
1. Introduction
Predicting the propagation of Coronal Mass Ejections (CMEs) and their arrival time at Earth has been a major 
goal of space weather prediction for decades. The ENLIL model (Odstrčil & Pizzo, 1999a, 1999b), for example, 
solves the ideal magnetohydrodynamic (MHD) equations from about 0.1 au  ≈ 20Rs (solar radii) to the Earth orbit 
and beyond. For this model, the inner boundary conditions are provided by the Wang-Sheeley-Arge (WSA) model 
(Arge & Pizzo, 2000). CMEs are initiated with the empirical cone model based on flare observations and coronal 
white light images. Another approach is followed by the Alfvén Wave Solar atmosphere Model (AWSoM) (van 
der Holst et al., 2014) that is based on the BATS-R-US MHD code (Powell et al., 1999; Tóth et al., 2012). AWSoM 
is widely used to model the solar corona, the heliosphere and the eruption and propagation of CMEs from the 
surface of the Sun (initiated by a flux rope model) to Earth and beyond (Jin et al., 2017a, 2017b; Manchester 
et al., 2014; Tóth et al., 2007). AWSoM solves the MHD equations extended with solar wind heating and accel-
eration due to Alfvén wave turbulence, radiative cooling and heat conduction. However, these first-principles 
models can only achieve about 10-hr accuracy predicting the CME arrival time (Wold et al., 2018, cf.). More 
recently, empirical and neural network based models were applied to this problem, but the typical error remains 
about ±10 hr (Amerstorfer et al., 2021; Riley et al., 2018, cf.).

J. Schmidt and Cairns (2019), heareafter SC, claim to have used an earlier coronal model based on BATS-R-US 
developed by Cohen et  al.  (2007), which relies on a spatially varying polytropic index derived from the 
Wang-Sheely-Arge (WSA) model (Arge & Pizzo, 2000) and achieved an unprecedented accuracy for predicting 
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the CME arrival time: 0.9 ± 1.9 hr. They describe their procedure of setting 
up the CME simulations using only information that is available prior to 
and within a few hours after the CME eruptions: the Wilcox Solar Observa-
tory magnetogram, the CME speed estimated from the CME Analysis Tool 
(CAT) using STEREO/LASCO C3 coronagraph images, and prior L1 in situ 
observations used for the WSA model and in turn for BATS-R-US. In addi-
tion, we have learned from the authors that the simulations were performed 
on a couple of CPU cores and they managed to run the model about three 
times faster than real time. This is worth contrasting with the computational 
resources used by ENLIL and AWSoM, which require hundreds or even 
thousands of CPU cores to run faster than real time.

SC have only published their work in form of a preprint on arxiv. An earlier 
version of the manuscript was submitted to the Geophysical Research Letters, 
where it was reviewed and rejected by one of us after a careful analysis of the 
output files requested and obtained from the authors. In spite of the highly 
critical review, Schmidt and Cairn have submitted the manuscript with a 
different title but essentially the same content to this journal, where it was 
actually accepted for publication. The only reason it was not published is 
that we contacted the editor regarding another manuscript with questionable 
content involving the same authors. For more detail see Chawla (2023). In 
fact, these manuscripts are not outliers. As it is explained by SC, the “setup 

and analysis is refined from our earlier work simulating type II radio bursts and CMEs,” which in fact resulted in 
four peer-reviewed and published works (J. M. Schmidt & Cairns, 2014, 2016; J. M. Schmidt et al., 2013, 2016). 
Therefore the content of SC can be safely considered to have similar quality and scientific value as these prior 
publications. It is therefore imperative to examine the validity of the results presented by SC.

Looking at Figure 4 in SC, reproduced here as Figure 1, we have noticed that the distances between the obser-
vations (diamonds) and the model predictions obtained on two different computational grids (squares and stars) 
form a distinctive pattern: the distances between the three symbols appear to be approximately the same for all 
four events displayed. We show that if the figure showed the results of actual CME simulations, then this fact can 
be exploited to obtain an even more accurate estimate of the CME arrival time. Using the Richardson extrapo-
lation (Richardson & Gaunt, 1927) the bias and standard deviation become 0.2 ± 0.26 hr, which is significantly 
better than the 0.9 ± 1.9 hr obtained by SC. We will also show that the agreement between observations and simu-
lations cannot be attributed to luck. Since the four events happened in different years and/or have very different 
arrival times covering a wide range from about 40 to 72 hr, the technique must be applicable to most CMEs. This 
means that the model should provide extremely reliable and accurate information for operational space weather 
forecasters, which is important for our national security and human safety. Unfortunately, we cannot exclude the 
alternative explanation that the results shown by SC do not represent actual CME simulation results.

2. Predicting CME Arrival Times
To perform a quantitative evaluation of the results presented in Figure 4 of SC, we have digitized the figure and 
put the observed and simulated arrival times (relative to the eruption time) into Table 1. These values were also 
used to produce Figure 1 confirming that the values were extracted correctly.

The errors, Error1 and Error2 of the two models Model1 and Model2, corresponding to Refinement Level 2 and 5 
in SC, are remarkably constant across the four events, and the ratio of the errors is approximately 2.1. We note that 
SC does not define what refinement levels 2 and 5 actually mean, so we simply assume here that the model with 
refinement level 5 is more accurate than the one with level 2 due to better grid resolution. This allows us to use 
the idea of the Richardson extrapolation, which improves the numerical accuracy by estimating the exact solution 
from numerical solutions at two different grid resolutions. The leading term of numerical error can be written as

𝐸𝐸(Δ𝑥𝑥) = 𝑇𝑇exact − 𝑇𝑇 (Δ𝑥𝑥) = 𝐾𝐾Δ𝑥𝑥𝑛𝑛 + 𝑂𝑂
(

Δ𝑥𝑥𝑛𝑛+1
)

 (1)

where Texact is the exact (observed) arrival time, T(Δx) is the arrival time obtained by a simulation using grid 
cell size Δx, K is some problem (but not grid) dependent constant coefficient, n is the order of the scheme and 

Figure 1. Observed and predicted arrival times at 1 au of four Coronal Mass 
Ejection (CME) events (4 September 2017, 6 September 2017, 12 February 
2018, and 29 November 2013 CME) recreated from Figure 4 in SC. The 
diamonds show observed arrival times, the squares and stars are simulation 
results at level 2 and level 5 grid refinements, respectively.
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O(Δx n+1) are contributions from higher order terms. For a first order accurate scheme, which is appropriate for 
shock propagation, n = 1, so the leading error term is proportional to the grid resolution. Equation 1 can be solved 
for Texact if T(Δx) is known for at least two different grid resolutions differing by a factor of two:

𝑇𝑇exact = 2𝑇𝑇 (Δ𝑥𝑥) − 𝑇𝑇 (2Δ𝑥𝑥) + 𝑂𝑂
(

Δ𝑥𝑥2
)

 (2)

We define the Richardson extrapolated arrival time as

𝑇𝑇𝑅𝑅 = 2𝑇𝑇2 − 𝑇𝑇1 (3)

where T1 and T2 are the arrival times predicted by models 1 and 2 using grid resolutions differing by a factor of 2. 
TR has a much improved accuracy compared to the accuracy of the original simulation results T1 and T2.

3. Statistical Analysis and Probability Estimates
Table 2 shows that the mean absolute error of the extrapolated arrival time is about 0.218 hr, which is useful 
information, but not suitable for statistical analysis. To better quantify the performance of the new model, we 
calculate an unbiased estimate and a 95% confidence interval for the arrival time errors.

The sample size is N = 4. The average of the errors, the bias, is

𝐵𝐵 =
1

𝑁𝑁

𝑁𝑁
∑

𝑖𝑖=1

(𝑇𝑇𝑖𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑖𝑖) = 0.2ℎ (4)

and the standard deviation S is

𝑆𝑆 =

√

∑𝑁𝑁

𝑖𝑖=1
(𝑇𝑇𝑖𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑖𝑖 − 𝐵𝐵)

2

𝑁𝑁 − 1
= 0.26 h (5)

where Ti is the observed arrival time for event i and Ti,R is the Richardson 
extrapolated time calculated from Equation 3. The 95% confidence interval 
for the error TR − T is 𝐴𝐴 𝐴𝐴 ± 𝑡𝑡𝑡𝑡∕

√

𝑁𝑁  , where t = 3.182 from the T-distribution 
for p = 0.025 and N − 1 = 3 degrees of freedom:

(𝑇𝑇𝑅𝑅 − 𝑇𝑇 ) ∈ [−0.21, 0.61] h (6)

We conclude that there is a 95% chance that the model will produce arrival 
time predictions with errors less than 37 min, while the average error is only 
12 min.

Finally, it is important to check if the small errors in Table 2 are statistically 
significant, or they can be attributed to simple luck. We apply the chi-square 
test to check this hypothesis. Let us assume that the new model with the 
extrapolation has no bias, μ = 0, and its standard deviation is σ = 2 hr. The 
quantity

Table 1 
Simulated and Observed Coronal Mass Ejection Arrival Times for Four Events From Figure 4 in SC

ID Date Observed Model1 Model2 Error1 Error2 Error1/Error2

1 04 September 2017 52.68 48.87 50.85 3.80 1.83 2.08

2 06 September 2017 39.95 43.94 42.00 −4.01 −2.07 1.94

3 12 February 2018 72.11 67.89 69.98 4.23 2.13 1.98

4 29 November 2013 50.42 46.90 48.94 3.52 1.48 2.38

Average magnitude 3.89 1.87 2.09

Note. The times are measured in hours from the eruption time. The error is the difference between the observed and simulated times.

Table 2 
Observed and Extrapolated Coronal Mass Ejection Arrival Times for Four 
Events

ID i Date Observed Ti Extrapolated Ti,R Error Ti,R − Ti

1 04 September 2017 52.68 52.82 0.14

2 06 September 2017 39.93 40.06 0.13

3 12 February 2018 72.11 72.07 −0.04

4 29 November 2013 50.42 50.99 0.57

Mean absolute error 0.22

Mean ± one standard deviation 0.2 ± 0.26

Note. The times are measured in hours from the eruption time. The last 
column is the absolute value of the error.
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𝑋𝑋
2 =

∑𝑁𝑁

𝑖𝑖=1
(𝑇𝑇𝑖𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑖𝑖)

2

𝜎𝜎2
= 0.089 (7)

follows the χ 2(N, p) distribution since the mean value is assumed to be known. For N = 4, we find that there is 
only p = 0.1% chance that X 2 ≤ 0.089 by pure luck. If σ was larger than 2 hr, this probability would be even less. 
We can safely conclude that the model is indeed capable of predicting the CME arrival time with high accuracy, 
even higher than the original SC model, assuming that the SC model results are true.

4. On the Validity of the CME Simulations Presented by SC
In addition to the improbable accuracy of the CME arrival time predictions, there are a number of inexplica-
ble inconsistencies in SC, which raise grave concern over the validity and reporting of their CME simulations. 
First, the flux rope electric current was increased by a factor of 10 for a more refined spatial grid. In fact, the 
opposite should be true. Reduced numerical diffusion brought with a refined grid should allow the model to 
produce the same CME speed with a reduced electric current. Second, the magnitude of the electric currents 
shown in Figure 1 is more than an order of magnitude too large when compared to previously simulated results. 
Manchester et al. (2012) used the Titov-Démoulin flux rope and obtained CME speeds of 800 and 1,000 km/s 
respectively with currents of 2.5 × 10 11 and 3.25 × 10 11 A respectively. Similarly, the Halloween event CME 
(Manchester et al., 2008; Tóth et al., 2007) was driven with a current of 6 × 10 11 A. Currents of 10 12 − 10 13 A 
would produce extraordinarily fast CMEs with speeds exceeding 3,000 km/s, far beyond what is described by SC. 
Third, the interplanetary magnetic field strengths shown in Figure 2 of SC are an order of magnitude too strong, 
100 − 400 nT near Earth. These results are entirely unphysical and inconsistent with the field strengths shown 
in Figure 3 of SC where we find Bz ≈ 15 nT and nearly constant, in sharp contradiction with the magnitude and 
significant spatial structure in their Figure 2. Finally, there is no possible explanation for how the simulated CME 
events on September 7 cannot reach the Earth, when the Earth is directly in front of their path.

5. Conclusions
In this paper, we have examined the work of SC, who claimed to predict CME arrival times with 0.9 ± 1.9 hr 
accuracy. Using the standard Richardson extrapolation technique, we have further improved the accuracy of the 
SC model to an average prediction time error of 0.2 ± 0.26 hr. We showed that it is practically impossible that 
the good agreement between observations and simulation results obtained by SC was simply a lucky coincidence. 
The likelihood that an MHD model can be used to predict CME arrival times with 30-min accuracy is exceedingly 
small, especially with no model enhancements to explain the more than an order of magnitude improvement over 
prior work using the same model. This result, unfortunately, leaves only one reasonable explanation for the SC 
results: they were most likely not obtained by reproducible numerical simulations. The content of prior publica-
tions (J. M. Schmidt & Cairns, 2014, 2016; J. M. Schmidt et al., 2013, 2016) that according to SC used the same 
“technique” are similarly questionable.

It appears that the peer review process worked when the original manuscript was submitted to the Geophysical 
Research Letters, but it failed when the same manuscript (with a different title) was submitted to this jour-
nal. It also seems likely that several published papers (J. M. Schmidt & Cairns,  2014,  2016; J. M. Schmidt 
et al., 2013, 2016) with questionable content have slipped through the peer review process. Reviewers cannot be 
experts in everything, but choosing reviewers with the right expertise can reduce the chances of such incidents. 
Tracking submitted and rejected manuscripts in a data base shared by several journals could be another safeguard. 
Most importantly, the requirements of reproducibility, open data and open software for published work should 
improve the reliability of the published scientific content dramatically. In particular, the invalidity of the SC 
results was abundantly apparent for the reviewer who received their input and output files. Readers and reviewers 
who only rely on the manuscript and published papers may or may not be able to distinguish genuine science from 
the type of content presented by SC.

The two reviewers of this paper pointed out several other issues with the SC preprint. There is no explanation 
why and how the six CME events were selected. The observations of the CMEs are not described sufficiently, and 
there is no explanation how those observations can lead to the unprecedented accuracy of the simulations. The 
transit times reported by SC are actually off by several hours for some of the events. SC identified the arrival time 
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with the magnetic field jump instead of the velocity jump. This long list of issues that are independent of the ques-
tionable simulation results make it even more surprising that the SC manuscript was accepted for publication. We 
hope that our paper will motivate changes in the review process that will result in a more reliable quality control.

Data Availability Statement
All data used in this paper are contained in Table  1. The Space Weather Modeling Framework including 
(BATS-R-US/AWSoM) is an open-source code available at https://github.com/MSTEM-QUDA with a full 
version history.
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