

Custom Fabricated Devices To Assess Rodent Muscle Health

Joel Pingel¹ (Honors Capstone), Luke Stoneback² and Lindsey Lepley Ph.D., ATC² ¹Department of Biomedical Engineering, ²School of Kinesiology

Personal Introduction

Joel Pingel - jpingel@umich.edu

Outline

- Lab and Project Background
- Introduction
- Problems Addressed
- Methods
- Results
- Discussions and Conclusions
- Acknowledgements

Lab and Project Background

Lab and Project Background

ENGINEERING HONORS PROGRAM UNIVERSITY OF MICHIGAN [2]

Introduction

Introduction

- ACL Injury Background
- Aims of the CORL
- Capstone Focus

Problems Addressed

Problems Addressed - EMG Electrodes

- Electromyography (EMG) signal strength is a measure of muscle health
- Commercial rodent electrodes are expensive (\$305 per electrode[3]) and have great lead time (6 weeks delivery)
- Custom, biocompatible rodent EMG electrodes were needed

Example EMG signal [4]

Problems Addressed - Dynamometer Knee Orthosis

- A dynamometer is a machine that is able to measure the force and torque a muscle produces
- Quadriceps strength recovery is best quantified by measuring knee extension ^{Clinical dynamometer [5]} torque

Problems Addressed - Dynamometer Knee Orthosis

- During initial data acquisition, the rodent's leg was not stable
- A method to constrain any accessory motion was needed

Dynamometer pre-Capstone

Methods

Methods - EMG Electrodes

- Senior lab members taught a small team how to create the biocompatible electrodes
- After producing initial electrodes, a standard operating procedure to fabricate and test them were developed

Electrode materials [6]

Methods - EMG Electrodes

- To compare the custom electrodes to the commercial option, ex vivo testing was performed
- Different waveforms were sent to both electrodes and the correlation was measured

Ex vivo testing of electrodes [3]

Methods - Dynamometer Knee Orthosis

- Root cause analysis was performed to identify the problem and guide design
 - Realization of the problem
 - Background research
 - Measuring dimensions of the existing system and rodent anatomy
 - Making design recommendations

Results

Results - EMG Electrodes

- A proprietary electrode fabrication process was developed
- Using this method, nearly 100 electrodes were hand-fabricated over the course of three weeks

Results - EMG Electrodes

- Total cost per electrode: \$32.70
 - ~90% cost reduction relative to commercial alternative
- Time to produce batch of ~50: <1 week
 - Potential to produce **300 electrodes** during 6-week commercial lead time

Two of the final batches of electrodes

Results - EMG Electrodes

- Different waveforms were sent to both electrodes and the correlation was measured
- Data showed similar performance and high correlation between custom and commercial electrodes

Correlation data [3]

Results - Dynamometer Knee Orthosis

- SolidWorks design of knee orthosis to restrain undesired leg movement
 - Simple press fit clip attachment to existing system
 - Knee orthosis body to position rodent's leg for testing
 - Slots for velcro straps to immobilize lower limb

Labeled views of the final design of the knee orthosis

Results - Dynamometer Knee Orthosis

3D printed model in use

Discussion and Conclusions

Discussion and Conclusions - EMG Electrodes

- The CORL now has biocompatible electrodes to collect EMG data
- Reliable electrodes can be made on-demand, quickly, and at very lost cost to the lab
- A standard operating procedure exists to train future members of the CORL and other labs

Two of the final batches of electrodes

Discussion and Conclusions - Dynamometer Knee Orthosis

- The dynamometer can now be used to reliably collect data about the quadriceps
- This design is easily used, manufactured through 3D printing, and is readily accessible for other labs to utilize

Labeled views of the final design of the knee orthosis

Acknowledgements

Acknowledgements

- This work was supported by National Institute of Arthritis and Musculoskeletal and Skin Diseases Grant K01AR071503 (to L. K. Lepley)
- Thank you to Dr. Lindsey Lepley, Luke Stoneback, Grant Gueller, Akhil Ramesh, and the Engineering Honors Program for their support during my Capstone Project.

References

[1] Adapted from Comparative Orthopaedic Laboratory lab meeting slides
[2] Logo Provided by Engineering Honors Program with permission for use
[3] Stoneback L, Fullano GD, White MS, Naaz S, Lepley LK. Development of a low-cost biocompatible EMG electrode: metrics of performance and instructions for fabrication. In preparation.
[4] https://link.springer.com/chapter/10.1007/978-981-13-9097-5_1

[5] https://www.google.com/url?q=https://innorenew.eu/equipment/isometric -bilateral-knee-dynamometer/&sa=D&source=editors&ust=1682358241905378 &usg=AOvVaw1ke-PI7T3-tBks8PmVltRr

[6] https://www.youtube.com/watch?v=O9aJCMkGKSA

Thank You! Joel Pingel - jpingel@umich.edu