). Unlike conventional strainmeters,109

one DAS array can easily provide thousands of peak amplitude measurements from a sin-110

gle earthquake, allowing the development of robust scaling relation with fewer earthquakes.111

We analyze earthquakes recorded by DAS arrays in California, USA, and Sanriku,112

Japan (Figure 1). Both regions are seismically active and provide us with an unprece-113

dented opportunity to develop and validate a DAS scaling relation. We measure peak114

DAS amplitudes of earthquakes based on earthquake catalogs. We apply iterative regres-115

sion analysis to these datasets to obtain a robust scaling relation between the peak DAS116

strain rate, earthquake magnitude, and hypocentral distance, calibrated by channel-specific117

site terms. The obtained scaling relation can be used for rapid and reliable earthquake118

magnitude estimation from the DAS amplitude measurements. Furthermore, we show119

that the DAS amplitudes in different onshore regions follow the scaling relation with sim-120

ilar coefficients. The scaling relation built on terrestrial DAS arrays in California can be121

transferred to the submarine DAS data in Japan with calibration on the site terms.122
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Figure 1. (a) Temporal distribution of earthquake magnitude from the three DAS arrays

(colored circles) used in the analysis. (b) Hypocentral distance and magnitude range of earth-

quakes used in the analysis. The distance is the median over the array for each earthquake for

better visualization. (c) Topographic map including the earthquake locations (black dots) and

the Ridgecrest and Long-Valley DAS arrays (blue lines) in California, USA. (d) Map showing

the locations of earthquakes (black dots) and the Sanriku DAS array (blue line) in Japan. Four

earthquakes outside the main panel in (d) are shown in the inset map.

2 Results123

2.1 Data124

We analyze strain-rate DAS data, which removes the instrumental drifts in our strain125

data and is also shown to have a frequency-independent instrumental noise at low fre-126
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quency < 0.1 Hz (Lior et al., 2023), recorded in both terrestrial and submarine envi-127

ronments (Figure 1 (a)). The DAS recording parameters and configurations are shown128

in Table S1. We start with analyzing the two terrestrial DAS arrays in the Ridgecrest129

(RC) and Long-Valley (LV) regions (Figure 1 (b)) in California. The two arrays have130

recorded over two years of continuous data from July 10, 2019, to October 31, 2021. We131

first convert the DAS raw data, which is the phase shift of Rayleigh back-scattered laser132

signals in the optical fiber, to strain rate using Eq. S1 (Text S1 in the Supporting In-133

formation). We then apply PhaseNet-DAS (Zhu et al., 2023), which is a deep learning134

phase picker tailored for DAS data, to accurately pick P-wave and S-wave arrivals from135

earthquakes (Text S2 of the Supporting Information). We associate the picked earthquakes136

with the regional earthquake catalogs to determine their locations and magnitudes. We137

also investigate two weeks of submarine data (from November 11 to December 1, 2019)138

from a DAS array in Sanriku, Japan (Shinohara et al., 2022). The submarine DAS data139

suffer from various types of oceanic noise, and earthquake P-wave arrivals are rarely ob-140

served. Due to these limitations, PhaseNet-DAS is not as effective on submarine data141

as on terrestrial DAS arrays. Instead, we apply a template matching method to detect142

S-waves from earthquakes and associate them with the local Japanese Meteorological Agency143

(JMA) catalog for their location and magnitude (Text S3 of the Supporting Information).144

In this study, we assume that the difference in catalog magnitude between the two re-145

gions, California (local magnitude ML for most small M < 3 earthquakes or moment146

magnitude Mw for larger M > 3.3 earthquakes if available) and Sanriku MJMA (veloc-147

ity magnitude according to JMA (Katsumata, 1996; Funasaki, 2004)), is negligible and148

can be approximated as the moment magnitude to simplify the analysis (Katsumata, 2004;149

Clinton et al., 2006; Uhrhammer et al., 2011). This is a reasonable assumption for the150

earthquake magnitude range 2 ≤ M ≤ 6 analyzed in the current study, but careful151

analysis on different local magnitude scales is required for large M > 7 earthquakes.152

We successfully obtain 3,610 earthquakes with 2,363,585 P-wave and 2,411,592 S-153

wave peak measurements from the two California DAS arrays and 47 earthquakes with154

34,803 S-wave peak measurements from the Sanriku DAS array. The California earth-155

quakes have magnitudes ranging between M2.0 and M5.8 within hypocentral distances156

ranging between 5.2 and 182.6 km. The Sanriku earthquakes have magnitudes between157

M2.0 and M4.7 and hypocentral distances from 59.7 to 709.5 km. The measured peak158

DAS strain rates present strong correlations with the event magnitude (Figures 2 (c) and159

(f)) and hypocentral distance (Figures 2 (d) and (g)). Furthermore, all arrays follow sim-160

ilar trends, which imply the existence of a scaling relation (see Text S4 of the Support-161

ing Information for details of data processing and quality control).162

2.2 Scaling relation163

Based on the statistical correlations of data (Figure 2), we fit the data with a gen-164

eral form of scaling relation similar to Barbour and Crowell (2017); Barbour et al. (2021):165

log10 Ei = aM + b log10 Di + Ki, (1)

where E is the observed peak amplitude of DAS strain rate in microstrain/s (10−6/s),166

D is the hypocentral distance in kilometers to each DAS channel, and M is the earth-167

quake magnitude. The subscript i corresponds to each DAS channel. We apply an in-168

tegrated channel-specific factor Ki to account for all local effects such as cable construc-169

tion, installation, instrumental coupling, and the variety of regional geology.170

We use an iterative regression method to fit for the magnitude coefficient a, dis-171

tance coefficient b, and corresponding site terms Ki separately for P and S waves. We172

first apply the regression method to each individual DAS array and find that the val-173

ues are almost the same among the arrays (Figure S1). Therefore, we combine the three174
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Figure 2. (a) Histograms in probability density function (pdf) of earthquake magnitude.

(b) Histograms in pdf of hypocentral distance. (c) Magnitude versus peak P-wave DAS strain

rate (EP ). (d) Hypocentral distance versus peak P-wave DAS strain rate. (e) Histograms in pdf

of peak P-wave DAS strain rate. (f) Magnitude versus peak S-wave DAS strain rate (ES). (g)

Hypocentral distance versus peak S-wave DAS strain rate. (h) Histograms in pdf of peak S-wave

DAS strain rate. For all the histograms, the black lines indicate the entire dataset from all DAS

arrays. Colored lines are for the individual arrays. For the 2-D correlation figures, peak DAS

strain rate measurements are averaged by events. Different California arrays are shown by the

colored contours, whose levels correspond to 5%, 30%, 60% and 90% of the probability density

from thin to thick lines. The Sanriku data points are shown by pink dots in (f) and (g).

California terrestrial data sets into one data set for an integrated regression. Because175

of the unbalanced amount of measurements and different processing steps of terrestrial176

and submarine DAS data, we use the California DAS dataset with both P- and S-wave177

measurements to fit for the coefficients of Eq.(1) and the Sanriku submarine DAS data178

as a validation set. This splitting scheme aims at testing the generality of the scaling re-179

lation. The best-fit scaling relation we obtain for P waves is:180

log10 E
P
i = 0.437M − 1.269 log10 Di + KP

i , (2)
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and for S waves is:181

log10 E
S
i = 0.690M − 1.588 log10 Di + KS

i . (3)

We refer the reader to Text S5 and Text S6 of the Supporting Information for further182

details about the iterative regressions and site calibration terms, respectively.183
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Figure 3. (a) P-wave scaling relation applied to the California data using all three DAS

arrays. (b) S-wave scaling relation applied to California data using all three DAS arrays. (c)

S-wave scaling relation applied to Sanriku data using only the Sanriku DAS array. (d) S-wave

scaling relation applied to Sanriku data using scaling relation transferred from California DAS ar-

rays. (a) and (b) show the 2D histograms, while (c) and (d) show the individual event. Red dots

indicate events used for calibrating local site terms. Solid black lines show accurate estimation

where catalog magnitude equals predicted magnitude, while dashed lines show plus/minus 1 unit

of magnitude errors.

2.3 Magnitude estimation from DAS184

We validate the scaling relation by comparing the measured peak strain rate with185

those calculated by the scaling relation Eq.(1) to guarantee that the regression can ro-186
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bustly explain the features in the data (Text S7 and Figure S3 of the Supporting Infor-187

mation). Then, we reorganize the scaling relation Eq.(1) to estimate earthquake mag-188

nitudes from the DAS peak strain rate:189

Mi = (log10 Ei − b log10 Di −Ki)/a. (4)

Given the peak amplitude Ei and hypocentral distance Di, we calculate the mag-190

nitude Mi for each DAS channel and then use the median magnitude of all channels as191

the final magnitude estimation M . Our results show that the magnitude can be reliably192

estimated with an error of less than 1 unit of magnitude by using either P or S waves193

peak amplitude in a given time window (a 2-second time window is used here, but other194

time windows have also been tested, see Text S4 and Table S2 for details) for most earth-195

quakes in both the California and Sanriku regions, especially for the larger earthquakes196

(Figure 3 (a)-(c)). Moreover, we show that the scaling relation can be transferred from197

California to Sanriku and works equally well as that obtained from the Sanriku-only mea-198

surements (Figure 3 (c) and (d)). The transferred scaling relation inherits the same mag-199

nitude a and hypocentral distance b coefficients from the California dataset and only re-200

quires a small number of local earthquakes to recalculate the site calibration terms Ki.201

We apply a systematic random test to show that for the Sanriku case, only a limited num-202

ber of local events (i.e., 3-6 earthquakes) are sufficient to obtain robust values of the site203

calibration terms (Text S8 of the Supporting Information). The transferred scaling re-204

lation can provide a robust estimation of the magnitude of earthquakes (Figure 3(d)).205

3 Discussion206

3.1 Transferable scaling relation of DAS amplitude207

Unlike conventional and well-calibrated seismic sensors, DAS instruments are com-208

monly deployed on preexisting telecommunication optical fibers with various properties209

and construction designs (Ajo-Franklin et al., 2019). This generally leads to difficulties210

in determining the instrument responses of DAS arrays. Some previous studies have shown211

that DAS instrument response can be quantitatively determined by comparing DAS mea-212

surements with a co-located seismometer (Lindsey et al., 2020; Paitz et al., 2020). How-213

ever, co-located sensors are not always available, especially in marine environments. There214

are multiple ways to convert DAS measurements to ground motions: for instance, direct215

calibration with co-located seismometers (Lindsey et al., 2017), correction based on ap-216

parent local phase velocity (Daley et al., 2016; H. F. Wang et al., 2018; Yu et al., 2019;217

Shinohara et al., 2022), spatial integration from a co-located seismometer (H. F. Wang218

et al., 2018), and rescaling in the f−k or curvelet domains (Lindsey et al., 2020; Yang219

et al., 2022). Recently, a local slant-stack transform method was developed to convert220

strain to ground motion in real-time for EEW (Lior et al., 2021, 2023). Although shown221

to be effective, most of the conversion methods require elaborate data preprocessing and222

analyst-intense quality control. Improving those methods and developing new ones are223

still active directions of current DAS research in the community.224

This study evaluates how DAS amplitude is related to earthquake magnitude in225

a data-driven methodology. With the abundant peak amplitude measurements of earth-226

quakes in the Ridgecrest and Long-Valley regions, we apply regression analysis to ob-227

tain a robust scaling relation for both P- and S-waves recorded by DAS instruments. Most228

importantly, we find that different regions have almost the same values of the scaling co-229

efficients a and b (Figure S1). With region-specific site calibration Ki (Figures S2 and230

S4 in the Supporting Information), we show that it is feasible to transfer/extrapolate the231

scaling relation from one well-studied area to DAS arrays in other regions for earthquakes232

within similar distance/magnitude ranges. The DAS peak amplitude scaling relation can233

be applied to earthquake source studies in different areas.234
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We further compare the DAS measurements with results from previous studies us-235

ing conventional strainmeters (Barbour et al., 2021). The distance coefficients of both236

conventional strainmeters (b =-1.45) and DAS are close, meaning that the dynamic strain237

follows the same geometrical spreading of wave propagation for both conventional strain-238

meter and DAS instruments. However, the magnitude coefficients are different (a = 0.92239

from strainmeters) mainly because the DAS scaling relation is obtained from strain-rate240

data, while the strainmeter scaling relation is based on strain data. The different phys-241

ical quantities scale differently with earthquake magnitude. Strain rate is theoretically242

proportional to acceleration (Benioff, 1935). Therefore, we analyze the peak ground ac-243

celeration (PGA) of the Next Generation Attenuation model (NGA-West2) project (Bozorgnia244

et al., 2014). For consistent comparisons, we fit the PGA in the NGA-West2 dataset with245

the same model as Eq.1, assigning the site calibration term to each station. We find that246

the distance coefficients from DAS (b = −1.27 for the P wave and 1.59 for the S wave)247

are close to those from PGA (b = −1.63, Figure S1). The difference in the magnitude248

coefficients (a = 0.44 for the P wave and 0.69 for the S wave from DAS versus a = 0.39249

from PGA) is probably due to the different frequency bands of DAS and conventional250

accelerometers. Nowadays, Ground Motion Prediction Equations (GMPEs) with many251

parameters have been developed from various datasets to predict earthquake ground mo-252

tions for engineering, and seismological applications (Zhao et al., 2006; Kanno et al., 2006;253

Boore & Atkinson, 2008; Bozorgnia et al., 2014; Boore et al., 2014; Campbell & Bozorg-254

nia, 2014). Modern GMPEs have detailed definitions of distance dependence (geomet-255

rical and inelastic attenuation) and local site responses (local geology, seismic structure,256

instrument deployment, etc.) to explain the ground motion data in different regions. Be-257

cause of the relatively early stages of the DAS technique and limited earthquake data258

from different locations, we only implemented the simplest form of scaling relation (i.e.,259

Eq.1) in this study for a first-order validation of the DAS scaling relation. We leave the260

development of more complex DAS strain-rate prediction equations, for example, with261

physically defined and/or frequency-dependent site calibration terms, to future studies.262

3.2 Potential applications of the DAS scaling relation263

Our peak DAS amplitude scaling relation is fundamental and significant for var-264

ious seismological studies such as earthquake seismology and EEW. Regarding earthquake265

source analyses using DAS, the current studies mainly focus on earthquake detection and266

location using the time information (Lindsey et al., 2017; Lellouch et al., 2020; Li et al.,267

2021; Yang et al., 2022; Atterholt et al., 2022; Viens, Bonilla, et al., 2022). Adding the268

amplitude information and constraints on the earthquake magnitude can significantly269

help us resolve more source parameters and physical details about the earthquake rup-270

ture (Lior et al., 2023).271

Another substantial application is for EEW, which has shown to be an effective method272

to mitigate seismic risk (Allen & Melgar, 2019). EEW aims to rapidly estimate ground273

motion from real-time data after an earthquake occurs and sends out alerts to specific274

users and the public. Current EEW algorithms use conventional seismic data for ground275

motion predictions. DAS leverages pre-existing telecommunication fiber-optic cables and276

can complement the current EEW systems. Converting most telecommunication cables277

located in highly seismic active regions into dense arrays of sensors could provide an eco-278

nomical approach to extending and improving the current EEW system, especially in279

offshore seismogenic zones.280

A recent study combined DAS and GMPEs for EEW purposes (Lior et al., 2023).281

Their method requires conversion from DAS strain rate to ground acceleration and es-282

timation of earthquake stress drop for earthquake magnitude estimation. Our scaling re-283

lation provides an alternative and new approach to estimating earthquake magnitude284

from DAS measurements. Compared with conversion-based methods, there are advan-285

tages to using a scaling relation from direct DAS measurements. Firstly, the scaling re-286
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Figure 4. (a) Streaming DAS data from an M4.57 earthquake that occurred in the Ridgecrest

region. The initial time of the earthquake is set as 0 seconds. (b) The corresponding magnitude

estimation from the peak DAS amplitude at each channel. The black lines indicate the arrival

of the P-wave and the S-wave. (c) The final magnitude estimation from averaging magnitude

estimation at all available channels, shown by the red line. The red dashed lines indicate the

standard deviation of magnitude estimation from channels. The green horizontal lines indicate

the catalog magnitude. The blue vertical lines show the earliest P- and S- arrivals, respectively.

The blue vertical dashed lines show 2 seconds after the latest P- and S- arrivals, respectively.

(d)-(f) show results of another M5.0 earthquake recorded by Long Valley north array.

lation accounts for the different coupling and regional effects among DAS channels with287

the site calibration terms, and no manual identification of well-coupled sections of the288

fiber is required. Secondly, the scaling relation can avoid a prior estimation of stress drop:289

although Lior et al. (2023) have shown that the stress drop does not significantly affect290

the final ground motion prediction for EEW purposes, the uncertainty in stress drop es-291

timation can bias magnitude estimation.292

The scaling relation is built upon direct DAS measurements, and they do not re-293

quire much pre-processing or parameter tuning, simplifying the deployment on edge-computing294

(Shi et al., 2016) at the instrumental sites. Furthermore, the scaling relation appears trans-295

ferable to other regions, as demonstrated in the example of Sanriku data. Given a few296

earthquake measurements to calibrate the site terms, we can transfer the scaling rela-297

tion from one well-studied region to another to apply rapid earthquake magnitude es-298

timation.299
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However, this data-driven scaling analysis method also has some limitations that300

require further studies. The scaling relation of peak DAS amplitude relies on correct event301

association and peak amplitude measurement. Measurement of peak amplitude in the302

improper waveform window can lead to errors in the magnitude estimation. For instance,303

there are a few small events with largely overestimated magnitudes in our results (Fig-304

ures 3(a)-(b)). We investigate the waveforms of those events and find that the overes-305

timation is due to an incorrect event association. For instance, an M2 event in the Long-306

Valley region is estimated as an M5.5 earthquake because waveforms of this small event307

overlap with another large M5+ earthquake. We also find a few instances where mul-308

tiple events occur in different places but are recorded at the same time, leading to over-309

lapped arrivals in the same time window. In such cases, the peak amplitudes of weaker310

arrivals will be overestimated. Combining DAS with other independent seismic sensors311

can help to exclude the incorrectly associated event, thus improving the magnitude es-312

timation. Amplitude saturation of DAS data (Ajo-Franklin et al., 2022; Viens, Bonilla,313

et al., 2022) can also affect the results and lead to under-estimated magnitude. For ex-314

ample, an M5.6 earthquake in the Sanriku data set has been found to be saturated (Viens,315

Bonilla, et al., 2022), and we had to exclude it in this study. In fact, our DAS amplitude316

scaling relation can help to identify whether the DAS waveform from an earthquake gets317

saturated if its DAS-estimated magnitude is significantly smaller than the magnitude from318

other methods. Finally, our current datasets only contain moderate magnitude earth-319

quakes (M < 6) in a few regions due to the short period of DAS deployment. Extend-320

ing the similar analysis to more areas can help to further verify and improve the scal-321

ing relation. Future DAS campaigns focusing on EEW and recording large earthquakes322

should explore if the scaling relation still holds or behaves differently due to potential323

complex non-linear site response (Bonilla et al., 2011; Astorga et al., 2018; Viens, Bonilla,324

et al., 2022).325

Finally, we conduct an idealized experiment to illustrate the potential application326

of the DAS scaling relation for rapid magnitude estimation. We assume that earthquakes327

can be immediately detected and located. Therefore, we can apply the scaling relation328

to the streaming earthquake signals at available DAS channels (Figure 4 (a) and (d)) for329

real-time estimation of earthquake magnitude (Figure 4 (b) and (e)). We keep the me-330

dian value of magnitude estimated at each channel as the final estimation and keep up-331

dating it with time (Figure 4 (c) and (f)). We experiment with the recent M4.57 and332

M5.0 earthquakes recorded by the Ridgecrest and Long-Valley north arrays. The M4.57333

earthquake occurred on July 15, 2022, in the Ridgecrest region and is about 15 km from334

the Ridgecrest array. The M5.0 earthquake occurred on October 25, 2022, near Alum335

Rock and San Jose, California, and is about 244 km from the Long Valley array. Both336

events are not included in the data sets that are used for the regression and, therefore,337

are good candidates to test the scaling relation for generalization. We can reliably es-338

timate the magnitude of both events with a magnitude uncertainty of less than 0.5 shortly339

after the earliest P-wave arrival. When some channels begin to detect the S wave, we340

also include the S wave information by averaging the magnitude from both P-wave and341

S-wave amplitudes to further update the magnitude estimation. Text S9 in the Support-342

ing Information provides more details about the method. We also apply the same pro-343

cess to an M5.8 earthquake, which is the largest event in our data set recorded by the344

Ridgecrest array (Figure S6). Since this event has been used for regression, the error of345

magnitude estimation is less than 0.1. Lior et al. (2023) have also shown that the DAS-346

estimated earthquake magnitude can be combined with GMPEs (Atkinson & Boore, 2006;347

Boore & Atkinson, 2008; Bozorgnia et al., 2014; Douglas & Edwards, 2016) to further348

predict the ground shaking and seismic intensity, similar to conventional EEW systems349

based on earthquake point source modeling (Allen & Melgar, 2019). A similar workflow350

also applies to the magnitude estimation from our scaling relation, and we leave that as351

future work.352
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4 Conclusion353

This work presents the first scaling relation between DAS peak amplitude, earth-354

quake magnitude, and hypocentral distance from terrestrial and submarine DAS arrays.355

We show that the scaling relation can be used to rapidly estimate the magnitude of earth-356

quakes. Furthermore, we find that the scaling relation appears transferable from terres-357

trial DAS arrays in California to a submarine DAS array in Sanriku, Japan, with mi-358

nor calibrations. The DAS amplitude scaling relation has great potential in different seis-359

mological studies, such as EEW and earthquake source characterization.360
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