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Purpose: Optimizing 3D k-space sampling trajectories is important for efficient
MRI yet presents a challenging computational problem. This work proposes a
generalized framework for optimizing 3D non-Cartesian sampling patterns via
data-driven optimization.
Methods: We built a differentiable simulation model to enable gradient-based
methods for sampling trajectory optimization. The algorithm can simultaneously
optimize multiple properties of sampling patterns, including image quality, hard-
ware constraints (maximum slew rate and gradient strength), reduced peripheral
nerve stimulation (PNS), and parameter-weighted contrast. The proposed method
can either optimize the gradient waveform (spline-based freeform optimization)
or optimize properties of given sampling trajectories (such as the rotation angle of
radial trajectories). Notably, the method can optimize sampling trajectories syn-
ergistically with either model-based or learning-based reconstruction methods.
We proposed several strategies to alleviate the severe non-convexity and huge
computation demand posed by the large scale. The corresponding code is avail-
able as an open-source toolbox.
Results: We applied the optimized trajectory to multiple applications including
structural and functional imaging. In the simulation studies, the image quality of a
3D kooshball trajectory was improved from 0.29 to 0.22 (NRMSE) with SNOPY
optimization. In the prospective studies, by optimizing the rotation angles of a
stack-of-stars (SOS) trajectory, SNOPY reduced the NRMSE of reconstructed
images from 1.19 to 0.97 compared to the best empirical method (RSOS-GR).
Optimizing the gradient waveform of a rotational EPI trajectory improved partic-
ipants’ rating of the PNS from ‘strong’ to ‘mild.’
Conclusion: SNOPY provides an efficient data-driven and optimization-based
method to tailor non-Cartesian sampling trajectories.
KEYWORDS:
magnetic resonance imaging, non-Cartesian sampling, data-driven optimization, image acqui-
sition, deep learning
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1 INTRODUCTION

Most magnetic resonance imaging systems sample data in
the frequency domain (k-space) following prescribed sam-
pling trajectories. Efficient sampling strategies can accelerate
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acquisition and improve image quality. Many well-designed
sampling strategies and their variants, such as spiral, radial,
CAIPIRINHA, and PROPELLER1,2,3,4, have enabled MRI’s
application to many areas5,6,7,8. Sampling patterns in k-space
are either located on the Cartesian raster or arbitrary locations
(non-Cartesian sampling). This paper focuses on optimizing
3D non-Cartesian trajectories and introduces a generalized
gradient-based optimization method for automatic trajectory
design or tailoring.

The design of sampling patterns usually considers cer-
tain properties of k-space signals. For instance, the variable
density (VD) spiral trajectory9 samples more densely in the
central k-space where more energy is located. For higher spa-
tial frequency regions, the VD spiral trajectory uses larger
gradient strengths and slew rates to cover k-space as quickly as
possible. Compared to 2D sampling, designing 3D sampling
analytically is more challenging for several reasons. The num-
ber of parameters increases in 3D, and the parameter selection
is more difficult due to the larger search space. For example, a
3D radial trajectory with 10000 spokes has 20000 degrees of
freedom, while its 2D multi-slice counterpart with 200 spokes
per slice has only 200 degrees of freedom. Additionally, ana-
lytical designs usually are based on the Shannon-Nyquist
relationship10,11,12 that might not fully consider properties of
sensitivity maps and non-linear reconstruction methods. For
3D sampling patterns with high undersampling (acceleration)
ratios, there are limited analytical tools for designing sampling
patterns with an anisotropic FOV and resolution. The periph-
eral nerve stimulation (PNS) effect13 is also more severe in
3D imaging because of the additional spatial encoding gradi-
ent, further complicating manual designs. For these reasons,
automatic designs of 3D sampling trajectories are crucial for
efficient acquisition.

Many 3D sampling approaches exist. The ‘stack-of-2D’
strategy stacks 2D sampling patterns in the slice direction6,12.
This approach is easier to implement and enables slice-
by-slice 2D reconstruction. Another design applies Carte-
sian sampling in the frequency-encoding direction and non-
Cartesian sampling in the phase-encoding direction14,15.
However, these approaches do not fully explore the design
space in three dimensions and may not perform as well as true
3D sampling trajectories16.

Recently, 3D SPARKLING16 proposes to optimize 3D
sampling trajectories based on the goal of conforming to
a given density while distributing samples as uniformly as
possible17. That method demonstrated improved image qual-
ity compared to the ‘stack-of-2D-SPARKLING’ approach.
In both 2D and 3D, the SPARKLING approach uses a pre-
specified sampling density in k-space that is typically an
isotropic radial function. This density function cannot read-
ily capture distinct energy distributions of different imaging
protocols, therefore adaptive density functions were recently

proposed18. In SPARKLING, the PNS effects are not con-
trolled explicitly, and the user may need to lower the slew rate
to reduce PNS. SPARKLING optimizes the location of every
sampling point, or the gradient waveform (freeform optimiza-
tion), and cannot optimize parameters of existing sampling
patterns.

In addition to analytical methods, learning-based meth-
ods have been investigated for designing trajectories. Since
different anatomies have distinct energy distributions in the
frequency domain, an algorithm may learn to optimize sam-
pling trajectories from training datasets. Several studies have
shown that different anatomies produce distinct optimized
sampling patterns, and these optimized sampling trajecto-
ries can improve image quality19,20,21,22,23,24,25,26,27. Some
methods can optimize sampling trajectories with respect
to specific reconstruction algorithms to further enhance
reconstruction image quality14,28. Several recent studies also
applied learning-based approaches to 3D non-Cartesian tra-
jectory design. J-MoDL14 proposes to learn sampling pat-
terns and model-based deep learning reconstruction algo-
rithms jointly. J-MoDL optimizes the sampling locations
in the phase-encoding direction, to avoid the computation
cost of non-uniform Fourier transform. PILOT/3D-FLAT22,29
jointly optimizes freeform 3D non-Cartesian trajectories and
a reconstruction neural network with gradient-based methods.
These studies use the standard auto-differentiation approach
to calculate the gradient used in optimization, which can be
inaccurate and lead to sub-optimal optimization results28.

This work extends our previous methods20,28 and intro-
duces a generalized Stochastic optimization framework for
3D NOn-Cartesian samPling trajectorY (SNOPY). The pro-
posed method can automatically tailor given trajectories and
learn k-space features from training datasets. We present sev-
eral optimization objectives, including image quality, hard-
ware constraints, PNS effect suppression and image contrast.
Users can simultaneously optimize one or multiple charac-
teristics of a given sampling trajectory. Similar to previous
learning-based methods14,20,21,22, the sampling trajectory can
be jointly optimized with trainable reconstruction algorithms
to improve image quality. The joint optimization approach
can thus exploit the synergy between acquisition and recon-
struction, and learn optimized trajectories specific for dif-
ferent anatomies and reconstruction methods14,20,28,30,31. The
algorithm can optimize various properties of a sampling tra-
jectory, such as readout waveforms, or rotation angles of read-
out shots, making it more practical and applicable. We also
introduced several techniques to improve efficiency, enabling
large-scale 3D trajectory optimization. We tested the pro-
posed methods with multiple imaging applications, including
structural and functional imaging. These applications bene-
fited from the SNOPY-optimized sampling trajectories in both
simulation and prospective studies.
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2 THEORY

This section describes the proposed gradient-based methods
for trajectory optimization. We use the concept of differen-
tiable programming to compute the descent gradient with
respect to sampling trajectories required in the gradient-
based methods. The sampling trajectory and reconstruc-
tion parameters are differentiable parameters, whose gradi-
ents can be computed by auto-differentiation. To learn or
update these parameters, one may apply (stochastic) gradi-
ent descent algorithms. Fig. 1 illustrates the basic idea. The
sampling trajectories can be optimized in conjunction with
the parameters of learnable reconstruction algorithms so that
the learned sampling trajectories and reconstruction methods
are in synergy and produce high-quality images. The SNOPY
algorithm combines several optimization objectives to ensure
that the optimized sampling trajectories have desired prop-
erties. Sec. 2.1 delineates these objective functions. Sec. 2.3
shows that the proposed method is applicable to multiple
scenarios with different parameterization strategies. For non-
Cartesian sampling, the system model usually involves non-
uniform fast Fourier transforms (NUFFT). Sec. 2.4 briefly
describes an efficient and accurate way to calculate the gradi-
ent involving NUFFTs. Sec. 2.5 suggests several engineering
approaches to make this large-scale optimization problem
solvable and efficient.

2.1 Optimization objectives

This section outlines the optimization objectives in SNOPY.
As SNOPY is a stochastic gradient descent-like algorithm, the
objective function, or loss function, is by default defined on
a mini-batch of data. The final loss function can be a linear
combination of following loss terms to ensure the optimized
trajectory possesses multiple required properties.

2.1.1 Image quality
For many MRI applications, efficient acquisition and recon-
struction aim to produce high-quality images. Consequently,
the learning objective should encourage images reconstructed
from sampled k-space signals to match the reference images.
We formulate this similarity objective as the following image
quality training loss:

recon = 𝓁(𝑓𝜽,𝒄(𝑨(𝝎(𝒄))𝒙 + 𝜺) − 𝒙). (1)
Here, 𝝎(𝒄) ∈ ℝ𝑁fe×𝑁s×𝑁d denotes the trajectory to be opti-
mized, with 𝑁s shots, 𝑁fe sampling points in each shot, and
𝑁d image dimensions. For 3D MRI, 𝑁d = 3. 𝜺 is simulated
complex Gaussian noise. 𝑨(𝝎) is the forward system matrix
for sampling trajectory𝝎(𝒄)32. 𝒄 denotes the parameterization
coefficients of sampling trajectories 𝝎, which is introduced in

Sec. 2.3. In this study, 𝑨 also incorporated multi-coil sensi-
tivity information33. 𝒙 denotes the reference image from the
training set  , which is typically reconstructed from fully-
sampled signals. In addition to contrast-weighted imaging, if
the training dataset  includes quantitative parameter maps,
one may also simulate 𝒙 using the Bloch equation, and 𝑨
can subsequently consider imaging physics such as relax-
ation. 𝑓𝜽,𝝎(⋅) is the reconstruction algorithm to be delineated
in Sec. 2.2. 𝜽 denotes the reconstruction algorithm’s parame-
ters. It can be kernel weights in a convolutional neural network
(CNN), or the regularizer coefficient in a model-based recon-
struction method. The similarity term 𝓁(⋅) can be 𝓁1 norm, 𝓁2
norm, or a combination of both. There are also other ways to
measure the distance between 𝒙 and 𝑓𝜽,𝝎(𝑨(𝝎)𝒙+ 𝜺), such as
the structural similarity index (SSIM34). For simplicity, this
work used a linear combination of 𝓁1 norm and square-of-
𝓁2 norm, which is a common practice in deep learning-based
image reconstruction35.

2.1.2 Hardware limits
The gradient system of MR scanners has physical constraints,
namely maximum gradient strength and slew rate. Ideally, we
would like to enforce a set of constraints of the form
‖𝒈𝑖[𝑗, ∶]‖2 ≤ 𝑔max, 𝒈𝑖 = 𝑫1𝝎[∶, 𝑖, ∶]∕(𝛾Δ𝑡) ∈ ℝ(𝑁fe−1)×𝑁d ,

for every shot 𝑖 = 1,… , 𝑁s and time sample 𝑗 = 1,… , 𝑁fe,
where 𝒈𝑖 denotes the gradient strength of the 𝑖 shot and 𝑔max
denotes the desired gradient upper bound. One may use a
Euclidean norm along the spatial axis so that any rotation of
the sampling trajectory still obeys the constraint. Applying
the penalty to each individual gradient axis is also feasible.
A similar constraint is enforced on the Euclidean norm of
the slew rate 𝒔𝑖 = 𝑫2𝝎[∶, 𝑖, ∶]∕(𝛾Δ𝑡2), where 𝑫1 and 𝑫2
denote first-order and second-order finite difference operators
applied along the readout dimension. Δ𝑡 denotes the raster
time interval and 𝛾 denotes the gyromagnetic ratio.

To make the optimization more practical, we follow pre-
vious studies20,22, and formulate the hardware constraint as a
soft penalty term:

g =
𝑁s
∑

𝑖=1

𝑁fe−1
∑

𝑗=1
𝜙𝑔max

(‖𝒈𝑖[𝑗, ∶]‖2) (2)

s =
𝑁s
∑

𝑖=1

𝑁fe−2
∑

𝑗=1
𝜙𝑠max

(‖𝒔𝑖[𝑗, ∶]‖2). (3)
Here 𝜙 is a penalty function, and we use a simple soft-
thresholding function 𝜙𝜆(𝑥) = max(|𝑥| − 𝜆, 0), because it
is sub-differentiable and easy to implement. It is possible
to use more sophisticated functions. Since 𝜙 here is a soft
penalty and the optimization results may exceed the thresh-
old, 𝑠max and 𝑔max can be slightly lower than the scanner’s
actual physical limits to ensure that the optimization results
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FIGURE 1 Diagram of SNOPY. The sampling trajectory (and possibly reconstruction parameters) are updated using gradient methods. The
training/optimization process uses differentiable programming to obtain the gradient necessary for the update.

are feasible on the scanner. Applying a sanity check before
sequence programming is also useful. In addition to the soft-
penalty approach, recent studies36 also used projection-based
methods.

2.1.3 Suppression of PNS effect
The additional gradient axis in 3D imaging can result in
stronger peripheral nerve stimulation (PNS) effects compared
to 2D imaging. To quantify possible PNS effects of candi-
date gradient waveforms, SNOPY uses a convolution model
described in Ref. 37:

𝑅𝑖𝑑(𝑡) =
1

𝑠min

𝑡

∫
0

𝒔𝑖𝑑(𝜃)𝑐
(𝑐 + 𝑡 − 𝜃)2

𝑑𝜃, (4)

where 𝑅𝑖𝑑 denotes the PNS effect of the gradient waveform
from the 𝑖th shot and the 𝑑th dimension. 𝒔𝑖𝑑 is the slew
rate of he 𝑖th shot in the 𝑑th dimension. 𝑐 (chronaxie) and
𝑠min (minimum stimulation slew rate) are scanner-specific
parameters.

Likewise, we discretize the convolution model and use a
soft penalty term as the following loss function:

𝒑𝑖𝑑[𝑗] =
𝑗
∑

𝑘=1

𝒔𝑖𝑑[𝑘]𝑐Δ𝑡
𝑠min(𝑐 + 𝑗Δ𝑡 − 𝑘Δ𝑡)2

,

pns =
𝑁s
∑

𝑖=1

𝑁fe
∑

𝑗=1
𝜙𝑝max

((
𝑁d
∑

𝑑=1
𝒑𝑖𝑑[𝑗]2)

1
2 ). (5)

Again,𝜙 denotes the soft-thresholding function, with PNS
threshold 𝑝max (usually ≤ 80%37). This model combines the
3 spatial axes via the sum-of-squares manner and does not
consider anisotropic characteristics of PNS38. The imple-
mentation may use an FFT (with zero padding) for efficient
convolution.

2.1.4 Image contrast
In many applications, the optimized sampling trajectory
should maintain certain parameter-weighted contrasts. For

example, ideally the (gradient) echo time (TE) should be iden-
tical for each shot. Again, we replace this hard constraint with
an echo time penalty. Other parameters, like repetition time
(TR) and inversion time (TI), can be predetermined in the
RF pulse design. Specifically, the corresponding loss function
encourages the sampling trajectory to cross the k-space center
at certain time points:

𝑐 =
∑

{𝑖,𝑗,𝑑}∈𝐶
𝜙0(|𝝎[𝑖, 𝑗, 𝑑]|), (6)

where 𝐶 is a collection of gradient time points that are
constrained to cross the k-space zero point. 𝜙 is still a soft-
thresholding function, with threshold 0.

The total loss function is a linear combination of the above
terms

 = 𝜆𝑟𝑒𝑐𝑜𝑛recon + 𝜆𝑔g + 𝜆𝑠s + 𝜆𝑝𝑛𝑠pns + 𝜆𝑐c.

Note that not every term is required. For example, experiment
3.2.2 only used the recon. Sec. 5 further discusses how to
choose linear weights 𝜆s.

2.2 Reconstruction

In (1), the reconstruction algorithm 𝑓𝜽,𝝎(⋅) can be various
algorithms. Consider a typical cost function for regularized
MR image reconstruction

�̂� = argmin
𝒙

‖𝑨(𝝎)𝒙 − 𝒚‖22 +(𝒙). (7)
(𝒙) here can be a Tikhonov regularization 𝜈‖𝒙‖22 (CG-
SENSE39), a sparsity penalty 𝜈‖𝑻𝒙‖1 (compressed sens-
ing40, 𝑻 is a finite-difference operator), a roughness penalty
𝜈‖𝑻𝒙‖22 (penalized least squares, PLS), or a neural network
(model-based deep learning, MoDL41). Sec. 4 shows that dif-
ferent reconstruction algorithms lead to distinct optimized
sampling trajectories. In training, 𝒚 is retrospectively simu-
lated as �̄� = 𝑨(𝝎)𝒙+𝜺 (following (1)). In prospective studies,
𝒚 is the acquired k-space data.

To get a reconstruction estimation �̂�, one may use iter-
ative reconstruction algorithms. Specifically, the algorithm
should be step-wise differentiable (or sub-differentiable) to
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enable differentiable programming. The backpropagation uses
the chain rule to traverse every step of the iterative algorithm
to calculate gradients with respect to variables such as 𝝎.

2.3 Parameterization

As is shown in Ref. 20, directly optimizing every k-space sam-
pling location (or equivalently every gradient waveform time
point) may lead to sub-optimal results. Additionally, in many
applications, one may need to optimize certain properties of
existing sampling patterns, such as the rotation angles of a
multi-shot spiral trajectory, so that the optimized trajectory
can be easily integrated into existing workflows. For these
needs, we propose two parameterization strategies.

The first approach, spline-based freeform optimization,
represents the sampling pattern using a linear basis, i.e.,
𝝎 = 𝑩𝒄, where 𝑩 is a matrix of samples of a basis
such as quadratic B-spline kernels and 𝒄 denotes the coeffi-
cients to be optimized20,22. This approach fully exploits the
generality of a gradient system. Using a linear parameteri-
zation like B-splines reduces degrees of freedom and facil-
itates applying hardware constraints20,42. Additionally, the
parameterization can be combined with multi-scale optimiza-
tion to avoid sub-optimal local minima and further improve
optimization results17,20,22. However, freeformly optimized
trajectories could introduce implementation challenges. For
example, some MRI systems can not store hundreds of differ-
ent gradient waveforms.

The second approach is to optimize attributes 𝒄 of exist-
ing trajectories, where 𝝎(𝒄) is a differentiable function of the
attributes 𝒄. For example, many applications use radial trajec-
tories, where the rotation angles can be optimized. Suppose
𝒔 ∈ ℝ3×𝑁 is one radial sampling spoke, and consider an
𝑀-shot 3D radial trajectory,

𝝎 =
[

𝑹1 ⋯ 𝑹𝑀
]

𝑰𝑀 ⊗ 𝒔, (8)
where 𝑹𝑖 ∈ ℝ3×3 denotes a rotation matrix, 𝑰𝑀 denotes an
identity matrix of size 𝑀 , and ⊗ denotes the Kronecker prod-
uct. In this case, the list of𝑹𝑖 is the coefficient to be optimized.
This approach is easier to implement on scanners, and can
work with existing workflows.

2.4 Efficient and accurate Jacobian
calculation

In the similarity loss (1), the sampling trajectory is embed-
ded in the forward system matrix 𝑨. The system matrix for
non-Cartesian sampling usually includes NUFFT operators32.
Updating the sampling trajectory in each optimization step
requires the Jacobian, or the gradient with respect to the sam-
pling trajectory. The NUFFT operator typically involves inter-
polation in the frequency domain, which is non-differentiable

due to rounding operations. Several previous works used auto-
differentiation (with sub-gradients) to calculate an approxi-
mate numerical gradient22,29, but that approach is inaccurate
and slow28. We derived an efficient and accurate Jacobian
approximation method28. For example, the efficient Jacobian
of a forward system model 𝑨 is:

𝜕𝑨𝒙
𝜕𝝎[𝑑] = −𝚤 diag

{

𝑨(𝒙⊙ 𝒓[𝑑])
}

, (9)
where 𝑑 ∈ {1, 2, 3} denotes the spatial dimensions, 𝒓[𝑑]
denotes the Euclidean spatial grid, ⊙ denotes the Hadamard
product, and 𝚤 is the imaginary unit. Calculating this Jaco-
bian simply uses another NUFFT, which is more efficient than
the auto-differentiation approach. See Ref. 28 for more cases,
such as 𝜕𝑨′𝑨𝒙

𝜕𝝎[𝑑] and the detailed derivation.

2.5 Efficient optimization

2.5.1 Optimizer
Generally, to optimize the sampling trajectory 𝝎 and other
parameters (such as reconstruction parameters 𝜽) via stochas-
tic gradient descent-like methods, each update takes a step (in
the simplest form)

𝜽𝐾 = 𝜽𝐾−1 − 𝜂𝜃
𝜕
𝜕𝜽

(𝝎𝐾−1,𝜽𝐾−1)

𝝎𝐾 = 𝝎𝐾−1 − 𝜂𝝎
𝜕
𝜕𝝎

(𝝎𝐾−1,𝜽𝐾−1),

where  is the loss function described in Section 2.1 and
where 𝜂𝜃 and 𝜂𝝎 denote step-size parameters.

The optimization is highly non-convex and may suffer
from sub-optimal local minima. We used stochastic gradient
Langevin dynamics (SGLD)43 as the optimizer to improve
results and accelerate training. Each update of SGLD injects
Gaussian noise into the gradient to introduce randomness

𝜽𝐾 = 𝜽𝐾−1 − 𝜂𝜃
𝜕

𝜕𝜽𝐾−1
+
√

2𝜂𝜽 (0, 1)

𝝎𝐾 = 𝝎𝐾−1 − 𝜂𝝎
𝜕

𝜕𝝎𝐾−1
+
√

2𝜂𝝎 (0, 1). (10)
Across most experiments, we observed that SGLD led to

improved results and faster convergence compared with SGD
or Adam44. Fig. 2 shows a loss curve of SGLD and Adam of
experiment 3.2.3.

2.5.2 Memory saving techniques
Due to the large dimension, the memory cost for naive 3D
trajectory optimization would be prohibitively intensive. We
developed several techniques to reduce memory use and
accelerate training.

As discussed above, the efficient Jacobian approxima-
tion uses only 10% of the memory required by the standard
auto-differentiation approach28. We also used in-place oper-
ations in certain reconstruction steps, such as the conjugate
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TABLE 1 The memory/time use reduction brought by proposed techniques. Here we used a 2D 400×400 test case, and CG-SENSE reconstruction
(20 iterations). ‘+’ means adding the technique to previous columns.
Plain +Efficient Jacobian +In-place ops +Toeplitz embedding +Low-res NUFFT

5.7GB / 10.4s 272MB / 1.9s 253MB / 1.6s 268MB / 0.4s 136MB / 0.2s

FIGURE 2 The evaluation loss curve for SGLD and Adam. The
training process costs ∼1 hrs.

gradient (CG) method, because with careful design it will
not interrupt auto-differentiation. (See our open-source code∗
for details.) The primary memory bottleneck relates to 3D
NUFFT operators. One can pre-calculate the Toeplitz embed-
ding kernel to save memory and accelerate computation45,46.
In the training phase, we used NUFFTs with lower accuracy,
for instance, with a smaller oversampling ratio for gridding28.
Table 1 shows the incrementally improved efficiency achieved
with these techniques. Without the proposed techniques, opti-
mizing 3D trajectories would require hundreds of gigabytes
of memory, which would be impractical for a single node.
SNOPY enables solving this otherwise prohibitively large
problem on a single GPU.

3 METHODS

3.1 Datasets

We used two publicly available datasets; both of them contain
3D multi-coil raw k-space data. SKM-TEA47 is a 3D quan-
titative double-echo steady-state (qDESS48) knee dataset. It
was acquired by 3T GE MR750 scanners and 15/16-channel
receiver coils. SKM-TEA includes 155 subjects. We used 132
for training, 10 for validation, and 13 for the test. Calgary brain
dataset49 is a 3D brain T1w MP-RAGE50 k-space dataset. It
includes 67 available subjects, acquired by an MR750 scanner
and 12-channel head coils. We used 50 volumes for training,
6 for validation, and 7 for testing. All sensitivity maps were
calculated by ESPIRiT51.

∗https://github.com/guanhuaw/Bjork

3.2 Simulation experiments

We experimented with multiple scenarios to show the broad
applicability of the proposed method. All the experiments
used a node equipped with an Nvidia Tesla A40 GPU for
training.

3.2.1 Optimizing 3D gradient waveform
We optimized the sampling trajectory with a 3D radial
(‘kooshball’) initialization52,53. As is described in 2.3, the
experiment optimized the readout waveform of each shot with
B-spline parameterization, to reduce the number of degrees of
freedom and enable multi-scale optimization. The initial 3D
radial trajectory had a 5.12 ms long readout (raster time = 4
𝜇s) and 1024 shots (8× acceleration), using the rotation angle
described in Ref. 16. The training used the SKM-TEA dataset.
The retrospectively cropped FOV was 158×158×51 mm3 with
0.76×0.62×1.6 mm3 simulated resolution. The receiver band-
width was ±125 kHz (dwell time = 4 𝜇s). The training loss
was

 = recon + 103g + 103s + pns.
The gradient strength (𝑔max) and slew rate (𝑠max) were 50
mT/m and 150 mT/m/ms (for individual axis). The PNS
threshold (𝑝max) was 80%. The simulated noise 𝜺 was 0. The
batch size was 3. The learning rate 𝜂𝝎 decayed from 10−4 to 0
linearly. For multi-level optimization, we used 3 levels (with
B-spline kernel widths = 32, 16, and 8), and each level used
200 epochs. The total training time was ∼240 hrs. The trajec-
tory was optimized with respect to several image reconstruc-
tion algorithms. We used a regularizer weight 𝜈 = 10−3 and
30 CG iterations for CG-SENSE and PLS. For learning-based
reconstruction, we used the MoDL41 network that alternates
between a neural network-based denoiser and data consistency
updates. We used a 3D version of the denoising network54, 20
CG iterations for the data consistency update, and 6 outer iter-
ations. Similar to previous investigations14,20, SNOPY jointly
optimized the neural network’s parameters and the sampling
trajectory using (10).

3.2.2 Optimizing rotation angles of
stack-of-stars trajectory
This experiment optimized the rotation angles of a stack-of-
stars trajectory, which is a widely used volumetric imaging

https://github.com/guanhuaw/Bjork
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FIGURE 3 The optimized sampling trajectory of experiment 3.2.1. The training process involves the SKM-TEA dataset and CG-SENSE
reconstruction. The upper row shows a zoomed-in region from different viewing perspectives. The lower row displays one shot from different
perspectives.

TABLE 2 The quantitative reconstruction quality (NRMSE) of the test set.
CG-SENSE PLS MoDL

3D kooshball 28.2 dB 28.2 dB 30.1 dB
SNOPY 32.3 dB 32.4 dB 33.6 dB

sequence. The training used the Calgary brain dataset. We
used PLS as the reconstruction method for simplicity, with
𝜈 = 10−3 and 30 iterations. The simulated noise 𝜺 was 0
and the batch size was 12. We used 200 epochs and a learn-
ing rate linearly decaying from 10−4 to 0. The FOV was
retrospectively cropped to 256×218×32 mm3 with 1 mm3 res-
olution. We used 40 spokes per 𝑘𝑧 location (6× acceleration),
and 1280 spokes in total. The readout length was 3.5 ms.
The receiver bandwidth was ±125kHz (dwell time = 4 𝜇s).
The trajectory was a stack of 32 𝑘𝑧 planes, hence SNOPY
optimized 1280 rotation angles in this case.

Since optimizing rotation angles does not impact the gra-
dient strength, slew rate, PNS, and image contrast, we only
used the reconstruction loss  = recon. We regarded the
method (RSOS-GR) proposed in previous works12 as the best
empirical scheme. We applied 200 epochs with a linearly
decaying learning rate from 10−3 to 0. The training cost ∼20
hrs.

3.2.3 PNS suppression of 3D rotational EPI
trajectory for functional imaging
The third application optimizes the rotation EPI (REPI) tra-
jectory55, which provides an efficient sampling strategy for
fMRI. For high resolution (i.e., ≤1 mm), we found that sub-
jects may experience strong PNS effects introduced by REPI.
This experiment aimed to reduce the PNS effect of REPI
while preserving the original image contrast. We optimized
one shot of REPI, being parameterized by B-spline kernels
(width=16). The optimized readout shot was rotated using the
angle scheme similar to Ref. 55 for multi-shot acquisition.

We designed the REPI readout for an oscillating stead
steady imaging (OSSI) sequence, a novel fMRI signal model
that can improve the SNR56,57. The FOV was 200×200×12
mm3, with 1 mm3 isotropic resolution, TR = 16 ms, and
TE = 7.4 ms. The readout length was 10.6 ms. The receiver
bandwidth was ± 250kHz (dwell time = 2 𝜇s). The gradient
strength (𝑔max), and slew rate (𝑠max) constraints were 58 mT/m
and 200 mT/m/ms (3 axes combined).

To accelerate training, the loss term here excluded the
reconstruction loss recon:

 = 10−2𝑔 + 10−2𝑠 + 𝑝𝑛𝑠 + 102𝑐 .
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FIGURE 4 Visualization of the optimized trajectory in experiment
3.2.1. The upper subfigure displays PSFs (log-scaled, single-coil) of
trajectories optimized with different reconstruction methods. The lower
subfigure shows the density of sampling trajectories, obtained by
convolving the sampling points with a Gaussian kernel. Three rows are
central profiles from three perspectives.

The training used 40,000 steps, with the learning rate decay-
ing linearly from 10−4 to 0. The training cost ∼1 hrs.

3.3 In-vivo experiments

We implemented the optimized trajectory prospectively on a
GE UHP 3.0T scanner equipped with a Nova Medical 32-
channel head coil. Participants gave informed consent under
local IRB approval. Since the cache space in this MR sys-
tem cannot load hundreds of distinct gradient waveforms, the
experiment 3.2.1 was not implemented prospectively. Read-
ers may refer to the corresponding 2D prospective studies20
for image quality improvement and correction of eddy current
effects. For experiment 3.2.2, we programmed the sampling
trajectory with a 3D T1w fat-saturated GRE sequence58, with
TR/TE = 14/3.2 ms and FA = 20°. The experiment included 4
healthy subjects. For experiment 3.2.3, to rate the PNS effect,

we asked 3 participants to score the nerve stimulation with a
5-point Likert scale from ‘mild tingling’ to ‘strong muscular
twitch.’

3.4 Reproducible research

The code is publicly available†. As an accompanying project,
MIRTorch‡ facilitates applying differentiable programming to
MRI sampling and reconstruction.

4 RESULTS

For the spline-based freeform optimization experiment delin-
eated in 3.2.1, Fig. 3 presents an example of the optimized
trajectory, along with zoomed-in regions and plots of a sin-
gle shot. Similar to the 2D case20 and SPARKLING16,17, the
multi-level B-spline optimization generates a swirling trajec-
tory that can cover more k-space in the fixed readout time,
to reduce large gaps between sampling locations and, con-
sequently, aliasing artifacts. Notably, the zoomed-in region
highlights that different shots were automatically learned not
to overlap with each other, which implicitly improved the
sampling efficiency17. Fig. 4 displays point spread functions
(PSFs) of trajectories jointly optimized with different recon-
struction algorithms. To visualize the sampling density in
different regions of k-space, we convolved the trajectory with
a Gaussian kernel, and Fig. 4 shows the density of central
profiles from different views. Compared with 3D kooshball,
the SNOPY optimization led to fewer radial patterns in PSFs,
corresponding to fewer streak artifacts in Fig. 5. Trajectories
optimized with different reconstruction algorithms generated
different PSFs and densities, which agrees with previous stud-
ies28,30,31. Table 2 lists the quantitative reconstruction quality
of different trajectories. The image quality metric is the aver-
age peak signal-to-noise ratio (PSNR) of the test set. SNOPY
led to ∼4 dB higher PSNR than the kooshball initialization.
Fig. 5 includes examples of reconstructed images. Compared
to kooshball, SNOPY’s reconstructed images have reduced
artifacts and blurring. Though MoDL (and its variants) are
well-performing NN-based reconstruction algorithms accord-
ing to the open fastMRI reconstruction challenge59, many
important structures are distorted using the kooshball tra-
jectory. Using the SNOPY-optimized trajectory, a simple
model-based reconstruction (CG-SENSE) can reconstruct
such structures. The gradient strength and the slew rate of
optimized sampling trajectories are exhibited in the supple-
mentary materials. SNOPY solves a non-convex problem;

†https://github.com/guanhuaw/SNOPY
‡https://github.com/guanhuaw/MIRTorch

https://github.com/guanhuaw/SNOPY
https://github.com/guanhuaw/MIRTorch
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FIGURE 5 Examples of the reconstructed images for two knee slices in experiment 3.2.1.

therefore, its results depend on the initialization. The supple-
mentary materials compare optimization results with different
initializations.

For experiment 3.2.2, Fig. 6 shows the PSF of the opti-
mized and RSOS-GR schemes12. For the in-plane (𝑥-𝑦) PSF,
the SNOPY rotation shows noticeably reduced streak-like pat-
terns. In the 𝑦-𝑧 direction, SNOPY optimization leads to a
narrower central lobe and suppressed aliasing artifacts. The
prospective in-vivo experiments also support this theoretical
finding. In Fig. 6, the example slices (reconstructed by PLS)
from prospective studies show that SNOPY reduced streak-
ing artifacts. The average PSNR of SNOPY and RSOS-GR for
the 4 participants were 39.23 dB and 37.84 dB, respectively.
Supplementary materials show the rotation angles before and
after SNOPY optimization.

In experiment 3.2.3, we tested three settings: unoptimized
REPI, optimized with PNS threshold (𝑝max in (5)) = 80%,
and optimized with 𝑝max = 70%. Fig. 7 shows one slice of
reconstructed images by the CS-SENSE algorithm, as well
as the subjective ratings of PNS. Though SNOPY suppressed
the PNS effect, the image contrast was well preserved by
the image contrast regularizer (6). Fig. 8 presents one shot
before and after the optimization, and one plot of simulated
PNS effects. The SNOPY optimization effectively reduced
subjective PNS effects of given REPI readout gradients in
both simulation and in-vivo experiments. Intuitively, SNOPY
smoothed the trajectory to avoid a constantly high slew rate,
preventing a strong PNS effect.

5 DISCUSSION

SNOPY presents a novel and intuitive approach to optimizing
non-Cartesian sampling trajectories. Via differentiable pro-
gramming, SNOPY enables the application of gradient-based
and data-driven methods to trajectory design. Various applica-
tions and in-vivo experiments demonstrated the applicability
and robustness of SNOPY and its 2D predecessor20.

Experiments 3.2.1 and 3.2.2 used SNOPY to tailor
sampling trajectories according to specific training datasets
and reconstruction algorithms, by formulating reconstruction
image quality as a training loss. One concern was whether
the learned trajectories would overfit the training dataset.
In experiment 3.2.2, the training set used an MP-RAGE
sequence, while the prospective sequence was an RF-spoiled
GRE. Similarly, 2D prospective and retrospective experi-
ments20 showed that trajectories learned with particular pulse
sequences and hardware still improved the image quality of
other sequences and hardware, and the NN-based reconstruc-
tion did not require fine-tuning with respect to prospective
experiments. These empirical studies suggest that trajec-
tory optimization is robust to moderate distribution shifts
between training and inference. An intuitive explanation is
that SNOPY can improve the PSF by reducing aliasing, and
such improvements are universally beneficial. Future investi-
gations will explore the robustness of SNOPY in more diverse
settings, such as optimizing trajectories with healthy controls
and prospectively testing them with pathological participants
to examine image quality for pathologies. It will also be desir-
able to test SNOPY with different FOVs, resolutions, and B0
strengths.

Our experiments demonstrated that iterative reconstruc-
tion with simple analytical regularizers, such as CG-SENSE,
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FIGURE 6 Prospective results of 3.2.2, optimizing the rotation angles of the stack-of-stars (6× acceleration). ‘Best empirical’ uses the design from a
previous study 12. The upper subfigure shows two slices from prospective in-vivo experiments. The reconstruction algorithm was PLS. Avg. PSNR is
the average PSNR of the 4 subjects compared to the fully sampled reference. The lower subfigure shows the log-scaled PSF (single-coil) of two
trajectories.
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FIGURE 7 Prospective results of 3.2.3. We showed three different trajectories: the unoptimized REPI, as well as SNOPY-optimized with PNS
thresholds of 80% and 70%. The left subfigure shows one slice of reconstructed images. The reconstruction used PLS and 120 shots (volume TR =
2s). The right subfigure shows subjective scores of the PNS effect.

FIGURE 8 The first row of plots displays the PNS effect calculated by the convolution model (5) used in Experiment 3.2.3. The second row shows
the corresponding readout trajectories before and after SNOPY optimization.

can benefit from the SNOPY-optimized sampling trajectories.
As depicted in Fig. 3, CG-SENSE with SNOPY optimization
can successfully reconstruct many anatomical structures that
were blurred in the MoDL reconstruction without SNOPY
trajectory. This result is consistent with previous studies28,
where compressed sensing algorithms with trajectory opti-
mization also outperformed NN-based reconstruction. These

findings indicate untapped potentials of model-based recon-
struction by optimizing sampling trajectories.

MRI systems are prone to imperfections such as field
inhomogeneity60 and eddy currents61. Many correction
approaches exist, such as B0-informed reconstruction45 and
trajectory mapping62,63. SNOPY-optimized trajectories are
compatible with existing correction methods. For instance, we
demonstrated the feasibility of implementing eddy currents
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correction for a 2D freeform optimized trajectory in Ref. 20.
Additionally, incorporating system imperfections into the for-
ward learning/optimization phase, such as off-resonance maps
in the system model 𝑨 (as defined in (1)), may enhance the
intrinsic robustness of the optimized trajectory. However, this
approach requires the distribution of system imperfections,
which is typically scanner-specific. To address this limitation,
we plan to investigate prospective simulation approaches in
future studies. The model mismatch may also happen at the
digitization level: the training set typically consists of concrete
discrete-space images, whereas real objects are continuous.
This inverse crime is common in learning-based methods
and may lead to suboptimal results. Future research should
investigate strategies for mitigating this issue.

SNOPY uses a relatively simplified model of PNS. More
precise models, such as Ref. 38, may lead to improved PNS
suppression results. SNOPY can also incorporate other opti-
mization objectives to encourage properties such as robust-
ness to field inhomogeneity and reduction of acoustic noise.

The training process incorporates several loss terms,
including image quality, PNS suppression, hardware limits,
and image contrast. By combining these terms, the optimiza-
tion can lead to trajectories that have multiple desired charac-
teristics. One may alter the optimization results by controlling
the coefficients. For example, with a larger coefficient of the
hardware constraint loss, the trajectory will better conform
to 𝑠max and 𝑔max. The supplementary materials contain an
example of optimization results using different combinations
of weights. Setting the weights of several terms can be com-
plicated. Empirically, the weight of soft constraints, including
hardware (g and s), PNS suppression (pns), and contrast
(c) can be tuned to a higher value if the optimized trajec-
tory significantly violates these constraints. Additionally, the
training losses may sometimes contradict each other, and the
optimization process would get stuck in a local minimum.
To address this, several empirical tricks have been employed.
Similar to SPARKLING17, the constraint on maximum gradi-
ent strength can be relaxed using a higher receiver bandwidth.
Bayesian optimization is another option for finding optimal
loss weights, but may increase training time. Using SGLD
can introduce randomness that helps escape local minima.
In spline-based optimization, one can use a larger B-spline
kernel width in the early stages of a coarse-to-fine search.

Trajectory optimization is a non-convex problem. SNOPY
uses several methods, including effective Jacobian approx-
imation, parameterization, multi-level optimization, and
SGLD, to alleviate the non-convexity and achieve better opti-
mization results. These methods were also found to be effec-
tive in previous studies20,28. Initialization is also important for
non-convex problems, as demonstrated in the supplementary
materials. SNOPY can leverage existing knowledge of MR
sampling as a benign initialization. For instance, our experi-
ments used the widely accepted golden-angle stack-of-stars as

optimization bases. The SNOPY algorithm can sequentially
improve these skillfully designed trajectories to combine the
best of both stochastic optimization and researchers’ insights.

SNOPY has a wide range of potential applications, includ-
ing dynamic and quantitative imaging, particularly if large-
scale quantitative datasets are available. These new appli-
cations may require task-specific optimization objectives in
addition to the ones described in Sec. 2.1. In particular, if the
reconstruction method is not easily differentiable, such as the
MR fingerprinting reconstruction based on dictionary match-
ing64, one needs to design a surrogate objective for image
quality.
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