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1. Introduction

Incremental sheet forming is a sheet metal forming technique in which sheet metal is formed into a final
workpiece through a series of small deformations in the part'. It consists of a round-tipped deforming tool
that progressively shapes a metal sheet into a final part through a series of small deformations. In some
cases, a supporting tool is used to aid the deforming tool in making these deformations. Figure 1 shows a
simple diagram of this process. Though it does take longer than a standard sheet forming process, it is
beneficial because it requires no dedicated tooling, reducing the cost per part. Therefore, it can be a good
solution for low volume sheet metal part production. However, the presence of springback, which is the
tendency of sheet metal parts to want to return to their original shapes after being deformed?, leads to
geometric inaccuracies in the final part dimensions®. These inaccuracies are more problematic with
Incremental Sheet Forming as opposed to standard sheet metal forming because Incremental Sheet
Forming involves a series of deformations that each introduce geometric inaccuracy into the part.
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Fig. 1. Diagram of incremental sheet forming process.

2. Objectives

In this project, the first goal was to construct theoretical models of two bending scenarios, namely simple
bending and simple compression. These scenarios will be outlined in more detail in the Methodology
section. After developing these models, the next focus was to validate them by constructing a test rig and
experimentally introducing and measuring spring back in each of the two scenarios. Given these
analytical and experimental results, we could then assess the accuracy of rapid-to-calculate analytical
spring back models derived from mathematical theory of plasticity. Another goal was to conduct
additional experiments to investigate the effect of shear stress in reducing spring back in sheet metal
forming. The final objective was to conduct finite element simulations of the same procedures performed
in the experimental testing to determine how accurate numerical approaches can be in predicting spring
back.



3. Methodology

There were three approaches taken to model spring back in sheet metal forming. Section 3.1 describes
how theoretical models of sheet metal bending were derived. Section 3.2 describes the physical
experiments performed to quantify springback in strips of 1100 Aluminum, including equipment design
and sample preparation. Section 3.3 discusses the FEA simulations that the physical experiments could be
compared against.

3.1. Analytical Predictions
Before conducting experiments or performing finite element simulations, a theoretical framework was

developed using analytical approaches. The following subsections describe the concepts used to predict
the springback levels for each of the cases of interest, namely simple bending and simple compression.

3.1.1. Simple Bending
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Fig. 2. Stress distribution through the thickness of the part (left) and labeled full-width element (right). The coordinate system
indicated in the above diagrams will be used as the convention whenever a particular axis direction is referenced in this paper.

When a strip of aluminum is bent and thus, a moment is applied, a stress distribution develops across the
thickness of the part, as shown in Figure 2. Each incremental element of this cross-section is associated
with an internal force dF, = o, wdz with the w dz part of that expression representing the area on which
the stress, o,, acts. Multiplying the internal force associated with an element by the lever arm z for the
element results in that element’s contribution to the overall applied bending moment. This contribution
can be expressed as dM = zdF, = zo,wdz. The overall bending moment is thus given by Equation 1°.
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Because the part contains both an elastic region and plastic region, the expression for o differs between
the two regions. Equation 2 provides the expression for o in the elastic region. To develop an expression
for o in the plastic region, tensile testing was conducted on Aluminum 1100, the same material that will

be used for experimental testing, and least squares fitting was employed to determine the most accurate
strain hardening approximation, which proved to be the Ludwik model. The tensile testing will be



discussed in more detail in Section 3.3.1. To simplify the calculations, the plane strain assumption was
used. This approximation states that the strain of the material in one direction, the y direction in the case
of Figure 1, is zero, which could be made because the widths w of the strips being analyzed were
significantly greater than their thicknesses 4. Given this assumption, the Ludwik approximation could be
written as Equation 3.
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In the above two equations, £’ denotes the plane strain Young’s Modulus, € is the strain, Y is the yield

strength, and » and m are parameters of the Ludwik strain hardening fit. The —~ in Equation 3 arose from
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the plane strain assumption. Equation 4 gives an expression for the strain &.
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where r is the radius of curvature of the bent part. Equation 1 could be written as the summation of two
integrals, one for the elastic region and one for the plastic region, as shown below in Equation 5. Equation
4 was also substituted in for the strains.
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An expression for the cutoff point, z,,,,., between the elastic and plastic regions could be determined by
noting that when z = z,,.,;,, c_= Y. Combining this statement with Equations 2 and 4 led to the following

expression for z, ;..
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Solving Equation 5 and simplifying resulted in Equation 7 below for the applied moment.
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The plane strain Young’s Modulus is given by the following equation.

where E is the material’s Young’s Modulus and v is the material’s Poisson’s ratio. The elastic stresses in
the part generate a springback moment that acts in the opposite direction as the applied moment. When
the part is released, it unloads elastically, so the change of stress is given by the equation below.
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In Equation 9, »’ represents the radius of the part after springback. Using the same relationship in

Equation 1, the springback moment, or change of bending moment, could be written as the following
equation.
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After springback, an equilibrium has been established with the total bending moment equal to zero. Thus,

applicd AM = 0. By setting the applied moment equation equal to the springback moment equation,

the following relationship between loaded radius and unloaded radius could be established.
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With the above relationship, the radius of curvature of a sheet of metal after springback could be predicted
based on its radius of curvature before springback, after it has been loaded.

3.1.2. Simple Compression

In simple bending, there was no stress in the z direction. The only stress in simple bending arose when the
metal strip was bent, which created stresses in the x direction. In the simple compression scenario,
however, there was a compressive stress o, in the loading phase. This compression stress contributed to

the bending stress in the x direction, altering Equation 3 to the following equation.

=%(Y + nem) +to [12]

x, plastic

This equation resulted in the following equation for the applied moment.
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By again equating the spring back moment to the applied moment, an expression for the unloaded radius
of curvature in terms of the radius of curvature could be derived, as shown below.
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3.2.  Physical Experiments

A test rig was constructed that would apply bends to strips of 1100 Aluminum and allow for the strips’
radii of curvature to be measured. These measurements were used to quantify the levels of springback for
strips of aluminum under various conditions. Three primary testing conditions were performed with the
rig. The first two conditions directly corresponded to the analytical models developed and discussed in the
previous section, namely simple bending and simple compression. A third case was also tested
experimentally. In this condition, shear stress was introduced to the aluminum strips during bending. Each
of these testing conditions will be discussed in more detail within the following subsections.



3.2.1. Equipment Design

Strips of aluminum were fed between two pairs of rollers. Each roller within a pair could be rotated about
the same axis and a rotation of one pair of rollers resulted in the same magnitude of rotation in the other
pair of rollers because they were connected through a set of gears. When one of these roller sets was
rotated, and thus the other pair in the opposite direction, a bend would be imparted in the strip of
aluminum. The degree of bending depended on the amount of rotation performed by the rollers. The
entire rig assembly is visible in Figure 3.
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Fig. 3. Diagram of experimental test rig

For simple compression tests, a female die was mounted to the base plate of the rig and a matching male
die was bolted into a support structure directly above the female die. Each die consisted of a 304 stainless
steel bar with a certain radius arc machined into one end of the bar. Three pairs of compression dies were
created: one with a five-inch arc, one with a six-inch arc, and one with a seven-inch arc. Figure 4 shows
one of these die pairs.

Fig. 4. Lower female standard compression die (left) and upper male standard compression die (right).



The male die could be moved up and down via a 60-turn hydraulic press to apply compressive force to the

strips of aluminum. To measure these compressive forces, a load cell was contained in a steel housing

directly above the male die. For each test, the aluminum strip was inserted between the rollers, the rollers
were rotated to bend the aluminum strips until they made contact with the female, or lower, die, and the

upper male die was lowered until it applied a certain compressive force to the aluminum strip. As the

male die applied force to the aluminum strips, the load cell was compressed, allowing it to record the
maximum force of compression that it experienced in that test. After compression, the upper die was

raised to its original height and the rollers were manually rotated backwards enough for the strips of
aluminum to spring back. Figure 5 shows the initial state of the rollers and aluminum strip after the strip

has just been inserted between the rollers while Figure 6 demonstrates how the compression experiments

were conducted.
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Fig 5. Diagram of rollers with table showing the corresponding values in compression experiments.
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Fig 6. Diagram showing simple compression experimental procedure. Aluminum strip inserted between rollers (left), strip is bent

as the rollers rotate and the upper die is lowered to apply compressive force (middle), and upper die is raised, allowing the strip to

spring back.

Shear testing was conducted in a similar fashion to the simple compression testing. Shear stresses are

created when a torque is applied to a part. To create this torque, a specialized pair of compression dies

was machined with a 15° angle that would cause the aluminum strips to twist, and therefore become

torqued, as they were compressed. One shear die pair with a six-inch arc was created for this phase of the
testing, which is shown in Figure 7 along with the angle machined into the dies.
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Fig. 7. Side view of lower female shear die with angle of die labeled (left), isometric view of lower female shear die (middle),
and isometric view of upper male shear die (right).

To conduct each of these shear stress experiments, the aluminum strip was inserted between the rollers,
the rollers were rotated to bend the aluminum strips until they contacted the female shear die, and the
upper die was lowered until it applied a certain compressive force to the aluminum strip. The upper male
die was then raised, and the strip of aluminum was unloaded to measure its spring back.

To perform simple bending tests that did not involve compression, the lower die was removed from the
base plate and a pulley was attached to one set of rollers. When a specific weight was added to the bucket
attached to this pulley, a corresponding moment would be created that would rotate the rollers by an
amount dependent upon how much weight was in the bucket. For separate tests, various weights were
used to create different bending moments, resulting in strips that were bent to various radii. To unload the
strips, the weights were removed from the bucket and the rollers were rotated backwards to allow the
strips to spring back.

3.2.2. Sample Preparation

Sheets of 1100 Aluminum were purchased for experimental testing and a power shear was used to cut the
sheets into strips, each with a width of 12 mm. The sheets were cut such that the grains in the aluminum
were always parallel to the long lengths of the strips.

3.2.3. Evaluating Springback

To quantify the level of spring back for each strip of sheet metal that underwent either a simple bending,
simple compression, or shear test, a camera was mounted next to the test rig such that the curvature of the
strips was visible. Measuring the radius of curvature of a strip required taking a picture of the strip with
the camera, an example of which is shown in Figure 8.



Fig. 8. State of aluminum strip after springback from the point of view of camera.

A MATLAB script was developed that takes a picture as input and allows the user to mark points on the
curve to be measured in that picture. The script outputs the radius of curvature. Because the aluminum
strips that underwent simple bending testing weren’t compressed between dies of specific radii, for each
test, the loaded radius of curvature needed to be measured in addition to the unloaded radius of curvature.
To accomplish this, a picture was taken in the loaded state and an additional picture was taken in the
unloaded state after the strip had experienced spring back. These pictures were then used to determine the
unloaded and loaded radii of curvature, which were used to calculate the level of spring back in that
particular test.

The loaded radius of curvature for each strip undergoing either simple compression testing or shear
testing was the same as the radius of curvature of the arc machined into the particular die pair used for
that test. Therefore, only the unloaded radius of curvature needed to be measured for simple compression
and shear tests.

3.3. Simulations

Finite element simulations were conducted using Abaqus. For simple bending and simple compression
tests, each aluminum strip was modeled as a 2D deformable body with the plane-strain assumption and
meshed using about 400 plate elements. The plane-strain assumption was valid because the thickness of
each strip was less than one sixth of the width of each strip. The strips modeled in shear tests needed to be
created as 3D deformable bodies because the geometry of the shear dies could only be created in 3D.
These strips were meshed using about 2,000 solid elements. Before Abaqus simulations were performed,
tensile tests were conducted to define the plastic material properties of the 1100 Aluminum material that
was to be used in the simulations. The coefficient of friction between the aluminum strips and the rollers
also needed to be determined. The methodologies for determining these two properties are discussed in
the following two subsections.

3.3.1. Tensile Testing

Three 1100 Aluminum specimens were cut from the same material that was used in experimental testing
using a wire EDM and pulled on an Instron with an extension rate of 0.2 mm/s. The data from these tests
was used to obtain the following flow curve in Figure 9.



160 ;
| Stress-Strain Curve
140 |' — — —0.2% Offsel Line
1 = = =l
P P
e
gl
~ 100 II
(]
('8 |
= | Name Symbol | Value
w 80T/ Young's Modulus | E Yalue
£ || - Yield Strength oy 113.8 MPa
w { 1
60 r|
o
40 -ll ;
|
|
20
1

o . . . . .
] 0.005 0.01 0.015 0.02 0025 0.03 0035 0.04 0.045 0.05
strain

Fig. 9. Stress-strain curve used to define material properties of 1100 Aluminum in Abaqus simulations. The 0.2% offset line is
also labeled. The stress at which the 0.2% offset line and stress-strain curve intersect gives the yield strength of the material,
which is documented along with the known Young’s Modulus of the material.

3.3.2. Coefficient of Friction Determination

As shown in Figure 3, the experimental setup consists of two pairs of rollers. A side view diagram of one

such pair is shown below in Figure 10.
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Fig. 10. Diagram of roller set with strip of aluminum in place between rollers (left) and forces acting on aluminum strip (right). S
is the reaction force applied by the rollers to the strip and fis the friction force between the roller and strip.

In order to determine the coefficient of friction between the aluminum strip and roller, the moments
around the center of the roller set were summed as the roller set was loaded. Before summing these

moments, the moment arms of S and f, Lg and L, respectively, were determined. These two equations are
shown below.

=4 15
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=2 [16]



where d is the distance between the center points of each roller in a set and # is the thickness of the sheet.
The angle 0 is labeled in Figure 7 and was found to be 0.603 radian. Summing the moments around the
center of the roller set produced Equation 17 for the total moment M,
loading — 2(S - Ls+ f - Lf) =— Sdsin(0) — uSh [17]

In the above equation, the friction force f'was replaced by the product of the coefficient of friction and the
force S. In unloading, the only difference in the above equation is that the direction of the friction force is
reversed, leading to the following equation for the unloading moment, M,,,ing-

unloading — 2(— S - L+ f Lf) =— Sdsin(0) + pSh [18]

Since S is constant in both Equations 17 and 18, those two equations were combined using S to form
Equation 5 below, which was rearranged to solve for u.
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The coefficient of friction was used to define interactions between the strip of aluminum and each roller
in simulation.

4. Results

The following subsections will detail the results that were obtained analytically and experimentally.
Section 4.1 will draw comparisons between the theoretical model and experimental results. Section 4.2
will discuss the effect of shear stress in reducing springback. Section 4.3 will briefly discuss the FEA
simulations that were conducted.

4.1. Theoretical Model Accuracy
After constructing theoretical models for both the simple bending and simple compression cases and

obtaining experimental data for each, the data was plotted on top of the models. Figure 11 shows the
results for simple bending.
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Fig. 11. Plot of experimental and analytical results for each of the three sheet metal thicknesses tested. The theoretical models
tended to overestimate the experimental data.



While the general trend in the theoretical models matches those found in experimental data, there are

some stark discrepancies between the two, namely that the theoretical models overestimated the
experimental data for each of the three sheet metal thicknesses tested. While not ideal, because the

primary objective was to show how analytical models could be used to predict spring back levels in sheet

metal forming, the theoretical models were “calibrated” such that they would better match the
experimental data. This was done by altering the yield used in these models. The yield strength that was
found to produce more desirable theoretical models was 86 MPa, a decrease of about 30 MPa from the
original yield strength of 113.8 MPa. The new flow curve with this yield strength is shown in Figure 12
while the updated comparison between analytical and experimental data is shown in Figure 13.
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Fig. 12. Flow curve from tensile testing showing the
original data and the “calibrated” data with 86 MPa as the

“calibrated” yield strength.
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Fig. 13. Plot of experimental and analytical results with
the theoretical models having been obtained using the

“calibrated” yield strength.

Similarly, the theoretical model for simple compression was plotted on the same set of axes as the
experimental data for simple compression. Again, before the calibration, the theoretical model

overestimated the experimental data while after calibration, the analytical and experimental data more

closely aligned. Calibration was performed the same way as in simple bending, by adjusting the yield
strength to be 86 MPa. Figures 14 and 15 show the comparison before calibration and after calibration,

respectively.
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Fig. 14. Flow curve from tensile testing showing the original
data and the “calibrated” data with 86 MPa as the “calibrated”
yield strength.

Fig. 15. Plot of experimental and analytical results with
the theoretical models having been obtained using the
“calibrated” yield strength.



4.2. Using Shear Stress to Reduce Spring Back

Experimental tests were also conducted using the specialized dies described in the Methodology section
to impart shear stress into the strips of aluminum as they were bent. These data were plotted on the same
set of axes as the simple compression tests and the results are shown below.
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Fig. 16. Plot shear data and compression data.

As shown in Figure 11, there isn’t a particularly noticeable reduction in spring back when the shear dies
were used, so this data can’t be used to conclude that shear stress, particularly shear stress in the yz
direction, will mitigate spring back in sheet metal forming.

4.3. FEA Simulations

Unfortunately, there was insufficient time to extract meaningful data from the FEA simulations. However,
these simulations did show that spring back in sheet metal forming can be modeled numerically. The
implications of this will be discussed in the next section.

5. Conclusions

The results of this project demonstrated that with appropriate calibration, analytical methods, specifically
plasticity theory, can be used to develop theoretical models that can accurately predict the level of spring
back in sheet metal forming. This entails that analytical models can provide the means to implement a
closed loop system in incremental sheet forming. This means that if a manufacturer would like to use
incremental sheet forming to bend a sheet of metal to a specified radius, for example, analytical methods
can inform the machine how much to bend the sheet such that after spring back, the resulting radius of
curvature matches that specified by the operator. While numerical methods can also perform this function,
the advantage of using analytical methods is that analytical methods are much quicker than numerical
models and have the potential to be as accurate.



To further investigate spring back, additional FEA simulations will be conducted and its results will be
compared to experimental data to determine how accurate numerical methods can be in predicting spring
back in sheet metal forming. Having the ability to predict spring back both numerically and analytically
will allow for additional analysis to be performed on the cost benefit of using numerical methods to model
spring back during an incremental sheet forming process as opposed to analytical methods. Also, the
effect of shear stress in reducing spring back will be investigated more thoroughly and theoretical models
involving shear stress will be constructed to compare against experimental data. The work completed thus
far in this project has laid the groundwork for these aspects of future investigation to be pursued.
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