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1 Introduction

Exoskeletons are wearable devices that provide external forces to limbs, with
goals of restoring, supporting, or enhancing human motion [1]. Depending on
the type of exoskeleton, the assistive torques they provide can help people lift
heavier objects, walk longer distances, or recover from injuries.

Ankle exoskeletons in particular, such as the Dephy ExoBoot shown in Fig-
ure 1, plantarflex the ankle to propel the wearer forward. Some applications of
these include walking [2], running [3], and jumping [4]. They aim to reduce the
metabolic cost of locomotion, which is the amount of energy required to move.
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Figure 1: The Dephy ExoBoot, a powered ankle exoskeleton. The motor pulls
on the heel of the boot to use the foot as a lever to propel the body forward
during locomotion. Adapted from [5].

While these robots have great potential to serve society, how we control
them is a difficult challenge. For ankle exoskeletons specifically, they are typi-
cally tuned for a specific task type, such as walking, running, or jumping, and
switching between tasks can be difficult [1]. Additionally, the exact timing of
the correct amount of torque is critical to optimally support the wearer. At
best, mistimed torques can decrease the system’s overall efficiency, but at worst



could cause the user to fall and injure themselves. Before we can see ankle ex-
oskeletons used throughout our lives, we must research methods to safely control
them.

One approach to this problem presented by Pridham and Stirling is an ankle
exoskeleton control algorithm that uses real-time analysis of soleus muscle ar-
chitecture [6]. As shown in Figure 2, the soleus is a muscle located in the back
of the calf beneath the gastrocnemius. This muscle is responsible for plantar
flexion, or toe pointing, which is the action taken to push the toe off of the
ground to propel the body forward.
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Figure 2: The location of the soleus in the calf. Adapted from [7].

The key soleus features of interest are fascicles and aponeuroses, shown in
Figure 3. Fascicles are strands composed of muscle fibers and are, on average,
42mm long [8]. They contract according to signals coming from the nervous
system. In [9], they describe a model that relates fascicle length and velocity to
the energy used within the muscle. The exoskeleton control algorithm previously
mentioned uses this model to actuate ankle exoskeletons alongside energy usage
in the soleus. To implement this control algorithm, we must measure the lengths
and velocities of these fascicles in real-time. This is an open area of research
and is the focus of this project.

Figure 3: The soleus imaged using ultrasound technology. Aponeuroses are
the bold horizontal lines, while fascicles are the dark spaces between the light
diagonal lines. Adapted from [10].



1.1 Automated Fascicle Tracking

Fascicle tracking is done via analyzing ultrasound images. Ultrasound sensors
are placed on the back of each calf muscle and directed towards the bone. This
provides a cross-section of the soleus and enables the use of computer vision.
The ultrasound sensors would be integrated into the human-exoskeleton system,
and the high-level control algorithm would operate as follows:

1. The ultrasound sensor takes one scan of the calf muscle.

2. An on-board computer retrieves the scan and uses an algorithm to measure
the fascicle lengths and velocities.

3. The computer inputs the fascicle information into the exoskeleton control
algorithm, producing a torque.

4. The exoskeleton actuates with that torque until the next ultrasound scan.

After an extensive literature review to learn about how fascicle tracking
has been performed in the past, we identified three common fascicle tracking
algorithm archetypes: heuristics, affine flow, and deep learning.

1.1.1 Heuristic approaches

We classified heuristic algorithms as using a set of defined rules to enhance
and interpret image features. These rules can involve blurring an image to
reduce noise, increasing contrast via histogram equalization [11], highlighting
edges using Canny edge detection [12], or detecting lines using the Hough Line
Detector [13]. These rules are discrete steps in a computer vision pipeline, where
the output of one step becomes the input to the next.

Seynnes et al. created a heuristic algorithm, Simple Muscle Architecture
Analysis (SMA), that uses these steps to measure muscle fascicles in the gas-
trocnemius [14]. While the level of agreement between hand measured fascicles
and their algorithm was within 95%, they reported their algorithm taking 8.4
seconds to process one frame. The researchers also advised users of SMA to care-
fully tune several processing parameters for every ultrasound sample, indicating
their algorithm is sensitive to changes in the input images.

The measurements produced by heuristic fascicle tracking algorithms can
“jitter”. During walking, the ultrasound sensor may move slightly on the surface
of skin, which can change the fascicles visible in the image. Additionally, changes
in the muscle while it contracts causes certain areas to become brighter or
darker. This means the heuristic could measure one particular fascicle in one
frame, then jump to a completely different fascicle in the next frame, producing
very inconsistent length measurements.

As demonstrated by the SMA algorithm, heuristics can be susceptible to
failure when there are changes in image contrast or brightness. Each step in a
heuristic has a set of adjustable parameters, such as how much to blur, how high
a brightness threshold cutoff must be, or how many points must fall along a line



to be considered a fascicle. If these parameters are tuned too finely to a certain
set of images, it may incorrectly weed out fascicles, causing false negatives. If
the parameters are not strict enough, they may misclassify unwanted image
features as fascicles, leading to false positives. Developing a universal heuristic
is a difficult balance between sensitivity and specificity.

1.1.2 Affine flow approaches

Affine flow, short for affine optical flow, uses information about how the image
changes to estimate where key points, such as fascicle endpoints, have likely
moved [15]. It is based on optical flow, which produces motion estimates for
each pixel in the frame. Since the endpoints of fascicles frequently leave the
image frame, developers fit an affine transformation matrix to generalize the
overall motion estimates of the image, allowing for extrapolation beyond the
image frame.

The affine flow approach was explored in [16], and was later implemented
into a software package named UltraTrack [17]. It features a graphical user in-
terface where users load a prerecorded ultrasound video, select an initial fascicle
by plotting its endpoints in the first video frame, and let the software estimate
the motion of the endpoints for the rest of the video. Researchers in [18] demon-
strated that UltraTrack produces measurements with very similar reliability and
accuracy to professional examiners. In their study, they used the coefficient of
multiple determination (CMD) between three examiners and UltraTrack to as-
sess reliability, which was greater than 0.98 in all test cases after correcting for
differing initial fascicle selection. To assess accuracy, they used the coefficient
of multiple correlation (CMC), which was 0.94 after the same correction.

This algorithm has its own major fault: drift. Because the algorithm assesses
overall motion and gradually changes its estimate of where the fascicle endpoints
are, any error causes the endpoints to diverge from their true positions over
time. UltraTrack mitigates drift by allowing users to select key-frames, which
are frames in which the fascicles should be of the same length, such as each time
the heel of the foot strikes the ground. Unfortunately, this exact procedure relies
on manual detection of key-frames and assumes cyclic motion, like walking or
running. Thus, it is infeasible for real-time and general use, so alternative drift-
reduction strategies must be employed.

1.1.3 Deep learning approaches

Deep learning approaches involve collecting large amounts of hand-measured ul-
trasound videos, training a carefully crafted machine learning architecture, and
using the resulting trained model to measure fascicle lengths in live ultrasound
feed.

Rosa et al. created a proof-of-concept model that demonstrated its potential
and published the recorded ultrasound data for public use [10]. When testing
their model on ultrasound videos of people walking, their model correlated with
measurements from UltraTrack with a Pearson’s correlation of r = 0.47, which



they classified as a “moderate” correlation. They stated that while these initial
results are promising for real-time use in exoskeleton control, more work must
be done to determine how accurate a model must be to support real-time use.
Deep learning methods are not typically robust to changes in the input data,
such as using ultrasound videos from a person who was not involved in the
model training phase, which can limit their generalizability.

2 Methods

Based on the literature, we explored combining a heuristic with affine flow to
balance the strengths and weaknesses of both approaches. Because affine flow
has been validated against hand labeled measurements [18], we used it as the
backbone of our algorithm. To mitigate vertical drift, we used a heuristic to
constrain the fascicle endpoint locations to the aponeuroses.

Our algorithm is represented graphically in Figure 4. It begins with initial-
izing a fascicle, which we did manually. The fascicle was defined using two end-
points terminating at the aponeuroses and its length was measured by calculat-
ing the straight-line distance between the endpoints. From there, the fascicle’s
endpoints are moved using affine flow. The estimated endpoint positions may
drift from their true positions, so the next steps are to detect the aponeuroses
with a heuristic and to shift the endpoint positions back to the aponeuroses.
The video progresses to the next frame and the algorithm repeats starting at
the affine flow update step.
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Figure 4: The high-level structure of our algorithm that aims to eliminate drift
from affine flow with a constraint provided by a heuristic algorithm.

2.1 Endpoint constraint algorithms

For this project, we developed two endpoint constraint types: the line constraint,
and the line region constraint. Both begin with using a heuristic to detect
both of the aponeuroses in an ultrasound image. The heuristic creates several
aponeurosis line proposals using the Hough Line Detector and selects the median
lines as the best representations. From there, after the fascicle endpoint position



is updated using affine flow, the algorithm calculates how far the endpoints have

moved from their respective aponeuroses. How each one handles that distance
differs:

None: As a control, the algorithm makes no adjustments to the fascicle end-
point locations, allowing affine flow to drift without corrections.

Line constraint: Each endpoint is moved to the closest point on the lines
representing their respective aponeuroses, shown in Figure 5

Update Detect Constrain

Figure 5: Visualization of the line constraint algorithm. Adapted from [10].

Line region constraint: Each endpoint is allowed to drift within a 10 pixel
region about their respective aponeurosis line. If the endpoint has moved outside
of that region, it is moved back into the region.

Update Detect Constrain

Figure 6: Visualization of the line region constraint algorithm. Adapted from
[10].

2.2 Data

To test our algorithm, we used the data gathered in [10]. We selected two 60FPS
ultrasound videos of subjects walking for approximately 24 seconds. The two
videos were selected to contrast performance; one video already had little drift
in affine flow, while the other was difficult to assess even with preexisting fascicle
tracking tools. These were named Video 1 and Video 2, respectively.



2.3 Comparison metrics

We selected processing speed and net fascicle length drift as our performance
metrics. The processing speed, measured in cycles per second (Hz), serves to
demonstrate real-time algorithm efficacy. If the processing speed is too slow, the
exoskeleton user may be negatively impacted, leading to the issues previously
mentioned. We defined net drift as the difference between the minimum fascicle
lengths in the first and last gait cycles. We used this to evaluate the effectiveness
of our drift mitigation strategies.

3 Results

Table 1 contains the numerical results of running our three algorithms on the
first selected video, Video 1. Figure 7 displays the fascicle length over time for
each algorithm graphically. As mentioned before, Video 1 was selected because
the affine flow algorithm already has a small drift of 2.2mm. This is useful
because we would hope our constraints can perform similarly or better. The
affine flow + line constraint algorithm successfully reduced drift to -0.5mm.
We also observe a high divergence in the affine flow + line region constraint
algorithm, as shown by its large decrease in length over time. When adding the
constraints, the FPS dropped by roughly 110Hz for Video 1.

Algorithm Cycles per Second (Hz) Drift (mm)
Affine flow 216 2.2
Affine ﬂow + line 104 0.5
constraint

Affine flow + line
region constraint

101 -35.3

Table 1: Performance and drift metrics for Video 1. The best performing algo-
rithm for each metric is in bold.

~
o

%

o
o
T

Length (mm)
N
o

30 r|—Affine flow
—— Affine flow + line constraint

Affine flow + line region constraint
i

20
0 5 10 15 20 25

Time (s)

Figure 7: Comparison of lengths over time by various algorithms on Video 1.



Table 2 contains the numerical results of running our three algorithms on
Video 2. Figure 8 displays the fascicle length over time for each algorithm
graphically. In this video, affine flow + line region constraint reduced drift the
best, followed closely behind by affine flow + line constraint. Both of these
algorithms reduced the original drift by half. Adding constraints to affine flow
dropped the FPS by about 140Hz. No algorithm diverged in this video, but no
algorithm completely reduced drift.

Algorithm Cycles per Second (Hz) Drift (mm)
Affine flow 217 17.0
Affine ﬂow + line 77 3.0
constraint

Affine flow + line

. . 73 7.2
region constraint

Table 2: Performance and drift metrics for Video 2. The best performing algo-
rithm for each metric is in bold.
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Figure 8: Comparison of lengths over time by various algorithms on Video 2

Between videos, the processing speed without constraints was similar at
216Hz and 217Hz. When we added the constraints, the processing speed was
30Hz slower in Video 2 than in Video 1. The affine flow + line constraint
algorithm performed without diverging in both videos, but was not the best at
reducing drift in Video 2.

4 Discussion

We expected the processing speed to drop when adding constraints. Without
constraints, the algorithm must only execute the affine flow procedure without
any of the heuristic steps. However, we did not expect to see a drop in frame
rate in constraint algorithms between the two videos. This may be explained
by the brightness of the aponeuroses in each video. In Video 2, the aponeuroses



are much brighter and bolder than in Video 1. The heuristic detects many
lines using the Hough Line Detector, which finds more lines if there are more
bright points in an image. This leads to lower processing speeds because of
the extra stress placed on the line detector. This indicates that the algorithm’s
performance depends on what a human’s soleus looks like under ultrasound, so
it may work very well for people whose aponeuroses look thin, and poorly for
people with bold aponeuroses.

As shown by the affine flow + line region constraint algorithm’s drift in
Video 1, this approach to drift mitigation may not be stable in all situations.
The reason for instability is while this approach prevents endpoint drift perpen-
dicular to the aponeuroses, there is no limit to how far the endpoints can move
along the aponeuroses. In the case of Video 1, the affine flow + line region
constraint algorithm caused the endpoints to diverge. While the affine flow +
line constraint algorithm was stable in both Videos, its output may also diverge
under certain conditions because of the same limitation.

The most promising outcome is that every algorithm executed faster than the
ultrasound sensor could record (60Hz). This means if we ran similar algorithms
to detect fascicles and use that to control an exoskeleton, this procedure could
run without affecting human perception. As mentioned previously, even small
delays between a human’s action and an exoskeleton’s reaction can have negative
impacts on the user experience.

5 Limitations

While these results are promising, it is important to understand the shortcom-
ings of our algorithm and our method we used to assess it. The following section
describes these limitations of our experiment.

5.1 Accuracy Metrics

Our analysis did not include any accuracy metrics. Accuracy metrics would
assess the impact that the constraints had on the measurement output. While
the shape of the length curves over time may appear correct in Figures 7 and 8,
it is impossible to tell without comparing them to ground-truth measurements.
We had tried measuring the fascicles by hand, which took several days, but the
result would need more time and verification before it could be used. We also
looked into using UltraTrack to produce ground-truth measurements because
it has been demonstrated to produce fascicle length measurements very similar
to those of professional human examiners [18]. However, we decided against it
because UltraTrack’s underlying algorithm is affine flow. Because our algorithm
is also based on affine flow, we did not use it for comparison because we would
have compared an algorithm to itself.



5.2 Input Video Specifications

Video 1 and Video 2 were selected from the data set collected in [10] because our
algorithm could analyze both of them without making any alterations, which
is not the case for the remaining 4 videos in that data set. The aponeurosis
detection heuristic expects to find aponeuroses within specific regions because
there are several horizontal lines in the ultrasound images that the algorithm
may misclassify as aponeuroses. Limiting the aponeurosis detection to only
consider lines in specific regions prohibits people with different calf sizes from
using this algorithm. To make this algorithm usable for everyone, we must
figure out a different way of detecting aponeuroses that accommodates for the
true range of calf architectures.

5.3 Fascicle Initialization

Affine flow requires initial fascicle endpoints before it can begin estimating where
they have moved throughout the video. It is critical to accurately initialize the
fascicle, otherwise all measurements that follow will be inaccurate. This could
be done using a fascicle detecting heuristic. While the literature review and
preliminary experimentation revealed heuristics do not follow specific fascicles,
leading to jitter, they could be useful when selecting just one fascicle in the
beginning of the algorithm. If fine-tuning a heuristic proves to be a challenge,
we could instead use a pre-trained machine learning model, such as the one
publicly available in [19].

5.4 Hardware

We developed and executed this fascicle tracking algorithm on a laptop with
an Intel 8" Gen. i5 CPU and an NVIDIA GTX 1050 GPU. Unfortunately
exoskeletons must be lightweight in order to successfully reduce the metabolic
cost of using them, so a large, powerful computer would not be suitable. Power
capacity is also a limiting factor because ankle exoskeletons rely on batteries.
With these sizing considerations in mind, our algorithm will likely run on a
miniature computer, like the Intel NUC or a Raspberry Pi. When we move our
algorithm to one of these platforms, we may see a drop in the processing speed,
so we must further optimize our algorithm.

6 Lessons Learned

Throughout this project, I learned a great deal about the state of automatic
fascicle tracking. When I first was presented with this project, I thought I
would spend only about a month developing the fascicle tracking algorithm and
would move onto testing it on an exoskeleton by the end of the semester. I
had actually developed an entire heuristic algorithm over the course of one day
- the first weekend of the semester that I started this project. I thought the
rest of the project could be devoted to just improving that heuristic to reduce
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the jitter. After a few weeks of making significantly less progress than that
first day, I delved into the literature to see how this problem has been solved
before. I slowly realized that this really is an open area of research and that no
one had perfected real-time fascicle tracking. We had to re-scope this project
to focus solely on algorithm development. This was slightly disheartening to
realize at first, but ultimately it was worth taking the time to solve this problem
methodically and I'm happy with the progress that we made.

I also learned what it’s like to manage my own research project. Last sum-
mer, I worked on a research project that was led by a PhD student. I was given
clear objectives, and my work always felt like it was progressing the project. In
this capstone project, it was up to me to create my own objectives, with the
help of my advisors.

I sometimes struggled during update meetings with my advisors, where I was
asked questions that I did not completely know the answers to and I wouldn’t
know how to respond. I didn’t want to give the impression that I hadn’t learned
anything since the previous meeting, so I'd try to answer all of their questions
anyway. This created meetings that may not have been as productive as they
could have been. Eventually, I realized that ”I don’t know” is an acceptable and
necessary response sometimes. Without admitting that I didn’t have complete
understanding of the topic, I couldn’t work with my advisors as effectively to
learn. Once I started keeping closer track of my questions throughout each
week, I was well-prepared for our update meetings and would learn much more.

7 Conclusions & Future Work

In this project, we combined previous approaches of tracking soleus muscle
fascicles to control ankle exoskeletons in real-time. Our combination of affine
flow and heuristics had positive results for measuring the lengths of fascicles
in real-time from ultrasound images. In most cases with constraining affine
flow output to aponeuroses, we saw a decrease in the amount of drift from the
underlying affine flow algorithm without detrimentally decreasing the processing
speed. While these results are limited to our small sample size, they demonstrate
the potential for combining heuristic and affine flow approaches.

An improvement in future iterations could focus on the pennation angle of
the fascicles rather than their absolute positions. Pennation angle is defined as
the angle between a fascicle and the lower aponeurosis. Because fascicles lay
in roughly the same direction, the pennation angle detected in one portion of
the image should match the pennation angle in another, which could reduce the
issues caused by jitter.

Our algorithms had acceptable processing speeds on both of the ultrasound
videos that were used for testing. There was a significant difference in processing
speed across videos, so we must evaluate these algorithms on more data sets
to estimate the worst-case scenario. Moving forward to using these fascicle
measurements to control an exoskeleton, the processing speed will be critical to
ensure smooth control.
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Once we find an algorithm that can reliably and accurately measure fascicles,
we can optimize the code to boost the performance. Currently, for the sake of
modularity and testing, the algorithm repeats some procedures like blurring the
image to reduce noise. Identifying redundant tasks would be a first step in
enhancing performance. Another approach would be to switch from Python, a
scripting language, to C++, a language that is optimized via compiling.

Finally, after we refine our fascicle tracking algorithm, we can begin testing
the control algorithm described in [6] on people. We can then begin to determine
the efficacy this new and emerging method of control. When we combine this
fascicle tracking algorithm with algorithms to read data from the ultrasound
sensor and send control data to the exoskeleton, we may find another drop
in performance due to the complexity of each of these tasks. To resolve this,
we will consider multi-threading, which allows a computer to execute multiple
tasks simultaneously. This means the computer could read ultrasound images,
process ultrasound images, and control the exoskeleton simultaneously without
each process affecting the efficiency of the others.
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