
Adolescent functional network connectivity
prospectively predicts adult anxiety symptoms related

to perceived COVID-19 economic adversity

Felicia A. Hardi,1 Leigh G. Goetschius,2 Vonnie McLoyd,1 Nestor L. Lopez-Duran,1

Colter Mitchell,3,4 Luke W. Hyde,1,3 Adriene M. Beltz,1 and Christopher S. Monk1,3,5,6

1Department of Psychology, University of Michigan, Ann Arbor, MI, USA; 2The Hilltop Institute, University of
Maryland Baltimore County, Baltimore, MD, USA; 3Survey Research Center of the Institute for Social Research,
University of Michigan, Ann Arbor, MI, USA; 4Population Studies Center of the Institute for Social Research,

University of Michigan, Ann Arbor, MI, USA; 5Neuroscience Graduate Program University of Michigan, Ann Arbor, MI,
USA; 6Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA

Background: Stressful events, such as the COVID-19 pandemic, are major contributors to anxiety and depression,
but only a subset of individuals develop psychopathology. In a population-based sample (N = 174) with a high
representation of marginalized individuals, this study examined adolescent functional network connectivity as a
marker of susceptibility to anxiety and depression in the context of adverse experiences. Methods: Data-driven
network-based subgroups were identified using an unsupervised community detection algorithm within functional
neural connectivity. Neuroimaging data collected during emotion processing (age 15) were extracted from a priori
regions of interest linked to anxiety and depression. Symptoms were self-reported at ages 15, 17, and 21 (during
COVID-19). During COVID-19, participants reported on pandemic-related economic adversity. Differences across
subgroup networks were first examined, then subgroup membership and subgroup–adversity interaction were tested
to predict change in symptoms over time. Results: Two subgroups were identified: Subgroup A, characterized by
relatively greater neural network variation (i.e., heterogeneity) and density with more connections involving the
amygdala, subgenual cingulate, and ventral striatum; and the more homogenous Subgroup B, with more
connections involving the insula and dorsal anterior cingulate. Accounting for initial symptoms, subgroup A
individuals had greater increases in symptoms across time (b = .138, p = .042), and this result remained after
adjusting for additional covariates (b = .194, p = .023). Furthermore, there was a subgroup–adversity interaction:
compared with Subgroup B, Subgroup A reported greater anxiety during the pandemic in response to reported
economic adversity (b = .307, p = .006), and this remained after accounting for initial symptoms and many covariates
(b = .237, p = .021). Conclusions: A subgrouping algorithm identified young adults who were susceptible to adversity
using their personalized functional network profiles derived from a priori brain regions. These results highlight
potential prospective neural signatures involving heterogeneous emotion networks that predict individuals at the
greatest risk for anxiety when experiencing adverse events. Keywords: Stress susceptibility; anxiety; functional
connectivity; person-specific network.

Introduction
The COVID-19 pandemic is an unprecedented crisis
that has increased the prevalence of mental disor-
ders through profound stressors, including financial
hardship, health concerns, and social isolation
(Xiong et al., 2020), especially for marginalized and
underserved communities that are disproportion-
ately impacted due to systemic inequities (Tai, Shah,
Doubeni, Sia, & Wieland, 2021). Although highly
stressful experiences often precipitate anxiety and
depression (McLaughlin & Nolen-Hoeksema, 2012),
only a subset of individuals develops these disor-
ders, potentially due to an increased biological
sensitivity to environmental context (Boyce &
Ellis, 2005). Young adults may be particularly vul-
nerable to the stressful impact of the pandemic,
given that adolescence and young adulthood are

critical developmental stages for neural change as
well as shifts in social, occupational, and economic
contexts. Further, approximately half of mental
health symptoms begin during adolescence and
about three quarters manifest before age 24 (Kessler
et al., 2005), suggesting that stress susceptibility
during these periods may be key in forecasting
future anxiety and depression.

Studies have attempted to identify neural signa-
tures from individuals who are more susceptible to
stress, finding modest predictive links between brain
function during active emotion processing with later
anxiety and depression (Mattson, Hyde, Shaw, For-
bes, & Monk, 2016; Swartz, Knodt, Radtke, &
Hariri, 2015). Many studies linking brain function
to psychopathology have utilized univariate
contrast-based methods that average data across
time and individuals (Elliott et al., 2020; Gordon
et al., 2017), and recent methodological advances
show that multivariate network-based approaches
may yield more reliable and predictive estimates of
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dynamic neural activity (Kragel, Han, Kraynak, Gia-
naros, & Wager, 2021; Noble, Scheinost, & Consta-
ble, 2021; Taxali, Angstadt, Rutherford, &
Sripada, 2021). Additionally, much of the literature
focusing on the neural network has utilized neu-
roimaging data collected at rest; however, without
the presence of tasks, resting scans may introduce
heterogeneity in cognitive processes that individuals
are engaging in during the scan (e.g., one participant
may be close to sleep, whereas another is making
lists), leading to greater variance in neural function
(Finn, 2021). In contrast, neuroimaging during
behavioral tasks may impose boundaries for the
neural activity that could facilitate better prediction
of clinically relevant traits (Finn et al., 2017; Greene,
Gao, Scheinost, & Constable, 2018).

In the present investigation, we employed a within-
person (in this case, person-specific) approach to
map functional connectivity during an emotion task
among select neural regions to cluster individuals
with similar patterns of connectivity using a data-
driven algorithm. This method grouped individuals
into subgroups based on similarities and differences
in their person-specific networks, thus identifying
patterns of heterogeneity (i.e., greater variations in
their person-specific connectivity) and homogeneity
(i.e., fewer variations in connectivity). Combining
hypothesis-driven model-based approaches and
data-driven algorithms provides a powerful way to
identify patterns of connectivity or clusters of indi-
viduals without a priori clustering assumptions; this
maximizes power by leveraging the within-person
nature of functional time series as well as the
between-person sample size. We focused on the
frontostriatal-limbic circuitry (i.e., amygdala, stria-
tum, insula, cingulate, prefrontal cortex) that is
implicated in anxiety- and depression-like behaviors
in both animal models and clinical samples (Etkin &
Wager, 2007; Janiri et al., 2020; Price & Dre-
vets, 2010). In addition to clustering individuals
based on their functional network, connectivity was
characterized in several ways, including network
density (i.e., connections within a network) and
centrality (i.e., connections involving specific regions
of a network; Bullmore & Sporns, 2009), revealing
both comprehensive brain patterns as well as dis-
tinct roles of specific brain regions within networks.

Critically, beyond identifying specific neural pat-
terns that could predict future anxiety and depres-
sion, there is a need to examine the psychological
impact of stress within groups of individuals who are
underrepresented in neuroimaging research and are
at increased risk for stress exposure (Falk
et al., 2013). The present study examined neural
networks relating to stress susceptibility in a sample
of 174 young adults with a substantial representa-
tion of African Americans and low-income families,
and tested the following hypotheses: (a) that data-
driven neural connectivity network would identify
subgroups of adolescents with new onset or

worsening symptoms of anxiety and depression
6 years later during a highly stressful period
(COVID-19 pandemic); and (b) these adolescent
functional network subgroupings would show differ-
ential anxiety and depression susceptibility to
COVID-19 adversity. These questions were exam-
ined using functional network analyses at a critical
time for neural development (age 15) to predict an
escalation in symptoms over time as well as in
response to adversity. Moreover, given the divergent
rates of anxiety and depression among men and
women (Kessler et al., 1994), and the potential effect
of demographical differences and early experiences,
we examined sex differences in these associations.

Methods
Sample and procedures

Participants were recruited from the Fragile Families and Child
Wellbeing Study (FFCWS), a population-based sample of 4,898
children born in large US cities (population over 200,000) with
an oversampling (3:1) for non-marital births, which resulted in
a high representation of low-income families (Reichman,
Teitler, Garfinkel, & McLanahan, 2001). When children were
15–17 years old, a cohort of 237 families from midwestern
cities (Detroit, MI; Toledo, OH; Chicago, IL) was invited to
participate in the Study of Adolescent Neural Development at
the University of Michigan, Ann Arbor, where all neuroimaging
data and symptom indicators included in this study were
collected. Of these 237 youths who participated in the study,
magnetic resonance imaging (MRI) data from 174 youths
(mean age 15.9 years) were collected (see Appendix S1 and
Figure S1 for exclusion criteria). At baseline, the included
sample was 54% female and 76% African American, with a
median household income of $37,000. Two years after their
first visit, youth were recontacted and 128 participants were
assessed over the phone. Six years after their first visit (during
the pandemic), 119 participants completed online/phone
assessments. These data were collected during the peak of
the early waves of the pandemic (the first participant data were
collected on April 30, 2020; the last participant data were
collected on June 26, 2021). Participants did not differ in
demographic characteristics across each wave or the full
sample (Table S1). Study participants provided informed
consent or assent (when minors, with parent consent) at all
timepoints. Study protocols were approved by the University of
Michigan ethics committee (IRB: HUM00167754; HUM000
74392).

Neuroimaging measures

Functional MRI (fMRI) acquisition, task paradigm,
and processing. Magnetic resonance imagings were
acquired using a 3T GE Discovery MR750 scanner with an
eight-channel head coil. Participants completed an emotion
faces task in which they identified the gender of the actor
(counterbalanced for gender and race). Functional data of each
participant across all emotion trials (fear, happy, sad, neutral,
and angry) during the entire task (including cross-hairs
presentation) were extracted for subsequent processing (see
Figure S2 for task paradigm). This approach was taken to
maximize power and avoid confounds associated with contrast
modeling. Standard fMRI preprocessing pipelines were utilized
using detailed codes in FSL v6.0 (Beltz, Dotterer, &
Goetschius, 2019; details on MRI data acquisition, task
paradigm, and preprocessing are available in Appendices S2
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and S3). After preprocessing, time-series functional data were
extracted from seven bilateral regions of interest (ROIs):
amygdala, dorsal anterior cingulate, dorsomedial prefrontal
cortex, insula, orbitofrontal cortex, subgenual anterior cingu-
late, and ventral striatum. ROIs were 8 mm-diameter spheres
centered around corresponding Montreal Neurological Insti-
tute (MNI) coordinates (Table S2) extracted from NeuroSynth
(Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011), a
meta-analytic tool for establishing neural peak activation, and
preregistered prior to analyses (see Appendix S4 for additional
information on ROI selection and data extraction). To ensure
that results pertained to the functional network connectivity of
hypothesized ROIs, a sensitivity analysis was completed in
which functional connectivity was estimated from other ROIs
as a comparison network that was not hypothesized to predict
susceptibility to stress (e.g., areas of the brain pertaining to
audio, visual, sensorimotor, language processing), and the
resulting subgroup memberships were compared (see
Appendix S5 for details of comparison network, Table S3 for
MNI coordinates of comparison ROIs, and Table S4 for com-
parison of resulting subgroups).

Anxiety and depressive symptoms

Symptoms were based on self-reported measures. Anxiety
symptoms were measured using Screen for Child Anxiety-
Related Disorders at wave 1 (baseline) and wave 2 (pre-COVID)
and using the Beck Anxiety Inventory at wave 3 (COVID-19).
Depressive symptoms were measured using the Mood and
Feelings Questionnaire in waves 1 and 2 and using Beck
Depression Inventory at wave 3. Scales showed good internal
reliability across all waves (see Appendix S6). Initial (wave 1)
anxiety symptoms were related to symptoms at both wave 2
(r = .58, p < .001) and wave 3 (r = .31, p < .001); anxiety at
waves 2 and 3 were related at r = .58, p < .001. Initial
depression symptoms were related to depression at wave 2
(r = .39, p < .001) and wave 3 (r = .38, p < .001), and symptoms
at waves 2 and 3 were related at r = .42, p < .001. Standardized
scores were utilized in subsequent analyses.

COVID-19 economic adversity

At wave 3, participants self-reported economic adversity expe-
rienced relating to the pandemic (M = 2.08, SD = 1.71).
Participants reported yes (1) or no (0) on employment loss
due to the COVID-19 pandemic and income loss due to the
COVID-19 pandemic. Participants also reported on the finan-
cial state of their household: comfortable (0), enough but not
extra (1), have to cut back (2), or cannot make ends meet (3);
and any food scarcity experienced by the household: no food
insecurity (0), sometimes (1), and often (2). These questions
were scaled and then summed to compute the economic
adversity score (Cronbach’s a = .72), with higher scores
denoting greater pandemic economic adversity. Mean-
centered scores were utilized in interaction models to aid
interpretation and reduce collinearity (Robinson, & Schu-
macker, 2009).

Covariates

To account for confounding effects, the following covariates
were added to statistical models in sensitivity analyses: sex
(parent-report: male, female), age during fMRI scan (in years),
pubertal development (youth-report), ethnoracial identity
(youth-report: Black, white, Hispanic, other/multiracial; a
social construct included to account for the impacts of
unmeasured structural racism), annual household income at
baseline (age 15; parent-report), pandemic duration (number
of days since the study commenced, April 20, 2020; to account
for differences in the timing of participation), framewise

displacement, early adversity (parent-report: violence expo-
sure); social deprivation (Hein et al., 2020), cognitive ability
(reading comprehension); mathematical abilities (Woodcock,
McGrew, & Mather, 2001), cohabitation status (self-report:
living with a partner or not), parental status (self-report: living
with a child or not). See Appendix S7 for details of each
covariate.

Statistical analyses

Data-driven analysis: Subgrouping group iterative
multiple model estimation (S-GIMME). Statistical
analyses were conducted in R, v4.0.3. S-GIMME (Gates, Lane,
Varangis, Giovanello, & Guiskewicz, 2017) was applied to
extracted functional time-series data. S-GIMME iteratively
estimates person-specific unified structural equation models,
which contain both positive and negative directed first-order
lagged and contemporaneous connections among a priori
ROIs; those connections can apply to everyone in a sample
(reflecting homogeneity), a subset of individuals in a sample
(when a subgrouping algorithm is applied through S-GIMME),
or just an individual (reflecting heterogeneity). Default
GIMME parameters established and supported by large-
scale simulation studies (Gates et al., 2017; Gates & Mole-
naar, 2012; Lane, Gates, Pike, Beltz, & Wright, 2019) were
used in the present investigation. Beginning with a null
model, group-level connections were added for everyone if
they significantly improved model fit for at least 75% of the
sample as determined by the Lagrange Multiplier tests
(L€utkepohl, 2005), then individuals were classified into
subgroups using a Walktrap unsupervised community detec-
tion algorithm (Gates et al., 2017), which clusters individuals
into data-driven subgroups without any a priori clustering
assumptions and without averaging data across individuals.
Finally, subgroup-level connections were added for everyone
in a subgroup if they significantly improved model fit for at
least 50% of members as determined by Lagrange Multiplier
tests. Individual-level connections were estimated for each
person (again based on the Lagrange Multiplier test) until the
networks fit well, and contemporaneous edges were then
extracted for subsequent analyses, consistent with previous
investigations (e.g., Goetschius et al., 2020). See Appendix S8
for more information and Figure S3 for a visual representa-
tion of the S-GIMME process. GIMME and S-GIMME are
validated and reliable person-specific functional connectivity
analysis approaches that have been used or discussed in over
300 scientific articles (Beltz & Gates, 2017). GIMME outper-
formed 38 commonly-used approaches in modeling func-
tional connectivity (Gates & Molenaar, 2012), and S-GIMME
has high precision and recall in estimating connections in
large-scale simulations of data with similar properties (length
and sample size) as this study (Lane et al., 2019). In this
study, several robustness checks were performed: psi values
were examined to ensure model overfit did not affect infer-
ences; split-half reliability was examined by applying S-
GIMME separately to odd versus even volumes of the
functional data to ensure data reliability; lastly, S-GIMME
was applied to five randomly drawn subsamples, containing
80% of participants (Figure S4), to ensure stability in
subgroup estimation. More details on each procedure are
available in Appendix S9.

Subgroup differences analyses. Demographic char-
acteristics in resulting S-GIMME subgroups were first exam-
ined using Welsch t tests to account for the heterogeneity of
variances between groups. Then, subgroup network charac-
teristics (i.e., density, node centrality) were compared between
groups. Density was computed as the number of actual
contemporaneous connections divided by the total number of
possible connections (Bassett & Bullmore, 2017). Node
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centrality was computed as a proportion of contemporaneous
connections attached to corresponding nodes (i.e., ROIs) from
the number of overall contemporaneous connections. Next,
two linear multilevel growth curves were estimated separately
for anxiety and depression to examine changes in anxiety and
depression across three waves. Waves were nested within
participants using unstructured error covariance matrices for
random intercepts and slopes. Individual intercepts and
slopes were then extracted from each model for subsequent
analyses. Next, to isolate subgroup differences in symptom
change over time, functional network-derived subgroup mem-
berships and intercept (individual symptoms at wave 1; age
15) were used to predict slope (change over waves across ages
15, 17, and 21). As sensitivity analyses, covariates were
added in sequential order: main covariates (i.e., age, pubertal
development, gender, ethnoracial identity, income, study
days), followed by additional sensitivity covariates (i.e.,
motion, violence exposure, social deprivation, reading com-
prehension, mathematical abilities, residential status with
partners and/or children during the pandemic; see
Appendix S10 for robustness checks). A similar approach
was taken to probe ROI specificity by examining the associ-
ations between each region node centrality predicting change
in anxiety and depressive symptoms over time while adjusting
for the initial level of symptoms. To account for multiple
comparisons, models including node centrality were
Bonferroni-corrected (noted by p-adjust). Finally, to probe sex
differences, associations between sex and symptoms were
examined at each timepoint, and subgroup–sex interactions
were tested to predict symptoms.

Subgroup–adversity interaction analyses. The
main effects between reported COVID-19 economic adversity
with symptoms atwave 3 (during the pandemic) were first tested
for anxiety and depression separately. Then, interactions
between subgroup–adversity and symptoms (at wave 3; during
the pandemic) were tested to examine whether there were
subgroup differences in COVID-19 stress susceptibility. In
subsequent steps, models were examined with the inclusion of
initial symptoms (i.e., individual intercepts fromgrowthcurves),
main covariates, and additional covariates as sensitivity anal-
yses.

Results
Adolescent data-driven neural network subgroups

S-GIMME derived a two-subgroup model with excel-
lent fit (average model fit indices: root mean square
error of approximation = .051, standard root mean
residual = .050, nonnormed fit index = .924, confir-
matory fit index = .952). Subgroup B (N = 94) individ-
uals were older and more advanced in pubertal
development than Subgroup A (N = 80) individuals,
but there were no significant differences in other
demographic characteristics across the two sub-
groups (Table 1). There were significant subgroup
differences in network characteristics. First,

Table 1 Characteristics of neural-based subgroups (N = 174)

Measure

Subgroup A (N = 80) Subgroup B (N = 94)
Statistical
comparison

Mean SD Mean SD t p

Age during fMRI scan (years) 15.78 .51 15.94 .53 �2.02 .045
Pubertal development 3.15 .59 3.35 .55 �2.29 .024
Anxiety (wave 1)1 17.27 11.33 17.14 11.17 .07 .941
Anxiety (wave 2)1 16.51 12.34 14.93 12.22 .72 .475
Anxiety (wave 3; COVID-19)1 12.62 13.01 8.67 10.34 1.80 .074
Depression (wave 1)2 15.52 10.08 15.43 9.96 .06 .951
Depression (wave 2)2 15.37 14.25 12.36 12.44 1.24 .220
Depression (wave 3; COVID-19)2 11.91 8.69 10.32 8.53 1.00 .320
COVID-19 economic adversity 2.22 1.67 1.97 1.74 .78 .439
Days since study commenced 168.90 99.10 140.66 84.28 1.75 .083

N % N % v2 p

Sex
Female 43 53.75 51 54.26 0 1
Male 37 46.25 43 45.74

Ethnoracial identity3

Black 63 78.75 70 74.47 0.47 .789
White 9 11.25 12 12.77
Hispanic/LatinX 5 6.25 7 7.45
Other/Multiracial 3 3.75 5 5.32

Annual household income (baseline at wave 1)4

<$15,000 24 30 17 18.09 4.86 .182
$15,000–39,999 18 22.5 31 32.98
$40,000–69,999 18 22.5 22 23.40
>$70,000 19 23.75 24 25.53
Unknown 1 1.25 0 0

1Wave 1 and Wave 2 anxiety were measured by Screen for Child Anxiety-Related Emotional Disorders. Anxiety during COVID-19
(wave 3) was measured by Beck Anxiety Inventory.
2Wave 1 and Wave 2 depression were measured by Mood and Feelings Questionnaire. Depression during COVID-19 (Wave 3) was
measured using Beck Depression Inventory.
3Other/Multiracial group was collapsed with Hispanic/LatinX group for chi-square estimation.
4Unknown group was collapsed with <$15,000 group for chi-square estimation.
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Subgroup A network was characterized by greater
heterogeneity (i.e.,more individual-level connections;
MA = 17.45, SDA = 4.69; MB = 15, SDB = 3.62; t

(147.36) = 3.81, p < .001) and relatively greater den-
sity compared with subgroup B (MA = .36, SDA = .05;
MB = .30, SDB = .04; t(147.36) = 8.47, p < .001;
Figure 1). Moreover, individuals in subgroup A
showed significantly greater centrality in the left
amygdala (t(170.72) = 3.93, p-adjust = .002), right
subgenual anterior cingulate (t(171.19) = 8.92,
p-adjust < .001), and left ventral striatum (t
(167.23) = 8.17, p-adjust < .001; Figure 2). In contrast,
individuals in subgroup B showed significantly
greater centrality in the left dorsal anterior cingulate
(t(171.32) = 4.09, p-adjust < .001) and bilateral insula
left: t(171.14) = 3.28, p-adjust = .017; right: (t
(167.95) = 4.28, p-adjust < .001; Figure 2; see
Table S5 for comparison of node centrality across
subgroups).

Prospective associations of neural network with
symptoms

Accounting for initial levels of symptoms, subgroup
A membership predicted greater change in anxiety
over time (b = .138, p = .042) relative to subgroup B,
and these subgroup differences remained after
adjusting for main covariates (b = .194, p = .023;
Table 2) and additional covariates (b = .257,
p = .011; Table S6). Results were specific to anxiety:
subgroup membership did not predict change in
depression (b = .089, p = .243; Table 2; Figure 3).
When examining specific ROIs, individual node cen-
trality did not predict a change in anxiety or depres-
sion after Bonferroni correction for multiple
comparisons (Table S7). Sex differences in symp-
toms were most pronounced at age 15 when both
anxiety (b = .342, p < .001) and depressive (b = .348,
p < .001) symptoms were more prevalent in females

Figure 1 Neural networks derived during an emotion processing task. (A) S-GIMME derived group level, subgroup level, and illustrative
individual-level connections. Nodes shown are as follows: amygdala (Am; gray), dorsal anterior cingulate cortex (dAC; yellow),
dorsomedial prefrontal cortex (dm; green), insula (Ins; blue), orbitofrontal cortex (OF; dark red), subgenual anterior cingulate cortex (sg;
dark blue), and ventral striatum (VS; purple). Eighty (N = 80) individuals were clustered into Subgroup A, whereas 94 (N = 94) individuals
were clustered into Subgroup B. Group-level paths (connections present in at least 75% of the entire sample) are shown in black;
subgroup paths (connections present in at least 50% of individuals in each subgroup) are shown in red (Subgroup A) and blue (Subgroup
B). Thresholds were default parameters used in connectivity and subgrouping estimation based on large-scale simulations. All
connections were positive on average, in exception for left dorsomedial prefrontal cortex (dm) to right insula (Ins) Subgroup B path (all
average path estimates reported in Table S8). (B) Network density (i.e., the proportion of actual contemporaneous connections from the
number of possible connections in a network) for each individual in Subgroup A (red) and Subgroup B (blue). Network density was
significantly greater in Subgroup A compared with Subgroup B (MA = .36, SDA = .05; MB = .30, SDB = .04; t(147.36) = 8.47, p < .001). (C)
Person-specific network maps (i.e., individual-level functional connectivity estimated for each individual in the sample) for one individual
in Subgroup A (red) and another individual in Subgroup B (blue). L. and R. indicate left/right hemisphere. Subgroup A individual had a
more heterogeneous network, with more connections beyond group- and subgroup-level connections, whereas Subgroup B individual
had a more homogenous network, with fewer connections overall but more similar connections to the group- and subgroup-level
patterns. All edges shown were contemporaneous, and figures were created using customized R codes and circlize package (Gu, Gu, Eils,
Schlesner, & Brors, 2014)
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than males (Figure S5), but symptoms did not differ
across sex during the pandemic (anxiety: b = .075,
p = .420; depression: b = .020, p = .829). Additionally,
there were no subgroup–sex interactions predicting
anxiety (b = �.0005, p = .997) or depression
(b = .070, p = .644) during the pandemic. These
results pertained to a functional network of hypoth-
esized ROIs; there were no subgroup differences in
symptoms from prediction analyses using the com-
parison network (i.e., a nonhypothesized set of ROIs;
see Appendix S5 and Table S4).

Susceptibility to COVID-19 economic adversity

Increased economic adversity during the pandemic
was related to greater anxiety symptoms during
COVID-19 across all participants (b = .367,
p < .001). Moreover, there was a significant adver-
sity–subgroup interaction (b = .307, p = .006), such

that participants in the more heterogeneous Sub-
groupA reported greater anxiety during the pandemic
in response to pandemic-related economic adversity
relative to subgroup B (Figure 4), and this interaction
effect remained after adjusting for the initial level of
anxiety and covariates (b = .237, p = .021; Table 3),
and additional covariates (b = .259, p = .031;
Table S6). There was a similar association in which
economic adversity was associated with depression
across all participants (b = .356, p < .001), but
adversity–subgroup interaction effect was not statis-
tically significant for depression (b = .196, p = .088;
Figure 4). Subgroups did not statistically differ in
their reports of COVID-19 economic adversity
(Table 1). Furthermore, subgroup–adversity interac-
tion did not predict symptoms when analyses were
done using subgroups that were derived from the
comparison network (i.e., a nonhypothesized set of
ROIs; see Appendix S5; Table S4).

Figure 2 Node centrality across each ROI plotted for each subgroup. ***Bonferroni-corrected p < .001, **Bonferroni-corrected p < .01,
*Bonferroni-corrected p < .05. Left to right: amygdala (Amyg), dorsal anterior cingulate (dACC), dorsomedial prefrontal cortex (dmPFC),
insula, orbitofrontal (OFC), subgenual anterior cingulate (sgACC), ventral striatum (VS). Hemispheres denoted by R. and L. Compared with
Subgroup B (blue), Subgroup A (red) shows significantly greater node centrality, specifically in the left amygdala (L.Amyg), left striatum
(L.VS), and right subgenual anterior cingulate (R.sgACC). In contrast, Subgroup B shows greater node centrality in the left dorsal anterior
cingulate (L.dACC) and bilateral insula (R.Insula, L.Insula). p Values were Bonferroni-corrected for multiple comparisons (Table S5)
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Discussion
Using a person-specific functional neural connectiv-
ity mapping, data-driven subgroups prospectively
predicted increasing anxiety and stress susceptibil-
ity during a highly stressful event. Two subgroups
emerged, a more heterogeneous subgroup charac-
terized by relatively greater variation in person-
specific networks and greater network density as
well as more connections involving the amygdala,
subgenual anterior cingulate, and striatum and a
more homogenous subgroup, characterized by lower
network density and greater involvement of the
insula and dorsal anterior cingulate cortex. Relative
to individuals in the more homogenous sub-
group, individuals in the more heterogeneous sub-
group experienced escalating trajectories of anxiety

symptoms from age 15 to 21 (during COVID-19
pandemic) when adjusting for initial symptoms.
Moreover, despite exposure to equivalent amounts
of economic adversity during the pandemic, the more
heterogeneous subgroup experienced greater anxiety
as economic adversity increased, and the results
remained after controlling for initial levels of anxiety
at adolescence and other covariates. These results
identify potential neural signatures of susceptibility
and resiliency to anxiety-related stress. These con-
clusions are strengthened by the use of an unsuper-
vised data-driven and personalized approach to
network mapping using a 6-year longitudinal
population-based sample with a substantial repre-
sentation of marginalized participants who are at
greater risk for adversity exposure.

Table 2 Results from models predicting change in anxiety and depressive symptoms over time using subgroups while adjusting for
initial symptoms (model 1) and covariates (model 2)

Change in anxiety Change in depression

Model 1 Model 2 Model 1 Model 2

b p b p b p b p

Subgroup (A) .138 .042 .194 .023 .089 .243 .120 .194
Initial symptoms �.456 <.001 �.379 <.001 �.100 0.189 .072 .432
Male .068 .538 .210 .080
Puberty .008 .937 �.030 .798
Age .086 .308 .018 .846
White .160 .078 �.060 .539
Hispanic �.011 .898 .098 .281
Other �.118 .155 �.103 .252
Baseline income .031 .726 .089 .351
Pandemic duration .022 .795 �.093 .310

F(2,170) = 24.56,
p < .001

F(10,120) = 3.82,
p < .001

F(2,170) = 1.46,
p = .235

F(10,120) = 1.31,
p = .233

Figure 3 Anxiety and depressive symptoms across three waves. (A) Illustration of timepoints and ages at each wave of data collection. (B)
Anxiety and depression for each subgroup (A: more heterogeneous network with greater centrality in the amygdala, subgenual, and
striatum and B: relatively sparser network with greater centrality in the insula and dorsal anterior cingulate) across each wave.
Participants across subgroups did not differ in initial anxiety and depression at wave 1, but symptoms began to diverge at wave 2, which
persisted through wave 3. For anxiety, this divergence was exacerbated by COVID-19 at wave 3, whereas subgroup difference for
depression during COVID-19 remained similar to prepandemic difference. Each point represents mean values, and the bars indicate
standard errors
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The distinction across subgroups in the progres-
sion of anxiety symptoms and in relation to adversity
demonstrates how network analysis was able to
identify individuals whose anxiety symptoms would
generally worsen across adolescence and particu-
larly, in response to increased adversity. Notably,
reported economic adversity during the pandemic
was comparable across the neural subgroups, sug-
gesting that this finding was not driven by disparity
in experienced stress, but by individual differences
in stress response. Furthermore, though rates of
anxiety and depression are often higher in women
(Kessler et al., 1994), we found that this sex differ-
ence was diminished during the pandemic, and there
was no evidence that sex interacted with subgroup
membership, nor was a confounder in findings.
Thus, these networks appear to be relevant for both
men and women. These results are broadly

consistent with the biological sensitivity to context
model (Boyce & Ellis, 2005), which posits that some
individuals are more susceptible to the environment
(in this case, economic adversity). However, here we
only tested susceptibility related to a negative out-
come, leaving open the question of whether these
individuals would also achieve more favorable out-
comes in a more positive environment.

These results also suggest that more heterogeneous
adolescent neural networks, specifically those involv-
ing the amygdala, subgenual cingulate, and striatum,
may indicate sensitivity to future stress. Individuals
with greater heterogeneity in their networks (i.e., more
connections that were different from connectivity pat-
terns found in all participants) and greater network
density (i.e., more connections among ROIs) showed
greater increases inanxietyandsusceptibility tostress.
These results are consistent with evidence showing

Figure 4 Differential effects of COVID-19 economic adversity on anxiety and depression across neural-based subgroups. Symptoms during
COVID-19 (wave 3) were elevated as a function of COVID-19 economic adversity, especially for subgroup A. Subgroup–adversity
interaction was significant for anxiety (b = .275, 95% CI = [.470, .080], p = .006), but not depression (b = .175, 95% CI = [�.026, .376],
p = .088). Subgroup A slope is depicted in red and Subgroup B slope in blue. COVID-19 adversity scores were mean-centered to aid
interpretation. LEFT: Subgroup–adversity interaction for anxiety symptoms. Subgroup A slope (b = .366, 95% CI = [.218, .514], p < .001);
Subgroup B slope (b = .092, 95% CI = [�.035, .219], p = .154). RIGHT: Subgroup–adversity interaction for depressive symptoms. Subgroup A
slope (b = .304, 95% CI = [.151, .457], p < .001); Subgroup B slope (b = .129, 95% CI = [�.001, .260], p = .053)

Table 3 Results examining subgroup differences in the associations between COVID-19 economic adversity and anxiety/depressive
symptoms during the pandemic

Anxiety during pandemic Depression during pandemic

Model 1 Model 2 Model 1 Model 2

b p b p b p b p

Subgroup (A) .136 .106 .181 .024 .069 .428 .048 .473
COVID-19 adversity .157 .154 .177 .105 .223 .053 .141 .127
Subgroup (A) 9 adversity .307 .006 .237 .021 .196 .088 .069 .420
Initial symptoms .399 <.001 .710 <.001
Gender .016 .877 .068 .416
Puberty .055 .574 �.023 .778
Age .095 .237 .005 .935
White .207 .015 �.009 .901
Hispanic .036 .641 .136 .037
Other �.048 .537 �.001 .989
Baseline income .067 .435 .056 .434
Pandemic duration �.008 .924 �.073 .272

F(3,114) = 10.23,
p < .001

F(12,104) = 6.76,
p < .001

F(3,114) = 6.97,
p < .001

F(12,104) = 13.18,
p < .001
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that greater reactivity of emotion-related regions pre-
dicts risk for psychopathology (Greicius et al., 2007;
Schwartz, Wright, Shin, Kagan, & Rauch, 2003; Stein,
Simmons, Feinstein, & Paulus, 2007). Furthermore,
greater heterogeneity in the more susceptible group in
the present investigation suggests that psychopathol-
ogy may be related to more variations in neural
connectivity, consistent with the notion that there
may be a greater neural heterogeneity in biological
features of psychopathology and fewer variations in
neural patterns (i.e., homogeneity) in the general
population (Fair, Bathula, Nikolas, & Nigg, 2012;
Feczko et al., 2019; Finn et al., 2020). Notably, the
detection of neural heterogeneity in the present study
wasaccomplishedby clustering individuals using their
personalized neural networks, thus demonstrating the
strength of person-specific connectivity mapping in
teasing apart similarities and differences in neural
patterns the prediction of mental health phenotypes.
These inferences can be strengthened by future inves-
tigations that examine whether such heterogeneity
persists with time, or whether neural function con-
verges to more homogenous patterns of connectivity
with improvements in symptomatology. Furthermore,
future research can benefit from further testing of
whether there are other neural networks implicated in
stress susceptibility beyond the brain regions exam-
ined in the present investigation.

The present results identified distinct responses to
stresswithinan important sample of participantswho
represent identities and groups that are underrepre-
sented in biomedical research during a historic global
event. Though one neural network-based subgroup
did appear to be more susceptible to pandemic-
related adversity, the other group was relatively
resilient, at least on the measures we examined.
Evidence of this type of resilience is critical in identi-
fying why and how some individuals thrive despite
adversity, particularly for those facing increased
stress via marginalization and oppression. Even with
compounding economic stress, health-related dis-
tress, police brutality, andother formsof social unrest
that occurred during the pandemic, individuals with
sparser adolescent functional networks and more
connections involving the insula and dorsal anterior
cingulate showed remarkable resilience against accu-
mulating stressors. These findings echo clinical stud-
ies showing increasedconnectivity between the insula
and dorsal anterior cingulate in nonanxious individ-
uals (Klumpp, Angstadt, & Phan, 2012), which sug-
gests that adaptive mechanisms involving these
regions may be protective against stress. More
research is thus needed to identify mechanisms
through which resilience can be bolstered for individ-
uals that are facing chronically high stress.

Results showing significant effects for anxiety but
not depression are consistent with recent findings on
the mental health impact of the COVID-19 pandemic
(He et al., 2021; Zeytinoglu et al., 2021). There may
be several explanations for these findings. First, the

pandemic and economic adversity may have a more
immediate effect on anxiety in the short-term, com-
pared with depression, which may require a longer
time to manifest. Unpredictable external situations
such as the pandemic may provoke cognitive states
of heightened threat that is more aligned with
anxious schemas (Beck & Clark, 1988), and since
our measures of symptoms were taken within the
first year of the pandemic, we may have captured the
rise in anxiety before a later rise in depression (that
occurred as the stress became more chronic).
Second, our results demonstrate that the group
difference in the associations between economic
adversity and symptoms was more pronounced for
anxiety, suggesting that both groups may be equally
more depressed as a function of the economic impact
of the pandemic. Third, these findings may indicate
potential distinct circuitries between anxiety and
depression (Wang et al., 2021), but given that our
study had only tested for networks within selected
regions, more research is needed to test the specific
processes that are driving these differences.

Though our study is buoyed by several strengths,
including prospective longitudinal data of underrep-
resented individuals and the use of computational
methods, there are several limitations. First, COVID-
19 adversity was measured at the same time as
anxiety and depression; thus, determination of the
direction of links between adversity and symptoms is
not possible. Nevertheless, the positive associations
between adversity and symptoms suggest an increase
in psychological distress that was accompanied by
increased adversity. Second, we were not able to
collect data from all participants from FFCWS that we
attempted to recruit, nor did all participants in the
neuroimaging study participate at all three waves
reportedhere; however, sampling attrition is expected
in longitudinal studies, and included sample did not
differ demographically across included waves. Third,
anxiety and depression were measured using the
same scale at wave 1 and wave 2, but not wave 3
because the measures were shifted to be more devel-
opmentallyappropriate, changing fromwell-validated
adolescent to adult measures at age 20 (Wang &
Gorenstein, 2013).Nonetheless, correlationsbetween
these measures were comparable, suggesting mea-
surement correspondence across waves. Fourth, as
with many other neuroimaging studies, the present
analyses were conducted with the assumption of
functional-structural correspondence across partici-
pants. The use of the same location for ROIs across
individuals facilitates the estimation of similarities
between people and the detection of subgroup mem-
bership. Finally, we recognize the limitations of our
modestly sized sample; however, this study examined
within-person symptomatic change that provides
critical information about underrepresented individ-
uals during a notable historical period; within-person
analyses can boost power and reliability (Curran &
Bauer, 2011). Furthermore, the reliability of the data
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and methods we utilized for subgrouping and func-
tional connectivity estimation was demonstrated by
additional checks (i.e., split-half, 80% test), which
reflected the robustness of model estimation across
split-half of the functional data and subsets of the
sample (see Appendix S9).

Conclusion
In this 6-year prospective study, a data-driven
adolescent neural network characterized by rela-
tively more heterogeneity and density involving the
amygdala, subgenual cingulate, and striatal regions
identified a subgroup of individuals with increasing
anxiety symptoms that further increased during
COVID-19. These findings demonstrate potential
neural features indicating susceptibility to future
stress, which may confer risk and resilience for
mental health in young adults who are making the
important transition to adulthood.
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Key points

� Longitudinal study spanning 6 years examined adolescent data-driven functional networks to prospectively
predict adult anxiety and susceptibility to future stress.

� Those with networks that were more heterogeneous (i.e., greater person-specific variations) with more
connections involving the amygdala, subgenual cingulate, and striatum were more susceptible to economic
adversity during COVID-19, compared to those with more homogenous networks involving insula and dorsal
anterior cingulate.

� Findings can inform intervention and prevention efforts by identifying neural profiles of individuals who are
susceptible to stress related to anxiety.
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