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https://doi.org/10.5281/zenodo.6477962. Plant richness, number of species, and plant cover data 
(NEON 2020) were downloaded from the NEON data portal application programming interface 
with the NEON Utilities package (Lunch et al. 2020). Net primary productivity (NPP) for each 
plot were downloaded from: 
http://files.ntsg.umt.edu/data/NTSG_Products/MOD17/MODIS_250/modis-250-npp/. Human 
modification index (HMI) were obtained from Kennedy et al. (2018) at 
https://doi.org/10.6084/m9.figshare.7283087.v1. Climate data were downloaded from 
https://www.worldclim.org/data/monthlywth.html (CRU-TS 4.03 [Harris et al., 2014] 
downscaled with WorldClim 2.1 [Fick and Hijmans, 2017]). All data sets were accessed May 
2020. 

  

https://doi.org/10.5281/zenodo.6477962
http://files.ntsg.umt.edu/data/NTSG_Products/MOD17/MODIS_250/modis-250-npp/
https://doi.org/10.6084/m9.figshare.7283087.v1
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Abstract   Invasive species science has heavily focused on the invasive agent. However, 

management to protect native species also requires a proactive approach focused on resident 

communities, and the features affecting their vulnerability to invasion impacts. Vulnerability is 

likely the result of factors acting across spatial scales, from local to regional, and it is the 

combined effects of these factors that will determine the magnitude of vulnerability. Here, we 

introduce an analytical framework that quantifies the scale-dependent impact of biological 

invasions on native richness from the shape of the native species-area-relationship (SAR). We 

leveraged newly available, biogeographically extensive vegetation data from the U.S. National 

Ecological Observatory Network to assess plant community vulnerability to invasion impact as a 

function of factors acting across scales. We analyzed more than 1,000 SARs widely distributed 

across the USA along environmental gradients and under different levels of non-native plant 

cover. Decreases in native richness were consistently associated with non-native species cover, 

but native richness was compromised only at relatively high levels of non-native cover. After 

accounting for variation in baseline ecosystem diversity, net primary productivity, and human 

modification, ecoregions that were colder and wetter were most vulnerable to losses of native 

plant species at the local level, while warmer and wetter areas were most susceptible at the 

landscape level. We also document how the combined effects of cross-scale factors result in a 

heterogenous spatial pattern of vulnerability. This pattern could not be predicted by analyses at 

any single scale, underscoring the importance of accounting for factors acting across scales. 

Simultaneously assessing differences in vulnerability between distinct plant communities at 

local, landscape and regional scales provided outputs that can be used to inform policy and 

management aimed at reducing vulnerability to the impact of plant invasions. 

Keywords  hierarchical analysis, impact, invasive, NEON, richness, vulnerability  
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Introduction 

Biological invasions are one of the major threats to natural ecosystems, and there is mounting 

evidence showing declines in native species richness caused by invasions (Vilà et al. 2011). 

However, management to prevent biodiversity losses is challenged by uncertainty in predicting 

where biological invasions will have meaningful impacts. A renewed focus toward 

understanding what makes a community vulnerable to invasion impact could be a 

complementary approach to protecting native species (Theoharides and Dukes 2007; Barney and 

Whitlow 2008). Plant community vulnerability to invasion is likely determined by a combination 

of factors acting across spatial scales, local to regional, and it is their combined effects that will 

dictate the magnitude of impacts. In this study, we leverage the availability of biogeographically 

extensive vegetation data from the National Ecological Observatory Network (NEON) to assess 

native plant community vulnerability to invasion impact as a function of factors acting across 

scales. 

Vulnerability to invasion impact highly depends on features of the community affected, i.e., 

biotic resistance, abiotic constraints, and native propagule availability (Levine 2001, Ibáñez et al. 

2021). As a result, the strongest impacts of plant invasions take place at the local scale, with 

impact weakening as larger areas are sampled (Powell et al. 2013, Crystal-Ornelas & Lockwood 

2020). Still, vulnerability is likely driven by processes interacting with invasive impacts at 

different scales. For example, at the local scale, greater resource availability could increase 

impact from invasion since invasive species commonly outcompete native plants when resources 

are high (Davis et al. 2000). At the landscape scale, disturbances and invasive propagule pressure 

are the two most common factors associated with the threat of native communities becoming 

invaded (Shea & Chesson 2002, MacDougall & Turkington 2005, González-Moreno et al. 2014). 
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At the regional scale, milder climates are associated with higher invasive species richness, while 

harsher environments usually have fewer invasive species (Vilà & Ibáñez 2011, Allen & Bradley 

2016). At the same time, native communities under more stressful environments could be more 

susceptible to invasion (Didham et al. 2007), making it unclear which climatic conditions could 

aggravate or ameliorate vulnerability to invasion impact. Given the range of local to regional 

processes contributing to plant invasions, comprehensive assessments of community 

vulnerability to invasion impacts need to simultaneously account for processes acting at different 

scales. 

The starting functional composition of native communities, and the species lost after invasion, 

are key aspects of vulnerability (Mollot et al. 2017, Pearse et al. 2019; Bradley et al. 2019). Here 

again, the compound effects of local, landscape and local features could be associated with losses 

of diversity (Lomolino et al. 2017). At the local scale, features of a community, e.g., 

microclimatic conditions and resource availability, affect plant richness (Bartels and Chen 2010). 

At the landscape scale, land use and disturbances can affect native richness via meta-population 

dynamics since isolation and lack of connectivity to source populations are often linked to native 

species losses (Ibáñez et al. 2014). At the regional scale, biodiversity varies along climatic 

gradients (Francis & Currie 2003, Smith et al. 2020), and these different levels of diversity can 

influence regional levels of invasion since biotic resistance to introductions can be related to 

native species richness (Beaury et al. 2020a; although see Lonsdale 1999, Stohlgren et al. 1999, 

Sax & Gaines 2006). The presence and intensity of these cross-scale drivers of native species 

loss are likely linked to communities’ vulnerability to invasion.   

In this study, we introduce a framework for combining local, landscape, and regional 

geographies to understand the vulnerability of native communities to non-native plant impacts. 
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We define vulnerability as declines in native plant richness with increasing cover of non-native 

species. Our work expands on Powell et al. (2013), who documented the scale-dependent effect 

of biological invasions via modifications in the native species-area-relationships (SAR). The 

SAR is a fundamental pattern in ecology in which the number of native species (species 

richness) rises as the sample area increases until it reaches an asymptote (Fig. 1a). The SAR can 

be mathematically described in different ways (Scheiner 2003). We followed Powell et al. (2013) 

and used a power curve to estimate native richness, R, as a function of area sampled, A (R=cAz; 

Arrhenius 1921). The two parameters in this equation represent the number of native species at 

one unit of area, c, and the rate of native species accumulation with increases in area, z. 

Analyzing species richness data at three locations, Powell et al. (2013) showed differences in 

SAR between un-invaded and invaded plots (Fig. 1a, blue and red colors respectively), and 

documented how the negative effect of invasion decays from the local level (lower c values in 

invaded plots) to broader spatial scales (higher z values in invaded plots). Here, we expand this 

analysis, invaded vs uninvaded, and use instead the gradient of invasion found at each NEON 

ecoregion (Fig. 1a, blue to red colors) to estimate the relationship between degree of invasion 

and the SAR parameters (Fig. 1b). We expect non-native cover to reduce local native species 

richness and therefore have a negative association with c (βc local vulnerability, where impact is 

highest) and a positive association with z as the local losses of richness observed in smaller plots 

dissipate over larger areas (βz landscape vulnerability; declining impact over space) (Fig. 1b). 

Furthermore, the use of SAR curves and newly available biogeographic vegetation data from 

NEON plant community surveys afford a unique opportunity to simultaneously measure how 

local, landscape, and regional processes influence vulnerability to invasion impact. NEON 

survey locations are distributed across ecoregions (Fig. 1c), delineated based on climatic and 
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ecological variability (Keller et al. 2008, Schimel et al. 2011). Within each of these ecoregions 

(Fig. 1c) we were able to assess how parameters of SAR curves are affected by degree of 

invasion (Fig. 1b) as a measure of local and landscape vulnerability, while further analyses of 

these parameters helped to account for regional drivers of vulnerability. By focusing on 

ecosystem vulnerability to the effects of invasion, our study addresses information gaps 

identified by managers and practitioners dealing with invaded communities (Beaury et al. 

2020b).  

 

Methods 

We leveraged NEON’s plant surveys to gather information on native species richness (number of 

native species) and levels of invasion (i.e., percent cover of non-native plants). Within each 

ecoregion, NEON has established between one to three sites. Each site contains ~30 plots, with 

distances between them ranging from 0.5 to 10 km, plant surveys were conducted at each of 

these plots between 2016 and 2017 (Barnett et al. 2019a). We estimated a SAR for each plot; 

parameters from these curves (c, z; Fig. 1) provided the basis for the analysis of plant community 

vulnerability across scales.  

NEON data - Plant richness, number of species, and plant cover data (NEON 2020) were 

downloaded from the NEON data portal application programming interface with the NEON 

Utilities package (Lunch et al. 2020). Within each plot, plant species are identified along a 

progression of nested subplots starting at 1 m2 and ending at 400 m2 (see Appendix S1 Fig. S1 

for site locations and detailed subplot layout). Plants that could not be resolved to species are 

reported to the lowest taxonomic rank possible. Taxonomy across all plots was reviewed and 

origin—native, native to North America but introduced in some region, non-native, or 
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unknown—was assigned according to USDA Plants Database (USDA & NRCS 2020). Only 

plants classified as non-native were considered in the calculation of invasion cover, while all 

others (i.e., native, native introduced [8%], unknown [6%]) were included in the calculation of 

native richness. Species-specific plant cover is recorded in six or eight 1 m2 subplots (Barnett et 

al. 2019b); we used these cover data to estimate average non-native plants’ percent cover per 

plot. Tree basal area and shrub cover are also recorded but values for non-native species (i.e., 

basal area and cover percentages), were too low to be included in the analyses.  

Environmental data – We focus on environmental predictors known to influence native plant 

richness, and therefore likely to alter vulnerability to invasion impact (Dong et al. 2015, Beaury 

et al. 2020a). We used remotely sensed net primary productivity estimates (NPP) as a proxy for 

resource availability and vegetation structure, and ultimately intrinsic plant community features 

that could determine richness (e.g., Naeem et al. 1996, Tilman et al. 2001), with the expectation 

that, on average, communities with higher NPP have higher native richness. NPP (gC m-2 y-1) for 

each plot was obtained in May 2020, at 250 m resolution, from 

http://files.ntsg.umt.edu/data/NTSG_Products/MOD17/MODIS_250/modis-250-npp/. We also 

used the global Human Modification map as a proxy for landscape patterns associated with 

human caused disturbance and landscape change, both variables that could affect native richness 

(Seabloom et al. 2002, Chase et al. 2020). The Human Modification Index (HMI) provides a 

cumulative measure of human modification of terrestrial lands across the globe at a 1-km 

resolution. It is a continuous 0-1 metric that reflects the proportion of a landscape modified based 

on modeling the physical extents of 13 anthropogenic stressors and their estimated impacts using 

spatially-explicit global datasets with a median year of 2016. It was obtained in May 2020 from 

Kennedy et al. (2018) at https://doi.org/10.6084/m9.figshare.7283087.v1. Here, our expectation 

http://files.ntsg.umt.edu/data/NTSG_Products/MOD17/MODIS_250/modis-250-npp/
https://doi.org/10.6084/m9.figshare.7283087.v1
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is that higher HMI is associated with lower numbers of native species. While NPP and HMI 

could also affect the impact of non-native species on native plants, our data set, 1,035 curves, did 

not include enough variability for us to simultaneously assess both the direct and indirect (via 

invasion) effects of these variables on native richness. We opted for the most parsimonious 

approach and only included the direct association of NPP and HMI with native richness (see 

analysis below). 

To address how climatic conditions could drive vulnerability to invasions we retrieved a series 

of climatic variables (temperature and precipitation), at 30 arc-sec resolution (~1 km), associated 

with each of the data plots from the WorldClim data set, 

https://www.worldclim.org/data/monthlywth.html in May 2020. Graphical representation of the 

environmental data can be found in Appendix S2 Fig. S1. 

Species area relationships (SAR) –We used the nested NEON data to construct SAR curves for 

each plot. To ensure robust estimation of SAR parameters and of their associations with other 

factors (see analysis), we only included NEON sites with more than 20 plots and with at least 

three plots with non-zero non-native plant cover. Plots were only included if they had at least 10 

subplots and a minimum of five native species. The resulting dataset contained 1,035 plots across 

35 sites within 17 ecoregions (Fig. 1c).  We used the ‘vegan’ package (version 2.4-2) in R (R 

Core Team 2021) to construct SAR curves, using the ‘collector’ method to fit the nested 

structure of the subplots, subplots were added as a function of their size, small to large. Richness 

values along the SAR were then used to calculate parameters c and z (means and SDs) for each 

plot (see Appendix S2 for estimates, Fig. S1). 

Analysis – To assess vulnerability across scales, we developed a hierarchical model where 

local richness (parameter c; 1 m2) and rate of accumulation of species on the landscape 
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(parameter z; ~ 10 km2) were analyzed as a function of non-native species cover to estimate local 

and landscape vulnerability (parameters β* in Fig. 1b; Sofaer et al. 2018; Bradley et al. 2019). 

We included net primary productivity (NPP; a proxy for intrinsic ecosystem features associated 

with richness) and human modification index (HMI; a proxy for disturbance and landscape 

change effects on richness). Both variables were standardized within each ecoregion. The effect 

of all three covariates (non-native cover, NPP and HMI) on SAR parameters was estimated at the 

ecoregion level to reflect geographic variability across regions. For the analysis of z we also 

included predicted local native richness, ln(C), as a covariate to account for the negative 

correlation between these two parameters (Powell et al. 2013, Catano et al. 2021). For plot, p, at 

site, s, and ecoregion, E, SAR parameters c and z likelihoods and process models were: 

𝑐𝑐𝑝𝑝,𝑠𝑠,𝐸𝐸~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝐶𝐶𝑝𝑝,𝑠𝑠,𝐸𝐸, 𝜎𝜎𝜎𝜎𝑝𝑝,𝑠𝑠,𝐸𝐸
2 ) limited to ≥ 0 

𝐶𝐶𝑝𝑝,𝑠𝑠,𝐸𝐸 = 𝜃𝜃𝑠𝑠 + 𝛽𝛽𝛽𝛽𝐸𝐸𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝,𝑠𝑠,𝐸𝐸 + 𝛾𝛾1𝐸𝐸𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝,𝑠𝑠,𝐸𝐸 + 𝛾𝛾2𝑑𝑑𝐻𝐻𝐻𝐻𝐻𝐻𝑝𝑝,𝑠𝑠,𝐸𝐸 

and 

𝑧𝑧𝑝𝑝,𝑠𝑠,𝐸𝐸~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑧𝑧𝑝𝑝,𝑠𝑠,𝐸𝐸, 𝜎𝜎𝜎𝜎𝑝𝑝,𝑠𝑠,𝐸𝐸) limited to ≥ 0 and ≤ 1 

𝑍𝑍𝑝𝑝,𝑠𝑠,𝐸𝐸 = 𝛿𝛿𝐸𝐸 + 𝛽𝛽𝛽𝛽𝐸𝐸𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝,𝑠𝑠,𝐸𝐸 + 𝜇𝜇1𝐸𝐸𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝,𝑠𝑠,𝐸𝐸 + 𝜇𝜇2𝐸𝐸𝐻𝐻𝐻𝐻𝐻𝐻𝑝𝑝,𝑠𝑠,𝐸𝐸 + 𝜇𝜇3𝐸𝐸ln (𝐶𝐶𝑝𝑝,𝑠𝑠,𝐸𝐸) 

Means and SD of the parameters (c, z, σ*
2) are estimates from SAR curves; likelihood for c 

(number of species at 1 m2) was limited to positive values, and z (rate of species accumulation) 

was limited to range between 0 and 1 (the largest 97.5 percentile value estimated was 0.77; 

Rosenzweig 1995). To accommodate the hierarchical structure of the analysis, we followed a 

Bayesian approach. We used slightly informative hyperparameters for some coefficients and 

uninformative priors for most. The site level number of species at 1 m2, θ, was estimated as a 

function of the maximum richness (MR) found among plots in that site, θs~Normal(MRs,10), 

reflecting maximum local richness and indirectly accounting for spatial associations between 
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plots not covered by the covariates. Base rate of species accumulation, δE, was estimated at the 

ecoregion level, δE ~Normal(0.25,1) (Rosenzweig 1995). The effect of NPP, HMI and, for z, of 

local richness (ln[C]) were estimated as γ*,µ* Normal(0,10) for each ecoregion.  

On a second level analysis, local and landscape vulnerability to non-native plant impact, β* 

parameters, were analyzed as a function of regional level climatic variables (standardized). We 

did not include climate in the previous analysis, because climatic variables varied little within 

plots in an ecoregion, but they varied across regions (see Appendix S2 Fig. S1). Furthermore, 

this ecoregion level analysis allowed us to investigate regional impact of climate on 

vulnerability. We carried out extensive exploratory data analyses to find the climatic variables 

that better explained variability in these parameters. These were average minimum temperature 

of the coldest month (Temp) and precipitation during the driest month (Precip).  These two 

variables had the highest correlation (Pearson) with the β* parameters. Ecoregion level 

parameters were estimated as: 

𝛽𝛽𝛽𝛽𝐸𝐸 = 𝛼𝛼𝛼𝛼0 + 𝛼𝛼𝛼𝛼1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸 + 𝛼𝛼𝛼𝛼2𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸 

𝛽𝛽𝛽𝛽𝐸𝐸 = 𝛼𝛼𝛼𝛼0 + 𝛼𝛼𝛼𝛼1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸 + 𝛼𝛼𝛼𝛼2𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸 

where 𝛼𝛼c* and 𝛼𝛼z* are estimated from noninformative priors, αc*, αz*~Normal(0,1000). 

Outputs from the analysis of the SAR parameters, i.e., posterior means, variances, and 

covariances, were used to calculate SAR parameters (c and z) across the contiguous USA and 

then used to estimate native richness at 1 m2 and at 400 m2, the extent of our curves. To better 

assess the impact of non-native plants on native richness we estimated richness under three 

scenarios of non-native cover, none (0% cover), low (10% cover) and high (50% cover); we ran 

10,000 simulations. We used climate, NPP and HMI averages for 1 and 10 km2 grid cells and 

report results at these scales, 10 km2 for continental scale predictions and 1 km2 for landscape-
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level predictions useful for management. To better assess vulnerability to invasion impact across 

regions with large differences in richness we estimated an effect size of vulnerability, ES. For 

each grid cell, ES = ln(no. native species with non-native cover/no. native species without non-

native cover). Analyses and predictions were run in JAGS (Plummer 2021) using the ‘rjags’ 

package in R (R Core Team 2021). Maps were generated using QGIS (QGIS Development Team 

2021).  

 

Results 

Given our inclusion criteria, data from 17 ecoregions, 35 sites and 1,035 plots (i.e., 1,035 curves) 

were used in the analyses. At the plot level, native plant richness varied between 5 and 133 

species. There were non-native species present in 723 plots. Percent cover of herbaceous non-

native plants varied from zero to 100% (mean 8.26% and median 1.66%). All parameter values 

(means, SDs and 95% confidence intervals) can be found in Appendix S3, Table S1. Goodness 

of fit (predicted vs observed R2) was 0.89 for c and 0.93 for z. 

Impact of non-native cover on native species richness (c) – Local vulnerability (βc; 1 m2) – As 

expected, the impact of non-native species on local richness was negative, and significant, for all 

NEON ecoregions except one, Atlantic Neotropical (Fig. 2a). Local vulnerability was greatest in 

northern and eastern ecoregions (Fig. 2b); and had little correlation with other ecoregion level 

variables, i.e., maximum number of species across plots, average number of native species at 1 

m2, and maximum non-native species cover (< 0.3; Pearson correlation, not shown). The overall 

effect of non-native plant cover on local richness (αc0) was negative, with impact decreasing 

(less negative) with higher minimum temperatures (αc1) and increasing (more negative) with 

increasing precipitation in the driest month (αc2) (Fig. 2c). 
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Impact of non-native cover on native species accumulation rate (z) – Landscape vulnerability 

(βz; ~10 km2)   – For this parameter the expectation was a positive association with non-native 

species cover, reflecting higher non-native impact at local scales (lower c) and resulting in faster 

accumulation of species with increasing area. A slower accumulation of species (z) would then 

suggest greater landscape vulnerability. All NEON ecoregions except three showed the expected 

positive association (Fig. 2d). Landscapes in southern and western ecoregions were most 

vulnerable, i.e., lower rates of species accumulations in plots with non-native species (Fig. 2e). 

Landscape vulnerability (βz) had little correlation (< 0.2 Pearson r; not shown) with other 

ecoregion level variables, i.e., maximum number of species in plots, average number of native 

species at 1 m2
, maximum non-native species cover. Correlation between local vulnerability(βc) 

and landscape vulnerability (βz) was high (-0.77, Pearson r), even after including local richness, 

ln(C), in the analysis of z. Landscape vulnerability (lower βz) increased with higher minimum 

temperatures (αz1) and with increasing precipitation in the driest month (αz2) (Fig. 2f).  

Impact of NPP on local native species richness and species accumulation rate – We expected 

NPP to be positively associated with the parameters of the SAR curve, i.e., higher local richness 

and higher species accumulation in areas of higher NPP. Instead, we found that the relationship 

between NPP and local native richness (c) varied across NEON ecoregions, being significant for 

most and ranging from negative (11 ecoregions) to positive (five ecoregions) in a heterogeneous 

geographic pattern (Fig. 3a,b). Similarly, the association between NPP and rate of species 

accumulation (z), also varied geographically, was statistically significant for 10 of the 17 

ecoregions, and values ranged between positive (five ecoregions) and negative (five ecoregions) 

(Fig. 3c,d). 



 14 

Impact of HMI on local native species richness and species accumulation rate –as a proxy for 

human related disturbance and landscape change, we expected HMI to have a negative 

relationship with the two SAR parameters. Here again, for both, local native richness, (c), and 

species accumulation rate, (z), we found an idiosyncratic response that varied from negative to 

positive, 15 ecoregions showed a significant association between c and HMI (Fig. 4a,b), and nine 

out of the 17 ecoregions had a significant association between z and HMI (Fig. 4c,d). 

Regional patterns of vulnerability to invasion– Simulated vulnerability to invasions, expressed 

as effect size (ES), reflects ecoregion responses to local levels of invasion, NPP and HMI, and 

continental responses to climate. Negative values (pink to red colors; Fig. 5) indicate a reduction 

in native species richness under non-native species cover. Inserts in Figure 5 also illustrate the 

large heterogeneity in predictions at the 1 km2 scale. The Great Basin, parts of the Southern 

Plains and the Appalachians had the largest estimates of vulnerability (biggest predicted 

difference in native richness between no invasion and high invasion). As expected, impacts were 

higher at the smallest scale (1 m2; Fig. 5a, c), than when calculated for a larger area (400 m2; Fig. 

5b, d). Throughout most of the U.S., impacts were only statistically significant when simulating 

richness under 50% invasion cover (Fig. 5c, d, small maps). 

 

Discussion 

Leveraging multi-scale data on native and non-native plant species, we quantified differences in 

SAR to assess the compound effects of local, landscape and regional drivers of vulnerability to 

the impact of invasion on native communities. Our simulations show high levels of non-native 

cover compromise native richness, and do so consistently, across all ecoregions. Results also 

show that communities in colder areas are more vulnerable to local-scale losses in native species, 
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whereas in warmer regions vulnerability is greatest at landscape scales, i.e., these areas have 

lower rates of species accumulation implying local non-native impact (1 m2) carries over at 

larger scales (up to 10 km2). We document how the compound effects of cross-scale factors 

result in a heterogenous spatial pattern of vulnerability, that cannot be predicted by analyses at 

any single scale. By identifying geographic variation in vulnerability to invasion impact across 

scales (from 1 km2, 10 km2, regional), our results are more suitable to local, landscape, and 

regional decision-making. 

It is well-known that the impacts of invasive species are context-specific and can vary as a 

function of environmental conditions and features of the affected community (Levine 2001, 

Helse et al. 2018), but we have yet to understand what underlies this variation (Crystal-Ornelas 

& Lockwood 2020, Ricciardi et al. 2021). Results from our analyses shed some light into how 

vulnerability to non-native plants cover varies regionally as a function of temperature and 

precipitation (Fig. 2), and how this influence manifests geographically as it interacts with other 

factors acting at landscape and local scales (Fig. 5). After accounting for levels of local richness, 

productivity (NPP), and human modification (HMI), colder and wetter ecoregions seem to be 

most vulnerable to losses of native plant species at the local level (Fig. 2a-c), while warmer and 

wetter areas seem most susceptible at the landscape level (Fig. 2d-f). Although our analysis does 

not demonstrate causality, we hypothesize on the likely drivers behind these patterns. At the 

local level, the higher vulnerability we found in colder regions could be associated with the 

shorter growing seasons. In these areas, many invasive plants have shown extended phenology, 

i.e., earlier leaf-out and later leaf senescence, in comparison with the native community, giving 

them a competitive advantage that could lead to greater impacts (Fridley 2012). With respect to 

the effect of precipitation during the driest quarter, here we only see this effect in cold to cool 
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areas (Fig. 2b), as the negative effect of temperature is of higher magnitude (Fig. 2c). This 

increase in vulnerability with precipitation could be related to higher non-native than native 

performance under optimal growing conditions (Sorte et al. 2013). Indeed, many invasive 

species show traits associated with fast growth rates which can only be sustained under higher 

resource availability (Pyšek & Richardson 2008).  

The regional patterns associated with landscape vulnerability (Fig. 2c-f) are more difficult to 

explain, although they appear mostly driven by average minimum temperature (Fig. 2e-f) and 

roughly conform to previous work showing a negative relationship between the rate of species 

accumulation and ecosystem productivity (Chase et al. 2015). When analyzing the species 

accumulation rate parameter, z, we accounted for intrinsic features of these communities, local 

diversity and NPP, and landscape features via HMI, and estimated the relationship for each 

ecoregion. Thus, the bioclimatic factors we observed at the continental level are likely related to 

regional drivers of vulnerability. The higher levels of species richness in the most vulnerable 

regions (Kartesz 2015) could have something to do with these patterns; with higher richness, 

dominant native species are likely to be less abundant (Gray & Wilsey 2001) and thus less 

probable to appear in SAR surveys. This agrees with the interpretation by Powell et al. (2013) 

that the disproportional impact of invasion falls on more common species; but if an area is 

inherently species-rich without great dominance, increases in z under invasion might be of lower 

magnitude. The varying impact of non-native cover along environmental gradients and across 

scales is likely the result of many interacting factors. While we accounted for some of these 

factors, and quantified their combined impacts, further field studies could help identify additional 

drivers of impact at different scales. 
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To better quantify the impact of non-native species on native richness, we accounted for as 

much of the underlaying variability in species richness as possible by including other factors 

associated with richness, i.e., NPP and HMI. NPP has been frequently associated with plant 

richness, with higher NPP at more diverse locations due to either complementarity among co-

occurring species or to higher chances of including highly productive species (Al-Mufti et al. 

1977, Grace et al. 2007, but see Alder et al. 2011). Higher levels of HMI are usually associated 

with losses in native species via disturbance, isolation, and habitat loss (Ehrlich 1988, Shea & 

Chesson 2002, Ibáñez et al. 2014). However, our estimated effects of NPP and HMI at the 

ecoregion level were not always as expected. Within most ecoregions the associations between 

NPP and local native richness and species accumulation rate were negative (Fig. 3), and some of 

the associations with HMI were positive (Fig. 4), both contrary to expectations. It would require 

further analysis to learn whether the negative relationship between NPP and richness is due to 

the dominance of highly productive species or to any other feature of the plant communities in 

the region. Similarly, within some ecoregions, human activities might have been concentrated in 

areas of higher species richness (Araujo 2003) concealing any potential negative effects. For this 

reason, it is important to be cautious about making generalized predictions based on 

geographically limited data. 

Our analyses allowed us to predict geographic variation in native species richness that 

incorporated local (βc), landscape (βz) and regional (α*0) vulnerability to invasion. Impacts were 

only significant at high non-native cover and, as predicted by Powell et al. (2013), higher at 

smaller spatial scales (Fig. 5). These simulations of vulnerability under invasion did not reflect 

the geographic patterns we found with respect to climate (Fig. 2). The difference was that our 

simulations accounted for compounding factors acting across local, landscape and regional 
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scales, underscoring the importance of accounting for cross-scale effects. Predictions also 

showed sharp contrasts among ecoregions, reflecting estimated ecoregion-level parameters (Fig. 

2-4). NEON data collection has greatly improved the availability of continent-wide standardized 

data, but within-ecoregion environmental and invasion gradients are not fully represented (i.e., 

most sites had low levels of invasion).  

Still, existing NEON vegetation data allowed us to examine vulnerability to plant invasion. Our 

results analyzing the compound effects of local, landscape and regional drivers of vulnerability 

to invasion contradict a meta-analysis by Vellend et al. (2013) that found no net change in local-

scale plant biodiversity over time under invasion. Unlike the data from an assortment of studies 

that feed into meta-analyses, NEON provides standardized vegetation survey data collected 

across of the 17 main ecoregions in North America. Even with relatively low levels of invasion 

in most plots, we were able to quantify a significant effect, likely due to the information-rich data 

from the NEON survey design. 

Invasive species science and their management are currently heavily geared toward the 

invasive agent. Recognition is growing that this invader-focused approach is, in many cases, 

ineffective and unsustainable, and that there is a need for research and practice to inform 

alternatives (McGeoch et al. 2016, Barney & Tekiela 2020). Contrastingly, vulnerability to 

invasion impact highly depends on features of the community affected, i.e., biotic resistance, 

abiotic constraints, and native propagule availability (Levine 2001, Ibáñez et al. 2021). By 

considering invasion from the perspective of community vulnerability, we could address 

invasion in a proactive rather than reactive manner with a focus on prevention (Mack et al. 

2000); practitioners can use vulnerability predictions to identify which, within their management 

units, are the most vulnerable communities to plant invasions; information that can help 
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prioritize limited resources for early detection, monitoring and/or control of invasions. SAR 

curves derived from NEON data allowed us to simultaneously assess differences in vulnerability 

between distinct plant communities at local, landscape and regional scales. An advantage of this 

approach is that our analysis does not depend on predicting invasive species presence, a highly 

ad-hoc process (Aikio et al. 2012, Martínez-Ghersa and Ghersa 2006, Lockwood et al. 2005), or 

on differentiating whether invasive species are drivers or passengers of change (MacDougall and 

Turkington 2005). Considering compounding factors acting across scales provided a better 

understanding about how these drivers interact in ways not predicted by the analysis of single 

factors. Furthermore, by assessing vulnerability across scales, we were able to quantify 

heterogeneity in the magnitude of community-level vulnerability associated with non-native 

plants’ impact, providing the analytical infrastructure to produce outputs at scales (1 km2 to 

regional). These predictions could be used to identify areas likely to be susceptible to non-native 

species impacts, areas that can then be prioritized for monitoring and management.  
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Figure 1. Analytical framework used to assess vulnerability to plant invasion impact across 

scales. (a) Species-area-relationships (SAR) in un-invaded (blue) and invaded (red) plots within 

a NEON ecoregion. (b) Expected differences in curve parameters (c and z) as a function of 

degree of invasion (color scale) are described by ecoregion-level landscape (βz) and local (βc) 

vulnerability parameters. The three sets of connected points show how expectations for the 

curves would change across ecoregions, with the lower sets of points illustrating most vulnerable 

regions. (c) NEON ecoregions in the contiguous USA, color-coded by minimum average 

temperature in the coldest month to show regional differences. 

Figure 2. Impact of non-native plant cover on local (a-c) and landscape (d-f) vulnerability. a, d) 

Estimates of βc (expected negative) and βz (expected positive) parameters for each of the NEON 

ecoregions included in the analysis; b, e) map of NEON ecoregions showing mean values of βc 

and βz. c, f) Results of the analysis of non-native plant cover impact coefficients (βc and βz), as a 

function of an overall effect (α*0), and of average minimum temperature in the coldest month 

(α*1) and precipitation in the driest month (α*2). Coefficients with 95%CIs that do not cross zero 

are considered statistically significant. 

Figure 3. Association between net primary productivity (NPP) and local native richness, c, and 

rate of species accumulation, z. (a-b) The effects of NPP on c for each NEON ecoregion (graphs) 

and spatial distribution (maps showing mean values). (c-d) The effects of NPP on z for each 

NEON ecoregion (graphs) and spatial distribution (maps; mean values). Coefficients were 

considered statistically significant if their 95%CI did not overlap with zero. 

Figure 4. Association between Human Modification Index (HMI) and local native richness, c, 

and rate of species accumulation, z. (a-b) The effects of HMI on c for each NEON ecoregion 

(graphs) and spatial distribution (maps; mean values). (c-d) The effects of HMI on z for each 
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NEON ecoregion (graphs) and spatial distribution (maps; mean values). Coefficients were 

considered statistically significant if their 95%CI did not overlap zero. 

Figure 5. Vulnerability to non-native species cover expressed as effect size (ES). (a-b) 

Vulnerability at low non-native plant cover (10%) estimated at 1 and 400 m2.  (c-d) Vulnerability 

at high non-native plant cover (50%) estimated at 1 m2 and 400 m2. Large maps show 10 km2 

mean ES estimates, smaller maps reflect statistical significance defined as: Negative (ES mean 

negative, 95%CI does not overlap zero), NS negative (ES mean negative, 95%CI overlaps zero, 

non-significant [NS]), NS positive (ES mean positive, 95%CI overlaps zero, non-significant), 

and Positive (ES mean positive, 95%CI does not overlap zero). Rectangular inserts show 1 km2 

ES averages for a representative area. Note that predictions are based on NEON data and 

extrapolated to other locations using NPP and HMI.  
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 34 

Figure 5. 

  

 

 




