CryoEM Structure with ATP Synthase Enables Late-Stage Diversification of Cruentaren A

 Bhargav A. Patel, ${ }^{[a]}$ Mark Cohen, ${ }^{[\mathrm{ee]}}$ John L. Rubinstein, ${ }^{[b, c, f]}$ and Brian S. J. Blagg ${ }^{*[a]}$

Abstract

Cruentaren A is a natural product that exhibits potent antiproliferative activity against various cancer cell lines, yet its binding site within ATP synthase remained unknown, thus limiting the development of improved analogues as anticancer agents. Herein, we report the cryogenic electron microscopy (cryoEM) structure of cruentaren A bound to ATP synthase, which allowed the design of new inhibitors through semisynthetic modification. Examples

of cruentaren A derivatives include a trans-alkene isomer, which was found to exhibit similar activity to cruentaren A against three cancer cell lines as well as several other analogues that retained potent inhibitory activity. Together, these studies provide a foundation for the generation of cruentaren A derivatives as potential therapeutics for the treatment of cancer.

Introduction

Cruentaren A (1, Figure 1) is a macrolide natural product that was isolated from the myxobacterium Byssovorax cruenta by Höfle et al. and disrupts the cellular process of oxidative phosphorylation (OXPHOS) through selective inhibition of mitochondrial adenosine triphosphate synthase (ATP synthase, $\mathrm{F}_{1} \mathrm{~F}_{0}$-ATPase). ${ }^{[1]}$ The natural product is a promising anticancer agent that exhibits sub-nanomolar antiproliferative activity against multiple cancer cell lines, while manifesting IC_{50} values greater than 500 nM against the normal cell lines, HEK293 and MRC5. ${ }^{[2]}$ Cruentaren A contains a resorcinol-derived, 12-mem-
[a] Dr. X. Dou, ${ }^{+}$T. D'Amico, Dr. B. A. Patel, Prof. B. S. J. Blagg
Department of Chemistry and Biochemistry
The University of Notre Dame
Notre Dame, IN 46556 (USA)
E-mail: bblagg@nd.edu
[b] Dr. H. Guo, ${ }^{+}$Prof. J. L. Rubinstein Molecular Medicine Program
The Hospital for Sick Children
Toronto, ON M5G OA4 (Canada)
[c] Dr. H. Guo, ${ }^{+}$Prof. J. L. Rubinstein
Department of Medical Biophysics
University of Toronto
Toronto, ON M5G 1 L7 (Canada)
[d] L. Abdallah
Department of Surgery, University of Michigan Ann Arbor, MI, 48109 (USA)
[e] Dr. C. Subramanian, Prof. M. Cohen Departments of Surgery and Bioengineering Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, IL 61801 (USA)
[f] Prof. J. L. Rubinstein Departments of Biochemistry, University of Toronto Toronto, ON M5S 1A8 (Canada)
[${ }^{+}$] These authors contributed equally to this manuscript.
岛 Supporting information for this article is available on the WWW under https://doi.org/10.1002/chem. 202300262
bered macrocyclic lactone and a cis-allyl amide side chain. It has also been reported that cruentaren A undergoes rapid and quantitative translactonization onto the C9 hydroxy group to form the biologically inactive isomer, cruentaren B. ${ }^{[1]}$ Additional structure-activity relationship (SAR) studies on cruentaren A could provide insights into the development of new ATP synthase inhibitors for the treatment of cancer. ${ }^{[3]}$

ATP synthase is a multiprotein complex that contains 29 subunits. ${ }^{[4]}$ The subunits are divided into two functional regions; a membrane-bound F_{0} region that translocates protons through the mitochondrial membrane, and a soluble catalytic F_{1} region that harnesses energy from a proton electrochemical gradient to synthesize ATP. The F_{0} region is subdivided into three groups; the rotor ring, the peripheral stalk, and the supernumerary subunits. The F_{1} region can be subdivided into the F_{1} catalytic head and the F_{1} central stalk. The F_{1} catalytic head is a sixfold pseudo-symmetric ring that includes three alternating α and β subunits, while the central stalk is composed of γ, δ, and ε subunits.

The major function of ATP synthase is to generate ATP for cellular energy of which more than 95% of cellular ATP is produced under aerobic conditions (OXPHOS). Moreover, the synthase facilitates the activity of other proteins, such as heat shock protein 90 (Hsp90). ${ }^{[5]}$ It was reported that ATP synthase is a partner protein for $\mathrm{Hsp90}$ and plays an important role during the maturation of Hsp90-dependent client proteins. ${ }^{[5 d]}$ Furthermore, ATP synthase collaborates with the Hsp90 homodimer to assemble a heteroprotein complex that is necessary for folding select protein substrates. ${ }^{[6]}$

It was demonstrated that cruentaren A disrupts interactions between ATP synthase and $\mathrm{Hsp90}$ and consequently induces Hsp90-dependent client protein degradation, which provides a new opportunity to modulate the $\mathrm{Hsp90}$ protein folding machinery. ${ }^{[2]}$ Unfortunately, the mechanism by which cruentaren A binds and inhibits ATP synthase remained unknown, and has hampered the development of improved analogues. We

Figure 1. Structures of cruentaren A and cruentaren B.
recently reported the synthesis and evaluation of 12 cruentaren A analogues in an effort to establish preliminary SAR for simplification of the molecule (Figure 2). ${ }^{[7]}$ However, all 12 compounds were significantly less active, resulting in minimal insight into this promising anticancer agent. Therefore, the structure of cruentaren A bound to ATP synthase is needed to rationally improve upon cruentaren A's promising anticancer activity.

Results and Discussion

Identification of binding sites by cryogenic electron microscopy (cryoEM)

It was confirmed that cruentaren A inhibits detergent solubilized Saccharomyces cerevisiae ATP synthase with an IC_{50} of $\sim 75 \mathrm{nM}$ by ATPase assays (Figure S1 in the Supporting Information). Although previous reports have indicated that cruentaren A binds the F_{1} region of ATP synthase, ${ }^{[16]}$ the exact binding site was unknown. Therefore, we determined a cryoEM structure of yeast ATP synthase ($\sim 20 \mathrm{mgmL}^{-1}$) in the presence of $100 \mu \mathrm{M}$ of cruentaren A at $2.9 \AA$ resolution (Figures S 2 and S3, Table S1). At this concentration, the molar ratio of protein to drug is $\sim 1: 3$, and densities corresponding to cruentaren A are found at both the $\alpha_{T P} \beta_{T P}$ and $\alpha_{D P} \beta_{D P}$ interfaces of the F_{1} region (Figure 3a). This observation is not surprising given the structural similarity of the two interfaces. ${ }^{[8]}$ To investigate whether one binding site exhibits higher cruentaren A binding
affinity, a $4.5 \AA$ resolution structure of yeast ATP synthase (\sim $10 \mathrm{mgmL}^{-1}$) was determined with $25 \mu \mathrm{M}$ of cruentaren A (Figures S2 and S3, Table S1). At this concentration, the protein to drug molar ratio is approximately $2: 3$. The resulting structure shows strong drug density at the $\alpha_{T P} \beta_{T P}$ interface and weak density at the $\alpha_{D P} \beta_{D P}$ interface, suggesting that the $\alpha_{T P} \beta_{T P}$ interface has higher binding affinity to cruentaren A.

As the $\alpha_{\text {TP }} \beta_{\text {TP }}$ interface was determined to be the highaffinity binding site, the following discussion is focused on interactions of cruentaren A at the $\alpha_{T P} \beta_{T P}$ interface. Although cruentaren A binds at the $\alpha_{\mathrm{TP}} \beta_{\mathrm{TP}}$ interface next to the nucleotide binding site of the β subunit, it does not appear to affect the binding of ADP (Figure 3b). In the $\beta_{T P}$ subunit, the distance between the sugar backbone of ADP and the cis-allyl amide of cruentaren A is only $4.3 \AA$. Furthermore, the macrocyclic ring is directed towards the C terminus of the β subunit and faces towards the solvent-exposed region. Fragment 2 occupies the space between helix 1 of the C terminus in the α_{TP} subunit and helix 4 of the C terminus in the $\beta_{T P}$ subunit ${ }^{[8]}$ wherein the distance between the C16 methyl group and $\alpha_{\text {TP }}$ is $3.7 \AA$ and the distance between the C18 methyl group and β_{TP} is $3.9 \AA$, which might explain why fragment deletions are detrimental to cruentaren A's biological activity due to potential loss of hydrophobic interactions. ${ }^{[7]}$

Although previous SAR studies with cruentaren A have identified some inhibitors via diverted total syntheses, the interactions between cruentaren A and amino acids within the ATP synthase remained unknown. ${ }^{[7,9]}$ During the course of our studies, it was determined that the methyl group at C16

Figure 2. Previous SAR studies on cruentaren A. Cruentaren A is colored with 4 fragments based on our previously reported total synthesis. Our previously reported simplifications along fragment 2 are colored in red.

Figure 3. Structure of cruentaren A-bound yeast ATP synthase. a) Atomic model of the F_{1} region of ATP synthase bound to cruentaren A (magenta). b) Closeup of the cruentaren A (CA) binding site; red dotted lines show distance. c) The binding-site residues; yellow dotted lines show hydrogen bonds.
d) Electrostatic potentials mapped onto the binding sites. Cruentaren A with left: the β_{TP} subunit and right: the α_{TP} subunit. Hydrophobic residues are in red; hydrophilic residues are in white.
interacts with $\alpha_{T P}$-Val369, $\alpha_{T P}$-Leu394, and $\alpha_{T P^{P}}$-Ala397, while the C18 methyl group interacts with the methylene of β_{TP}-Phe424. Additionally, the hydroxy group at C17 forms a hydrogen bond with $\alpha_{T P}$-Lys393 (Figure 3c). Fragment 4 is buried deep inside the binding pocket and interacts with hydrophobic residues of the α_{TP} subunit, including α_{TP}-lle345, α_{TP}-Val336, and α_{TP}-Phe353 (Figure 3c), which explains prior SAR studies that demonstrated steric bulk on fragment 4 is not tolerated. ${ }^{[96]}$ Additional hydro-gen-bond interactions were also found between the C25 hydroxy group and both $\beta_{T \mathrm{TP}}$-Arg 337 and β_{Tp}-Glu341, while the amide interacts with $\alpha_{T \mathrm{TP}}-\mathrm{Gln} 351$. Together, these observations show that the high affinity binding conformation of cruentaren A to ATP synthase is mediated primarily through hydrophobic interactions with $\alpha_{\text {TP }}$ (Figure 3d). By binding to and stabilizing the nucleotide-bound $\alpha_{T P} \beta_{\text {TP }}$ interface, cruentaren A inhibits ATP synthase in an uncompetitive manner, without direct interactions with the rotor.

The cryoEM structure not only validated prior SAR studies, but also provided additional insights into the binding site that could help optimize the activity of cruentaren A. For instance, the cryoEM structure suggests that oxidation or esterification of the C9 alcohol of cruentaren A could be accommodated within the binding pocket and enable hydrogen-bond interactions with amino acids $\alpha_{T \mathrm{~T}}$-Glu401, β_{TP}-Tyr458, and β_{TP}-His455 (Figure 4a). In addition, it was determined that the side-chain alkene (C20-C21) faces an unexplored and amphiphilic pocket containing Val373 of the $\alpha_{\text {TP }}$ subunit and Tyr345 and Phe424 from the β_{TP} subunit (Figure 4b).

Late-stage modification of cruentaren A derivatives

The alcohols and alkenes present in cruentaren A were modified by semisynthetic approaches to further elucidate SAR using the cryoEM structure as a guide for optimization. Because cruentaren A undergoes rapid rearrangement with the C9 alcohol, the alcohol was converted to the corresponding ester or ketone to mask reactivity. Gratifyingly, oxidation readily occurred at C9, allowing selective modification at this location. Consequently, cruentaren A was oxidized with one equivalent of Dess-Martin periodinane to convert the C9 alcohol into the corresponding ketone, which resulted in 2 (Scheme 1). ${ }^{[10]}$

Figure 4. Cruentaren A in ATP synthase. a) post at the C9 alcohol and b) post at the side-chain alkene (C20-C21). Amino acids from the $\alpha_{\text {TP }}$ subunit are in yellow and from the $\beta_{\text {TP }}$ subunit are in blue.

Scheme 1. a) Dess-Martin periodinane, pyridine, DCM, $0^{\circ} \mathrm{C}$ to RT, 30%; b) i. Fmoc-protected amino acid chloride, DIPEA, DMAP, DCM, $41-85 \%$; ii. piperidine, DCM, $60-90 \%$; c) i. 3 or 5 equiv. $\mathrm{Ac}_{2} \mathrm{O}$, DIPEA, DMAP, DCM, $51-70 \%$; ii. TMG, $\mathrm{MeCN}, 50^{\circ} \mathrm{C}, 30-60 \%$; iii. $\mathrm{MeOH}, 30 \%$. DIPEA = N, N-diisopropylethylamine, DMAP $=4$-dimethylaminopyridine.

Conditions were probed to couple amino acids with the alcohols present in cruentaren A as an alternative method to increase interactions with ATP synthase, especially along the macrocycle as it faces a solvent-exposed channel. When cruentaren A was treated with two equivalents of Fmocprotected glycine acyl chloride, ${ }^{[11]}$ esterification occurred at both the phenol and C9 alcohol. Conveniently, treatment of these intermediates with piperidine in dichloromethane not only removed the Fmoc protecting groups, ${ }^{[12]}$ but also cleaved the more labile phenolic ester and provided 3 . Amino acids containing hydrophobic side chains such as alanine, valine, and phenylalanine were attached to C9 in an effort to probe for steric interactions via compounds 4-6. Dual esterification of C9 and C25 readily occurred with three equivalents of Fmocprotected phenylalanine chloride, which upon cleavage of the phenolic ester produced derivative 7.

Cruentaren A was treated with 3 equivalents of acetic anhydride $\left(\mathrm{Ac}_{2} \mathrm{O}\right)$ to install acetyl groups onto the phenol as well as onto the C9 and C25 alcohols. Chemoselective deacetylation of the phenolic ester with 1,1,3,3-tetramethylguanidine (TMG) in acetonitrile provided compound 8. ${ }^{[13]}$ Moreover, with 5 equivalents of $\mathrm{Ac}_{2} \mathrm{O}$, a fully esterified analogue (9) of cruentaren A was achieved after solvolysis. Interestingly,
when 8 or 9 were dissolved in methanol, cleavage of the C25 ester was observed and led to 10 and 11, respectively.

Additional modifications were performed to understand the biological activity conferred by the C20-C21 cis-alkene, as it faces an amphiphilic pocket. Cruentaren A was fully hydrogenated with 10% palladium on carbon (Pd / C) in ethyl acetate to provide 12 (Scheme 2). In contrast, dihydroxylation of cruentaren A led to a rearrangement that produced an analogue of cruentaren B, which is the inactive microcyclic isomer of cruentaren A. ${ }^{[14]}$ Therefore, cruentaren A was treated with methoxyacetyl chloride to protect the phenol and alcohols, which prevented rearrangement and allowed for subsequent modification of the side-chain alkene. ${ }^{[15]}$ Dihydroxylation of 13 with catalytic osmium tetroxide and N -methylmorpholine N oxide (NMO) afforded the corresponding diol. ${ }^{[16]}$ After solvolysis under basic conditions, compound 14 was obtained. Alternatively, protected cruentaren A (13) was treated with diethylzinc and diiodomethane to direct cyclopropanation at C20-C21, which upon solvolysis provided $15 .{ }^{[17]}$ Finally, isomerization of compound 13 with a palladium catalyst led to formation of the trans-alkene at C20-C21, which underwent solvolysis to furnish 16. ${ }^{[18]}$

Upon preparation of the library of cruentaren A analogues, their antiproliferative activities were determined against various

Scheme 2. a) Pd/C, H_{2}, EtOAc, 86%; b) MOMCOCI, DIPEA, DMAP, DCM, 63%; c) i. $\mathrm{OsO}_{4}, \mathrm{NMO}$, acetone/tBuOH/water, 90%; ii. $\mathrm{Et}_{2} \mathrm{Zn}$, diiodomethane, $0^{\circ} \mathrm{C}$; iii. $\mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}, \mathrm{DCM}, 82 \%$. d) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 35-81 \%$.
cancer cell lines. The cancer cell lines MCF7 (breast cancer), K562 (leukemia), and A549 (lung cancer) were selected due to their dependency on $F_{1} F_{0}$ ATP synthase for energy production. ${ }^{[19]}$ Cruentaren A (1) was included as a control and the IC_{50} values obtained from these studies are listed in Table 1. The IC_{50} values manifested by cruentaren A were 4.67, 1.50, and 0.75 nM as determined against MCF7, K562 and A549 cell lines, respectively, similar to previously reported values. ${ }^{[2]}$

Several of the synthetic analogues demonstrated comparable activity as the natural product. Oxidation of the C9 alcohol to ketone 2, resulted in reduced potency against all three cell lines. However, the IC_{50} value for glycine analogue 3 was 14.8 nM against the K562 cell line, which is ten times lower than cruentaren A and suggests that the primary amine may mediate hydrogen-bond interactions with $\mathrm{F}_{1} \mathrm{~F}_{0}$ ATP synthase. Derivative 3 manifested a higher IC_{50} value (87.5 nM) against MCF7 cells as compared to K562 cells. However, the introduction of amino acids did not significantly affect antiproliferative activity against MCF7 cells as 4-6 exhibited IC_{50} values between 50 and 100 nM , but manifested a loss in potency against the K562 cell line when compared to 3 ($50-100$ fold). Surprisingly, the bis esterified analogue (7) manifested improved activity when

Table 1. IC_{50} values of cruentaren A analogues.			
	IC_{50} values $[\mathrm{nM}]$ MCF7	K 562	
$\mathbf{1}$	4.67	1.50	A549
$\mathbf{2}$	972	1283	0.750
$\mathbf{3}$	87.5	14.8	1637
$\mathbf{4}$	55.5	1321	1740
$\mathbf{5}$	101	968	2447
$\mathbf{6}$	114	1120	1334
$\mathbf{7}$	51.3	64.6	1285
$\mathbf{8}$	574	1283	2458
$\mathbf{9}$	>4000	>4000	3360
$\mathbf{1 0}$	174	1158	>4000
$\mathbf{1 1}$	>4000	>4000	1958
$\mathbf{1 2}$	179	1390	>4000
$\mathbf{1 4}$	189	1267	4000
$\mathbf{1 5}$	520	1121	1540
$\mathbf{1 6}$	6.37	48.3	1240

compared to 6 with IC_{50} values of 51 nM against MCF7 and 65 nM against K562 cells.

Esterification of cruentaren A decreases antiproliferative activity as demonstrated by 8-11. Esterification at C9 (10) lead to decreased antiproliferative activity and IC_{50} values of 0.17 , 1.16, and $1.96 \mu \mathrm{M}$ against the MCF7, K562 and A549 cell lines, respectively. In contrast, esterification of the C25 hydroxy group (8) maintained activity against all three cancer cell lines when compared to 10. Finally, esterification of the C16 hydroxy group led to inactive compounds at $4 \mu \mathrm{M}$ as demonstrated by 9 and 11, which indicates limited potential to modify the C16 position.

Analogues 12-15 were synthesized to explore the amphiphilic region in ATP synthase. The fully saturated analogue 12 manifested less antiproliferative activity than cruentaren A. Although it was initially hypothesized that hydroxy groups could provide an additional source of hydrogen-bond interactions with ATP synthase, compound 14 exhibited a ~ 40-fold reduction in activity. Cyclopropanated analogue 15 manifested a 100 -fold decrease in activity as compared to cruentaren A, which is likely the result of an undesired conformation. Surprisingly, a similar level of activity was retained with the trans-alkene 16, especially against MCF7 cells wherein it manifested an IC_{50} value of 6.37 nM . The antiproliferative activity of cruentaren A is most potent against A549 and least potent against MCF7, however, most of these analogues demonstrated the opposite trend, wherein all but 3 were most active against MCF7 cells and least active against the A549 cell line.

Previous studies have demonstrated that cruentaren A induced the degradation of Hsp90-dependent client proteins in MCF7 cells upon 48-hour incubation. ${ }^{[2]}$ Therefore, 4, 16, and geldanamycin were evaluated by the same procedure, and all of these compounds induced a dose-dependent degradation of the Hsp90-dependent client proteins phosphorylated Akt (pAkt), cyclin D1 and GLUT1, as shown in Figure 5. However, the levels of Hsp70 and Hsp90 were increased upon treatment with geldanamycin and indicates induction of the heat shock response. Treatment with 4 and 16 led to the degradation of the client proteins at concentrations similar to the antiproliferative IC_{50} values linking cell viability to Hsp90 inhibition. After

Figure 5. Western Blot analysis of Hsp90 client proteins (pAkt, Cyclin D1 and GLUT1) and Hsp70, Hsp90, and $\mathrm{F}_{1} \mathrm{~F}_{0}$ ATP synthase by using MCF7 cell lysates after 48 h of incubation with the indicated amount of 4 and 16 , vehicle (0.25% DMSO), or $1 \mu \mathrm{M}$ geldanamycin (GA).

48 h of treatment with the cruentaren A analogues, Hsp70, Hsp90 and ATP synthase remained at the same level as vehicle control (0.25% DMSO). These studies are consistent with our previous report that disruption of Hsp90-ATP synthase interactions induced Hsp90-dependent client protein degradation without induction of Hsp70 or Hsp90 levels, indicating that these analogues maintain the same mechanism of action as cruentaren A.

Conclusion

While many natural products have shown potent anticancer activity in vitro, there are numerous factors that can hinder their translation to the clinic. For instance, the natural product Hsp90 inhibitor, geldanamycin, was transformed into $17-\mathrm{N}$-allylamino-17-demethoxygeldanamycin (17-AAG), which underwent clinical investigation. ${ }^{[20]}$ However, all pan-Hsp90 inhibitors activate the pro-survival heat-shock response and result in increased levels of Hsp90. ${ }^{[21]}$ In contrast to direct inhibition of the N-terminal ATP binding site, disruption of Hsp90-ATP synthase proteinprotein interactions represents an alternative approach to inhibiting Hsp90 without concomitant induction of the heat shock response. ${ }^{[5 d]}$ In addition, recent studies support the OXPHOS pathway, including ATP synthase, as a promising target for the development of new cancer therapeutics. ${ }^{[22]}$ Cruentaren A manifests a dual mechanism of action for treating cancer, which supports its potential as an anticancer agent. The binding site of cruentaren A has now been elucidated, thus enabling a rational, structure-based approach for the optimization of cruentaren A analogues.

Although natural products often possess exciting activity and unique pharmacokinetic properties, they often require significant modification to become viable drug candidates for the clinic. ${ }^{[23]}$ In this work, cruentaren A was modified based on
the co-structure with ATP synthase to produce a small library of semisynthetic derivatives (2-12 and 14-16), which were investigated for their antiproliferative activity against various cancer cell lines. Analogue 16 was shown to manifest similar activity ($\mathrm{IC}_{50}=6.37 \mathrm{nM}$) against the MCF7 cell line to cruentaren A, and highlights the utility of this approach. When combined with the structural insights and SAR studies on cruentaren A , this work provides a promising foundation to develop new analogues through the co-structure of cruentaren A bound to ATP synthase.

Experimental Section

Safety statement and general experimental details: No unexpected or unusually high safety hazards were encountered. All reactions were carried out in oven-dried glassware under argon unless otherwise stated. Commercially available anhydrous solvent and reagents were utilized without any further purification. THF, DCM, MeCN, and toluene were purified via a MBRAUN solvent purification system. Flash column chromatography was performed using silica gel ($40-63 \mu \mathrm{M}$ particle size). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 400 and 101 MHz , respectively, on a Bruker Avance III HD 400 Nanobay or a Bruker Avance III HD 500 using CDCl_{3} purchased from Cambridge Isotope Laboratories, Inc., with the solvent as an internal standard $\left(\mathrm{CDCl}_{3}\right.$ at 7.27 ppm for ${ }^{1} \mathrm{H}$ and 77.16 ppm for ${ }^{13} \mathrm{C}$). Data are reported as $\mathrm{p}=$ pentet, $\mathrm{q}=$ quartet, $\mathrm{t}=$ triplet, $\mathrm{d}=$ doublet, $\mathrm{s}=$ singlet, brs = broad singlet, $\mathrm{m}=$ multiplet; coupling constant(s) in Hz . High-resolution mass spectral data were obtained on a time-of-flight mass spectrometer, and analysis was performed using electrospray ionization. Optical rotations were recorded with a Perkin Elmer polarimeter at 589 nm at $25^{\circ} \mathrm{C}$ with concentration reported as $\mathrm{g} / 100 \mathrm{~mL}$.
Compound data for final products: $(2 R, 3 S)-3$-Hydroxy- N ($(5 R, 6 R, 7 S, Z)$-6-hydroxy-7-((3S,8S,Z)-14-hydroxy-12-methoxy-8-meth-yl-1,9-dioxo-3,4,7,8,9,10-hexahydro-1 H -benzo[c][1]]oxacyclododecin-3-yl)-5-methyloct-2-en-1-yl)-2-methylhexanamide (2): Pyridine (3.0 equiv.) and Dess-Martin periodinane (1.0 equiv.) were added to a solution of cruentaren A (1.0 equiv.) in DCM at $0^{\circ} \mathrm{C}$. The solution was stirred for 15 min at $0^{\circ} \mathrm{C}$ and then was allowed to warm up to ambient temperature for overnight. The reaction was quenched with aq. sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and aq. NaHCO_{3}. The aqueous layer was extracted by DCM ($5 \mathrm{~mL} \times 4$) and the combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated down. The residue was purified by HPLC to give the product 2 . ${ }^{1} \mathrm{H}$ NMR $(800 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=11.88(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.16(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.67-5.57(\mathrm{~m}, 1 \mathrm{H}), 5.53$ (ddd, $J=11.5$, $10.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.46-5.39(\mathrm{~m}, 1 \mathrm{H}), 5.37$ (ddd, $J=12.0,11.5,4.6 \mathrm{~Hz}$, 1H), 5.31 (ddd, $J=11.5,7.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.12$ (d, $J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.96$ (dddd, $J=14.9,7.4,5.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.85 (ddd, $J=15.4,8.0,4.8 \mathrm{~Hz}$, 2 H), 3.82 (s, 3H), 3.64 (d, $J=17.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.45 (ddd, $J=9.2,6.5$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.82$ (dd, $J=13.7,10.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.69 (ddd, $J=13.7,11.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.57$ (ddq, $J=7.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.32$ (ddd, $J=15.1,9.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-$ $2.20(\mathrm{~m}, 3 \mathrm{H}), 2.14$ (qdd, $J=7.6,6.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.68(\mathrm{~m}, 2 \mathrm{H})$, 1.52-1.42 (m, 2H), 1.35-1.25 (m, 2H), 1.14 (d, J=7.1 Hz, 3H), 1.08 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}$, $\left.J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(201} \mathrm{MHz}, \mathrm{CDCl3}\right): ~ \delta=212.5,176.6,171.0$, 166.1, 164.2, 138.7, 131.0, 130.8, 127.6, 126.9, 113.1, 105.9, 100.1, 79.1, 73.9, 71.9, 55.6, 50.7, 44.9, 44.6, 38.1, 36.7, 36.6, 35.9, 31.0, 30.8, 30.1, 19.4, 19.3, 16.0, 14.2, 11.3, 9.1. HRMS (ESI/Q-TOF): m/z calcd for $\mathrm{C}_{33} \mathrm{H}_{49} \mathrm{NNaO}_{8}: 610.3350[\mathrm{M}+\mathrm{Na}]^{+}$; found 610.3350. $[\alpha]_{20}^{\mathrm{D}}=-22.1(\mathrm{c}=$ $0.15, \mathrm{DCM})$.

Synthesis of 3-7: Piperidine (20.0 equiv.) in DCM ($20 \% \mathrm{v} / \mathrm{v}$) was dropwise added to the desired cruentaren A analogues (1.0 equiv.) in a 5 mL vial at $0^{\circ} \mathrm{C}$. The reaction was allowed to warm up to room temperature for 2 h . The reaction was purified by flash chromatography ($5 \% \mathrm{MeOH}$ in DCM) to give the corresponding product 3-7.
(3S,8S,9R,Z)-14-Hydroxy-3-((2S,3R,4R,Z)-3-hydroxy-8-((2R,3S)-3-hydroxy-2-methylhexanamido)-4-methyloct-6-en-2-yl)-12-meth-oxy-8-methyl-1-oxo-3,4,7,8,9,10-hexahydro-1H-
benzo[c][1]oxacyclododecin-9-yl glycinate (3): ${ }^{1} \mathrm{H}$ NMR (800 MHz , CDCl_{3}): $\delta=11.62(\mathrm{~s}, 1 \mathrm{H}), 6.32$ (dd, $\left.J=2.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.23$ (d, $J=$ $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.17-6.02(\mathrm{~m}, 1 \mathrm{H}), 5.63-5.54(\mathrm{~m}, 2 \mathrm{H}), 5.54-5.49(\mathrm{~m}, 1 \mathrm{H})$, $5.42(\mathrm{dt}, J=12.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.33-5.16(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{dt}, J=11.4$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dt}, J=13.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.83-$ $3.79(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.49-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.22-3.16(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dt}, J=25.5,11.9 \mathrm{~Hz}$ $1 \mathrm{H}), 2.44$ (dd, $J=13.3,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.25(\mathrm{~m}$, $3 \mathrm{H}), 2.24-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H})$, 1.71-1.67 (m, 1H), 1.52-1.44 (m, 2H), 1.36-1.29 (m, 2H), 1.15 (d, J= $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.81-0.78(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 176.64, 171.57, 165.83, 163.34, 142.63, 131.39, 131.24, 126.86, 126.62, 113.28, $99.65,78.13,77.12,74.91,72.05,55.59,45.06,43.97$, $39.28,37.12,36.74,36.65,35.97,33.73,31.87,31.15,29.96,19.44$, 16.33, 14.82, 14.25, 11.40, 8.84. HRMS (ESI/Q-TOF): m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{55} \mathrm{~N}_{2} \mathrm{O}_{9}: 647.3902[\mathrm{M}+\mathrm{H}]^{+}$; found 647.3893. $[\alpha]_{20}^{\mathrm{D}}=+2.31 \quad(c=$ $0.13, \mathrm{DCM})$.
(3S,8S,9R,Z)-14-Hydroxy-3-((2S,3R,4R,Z)-3-hydroxy-8-((2R,3S)-3-hydroxy-2-methylhexanamido)-4-methyloct-6-en-2-yl)-12-meth-oxy-8-methyl-1-oxo-3,4,7,8,9,10-hexahydro-1H-
benzo[c][1]oxacyclododecin-9-yl D-alaninate (4): ${ }^{1} \mathrm{H}$ NMR ($800 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.62(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}$, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.62-5.58(\mathrm{~m}, 1 \mathrm{H}), 5.56$ (ddt, $J=10.1,6.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.52 (ddt, $J=11.2,7.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.44-$ $5.39(\mathrm{~m}, 1 \mathrm{H}), 5.32-5.28(\mathrm{~m}, 1 \mathrm{H}), 4.95$ (ddd, $J=11.6,3.1,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.90 (dddd, $J=14.7,7.3,5.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.80$ (dd, $J=13.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{dd}, J=9.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.34$ $(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~s}, 1 \mathrm{H}), 2.84(\mathrm{dt}, J=14.5,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.49$ (dd, $J=13.4,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{qd}, J=7.1,5.7$, $3.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.22-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{~d}, J=14.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.87(\mathrm{~s}, 1 \mathrm{H}), 1.69(\mathrm{ddt}, J=9.2,6.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.50-1.43(\mathrm{~m}, 2 \mathrm{H})$, $1.35-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.02(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, 0.79 (d, J=6.8 Hz, 3H). ${ }^{13} \mathrm{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=176.6,176.0$, $171.5,165.8,163.3,142.5,131.4,131.2,126.8,126.6,113.9,104.9$ 99.4, 78.1, 76.8, 74.9, 72.0, 55.5, 50.3, 45.0, 39.2, 37.1, 36.7, 36.5, 35.9, $33.8,31.8,30.9,29.9,20.5,19.4,16.3,14.7,14.2,11.3,8.8$. HRMS (ESI/ Q-TOF): m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{57} \mathrm{~N}_{2} \mathrm{O}_{9}$: $661.4059[\mathrm{M}+\mathrm{H}]^{+}$; found 661.4050. $[\alpha]_{20}^{\mathrm{D}}=+1.02(c=0.59, \mathrm{DCM})$.
(3S,8S,9R,Z)-14-Hydroxy-3-((2S,3R,4R,Z)-3-hydroxy-8-((2R,3S)-3-hydroxy-2-methylhexanamido)-4-methyloct-6-en-2-yl)-12-meth-oxy-8-methyl-1-oxo-3,4,7,8,9,10-hexahydro-1H-
benzo[c][1]oxacyclododecin-9-yl D-valinate (5): ${ }^{1} \mathrm{H}$ NMR (800 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=11.62(\mathrm{~s}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.15(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{tt}, J=11.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{td}, J=$ $10.5,9.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.54$ (ddd, $J=10.9,4.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.44$ (dt, $J=$ $10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.32 (ddd, $J=11.7,5.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.94$ (dt, $J=$ $11.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.83-3.77(\mathrm{~m}$, $1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{dd}, J=9.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.86(\mathrm{dt}, J=14.1,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=13.4,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-$ $2.34(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.26(\mathrm{~m}, 3 \mathrm{H}), 2.23(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{dtd}, J=$ $8.9,6.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.17$ (d, $J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.44$ (d, J=6.8 Hz, 3H). ${ }^{13} \mathrm{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=176.5,171.3,165.6$,
163.2, 142.4, 131.3, 131.0, 126.7, 126.3, 113.7, 104.6, 99.3, 78.0, 74.7, $71.8,59.9,55.3,44.8,39.1,36.9,36.5,36.2,35.8,33.6,31.7,31.3,30.7$, 29.7, 19.6, 19.2, 16.1, 15.7, 14.6, 14.7, 11.2, 8.6. HRMS (ESI/Q-TOF): m / z calcd for $\mathrm{C}_{38} \mathrm{H}_{61} \mathrm{~N}_{2} \mathrm{O}_{9}: 689.4366[\mathrm{M}+\mathrm{H}]^{+}$; found 689.4372. $[\alpha]_{20}^{\mathrm{D}}=$ -3.38 ($c=0.47$, DCM).
(3S,8S,9R,Z)-14-Hydroxy-3-((2S,3R,4R,Z)-3-hydroxy-8-((2R,3S)-3-hydroxy-2-methylhexanamido)-4-methyloct-6-en-2-yl)-12-meth-oxy-8-methyl-1-oxo-3,4,7,8,9,10-hexahydro-1H-
benzo[c][1]oxacyclododecin-9-yl D-phenylalaninate (6): ${ }^{1} \mathrm{H}$ NMR ($800 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.66(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.16(\mathrm{~m}$, $1 \mathrm{H}), 6.87(\mathrm{dd}, J=8.1,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=$ $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.64-5.60(\mathrm{~m}, 1 \mathrm{H}), 5.57$ (dddt, $J=$ $10.6,8.5,7.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.53$ (dtd, $J=11.4,5.8,5.2,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.45-5.38(\mathrm{~m}, 1 \mathrm{H}), 5.31$ (ddd, $J=11.7,5.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.94$ (ddd, $J=$ $11.7,3.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.91 (dddd, $J=14.7,7.3,5.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.88-$ $3.80(\mathrm{~m}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.56-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=9.2,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.91-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.72$ (dd, $J=13.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.55$ (dd, $J=$ $13.5,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.47$ (dd, $J=13.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{q}, J=12.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.29$ (qd, $J=7.1,2.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.24-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.14$ (q, $J=$ $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.70$ (dtd, $J=$ $9.1,6.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.51-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}=$ $7.1 \mathrm{~Hz}, 4 \mathrm{H}$), $1.02(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 0.93(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=176.6,174.5,171.5,165.9,163.4,142.5,137.1,131.4,131.2,129.3$, 128.5, 126.8, 126.5, 114.2, 104.8, 99.5, 78.2, 74.9, 72.0, 55.6, 55.4, $45.0,40.6,39.2,37.1,36.7,36.2,35.9,33.7,31.8,30.9,29.8,19.4,16.3$, 14.7, 14.2, 11.3, 8.8. HRMS (ESI/Q-TOF): m / z calcd for $\mathrm{C}_{42} \mathrm{H}_{61} \mathrm{~N}_{2} \mathrm{O}_{9}$: $737.4371[M+]^{+}$; found 737.4372. $[\alpha]_{20}^{\mathrm{D}}=+2.90(c=0.25, \mathrm{DCM})$.
(2R,3S)-1-(((5R,6R,7S,Z)-7-((3S,8S,9R,Z)-9-((D-Phenylalanyl)oxy)-14-hydroxy-12-methoxy-8-methyl-1-oxo-3,4,7,8,9,10-hexahydro-1H-benzo[c][1]oxacyclododecin-3-yl)-6-hydroxy-5-methyloct-2-en-1-yl)amino)-2-methyl-1-oxohexan-3-yl D-phenylalaninate (7): ${ }^{1} \mathrm{H}$ NMR ($800 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=7.33-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H})$, 7.24-7.20 (m, 5H), 7.21-7.16 (m, 1H), 6.90-6.81 (m, 2H), 6.36 (d, J= $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.64-5.59$ $(\mathrm{m}, 1 \mathrm{H}), 5.58-5.46(\mathrm{~m}, 2 \mathrm{H}), 5.39-5.24(\mathrm{~m}, 2 \mathrm{H}), 5.03(\mathrm{dt}, \mathrm{J}=8.1,4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.98-4.89(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.78-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.72$ (dd, $J=7.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.54$ (dd, $J=7.7,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.44 (dd, $J=9.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.11 (dd, $J=13.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.85 (dd, $J=13.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=13.7,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.54 (dd, $J=13.4,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.47$ (dd, $J=13.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ (dd, $J=26.7,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.32$ (dd, $J=7.1,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.29-2.24(\mathrm{~m}$, 1H), 2.23-2.17 (m, 1H), 2.16-2.11 (m, 1H), 2.03-1.95 (m, 2H), 1.89 (p, $J=6.2 \mathrm{~Hz}, 0 \mathrm{H}), 1.69$ (dtd, $J=9.3,6.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.52$ (dddd, $J=$ $11.2,8.9,5.0,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.31-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.18(\mathrm{~m}, 1 \mathrm{H}), 1.09$ (d, J=7.0 Hz, 3H), 1.01 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $0.88(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.78$ (d, J=6.8 Hz, 3H). ${ }^{13} \mathrm{C}$ NMR (201 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=174.4,174.2,172.9,171.4,165.9,163.3,142.5,137.4$, 137.0, 131.2, 131.0, 129.5, 129.3, 128.9, 128.5, 127.1, 126.8, 126.7, 114.1, 104.9, 99.5, 78.2, 77.4, 76.1, 74.4, 56.7, 55.6, 55.4, 44.7, 41.5, 40.6, 39.4, 36.9, 36.8, 36.1, 33.6, 32.9, 31.8, 30.9, 29.7, 19.2, 16.4, 14.7, 14.0, 13.2, 9.0. HRMS (ESI/Q-TOF): m / z calcd for $\mathrm{C}_{51} \mathrm{H}_{70} \mathrm{~N}_{3} \mathrm{O}_{10}$: $884.5056[M+\mathrm{H}]^{+}$; found 884.5055. $[\alpha]_{20}^{\mathrm{D}}=-4.84(c=0.52, \mathrm{DCM})$.

Synthesis of 8-11: A solution of TMG (4.0 equiv.) in anhydrous MeCN was added to phenyl acetate (1.0 equiv.) in a 5 mL vial. The solution was stirred for 2 h at $50^{\circ} \mathrm{C}$. The solvent was evaporated under reduced pressure and the crude was purified by HPLC to give the desired 8 or 9 . Crude 8 or 9 was dissolved into MeOH and stirred at room temperature for 12 h . The crude was purified by HPLC to give the products 10 or 11.
(2R,3S)-1-(((5R,6R,7S,Z)-7-((3S,8S,9R,Z)-9-Acetoxy-14-hydroxy-12-methoxy-8-methyl-1-oxo-3,4,7,8,9,10-hexahydro-1H-
benzo[c][1]oxacyclododecin-3-yl)-6-hydroxy-5-methyloct-2-en-1-yl)amino)-2-methyl-1-oxohexan-3-yl acetate (8): ${ }^{1} \mathrm{H}$ NMR
(800 MHz, CDCl $)_{3}$: $\delta=11.6$ (s, 1H), 6.3 (d, 1H), $6.3(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.9(\mathrm{~s}, 1 \mathrm{H}), 5.6(\mathrm{q}, J=15.1,13.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.5(\mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.4(\mathrm{q}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.3-5.3(\mathrm{~m}, 1 \mathrm{H}), 5.1(\mathrm{td}, J=7.3,5.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.9(\mathrm{~d}$, $J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.9(\mathrm{dt}, J=13.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.8(\mathrm{dt}, J=13.5,6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.8(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 3.6-3.4(\mathrm{~m}, 1 \mathrm{H}), 2.8(\mathrm{q}, J=$ $11.3,9.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.5-2.4(\mathrm{~m}, 2 \mathrm{H}), 2.4(\mathrm{t}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.3-2.2(\mathrm{~m}$, $2 \mathrm{H}), 2.2(\mathrm{dt}, J=15.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.1(\mathrm{~s}, 3 \mathrm{H}), 2.0(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.0$ $(\mathrm{d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.8(\mathrm{~s}, 3 \mathrm{H}), 1.7(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.5-1.5(\mathrm{~m}, 2 \mathrm{H})$, $1.3(\mathrm{q}, J=8.8,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.1(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.0(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 0.9(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.9(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.8(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.5,171.7,170.9,170.1,165.8$, 163.4, 142.9, 131.5, 131.3, 126.8, 126.6, 113.2, 105.2, 99.7, 78.1, 75.2, $74.9,55.6,45.3,39.4,37.1,37.0,36.6,34.0,33.7,31.9,31.0,30.0,23.0$, 21.4, 21.2, 19.2, 16.1, 14.6, 13.8, 13.2, 9.0. HRMS (ESI/Q-TOF): m/z calcd for $\mathrm{C}_{37} \mathrm{H}_{56} \mathrm{NO}_{10}$: $674.3899[\mathrm{M}+\mathrm{H}]^{+}$; found 674.3906. $[\alpha]_{20}^{\mathrm{D}}=+$ 2.19 ($c=0.42, \mathrm{DCM}$).
(2R,3R,4R,Z)-2-((3S,8S,9R,Z)-9-Acetoxy-14-hydroxy-12-methoxy-8-methyl-1-oxo-3,4,7,8,9,10-hexahydro-1H-
benzo[c][1]oxacyclododecin-3-yl)-8-((2R,3S)-3-acetoxy-2-meth-ylhexanamido)-4-methyloct-6-en-3-yl acetate (9): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.67(\mathrm{~s}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}$, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{td}, J=10.8,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, 5.45 (ddd, $J=10.8,3.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.43-5.31$ (m, 2H), $5.10-5.03$ (m, $2 \mathrm{H}), 4.97(\mathrm{dd}, J=7.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{dt}, J=11.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ ($\mathrm{s}, 3 \mathrm{H}$), 3.84-3.69 (m, 3H), 2.70-2.59 (m, 1H), 2.50-2.39 (m, 2H), 2.34$2.20(\mathrm{~m}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.92$ $(\mathrm{m}, 1 \mathrm{H}), 1.91-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.55-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.19$ $(\mathrm{m}, 2 \mathrm{H}), 1.14(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.1,171.4,170.8,170.1,166.0,163.5,143.1$, $132.0,131.2,126.9,126.0,113.4,104.8,99.7,77.4,76.0,75.8,75.3$, $56.6,55.6,45.3,37.9,36.7,36.6,36.0,34.0,33.8,31.8,30.6,28.4,21.5$, 21.3, 21.2, 19.1, 16.4, 14.9, 14.1, 13.7, 10.7. HRMS (ESI/Q-TOF): m/z calcd for $\mathrm{C}_{39} \mathrm{H}_{58} \mathrm{NO}_{11}: 716.4004[\mathrm{M}+\mathrm{H}]^{+}$; found 716.4022. $[\alpha]_{20}^{\mathrm{D}}=$ $-6.67(c=0.15, D C M)$.
(3S,8S,9R,Z)-14-Hydroxy-3-((2S,3R,4R,Z)-3-hydroxy-8-((2R,3S)-3-hydroxy-2-methylhexanamido)-4-methyloct-6-en-2-yl)-12-meth-oxy-8-methyl-1-oxo-3,4,7,8,9,10-hexahydro-1H-
benzo[c][1]oxacyclododecin-9-yl acetate (10): ${ }^{1} \mathrm{H}$ NMR (800 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=11.62(\mathrm{~s}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 6.11(\mathrm{~s}$, $1 \mathrm{H}), 5.70-5.54(\mathrm{~m}, 2 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}$, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=14.7,7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.84(\mathrm{~d}, J=19.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.78$ (d, J=1.3 Hz, 4H), $3.47(\mathrm{~s}, 1 \mathrm{H}), 3.14$ $(\mathrm{s}, 1 \mathrm{H}), 2.84(\mathrm{q}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~s}, 1 \mathrm{H}), 2.42(\mathrm{t}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.35(\mathrm{q}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.23-2.14(\mathrm{~m}, 1 \mathrm{H})$, $2.03(\mathrm{~s}, 2 \mathrm{H}), 1.97(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.70(\mathrm{~s}$, $1 \mathrm{H}), 1.50-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.33$ (d, $J=11.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.15(\mathrm{dd}, J=7.2$, $1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.95-0.92(\mathrm{~m}, 3 \mathrm{H}), 0.93-0.90(\mathrm{~m}$, $3 \mathrm{H}), 0.90-0.69(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=176.4,171.4$, 169.8, 165.5, 163.1, 142.6, 131.3, 131.1, 126.6, 126.1, 113.0, 104.9, $99.4,77.8,76.0,74.8,71.8,55.3,44.8,39.1,36.9,36.5,36.3,35.7,33.4$, $31.7,30.7,29.8,20.9,19.2,16.1,14.6,14.0,11.2,8.6$. HRMS (ESI/QTOF): m / z calcd for $\mathrm{C}_{39} \mathrm{H}_{58} \mathrm{NO}_{11}: 632.3799[\mathrm{M}+\mathrm{H}]^{+}$; found 632.3810 $[\alpha]_{20}^{\mathrm{D}}=+2.35(c=0.17, \mathrm{DCM})$.
(2R,3R,4R,Z)-2-((3S,8S,9R,Z)-9-Acetoxy-14-hydroxy-12-methoxy-8-methyl-1-oxo-3,4,7,8,9,10-hexahydro-1H-
benzo[c][1]oxacyclododecin-3-yl)-8-((2R,3S)-3-hydroxy-2-meth-ylhexanamido)-4-methyloct-6-en-3-yl acetate (11): ${ }^{1} \mathrm{H}$ NMR $\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=11.67(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}$, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.62-5.52(\mathrm{~m}, 1 \mathrm{H}), 5.46-5.42$ $(\mathrm{m}, 1 \mathrm{H}), 5.42-5.39(\mathrm{~m}, 1 \mathrm{H}), 5.39-5.33(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{dd}, \mathrm{J}=11.6$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{dd}, J=7.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.92-4.86(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.80-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{dt}, J=14.2$, $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{q}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{t}$, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.23(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.09$
(s, 3H), 2.01 (d, J=14.5 Hz, 2H), $1.95(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.82$ $(\mathrm{m}, 2 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.52-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(201 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 176.6, 171.4, 171.3, 170.0, 165.9, 163.4, 143.0, 131.9, 131.3, 126.6, $125.9,113.3,104.7,99.6,76.9,75.9,75.7,71.8,55.5,44.7,37.7,36.6$, $36.3,35.9,35.9,33.7,31.7,30.6,28.3,21.5,21.1,19.4,16.3,14.8,14.2$, 11.2, 10.6.HRMS (ESI/Q-TOF): m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{56} \mathrm{NO}_{10}: 674.3899$ [M $+\mathrm{H}]^{+}$; found 674.3906. $[\alpha]_{20}^{\mathrm{D}}=-2.27(c=0.22, \mathrm{DCM})$.

Synthesis of 12: $10 \% \mathrm{Pd} / \mathrm{C}$ (0.1 equiv.) was added to a solution of cruentaren A (1.0 equiv.) in EtOAc. The reaction was stirred under a hydrogen balloon for 2 h . The solution was filtered through a pad of celite and washed with EtOAc. The filtrate was concentrated under reduced pressure and was purified by HPCL to give the product 12.
(2R,3S)-N-((5R,6R,7S)-7-((3S,8S,9R)-9,14-Dihydroxy-12-methoxy-8-methyl-1-oxo-3,4,5,6,7,8,9,10-octahydro-1 H -
benzo[c][1]oxacyclododecin-3-yl)-6-hydroxy-5-methyloctyl)-3-
hydroxy-2-methylhexanamide (12): ${ }^{1} \mathrm{H}$ NMR ($800 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $11.48(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~s}$, $1 \mathrm{H}), 5.12$ (dd, $J=9.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.39(\mathrm{~m}, 1 \mathrm{H})$, $3.37(\mathrm{~s}, 1 \mathrm{H}), 3.15(\mathrm{dp}, J=20.2,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.27-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{~d}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{td}, J=16.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 0 \mathrm{H}), 1.48(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{dt}, J=24.0,9.6 \mathrm{~Hz}, 8 \mathrm{H}), 1.15(\mathrm{dd}, J=$ $7.5,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 2 \mathrm{H}), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{dt}, J=7.3$, $3.6 \mathrm{~Hz}, 7 \mathrm{H}), 0.75(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 176.5, 171.8, 165.6, 163.5, 144.2, 111.8, 105.4, 99.7, 82.2, 75.0, 71.7, 55.4, 44.7, 38.9, 38.4, 37.2, 36.8, 35.8, 31.5, 30.0, 29.7, 26.6, 25.5, 23.8, $23.4,19.2,15.9,15.0,14.0,11.1,9.9$. HRMS (ESI/Q-TOF): m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{56} \mathrm{NO}_{8}$: $594.4000[M+\mathrm{H}]^{+}$; found 594.4001. $[\alpha]_{20}^{\mathrm{D}}=+11.0 \quad(c=$ $0.30, \mathrm{DCM}$).

Synthesis of 14-16: $\mathrm{K}_{2} \mathrm{CO}_{3}$ (10 equiv.) was added to a stirred solution of the crude compound (1.0 equiv.) in MeOH at $0^{\circ} \mathrm{C}$. The resulting solution was stirred at the same temperature for 2 h , then at room temperature for 5 h . The reaction mixture was then diluted with DCM (2 mL) and was quenched by saturated aqueous ammonium chloride $(2 \mathrm{~mL})$. The layers were separated, and the aqueous layer extracted with $\mathrm{DCM}(3 \times 2 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated down. The residue purified by HPLC or flash chromatography (5% MeOH in DCM) to give the product $14-16$, sometimes only one of the diastereomers could be obtained in pure form.
(2R,3S)-N-((2S,3R,5R,6R,7S)-7-((3S,8S,9R,Z)-9,14-Dihydroxy-12-methoxy-8-methyl-1-oxo-3,4,7,8,9,10-hexahydro-1Hbenzo[c][1]]oxacyclododecin-3-yl)-2,3,6-trihydroxy-5-methyloctyl)-3-hydroxy-2-methylhexanamide (14): ${ }^{1} \mathrm{H}$ NMR ($800 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.54(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=$ $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{t}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{ddt}, J=13.6,8.9,2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.26(\mathrm{q}, J=4.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.75$ (dd, $J=12.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dt}, J=10.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=$ $10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 2 \mathrm{H}), 3.43(\mathrm{dd}, J=8.9,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.32(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 1 \mathrm{H}), 2.38-2.30(\mathrm{~m}$, $1 \mathrm{H}), 2.28-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{p}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.96(\mathrm{~d}, J=14.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.76(\mathrm{q}, J=7.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.66-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.43(\mathrm{~m}, 4 \mathrm{H})$, $1.41-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.3,171.6,165.8$, 163.6, 143.8, 132.2, 125.7, 112.4, 104.8, 99.7, 78.1, 76.4, 74.5, 73.0, 72.0, 71.0, 55.4, 45.1, 41.9, 39.5, 38.3, 37.8, 36.7, 35.7, 35.0, 31.6, 29.9, 19.3, 18.1, 14.2, 14.0, 11.1, 8.4. HRMS (ESI/Q-TOF): m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{53} \mathrm{NNaO}_{10}: 646.3562[\mathrm{M}+\mathrm{Na}]^{+}$; found 646.3560. $[\alpha]_{20}^{\mathrm{D}}=+6.43$ ($c=0.23$, DCM).
(2R,3S)-N-(((1R,2R)-2-((2R,3R,4S)-4-((3S,8S,9R,Z)-9,14-Dihydroxy-12-methoxy-8-methyl-1-oxo-3,4,7,8,9,10-hexahydro-1H-benzo[c][1]oxacyclododecin-3-yl)-3-hydroxy-2-meth-ylpentyl)cyclopropyl)methyl)-3-hydroxy-2-methylhexanamide (15): ${ }^{1} \mathrm{H}$ NMR ($800 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.56(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.34(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{t}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.46$ (ddt, $J=13.7,9.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.28$ (ddd, $J=11.7,5.2,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.90(\mathrm{dt}, J=8.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.69-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.54$ (ddd, $J=8.5,6.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=$ $3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.36 (ddd, $J=13.3,7.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.11$ (dddd, $J=24.7$, $13.6,7.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{q}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{q}, J=12.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.30(\mathrm{qd}, J=7.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.23$ (d, $J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{ddt}, J=9.1,6.7,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.08-2.03(\mathrm{~m}, 0 \mathrm{H})$, $2.00(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.55-1.48(\mathrm{~m}, 2 \mathrm{H})$, $1.44(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{td}, J=8.0,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.42-1.32$ (m , $2 \mathrm{H}), 1.19$ (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.06$ (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.03$ (td, $J=8.0$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89-0.83(\mathrm{~m}, 1 \mathrm{H}), 0.69(\mathrm{td}, J=8.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}),-0.09$ $(q, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.6,167.7,164.7$, 163.7, 147.4, 132.6, 125.7, 112.7, 104.1, 99.9, 78.0, 75.7, 72.7, 72.0, $55.6,44.9,39.6,39.2,38.5,37.8,36.9,36.0,31.8,31.2,30.1,19.4,16.3$, 16.1, 14.4, 14.3, 13.4, 11.3, 10.1, 8.8. HRMS (ESI/Q-TOF): m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{54} \mathrm{NO}_{8}$: $604.3844[\mathrm{M}+\mathrm{H}]^{+}$; found 604.3849. $[\alpha]_{20}^{\mathrm{D}}=+3.46 \quad(c=$ 0.09, DCM).

(2R,3S)-N-((5R,6R,7S,E)-7-((3S,8S,9R,Z)-9,14-Dihydroxy-12-meth-oxy-8-methyl-1-oxo-3,4,7,8,9,10-hexahydro-1H-

benzo[c][1]oxacyclododecin-3-yl)-6-hydroxy-5-methyloct-2-en-1-yl)-3-hydroxy-2-methylhexanamide (16): ${ }^{1} \mathrm{H}$ NMR ($800 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.49(\mathrm{~s}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.85$ (t, J=5.8 Hz, 1H), 5.59 (dddt, $J=15.1,7.9,7.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.52$ (ddd, $J=12.8,10.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.49-5.39(\mathrm{~m}, 2 \mathrm{H}), 5.27$ (ddd, $J=11.7,4.9$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.79-$ $3.75(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=11.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.45$ (ddd, J=8.6, 6.0, $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.32 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.89-2.83$ (m, $1 \mathrm{H}), 2.33(\mathrm{q}, J=14.3,12.2,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{qd}, J=7.1,2.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.27-2.23$ (m, 1H), 2.19 (d, $J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.03$ (ddt, $J=8.9,6.6$, $3.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.92$ (ddd, $J=13.9,8.0,7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.68-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.48$ (ddd, $J=8.0,5.2$, $1.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.35-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($201 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=176.3,171.5,165.7,163.6,143.6,132.4,131.7,127.6,125.5,112.3$, 104.9, 99.7, 77.8, 75.9, 73.1, 71.7, 55.4, 44.7, 41.1, 39.1, 38.2, 36.8, $36.7,35.9,35.7,31.6,29.9,19.2,16.1,14.3,14.0,11.1,8.5$. HRMS (ESI/ Q-TOF): m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{NO}_{8}$: $590.3687[\mathrm{M}+\mathrm{H}]^{+}$; found 590.3682. $[\alpha]_{20}^{\mathrm{D}}=+4.62(c=0.22, \mathrm{DCM})$.

Author Contributions

X. D. synthesized and purified cruentaren A and its analogues, characterized purified analogues by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}, \mathrm{COSY}, \mathrm{HSQC}, \mathrm{HMBC}$, NOESY NMRs to identify the regioselective and stereoselective functionalization. H.G. purified ATP synthase, performed activity assays with the purified enzyme, performed the high-resolution cryo-EM structural studies, analyzed the resulting structures, and prepared supplementary figures. L. A. and C. S. performed the antiproliferative assays and the Western Blot analysis. T. D. and B. A.P. provided cruentaren A and early-stage intermediates. All authors contributed to the data analysis. X. D. and H. G. wrote the manuscript. J. L. R. coordinated the structural studies and advised on cryoEM. M. C., J. L. R., B. S. J. B supervised the project.

Data Availability

Supplementary figures and table, materials and methods, experimental procedures, and characterization of chemical products including LCMS traces and NMR (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and 2 D) spectra are given in the Supporting Information. CryoEM maps of yeast ATP synthase with 100 and $25 \mu \mathrm{M}$ cruentaren A have been deposited in the Electron Microscopy Data Bank under accession numbers EMD-28818 and EMD-28819, respectively. The atomic model has been deposited in the Protein Data Bank under accession code 8F2K.

Acknowledgements

This work was supported by the National Institutes of Health [grant no. CA216919] and the Canadian Institutes of Health Research [grant no. PJT162186]. This project was supported, in part, with support from the Indiana Clinical and Translational Sciences Institute (CTSI) funded, in part by grant number UL1TR002529 from the National Institutes of Health, National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award. X. D. was supported by an Indiana CTSI Postdoctoral Challenge. H. G. was supported by an Ontario Graduate Scholarship for International Students. J. L. R. was supported by the Canada Research Chairs program. NMR data was collected at the Magnetic Resonance Research Center at the University of Notre Dame. CyroEM data was collected at the Toronto High-Resolution High-Throughput cryoEM facility, supported by the Canada Foundation for Innovation and Ontario Research Fund. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available in the supplementary material of this article.

Keywords: ATP synthase - cruentaren A - cryoEM structure late-stage modification \cdot natural product
[1] a) L. Jundt, H. Steinmetz, P. Luger, M. Weber, B. Kunze, H. Reichenbach, G. Höfle, Eur. J. Org. Chem. 2006, 2006, 5036; b) B. Kunze, F. Sasse, H. Wieczorek, M. Huss, FEBS Lett. 2007, 581, 3523; c) B. Kunze, H. Steinmetz, G. Höfle, M. Huss, H. Wieczorek, H. Reichenbach, J. Antibiot. 2006, 59, 664.
[2] J. A. Hall, B. R. Kusuma, G. E. Brandt, B. S. Blagg, ACS Chem. Biol. 2014, 9, 976.
[3] P. M. M. Shelton, T. M. Kapoor, Nat. Chem. Biol. 2022, 18, 355.
[4] a) J. Song, N. Pfanner, T. Becker, Proc. Natl. Acad. Sci. USA 2018, 115, 2850; b) J. He, H. C. Ford, J. Carroll, C. Douglas, E. Gonzales, S. Ding, I. M. Fearnley, J. E. Walker, Proc. Natl. Acad. Sci. USA 2018, 115, 2988.
[5] a) M. Bergeaud, L. Mathieu, A. Guillaume, U. Moll, B. Mignotte, N. Le Floch, J.-L. Vayssière, V. Rincheval, Cell Cycle 2013, 12, 2781; b) S. Yan, F. Du, L. Wu, Z. Zhang, C. Zhong, Q. Yu, Y. Wang, L.-F. Lue, D. G. Walker, J. T. Douglas, S. S. Yan, Diabetes 2016, 65, 3482; c) M. H. R. Ludtmann, P. R. Angelova, M. H. Horrocks, M. L. Choi, M. Rodrigues, A. Y. Baev, A. V. Berezhnov, Z. Yao, D. Little, B. Banushi, A. S. Al-Menhali, R.T. Ranasinghe, D. R. Whiten, R. Yapom, K. S. Dolt, M. J. Devine, P. Gissen, T. Kunath, M. Jaganjac, E. V. Pavlov, D. Klenerman, A. Y. Abramov, S. Gandhi, Nat. Commun. 2018, 9, 2293; d) A. E. Papathanassiu, N.J. MacDonald, A. Bencsura, H. A. Vu, Biochem. Biophys. Res. Commun. 2006 345, 419.
[6] a) S. K. Wandinger, K. Richter, J. Buchner, J. Biol. Chem. 2008, 283, 18473; b) C. Prodromou, Curr. Top. Med. Chem. 2009, 9, 1352; c) A. Kamal, L. Thao, J. Sensintaffar, L. Zhang, M. F. Boehm, L. C. Fritz, F. J. Burrows, Nature 2003, 425, 407.
[7] X. Dou, B. A. Patel, T. D'Amico, C. Subramanian, E. Cousineau, Y. Yi, M. Cohen, B. S. J. Blagg, J. Org. Chem. 2022, 87, 9940.
[8] J. P. Abrahams, A. G. W. Leslie, R. Lutter, J. E. Walker, Nature 1994, 370, 621.
[9] a) M. Bindl, L. Jean, J. Herrmann, R. Muller, A. Furstner, Chem. Eur. J. 2009, 15, 12310; b) V. V. Vintonyak, M. Cala, F. Lay, B. Kunze, F. Sasse, M. E. Maier, Chem. Eur. J. 2008, 14, 3709.
[10] D. B. Dess, J. C. Martin, J. Org. Chem. 1983, 48, 4155.
[11] L. A. Carpino, B. J. Cohen, K. E. Stephens, S. Y. Sadat-Aalaee, J. H. Tien, D. C. Langridge, J. Org. Chem. 1986, 51, 3732.
[12] L. A. Carpino, G. Y. Han, J. Org. Chem. 1972, 37, 3404.
[13] K. Oyama, T. Kondo, Org. Lett. 2003, 5, 209.
[14] T. J. Donohoe, K. Blades, P. R. Moore, M. J. Waring, J. J. Winter, M. Helliwell, N. J. Newcombe, G. Stemp, J. Org. Chem. 2002, 67, 7946.
[15] F. Song, S. Fidanze, A. B. Benowitz, Y. Kishi, Tetrahedron 2007, 63, 5739.
[16] V. VanRheenen, R. C. Kelly, D. Y. Cha, Tetrahedron Lett. 1976, 17, 1973.
[17] S. E. Denmark, J. P. Edwards, J. Org. Chem. 1991, 56, 6974.
[18] J. Yu, M. J. Gaunt, J. B. Spencer, J. Org. Chem. 2002, 67, 4627.
[19] a) B. Yucel, M. Sonmez, Hematology 2018, 23, 330; b) C. T. Hensley, B. Faubert, Q. Yuan, N. Lev-Cohain, E. Jin, J. Kim, L. Jiang, B. Ko, R. Skelton, L. Loudat, M. Wodzak, C. Klimko, E. McMillan, Y. Butt, M. Ni, D. Oliver, J. Torrealba, C. R. Malloy, K. Kernstine, R. E. Lenkinski, R. J. DeBerardinis, Cell 2016, 164, 681; c) B. Faubert, K. Y. Li, L. Cai, C. T. Hensley, J. Kim, L. G. Zacharias, C. Yang, Q. N. Do, S. Doucette, D. Burguete, H. Li, G. Huet, Q. Yuan, T. Wigal, Y. Butt, M. Ni, J. Torrealba, D. Oliver, R. E. Lenkinski, C. R. Malloy, J. W. Wachsmann, J. D. Young, K. Kernstine, R. J. DeBerardinis, Cell 2017, 171, 358.
[20] C. Erlichman, Expert Opin. Invest. Drugs 2009, 18, 861.
[21] J. Zou, Y. Guo, T. Guettouche, D. F. Smith, R. Voellmy, Cell 1998, 94, 471.
[22] Y. Xu, D. Xue, A. Bankhead, 3rd, N. Neamati, J. Med. Chem. 2020, 63, 14276.
[23] a) A. G. Atanasov, S. B. Zotchev, V. M. Dirsch, C. T. Supuran, Nat. Rev. Drug Discovery 2021, 20, 200; b) B. Hong, T. Luo, X. Lei, ACS Cent. Sci. 2020, 6, 622.

[^0]
[^0]: Manuscript received: February 6, 2023
 Accepted manuscript online: March 3, 2023
 Version of record online: April 13, 2023

