
Design of Particle Capture System for PM2.5 on a Drone

Tiger Hashikura
Faculty Advisor Xiaogan Liang

Table of Contents

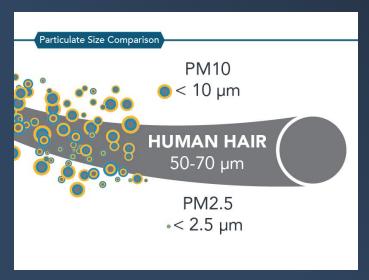
01

Background Information

Importance of Particle Analysis

COVID-19 Pandemic

Significance of gathering information about particles in air increased


Grand Challenge - Advance Health Informatics

- Necessity in technology to analyze particle concentration
- Pandemic preparedness, danger assessment of atmospheres

Particulate Matter

Fine Particulate Matter (PM_{2.5})

- Fine particles under 2.5 microns (10⁻⁶ m)
 in diameter
- Affects lung function when inhaled, and worsens medical conditions
- People with breathing and heart problems, children, and elderly particularly sensitive
- Long-term exposure linked to death

https://ww2.arb.ca.gov/resources/inhalable-particula te-matter-and-health

Past Work

Mapleseed MDP Team

 Several projects focused on improving data acquisition in atmospheres

Particle Collector Drone

 Collects and analyzes concentration of various particles, namely PM_{2.5}

Problem Statement


Problem Statement

The goal of this project:

Improve the drone's ability to collect particles in the air for analysis

- More effective than previous efforts
- Easy to operate
- Easy to integrate
- Inexpensive

Problem Statement

Inaccessibility of the Drone

→ Rover will be used

Same microscope assembly utilized

Particle Collector Rover from ENGR100

Stakeholders

Stakeholder	Proximity	Resource Providers	Beneficiaries of the Status Quo	Complementary Organizations	Beneficiaries and Customers	Opponents and Problem Makers	Affected/ Influential Bystanders
Mapleseed	Primary	Х					
Prof. Liang	Primary	Х					
Communities with PM _{2.5}	Primary				X		
Drone Manufacturers	Secondary			X			
Particle collection technology developers	Secondary				Х		
Immunocompromised people	Secondary				Х		
Elderly and children	Secondary				X		
Air Quality Researchers	Secondary						
Health Care Companies	Tertiary		X				
Government	Tertiary					X	
Hospitals	Tertiary				X		

Requirements/Specifications

Requirements and Specifications

Requirements	Specifications			
Effective	Collects maximum particles in minimum time frame			
	Creates an airtight seal for any collection mechanism			
Non-Impeding	Does not alter the device's movement by more than 10%			
11011 Impouning	Does not require power from device's power source			
Easy to Integrate	Can be integrated into different devices			
	Can be built/attached with a maximum of 2 tools			
Inexpensive	Total cost should be below \$40			
Easy to Operate	Does not add complex operating mechanism			
Lasy to Operate	People with minimal technical background can operate intuitively			

04

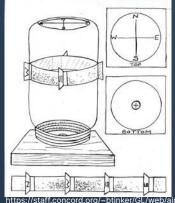
Concept Generation

Inspirations

Funnel and Movement

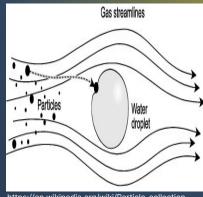
https://divediscover.whoi.edu/archives/expedition13/hottopics/images/trap1.jpg

- Wide collection range
- Reliant on movement
- Surface roughness invites decreased efficiency


Air Pump

https://s19534.pcdn.co/wp-content/uploads/ 2021/01/CP-dust-extractor.jpg

- High efficiency for particle flow
- Potential for higher cost
- Large size inhibits design


Adhesives

https://staff.concord.org/~btinker/GL/web/air/particles/airborne_particle_collectors.htm

- No mechanical energy
- Great long term collection
- Difficult to remove collected particles

Liquid Collection

https://en.wikipedia.org/wiki/Particle_collection in wet scrubbers

- Loss in microscope's analysis capability
- Difficult to integrate
- Potential for higher cost

Pugh Chart Analysis

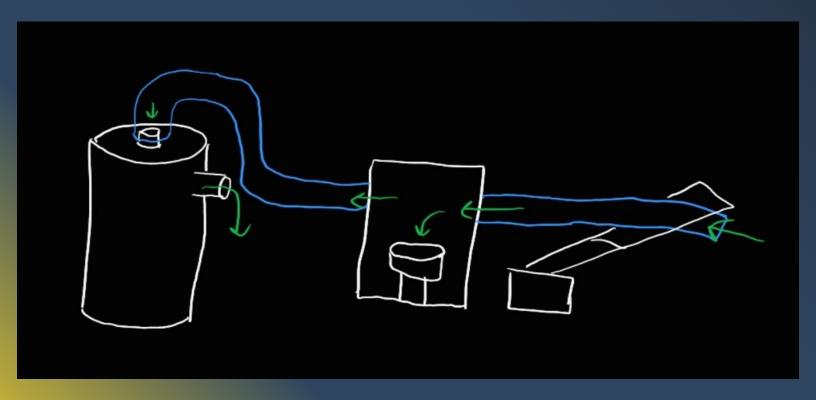
		Funnel		Air Pump		Adhesive		Liquid	
Requirement	Importance	Rating	W. Total	Rating	W. Total	Rating	W. Total	Rating	W. Total
Effective	10	1	10	4	40	0	0	3	30
Non-Impeding	8	3	24	2	16	4	32	4	32
Easy to Integrate	7	4	28	3	21	4	28	1	7
Inexpensive	5	4	20	2	10	4	20	3	15
Easy to Operate	5	4	20	4	20	4	20	2	10
Total (out of 35 x 4 = 140)	35		102		107		100		94
Relative Total (div by 140)			0.73		0.76		0.71		0.67

ı	
	4 = very good (ideal)
	3 = good
	2 = adequate
	1 = just tolerable
	0 = unsatisfactory

- Air Pump is the best option
- Seems to be marginally better than Funnel and Adhesive, however Funnel and Adhesive have very poor scores for the most important requirement

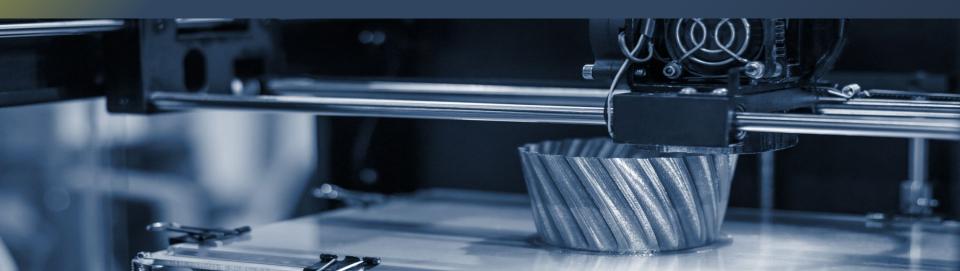
Air Pump

FLEXTAIL GEAR MAX PUMP 2020


- \$28.99, 0.33 lbs
- 2.2 kPa air pressure, 300 L/min wind speed

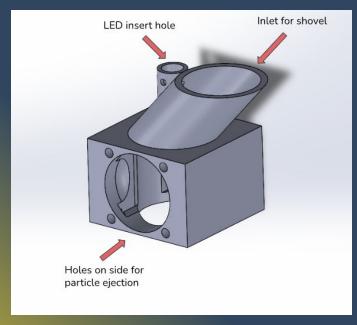
Selected as Air Pump for project

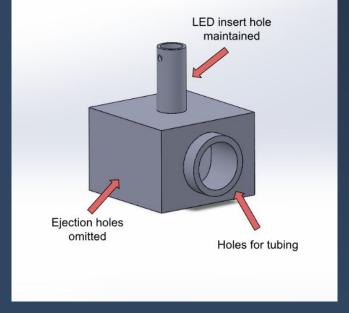
- Ease of use
- Relatively inexpensive price point
- Small size
- Helpful adaptors for inlet and outlet



Alpha Design Sketch

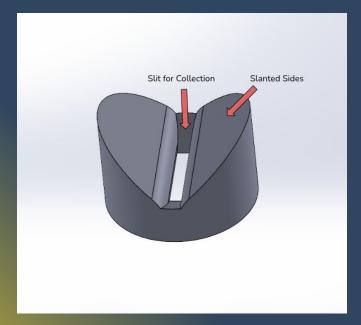
Prototyping/Testing

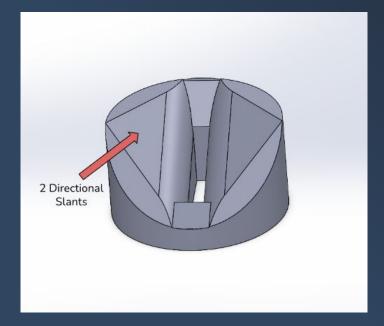

Original Microscope Design


Particle Inlet Assembly

- Includes a large inlet on top
- Concentrator inside to guide particles
- Microscope underneath concentrator
- Holes on the side for particle ejection

Microscope Component Redesigns

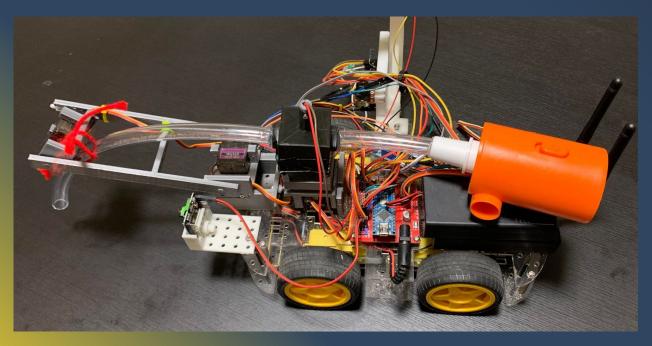




Original Housing Design

New Housing Design

Microscope Component Redesigns



Original Concentrator Design

New Concentrator Design

Prototype

- Straight tubing throughout
- Air Pump on Battery Pack
 to maintain elevation
- Air pump works as a vacuum, no particles enter

Prototype

- 3D Printed parts for ease of manufacturing
 - PLA filament selected for inexpensive price point
- Hot glue for tubes for airtight seal
- Epoxy and electrical tape used for adhering

Test Setup

Testing

Much higher collection speed

 Without air pump, particle collection required 10+ seconds

Much higher particle density

 Without air pump, averaged 5 less particles at end of trial

Limited testing conducted due to **prototype**design issues — will be addressed

Trial	Time of collection	Particle	Particles Shown
1	3 seconds	Sand	12
2	3 seconds	Sand	11
3	3 seconds	Sand	13
4	5 seconds	Sand	15
5	5 seconds	Sand	15
6	3 seconds	Salt	8
7	3 seconds	Salt	7
8	3 seconds	Salt	8
9	5 seconds	Salt	10
10	5 seconds	Salt	12

06

Future Considerations

Testing Considerations

Prototype Issues

- Tubing severely limits range of motion
- Did not include an ejection mechanism
- Better airtight seals

Further tests to be conducted

- Gathering weight as a quantifiable measure
- Smaller particles to more closely imitate PM_{2.5}

Adapting Design to Drone

Factors to consider when adapting

- Movement inhibition
- Air flow direction
- Space and weight concerns
- Remote pump operation

Summary

- COVID-19 and the prevalence of PM_{2.5} commands developments in particle analysis technology
- The implementation of Air Pumps have the potential to improve particle collection of devices
- Further development of the prototype and tests will be necessary for more informative data
- Adaptation of Air Pump design to a drone will require consideration of various factors

References

https://ww2.arb.ca.gov/resources/inhalable-particulate-matter-and-health

http://www.engineeringchallenges.org/challenges/informatics.aspx

https://www.epa.gov/pm-pollution

https://divediscover.whoi.edu/archives/expedition13/hottopics/images/trap1.jpg

https://s19534.pcdn.co/wp-content/uploads/2021/01/CP-dust-extractor.jpg

https://staff.concord.org/~btinker/GL/web/air/particles/airborne_particle_collectors.htm

https://en.wikipedia.org/wiki/Particle_collection_in_wet_scrubbers