Reconstructing and Forecasting the Water Balance of Lake Victoria
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Abstract Study Area

Lake Victoria is one of the largest freshwater lakes in the world and serves as a critical
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' i—j Figure 1. Map of Lake Victoria and its basin. Main tributaries are included along with the dam at Jinja. It’s main tributary,
the Kagera River, comes in from the west side of the lake (from Vanderkelen, 2018).

Figure 4. Model results with water balance component observations from Lake Victoria 2008-2018

Water Balance Components (all representing monthly totals, in
mm over water su rface) Data Model results are expressed as a 95% confidence interval for each component at each

month. Model ranges are plotted on top of the observations, represented by the grey bar

P = Over-lake precipitation = —— ERA5 | ' CRUTS | Nicholson Avg | | o (Fig 4). In this model run, we were able to keep our uncertainty in the change in storage,
E =  Over-lake evaporation E |7 CLE /\MERRAZ ﬂ/\ RS shown in the bottom row, to around +20mm.
o AN A /) \ -
: : © ~ KA A Ve T, - .
R = Lateral tributary lake inflow (runoff) > PR AR A M s NI AAR \ VA9 ~ NS . =
. e | | | | | | | | | | | - 2 < w = 6 months (inference rolling window) After we run the
Q = Outflow to Victoria Nile through dam S model we want to
: 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 ~ £ S ssess the fidelity of
3 - Model error term Figure 3. All evaporation datasets graphed for 2008-2018. These datasets are used to generate the likelihood functions and E = T _ y .
.. . . . . . . prior distributions. Similar datasets were compiled for the other water balance components. ~ 9 1 o -/W\,WV‘\N\/N\MM/\/\/\JJ\/\JL/ our estimates relative
Data Assimilation (Bayesian likelihood functions and priors) 3 £ ) 1 o diEnEes
o1 17 L Table 1. Summary of datasets used to construct likelihood functions _§ o) S o inlake storage by using
yp yR yE ) E . | | | | | | | | | | L S )
veb | vzl |vE Variable Dataset Source Dates Used £ _© ournew estimates to
wavl | _— 5 < & VMWW\_ - simulate changes in
| Lyl |om ERAS Copernicus Climate Change Service 2009-2018 £ 5 - lake storage over 1, 6,
L — L — - — | _C 3 | g .
eLikelihood function ePrior Distribution CRUTS CEDA Archive 1650-2018 S % S _ — T T T T T T T T 3 an 12 month pe”fds-
. . . > . S we attempt to close
bt ~ NP+ Mp ey The) Nicholson Avg Yin and Nicholson, 1998 1950-2018 R the water balance for
2, . ~ N(P, + n? 72 .) _ 2 2 : :
YPp,t t T Pty TPyt m(P) = Ga(v1,v2,v3) GLEV Zenodo 1985-2018 E E - ‘ longer time periods,
. O © S
: MERRAZ2 NASA GES DISC 1980-2018 c - — T T T T T T T T we can see the
yp, ~ NP +n (1) 5 ) o 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 accuracy begin to
, , , ) o e ﬂ')
- ~ J Data Evaluation Example: Evaporation = decrease.
One-million Markov Chain Monte Carlo iterations using five parallel chains _ - Figure 5. Observed (black line) and simulated (grey 95% credible intervals) changes in
A g fivep An array of datasets was collected to represent each water balance component — evaporation lake storage over periods of 1, 6, and 12 months. Model results are presented for a
------- ;ikelif;t?otqgu?citon e MCMC samples is shown above. This time series can also be seen in the results panel, along with model rolling inference window of 6 months.
rior aistripution . . . . . . . .
—— Posterior distribution estimates sampled from the posterior distribution. Precipitation is the only component
Ty regularly measured on the lake; therefore, we make use of satellite observations for the
other components. Equations such as the Penman Equation are used to estimate evaporation Acknowled gem ents & References

from satellite observations.
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