
Introduction
• Ankle exoskeletons (Fig. 1) can support walking and running in 

people, but multi-use control algorithms haven’t been perfected.
• Energy usage in calf muscle cells can be modeled with muscle 

fascicle length and velocity information and can be used to control 
ankle exoskeletons, potentially in multiple scenarios [1].

• In ultrasound image sequences, fascicles appear as dark spaces 
parallel to light diagonal lines that terminate at aponeuroses (Fig. 2).

• These images are very difficult to process because of noise, 
differences across leg architecture, and differences in image quality.

• Previous fascicle tracking attempts feature either heuristics [2], 
affine optical flow [3], or deep learning [4].

• These approaches each have their own limitations which prevent 
their use in real-time applications such as processing rate, drift, and 
image quality sensitivity.

• This project explores combining approaches and assesses their 
performance.

Methods
Challenges:
• Affine flow approaches are prone to drifting.
• Heuristic approaches can jitter, introducing large amounts of noise.
Algorithm approach: Balance strengths and weaknesses of approaches.
1. Track endpoint positions using affine flow (reduce jitter).
2. Detect aponeuroses with a heuristic, approximate them as lines.
3. Constrain affine flow output to aponeurosis lines (reduce drift).
4. Filter length output with a 4Hz low-pass Butterworth filter.
Endpoint constraints:
• Line constraint: move the endpoint to the nearest aponeurosis.
• Line region constraint: move the endpoint to the nearest 

aponeurosis if it has drifted more than 10 pixels away.
Data: We used two ultrasound videos recorded at 60FPS of people 
walking for ~24 seconds, obtained from [4].
Metrics: The following metrics were used for analysis:
• Frames per second (FPS, Hz): Processing speed, used to evaluate 

real-time feasibility.
• Drift (mm): The difference in fascicle length between the first and 

last steps when the toe pushes off the ground.

Results
• Affine flow operates faster without the constraint step in both 

videos.
• Affine flow with no constraints operates with similar processing 

speed in both videos, but the processing speed for algorithms with 
constraints is ~28FPS lower in Video 2 than in Video 1.

• The line region constraint reduces drift the most in Video 2 but 
performed the worst in Video 1.

• No algorithm completely eliminated drift in Video 2.

Discussion
• As shown by the line region constraint’s drift in Video 1, these 

constraints may not work in all situations.
• These constraints only keep the fascicle endpoints near the 

aponeuroses. They do not prevent drift along aponeuroses, which 
caused the divergence in the line region constraint in Video 1.

• The line constraint reduced drift in both videos, producing similar or 
better results than the line region constraint.

• Because no algorithm mitigated drift in Video 2, these constraints 
are likely not sufficient for general use.

• The processing speed difference in constrained algorithms indicates 
that performance depends on the video.

• All algorithms operated at a higher framerate than the speed at 
which the videos were recorded (60Hz), which is promising for real-
time exoskeleton use.

Conclusions & Future Work
• The line constraint reduced drift found in affine flow, demonstrating 

potential for future drift mitigating strategies.
• More work must be done to reduce the computational complexity 

of the algorithm, allowing use on small exoskeleton hardware.
• A large set of accurately-labeled comparison metrics would ensure 

that the output is correct and usable.
• Once a functional fascicle measurement algorithm has been 

created, we can integrate it into the untested exoskeleton control 
algorithm proposed in [1] to see its effects on wearers.
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Fig. 2: Ultrasound image of the soleus, adapted from [4].Fig. 1: Ankle exoskeleton [5]
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Limitations
Data analysis
• We did not assess the accuracy of the output against a ground truth. 

Hand-labeling is ongoing for comparison to a ground truth.
• While UltraTrack, a software for semi-automated fascicle 

measurements [6], is currently the most supported method for 
labeling data without professional examination [7], we did not use it 
for comparison because its underlying algorithm is also affine flow. 
This would have been comparing an algorithm against itself.

Exoskeleton use
• Video 1 and Video 2 were selected because the algorithms could run 

on both without alterations between them. The aponeurosis 
detection expects to find aponeuroses within a specific region, and 
if a person has calf muscles of significantly different shape or size 
from these videos, it cannot detect them.

• This algorithm depends on an initial fascicle, which was entered 
manually. For the exoskeleton control algorithm, it would be ideal 
for the initialization to be automatic.

• These algorithms ran on a laptop with an Intel 8th Gen. i5 CPU and 
an NVIDIA GTX 1050 GPU. Exoskeletons typically require lightweight 
hardware, which may not yield the same performance statistics.
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