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architectures employing analogue in-
memory computing techniques are 
being intensively investigated in pursuit 
of reducing energy consumption and 
latency.[1–4] Two-terminal memristors, 
owing to their dense device structure, 
ability to store and process data at the same 
location, simple weight update scheme, 
and straightforward vector-matrix multipli-
cation (VMM) in a crossbar array fashion, 
have been widely explored for neuro-
morphic computing, machine learning, 
and edge computing applications.[5,6] To 
this end, various non-volatile memories 
(NVMs), including resistive memory, 
flash memory, phase-change memory, 
and magneto-resistive memory have been 
explored to carry out feature extraction, 
image processing, and neuro-inspired 
computing.[6–14] Ferroelectric resistive 
memory utilizes multi-domain polariza-
tion switching dynamics in a ferroelectric 
material, which has been shown to deliver 
fast potentiation and depression program-
ming, symmetric and linear conductance 
response, and large ON/OFF conductance 
ratios.[15–19] To harness the well-established 

periphery circuitry and increase integration density, however, it 
is desired to integrate ferroelectric memory arrays with main-
stream semiconductor technology, which significantly narrows 
down the materials available.[20–22] The discovery of ferroelec-
tricity in HfO2-based materials has rejuvenated the interest in 
ferroelectric memory with both front-end-of-line and back-end-
of-line compatibility. To date, however, related two terminal 
resistive memories still suffer from low ON/OFF ratios, wake-
up effect and significant imprint oscillations and retention 
loss.[19,21,23–27] Although recent studies have shown that HfO2-
based field effect transistors are much less affected by above 
limitations,[28] two-terminal memristors offer the advantages 
of significantly reduced device area and operation power and, 
therefore, have remained a subject of intensive study.

Those issues can potentially be addressed by exploiting a 
new class of ferroelectrics – nitride ferroelectrics.[29] Sc-alloyed 
III-nitrides, i.e., ScAlN and ScGaN, have been discovered with 
giant remnant polarization and superior thermal stability.[29–33] 
The wide processing temperature window and the approxima-
tion of the lattice with other nitride materials promise good 
compatibility and seamless integration with both GaN and 
silicon technology.[34–38] In addition, the wake-up effect and 

Computing in the analog regime using nonlinear ferroelectric resistive memory 
arrays can potentially alleviate the energy constraints and complexity/footprint 
challenges imposed by digital von Neumann systems. Yet the current ferro-
electric resistive memories suffer from either low ON/OFF ratios/imprint or 
limited compatibility with mainstream semiconductors. Here, for the first time, 
ferroelectric and analog resistive switching in an epitaxial nitride heterojunction 
comprising ultrathin (≈5 nm) nitride ferroelectrics, i.e., ScAlN, with potentiality 
to bridge the gap between performance and compatibility is demonstrated. 
High ON/OFF ratios (up to 105), high uniformity, good retention, (<20% vari-
ation after > 105 s) and cycling endurance (>104) are simultaneously demon-
strated in a metal/oxide/nitride ferroelectric junction. It is further demonstrated 
that the memristor can provide programmability to enable multistate operation 
and linear analogue computing as well as image processing with high accu-
racy. Neural network simulations based on the weight update characteristics 
of the nitride memory yielded an image recognition accuracy of 92.9% (base-
line 96.2%) on the images from Modified National Institute of Standards and 
Technology. The non-volatile multi-level programmability and analog computing 
capability provide first-hand and landmark evidence for constructing advanced 
memory/computing architectures based on emerging nitride ferroelectrics, and 
promote homo and hybrid integrated functional edge devices beyond silicon.

ReseaRch aRticle
 

1. Introduction

To alleviate the performance constraints imposed by con-
ventional von Neumann systems in an ocean of data, new 
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imprint are reported to be weak for epitaxial ScAlN films.[30,39] 
Those advantages not only enable the integration of nitride  
ferroelectrics based memristors with the mainstream tech-
nology to explore their potentiality in advanced computing 
architectures, but also allow for harnessing the well-established 
applications of nitrides, such as light emission/detection, high 
power and high speed devices, piezoelectric resonators, etc.,  
to implement homo and hybrid integration and deliver com-
putation and logic functionality in beyond silicon technology, 
further extending the landscape of edge computing.[40–48] In 
this regard, a few memristor demonstrations based on ScAlN 
have been reported, yet the ScAlN layer employed are thick 
(>20 nm) which causes high operation voltages and potentially 
scalability problems.[49–52] Moreover, the ferroelectric synaptic 
weight update as well as precise VMM operation and image 
processing in ultrathin ScAlN has remained elusive.

In this work, we demonstrate resistive switching and analog 
computing in a ferroic heterojunction memory comprising an 
ultrathin nitride ferroelectric, i.e., ScAlN as the barrier layer. 
First, ferroelectric switching is confirmed in sub-10-nm thick 
ScAlN via positive-up negative-down (PUND) and capacitance-
voltage (C–V) measurements. Then, we demonstrated high ON/
OFF ratios (104-105), high uniformity, good retention (>105  s) 
and good cycling endurance (>104) in the nitride ferroic junc-
tion by exploiting an oxide capping layer. Due to significant 
thickness-scaling-down, the read/write voltage was reduced 
to less than 3  V/8  V, which is already close to hafnia-based  
ferroelectric junctions in a similar structure.[53] Third, we 
demon strated that this nitride memristor can provide pro-
grammability to enable multistate operation and linear weight 
updates as well as image processing with high accuracy. Finally, 
artificial neural network (ANN) simulations based on the weight 
update characteristics of the proposed nitride memory were per-
formed to explore the potentiality of utilizing nitride memory 
for accurate analog in-memory computing. The demonstration 
of robust and programmable nitride ferroelectric memory and 
associated analog computing capability delineates a viable path 
to constructing next-generation memristors toward power-effi-
cient data storage and advanced computing platforms.

2. Results and Discussions

Compared with sputter deposition, molecular beam epitaxy 
(MBE) provides significantly improved crystal quality and thick-
ness control. Therefore, the ultrathin ScAlN layer in this work 
was grown by plasma-assisted MBE on n-GaN substrate with 
a nominal Sc composition of 30% and thickness of ≈9  nm. 
Figure 1a depicts the schematic of a metal/ScAlN/n-GaN capac-
itor used to explore the ferroelectricity in ultrathin ScAlN in this 
study. Due to the high oxygen affinity of Sc and Al, a thin oxide 
layer naturally formed at the surface, which appeared as the 
dark contrast region in the high-angle annular dark field scan-
ning transmission electron microscope (HAADF-STEM) image 
(Figure  1b).[49] Highly ordered atomic stacking sequence with 
a wurtzite structure can be observed at the ScAlN/GaN inter-
face, revealing the high-quality of the MBE-grown ScAlN film 
(Figure  1c). The single crystalline wurtzite structure of ScAlN 
and GaN as well as the non-crystalline structure of the oxide 

layer are further confirmed by nano-beam electron diffrac-
tion (NBED) patterns as shown in Figure  1d. HAADF-STEM 
image combined with corresponding elemental analysis (EDS 
mapping, Figure  1e) indicates the oxide layer has a thickness 
of ≈4 nm while the ScAlN layer is 5–6 nm. The oxidation pro-
cess could be controlled by modulating the total exposure time 
using glove boxes with different gases or by controlled oxygen 
plasma treatment. Later we will show that this oxide layer can 
function as an extended barrier to enhance the rectifying ratio 
of the memristor. Figure  1f,g shows the PUND results using 
10  µs short pulses performed on 10-µm-diameter capacitors. 
The contribution of the ferroelectric displacement current can 
be clearly observed. A saturated remnant polarization (Pr) of 
>16 µC cm−2 can be extracted. While giant ferroelectric polari-
zation has been demonstrated previously,[54] this is the first 
demonstration of saturated switchable polarization in crystal-
line ScAlN in the sub-10 nm regime. The reduction in remnant 
polarization compared with thick ScAlN is mainly due to the 
oxide layer at the surface which forms a ferroelectric-dielectric 
bilayer structure and amplifies the effect of the depolarization 
field during thickness-scaling.[55] The butterfly-like hysteresis 
in the C–V loop, which is characteristic of ferroelectric capaci-
tors,[56] is also successfully captured in Figure  1h. More infor-
mation on the PUND and C–V measurements, as well as P-E 
loops can be found in the Supporting Information, Note  S1 
(Supporting Information). The extracted relative permittivity 
at zero bias is ≈10.4, which is smaller than bulk values due to 
increased contribution from surface oxide layer (Note S2, Sup-
porting Information). We argue that with the oxide capping 
layer on top, the realistic thickness of the ScAlN layer showing 
ferroelectricity can be even smaller, implying high scaling-down 
capability of nitride ferroelectrics.

Memory cells with top electrode diameters ranging from  
0.8 to 20 µm were fabricated. Otherwise mentioned, the meas-
urement results are based on the devices with a diameter of 
5 µm. Figure 2a displays a schematic of the device structure and 
the operation principle of the nitride memory. Due to the exist-
ence of an oxide layer, the ferroelectric polarization charge at 
the oxide/ScAlN interface causes a giant modulation effect on 
the total barrier height, significantly contributing to the large  
ON/OFF operations. More specifically, polarization pointing 
down leads to a higher total barrier and thus OFF operation, 
while polarization pointing up results in a lower barrier and 
ON operation. The depletion region in the semiconductor 
side is negligible as the doping concentration of the n-GaN 
bottom electrode is sufficiently high (>2 ×  1019  cm−3), implied 
by the small capacitance hysteresis near zero bias in Figure 1h. 
Besides, the trapped charge at the oxide/ferroelectric and  
ferroelectric/semiconductor electrode interface could also lead 
to a reduction of the depletion region. More details regarding the 
resistive switching mechanism can be found in the Supporting 
Information, Note S2 (Supporting Information). The nonvolatile 
conductance switching in the nitride memory is demonstrated 
by the clear hysteretic variation of the read current, as shown in 
Figure 2b. The pulse trains used are shown in the inset. Negative  
pulses set the polarity to upward direction, consequently the 
ON state, while positive pulses set the polarity to downward 
direction and corresponds to the OFF state, consistent with the 
band schematics in Figure 2a. By pre-programming the device 
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to OFF state and gradually switching to the ON state, a giant 
ON/OFF ratio approaching 105 is demonstrated, as shown in 
Figure 2c,d further shows the ON/OFF currents of 20 different 
devices with write pulses of −8  V and + 6  V read at −3  V. All 
measured devices exhibit high ON/OFF ratios larger than 104, 
suggesting good reproducibility and uniformity. Figure  2e,f 
depict the endurance and retention properties of the device. 
ON/OFF ratios >  103 can still be obtained after 104 bipolar 
switching cycles, with decreasing ON current possibly due to 
pinned domains parallel to the polarity of the substrate. The 
endurance obtained is somewhat lower than for fluorite-based 

ferroelectrics, yet it is already sufficient for applications such 
as an inference engine. Moreover, the device shows out-
standing retention resistance, with only <20% degradation 
in ON current after 105  s (Note  S3, Supporting Information), 
which outperforms its hafnia-based counterparts.[27] Reten-
tion tests at elevated temperatures were also performed and 
shown in the Supporting Information. Those reliability merits 
thus provide fundamental information for utilizing ferroelec-
tric nitride memory toward reliable non-volatile memory and 
advanced computing applications. The I–V loops of different 
devices, I–V loops of devices with different diameters, after  

Adv. Mater. 2023, 35, 2210628

Figure 1. Ferroelectricity in ultrathin ScAlN films grown on GaN. a) Schematic illustration of the capacitor structure comprising ultrathin single-crystal-
line ScAlN and an oxide layer. Due to the high oxygen affinity of Sc and Al, a thin oxide layer is formed on the top of ScAlN. b) HAADF-STEM image of the 
heterostructure indicating an oxide layer of ≈4 nm and a ScAlN layer of 5–6 nm. c) Magnified STEM image at the ScAlN/GaN interface showing atomic 
sharp contrast. d) NBED patterns acquired from different regions in b): (i) the oxide layer, showing non-crystalline diffraction pattern, (ii) ScAlN layer 
and (iii) GaN layer, showing a wurtzite structure. The scale bar is 2 nm−1. e) HAADF-STEM and corresponding EDS element maps of the heterostructure. 
Increased oxygen signal is detected near the surface. f) PUND pulse trains and corresponding current responses. g) Voltage-dependent PUND results 
with a pulse width and delay of 10 µs, revealing a saturated remnant polarization > 16 µC cm−2. Inset shows the displacement current by subtracting 
non-switching current in f). h) Butter-fly shape capacitance-voltage curve of the heterostructure measured at 1 MHz with an AC voltage of 200 mV.
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different cycling numbers and retention times can be found in 
Figure S4 (Supporting Information).

For ferroelectrics based memristors, multiple conductance 
levels can be established via partial polarization switching, 
which builds the key block for high-density data storage and 
advanced computing architectures.[15] The coupling between 
polarization and resistance in a ScAlN/GaN heterostructure has 
been studied previously, showing the feasibility to change the 
polarization thus the resistance gradually.[51] Using incremental 
voltage pulse scheme, eight clear, distinguishable conductance 
states are successfully demonstrated in the nitride memristor, 
as shown in Figure 3a. The conductance levels can be restored 
after multiple program/reset operations, and remain stable up 
to 200  s (Figure  3b). In addition to the reliability shown, the 
device exhibits a nonlinear I–V characteristic in all conductance 
states (Figure  3c), which is beneficial for suppressing sneak 
path currents and cross-talk in selector-free crossbar arrays.[57] 
Unlike redox or filament based resistive memory devices, we 
also note that the device can be switched to separate analog 
states without any initial forming or activation step, which 
not only reduces the overall operation voltage, but also means 
that the device and the circuits can be readily used in arrays 
without electrical pretreatment, a key issue for memory arrays 

that limits the stability and accuracy of the conductance state 
in certain memory devices.[58] The potential challenges of cur-
rent work could be the high operation voltage and low current 
density,[59] which require the fine design of material and devices 
for further lateral scaling and integration, for example, through 
thickness scaling down or depolarization field design. These 
results, in combination with the good compatibility of nitride 
ferroelectrics with mainstream semiconductor technology, 
make the proposed structure a promising candidate for com-
pact non-volatile memory architectures.

In convolution operations based on resistive crossbars, the 
output can be obtained from the current sums of the products 
of the input voltage vector and the device conductance, which 
requires electrical programmability and I–V linearity.[6] To 
demonstrate convolution operation using the nonlinear nitride 
memristor, a virtual logarithmic line driver is considered, which 
converts the linear input signal into nonlinear amplitude-pro-
grammed pulses to generate linear conductance outputs from 
the nonlinear nitride memristor.[14] Figure 3d,e show the fitting 
results of the I–V characteristics using an exponential function, 
which is typical for thermal and tunneling based conduction. 
Almost constant β and linear α values over each conductance 
level are obtained for all the conductance states in the  
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Figure 2. Electrical characterization of the nitride memory at room temperature. a) Schematic of the device structure and band profiles showing the 
ferroelectric polarization modulated potential energy barrier. b) Current hysteresis loops measured using pulse trains shown in the inset. The device is 
preset to the ON (OFF) state by a −11 V (+ 6.5 V) pulse, followed by staircase-like rectangular write pulses between −11 V and 6.5 V and read pulses of 
–3 V after each write pulse. c) Current rectifying ratio extracted from the negative branch in b). d) ON/OFF operation of 20 devices and e) endurance 
and f) retention properties of the memristor with rectangular write pulses of –8 and 6 V and read voltage of −3 V. The pulse width for pre-set, write 
and read pulses are 8 ms, 8 ms, and 0.16 s, respectively.
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[−2, −3.0] V and [2, 90] nA range, as shown in Figure 3e. A map-
ping function, as shown in Figure  3f, is utilized which scales 
non-linear device voltage Vde to linear drive voltage Vdr with 
β  =  −1.75 and c  =  3.2 as an example. Figure  3g displays the 
mapping results, where linear effective conductance is achieved 
for all conductance levels. In reality, this logarithmic line driver 
can be essentially implemented with nonlinear drive circuits 
like p-n junctions or Schottky barrier diodes.[14]

To further demonstrate linear VMM operation and use the 
device for image convolution processing, 3-bit grayscale images 
are first converted into voltage pulses according to the mapping 
methodology in Figure  3g, and 3-bit conductance levels, i.e.,  
8 states, are then used as synaptic weights. Figure 3h shows the 
weighted output map for each input pixel intensity, which can 
be regarded as the multiplication results of 1-by-1 vectors with 
1-by-1 matrixes (pixel intensity times weight). An error standard 
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Figure 3. Demonstration of multi-state and convolution operation using nitride memristors. a) Multi-state operation by incremental pulses from  
–8 V to –8.35 V with a step of –50 mV and read voltage of −3 V. The pulse width is 8 ms. b) Retention of the 8 states up to 200 s. c) I–V curves of the 
8 conductance states, showing non-linear I–V behavior. d) Fitting of the I–V curves in different states using an exponential function on the −2 to −3 V 
window and e) fitting parameters against the device state. f,g) Schematic of a logarithmic driver which maps linear input voltage to non-linear inputs 
for the non-linear nitride memristors. By properly choosing the fitting parameters, linear effective conductance can be established for analog computing. 
h) Gray-scale image inputs for convolution operations. The luminance of each pixel is encoded into voltage pulses from −2.05 V to −2.98 V according 
to g) and weighted outputs based on the 8 conductance states are shown accordingly. i) Basic image convolution operation using the ferroelectric 
nitride memory for three different kernels. A gray-scale image with 100 × 100 pixels is used as the input image. Three 3 × 3 kernel operations (mean, 
edge, and sharpen) are performed as examples.
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deviation of 2.3% is extracted. Based on the scheme above, we 
performed convolution operations using three 3  ×  3 kernels, 
i.e., mean, edge and sharpen, for a gray-scale input image 
with 100  ×  100 pixels. Nine devices are first programmed to  
different conductance levels according to the kernel weights, 
and the voltage pulses converted from the intensity values of 
each pixel of the image are sequentially applied to every device. 
The weighted output currents from each device are collected 
separately as multiplication operation output while the accu-
mulation operation is done on the software end. This ignores 
the inaccuracies introduced by the logarithmic driver and the 
differential readout circuits, but is sufficient for prototype  
demonstration. Figure 3i displays the convolution results from 
pure software calculation and from the current outputs of the 
nitride memristors, showing high convolution accuracy. High 
accuracy VMM operation based on an array containing three 
different devices, where current sums were read out directly 
from the hardware, can be found in Supporting Information, 
Note S4 (Supporting Information). These results provide first-
hand and landmark evidence that ferroelectric nitride mem-
ristors can be used for convolution operations toward image 
processing and feature extraction. The exact form of the ker-
nels and output current from different devices can be found in 
Figure S6 (Supporting Information).

In above demonstrations, only 8 conductance states are 
utilized. For ANNs computing in the analog regime, linear, 
symmetric potentiation and depression conductance response 
with tens of conductance states are required to accelerate the 
training process effectively.[2] In addition, the cycle-to-cycle 
and device-to-device variations should be minimal. In this 
work, two pulse schemes, namely identical pulse scheme and 
amplitude-incremental pulse scheme, are performed to test the 
symmetry and linearity during 128-state (7-bit) potentiation and 
depression operations. For identical pulse scheme, −7.8 V pulse 
is used for potentiation and 2.7 V pulse is used for depression. 
For incremental pulse scheme, the amplitude of the pulses is 
increased from −7.6 V to −8.24 V in a 5 mV step for potentia-
tion, and from 1.9 V to 3.564 V in 13 mV step for depression, 
respectively. The read voltage is −3  V and read/write pulse 
widths are fixed at 8 ms for simplicity. As shown in Figure 4a, 
the second scheme delivers much more linear weight update 
characteristics, which is then adopted for ANN simulation. 
We note the current for each state is relatively low, which may 
cause increased latency for single-device readout, but will not 
matter much for large-scale computing arrays where current 
output from multiple devices are combined for accumulated 
readout. The cycle-to-cycle and device-to-device variation char-
acteristics are further investigated in Figure  4b,c. No signifi-
cant degradation is observed during repeated pulse operations 
(Figure 4b). The average cycle-to-cycle variation (standard error) 
is further estimated to be <2.2% based on 20 repeated cycles 
(Figure  4c). 10 different devices are measured to evaluate the 
device-to-device variation with results from the first 5 devices 
shown in Figure 4b. The device-to-device variation is found to 
be relatively larger than the cycle-to-cycle variation, with max-
imum variation < 6% and an average device-to-device variation 
of 3.1%. This relatively large device-to-device variation, how-
ever, is unlikely to cause significant performance degradation 
because the ANN model could have self-adaption to such static 

variation. Optimization of the processing steps and weight-
update scheme is being done to improve the uniformity and 
reliability of the nitride memristors.

Based on above weight update results, we simulate the 
performance of the nitride memristors in a classic demon-
stration-purpose application where a trained two-layer multi-
layer perceptron (MLP) neural network is tasked to classify 
handwriting images from the Modified National Institute of 
Standards and Technology database (MNIST).[60] An illustration 
of the network is shown in the inset of Figure  4d, and more 
details can be found in previous publication.[60] While simula-
tion results vary depending on the neural network structures 
employed, this simple yet complete tool allows us an easy 
comparison with other memory devices. During simulation, 
the nonlinearity factors are set to 0.22 and −1.69 (Figure  S7, 
Supporting Information) for potentiation and depression 
with cycle-to-cycle variation of 2.2% and device-to-device  
variation of 3.1%. The weight values are mapped to the conduct-
ance range shown in Figure  4c. As shown in Figure  4d, even 
though the device is still in its infancy, a recognition accuracy of 
92.9% (96.2% for ideal device) is achieved based on the realistic 
weight update characteristics of the nitride ferroelectric mem-
ristor, which already outperforms most analog synaptic devices 
and is comparable to those state-of-the-art ferroelectric transis-
tors (Note  S5, Supporting Information). Simulation without 
considering cycle-to-cycle and device-to-device variations is 
also performed and yields an increased recognition accuracy 
of 94.1%, implying that both the linearity of the weight update 
and the stability of the established states are to be optimized to 
further improve the overall accuracy. Nevertheless, the simula-
tion of a MLP-based neural network confirmed that this new 
ferroelectric platform can be employed for accurate in-memory 
computing architectures.

3. Conclusion

In summary, we demonstrate ferroelectric and analog resistive 
switching in an ultrathin ferroelectric oxide/ScAlN/GaN het-
erojunction. PUND and C–V measurements were conducted 
to explore the ferroelectricity in the sub-10  nm ScAlN layer. 
With the help of a thin oxide capping layer, the heterostructure 
exhibited great potential for nonvolatile memory with supe-
rior ON/OFF ratios, high uniformity, good retention, and 
modest cycling endurance. In addition, we demonstrated that 
the nitride memristor can provide programmability to enable 
multistate operation and linear analogue computing as well as 
image processing with high accuracy, where the nonlinearity of 
the I–V characteristics and the low operation conductance could 
potentially benefit selector-free crossbars with high power effi-
ciency. Neural network simulations based on the weight update 
characteristics of the ferroelectric nitride memory yield high 
image recognition accuracy. The robust ferroelectricity in the 
sub-10-nm ScAlN encourages further scaling down the thick-
ness and operation voltage of nitride ferroelectrics for energy 
efficient applications. The non-volatile multi-level programma-
bility and analog computing capability in this work can poten-
tially bridge the gap between performance and compatibility in 
conventional ferroelectrics, and allow for constructing advanced 

Adv. Mater. 2023, 35, 2210628



www.advmat.dewww.advancedsciencenews.com

2210628 (7 of 9) © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbHAdv. Mater. 2023, 35, 2210628

memory/computing architecture based on nitride ferroelec-
trics, paving the way for homo and hybrid integrated functional 
edge devices beyond silicon.[61]

4. Experimental Section
Materials: The ScAlN/GaN heterostructure was grown by a Veeco 

GENxplor MBE system with a base chamber pressure of 10−11  Torr on 
commercial n-GaN templates. Active nitrogen (N*, 6N purity) species 
were provided by a Vecco RF UNI-Bulb plasma source, while gallium 
(Ga, 7N purity), aluminum (Al, 6N5 purity), scandium (Sc, 5N purity, 
from American elements), and silicon (Si, 6N purity) sources were 
supplied using Knudsen effusion cells. 200-nm-thick Si-doped n+-GaN 
was first grown as bottom contact layer after which ≈9 nm thick ScAlN 
with a nominal Sc content of 30% was grown under nitrogen rich 

condition. Some related growth conditions could be found in earlier 
reports.[30,34] Discussions on possible ways to integrate ScAlN with 
industrial CMOS technology could be found in Supporting Information, 
Note S6 (Supporting Information).

Device Fabrication: First, the ScAlN/GaN sample was cleaned in 
acetone, methanol, and deionized water with ultrasonic for 5 min in each 
step. Photolithography was first performed to pattern the sample surface 
after which 300-nm-thick SiO2 was deposited by e-beam evaporation and 
windows for contacts were opened via lift-off. A second mask was used 
to define the top and bottom electrodes and the metal stack, comprising 
50  nm Ti and 100  nm Au, was deposited by e-beam evaporation and 
released by lift-off in hot acetone.

Characterization: STEM specimens were prepared by a Thermo Fisher 
Scientific Helios G4 UXe focus ion beam (FIB) and STEM images were 
collected using a JEOL 3100R05 aberration-corrected STEM operated at 
300  kV, with a collection range of 59–200  mrad for high-angle annular 
dark-field (HAADF) imaging. EDS maps were acquired with a Thermo 

Figure 4. Weight update characteristics of the ferroelectric nitride memristor for neuromorphic computing and pattern recognition based on a two-layer 
MLP neural network. a) 7-bit potentiation and depression responses of the memristor to identical set/reset (blue, −7.8 V for potentiation and 2.7 V for 
depression) and staircase set/reset (green, from −7.6 V to −8.24 V in a 5 mV step for potentiation and from 1.9 V to 3.564 V in a 13 mV step for depres-
sion) pulse trains. The read pulse after each write pulse is −3 V and all pulse widths are 8 ms. b) Reproducible and uniform analog switching behavior 
over multiple cycles and on different devices under staircase pulse trains. c) Cycle-to-cycle variation and device-to-device variation characteristics of 
the memristor collected from 20 cycles and 10 devices. d) Comparison of simulated accuracies of the two-layer MLP based on ideal device (black, 128 
states, on/off ratio of 50, perfect linearity), and based on nitride memristor with non-linearity property (blue) and further with cycle-to-cycle variation 
and device-to-device variation (green). The best recognition accuracy of 92.9% is achieved for ferroelectric nitride memristor with non-linearity and 
cycle-to-cycle/device-to-device variations.
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Fisher Scientific Talos F200X operated at 200  kV and equipped with 
the Super-X Detection System. The PUND transients were collected 
using a Radiant Precision Premier II ferroelectric tester driven from the 
top electrode. Current and capacitance were measured using B1500 
semiconductor analyzer and Keithley 2400. The network simulations 
were performed using the open-source code “NeuroSim V3.0” in a Linux 
system and the optimization method “Adam” was selected with learning 
rate of 0.2 for weight update from input to hidden layer and learning 
rate of 0.1 for weight update from hidden to output layer, respectively. 
For baseline simulation, the conductance range was mapped to the 
real device while 128 states with ideal linearity and no cycle-to-cycle and 
device-to-device variation were considered.
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