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1. Introduction

Lake Victoria is one of the largest freshwater lakes in the world, and serves as a

critical resource to the region for energy production, the fishing industry, and agriculture.

As one of the major sources of the Nile River, fluctuations in the water level of Lake

Victoria have massive implications for the millions living in its basin and downstream.

Here, we provide a comprehensive assessment of the Lake Victoria water balance

using a combination of historical in situ data records, satellite observations, and a novel

statistical model that has previously been applied to the Laurentian Great Lakes (in

North America). More specifically, we employ this statistical model to develop historical

estimates of Lake Victoria precipitation, evaporation, outflow, and tributary inflow that

close the water balance over consecutive historical periods.



Previous studies on the lake have had limited success closing the water balance

over long periods of time due largely to the lack of regular in situ measurements for

some of the water balance components (Vanderkelen et al., 2018). A few studies have

been able to recreate the water balance accurately using historical data, but in all such

studies, one of the components was based off of observations of the other components

using the water balance equation, resulting in the closure to be a priori. While some

studies use observations for all the components, even the most comprehensive of these

could not close the balance and had to include a bias correction.

This study uses an adaptation of the Large Lakes Statistical Water Balance

Model (L2SWBM) which was developed for use on the Laurentian Great Lakes

(Gronewold et al., 2020). We assume that the change in the volume of water stored in

the lake is equivalent to the sum of volume fluxes into the lake subtracted by the fluxes

out of the lake. The proposed model uses a rolling time window (of length w, in months)

over which observed changes in lake storage (ΔV) across a w month period are

equated to the cumulative sum of water balance components over the same period.

The L2SWBM utilizes a Bayesian framework to assimilate independent

hydrological data products across Lake Victoria and subsequently infer the “true”

monthly value for each water balance component. Although these monthly values are

ultimately unknown, the L2SWBM is constrained by a traditional water balance

equation, and uses multiple data sources to develop prior and likelihood functions for

each component. Thus, the posterior estimates of the L2SWBM reconcile observed (or



simulated) values from independent data products to close the water balance of the

hydrologic system (Gronewold et al., 2020).

2. Configuring the Model

The model works best when datasets from a variety of sources are provided for

each water balance component. This allows for flexibility in the construction of the prior

distributions, and as such a majority of the time spent on this project was in finding and

assessing the fidelity of datasets as opposed to working on the model. In situ data in the

Lake Victoria basin is scarce, and the gauges that do exist are manually read and

carried back to principal stations to be logged (Sangale et al., 2005). Therefore, we

have to rely heavily on satellite data for most of the calibration, and even with these

datasets, there are still decades where the model is missing all data for a water balance

component. With that being said, the L2SWBM can simulate missing components

effectively given a strong prior, and we can adjust uncertainty inputs to accurately

represent the missing data. The following sections detail the data processing and

subsequent model configuration that was done for each component.

2.1 Precipitation

As expressed more clearly in the results below, precipitation is responsible for

around 70% of the water going into Lake Victoria (where runoff accounts for the other

30%). It has a strong seasonal cycle with two wet seasons in a year; the first happening

in the spring and the second in the fall. Precipitation is gauged at several points around

the lake, but Victoria is large enough that lake effect rainfall leads to significantly

increased precipitation over the lake compared to the shoreline gauges (Yin, Nicholson,

1998). While there exists island gauges that can occasionally capture this discrepancy,



such as the one in the northwestern Ssese Islands, records from these gauges are very

infrequent (Nicholson et al., 2021). Thus we make use of three datasets derived from

satellite observations, supplemented by data collected during Zoe Khatami’s past work

on an L2SWBM model for Victoria. These datasets are visualized below over a ten-year

period.

When creating the prior distributions for each month, we want the resulting

distribution to generally avoid values that would be completely unreasonable for the

respective component to take on during that month. Thus we want to be careful when

fitting a distribution to our data, as sometimes a normal distribution doesn’t accurately

represent it. Below we’ve created frequency charts for each month based off of one of

our precipitation datasets, the Climatic Research Unit gridded Time Series (CRUTS).

Typically, precipitation distributions lend themselves well to gamma-like distributions

(Martinez-Villalobos, Neelin, 2019), and this seems to hold true for the CRUTS one

below. A gamma distribution is fit to the data for each month to help assess its accuracy.



2.2 Evaporation

Similar to precipitation, evaporation is a major component of the water balance

responsible for around 70% of the water leaving Victoria. The seasonal cycle is much

less pronounced, to the point where some studies consider evaporation to be constant

(Vanderkelen et al., 2018). Historical studies disagree on how uncertain evaporation

estimates should be for the region, as Yin and Nicholson (1998) had it as the most

uncertain component while Vanderkelen et al. (2018) had it as the least. This

discrepancy follows from the multitude of ways to calculate the component used across

different studies, such as the Penman Equation or latent heat flux formulas.

We generated evaporation priors using a variety of satellite products that

calculate evaporation using the Penman equation. Monthly average values from Yin and

Nicholson (1998), a study which uses latent heat flux formulas, were also used. The

disagreement between evaporation datasets seen below, especially when it comes to

seasonal cycles, is significantly more than those for other components such as



precipitation. This is in part due to the sensitivity of the Penman equation to small

changes in its variables, coupled with the imprecision of satellite measurements as

opposed to in situ ones. Since evaporation also varies less than precipitation

seasonally, differences can be more pronounced in a smaller range. These datasets are

shown below, graphed during our simulation period.

Frequency charts were also created for evaporation to advise fitting prior

distributions to the data. Creating an initial guess for the prior distribution is more of an

approximation than an exact science since as the model runs and more datasets are

included, the shape of the prior distributions will adjust to accommodate them. In this

case, normal distributions fit the best, as visualized for the dataset below.

2.3 Outflow

Lake Victoria’s outlet is on the north side of the lake at the Jinja dam and

becomes one of the main sources of the Nile. Since the 1950s, outflow at the dam was



designed to mimic naturalistic flow based on an “Agreed Curve” (Sene, 2000). This was

followed until around 2000, when a second parallel dam was built to address increasing

power demands. At this point, outflow deviated from the Agreed Curve and lake levels

began dropping (Vanderkelen et al., 2018). Finally, in 2006 outflow measurements

stopped being received (likely due to political dissonance in the region) but most studies

agree that outflow continued to exceed the Agreed Curve after this period (Sutcliffe,

Petersen, 2009).

We have very little outflow data to generate priors and likelihood functions. A

dataset mirroring the Agreed Curve was provided although it’s unclear if it’s accurate to

use the dataset for the simulation period, which takes place after outflow measurements

deviated from the curve. Therefore, multiple runs of the model were conducted, some

which take into account the likelihood functions and some only the priors and other

water balance components. Two such runs can be compared below, where the gray

band indicates the model’s 95% confidence interval for outflow. For the final model run

in the results below, a version of the model was chosen where outflow likelihood

functions were not taken into account.



2.4 Runoff

The lake’s largest tributary is the Kagera River which accounts for around 30% of

the total inflow (Sutcliffe, Petersen, 2009). Since the 1970s, several tributaries have

been gauged around the basin but data for all of them is scarce and rarely available

(Yin, Nicholson, 1998). Likelihood functions for runoff are based on lognormal

distributions, which best fit the datasets.

3. Results and Discussion

Provided in this section are the results from an example run of the model. We

used a prior range of 1990-2007 with a posterior range of 2008-2018, and 4000 Markov

Chain Monte Carlo iterations across 5 parallel chains. Likelihood functions for outflow

were not taken into account, as discussed above, and range was standardized between

all components to highlight impact. All values in the components and lake storage are

measured in millimeters of lake level rise/fall. The surface area of the lake was assumed

to be constant due to its large size, as changes due to rising/falling water levels would

be insignificant.



Provided above are all the datasets for each component along with the change in

storage at the bottom. The gray bar represents a 95% confidence interval from the

model. With the components plotted next to each other, their respective influence on the

water balance is better visualized. Uncertainty in the model results was kept to around

±20mm for the lake level and components which is relatively constrained. Once we

obtain results from a run, we typically want to assess the fidelity of them and simulate

the water balance based on the estimates; this is done below.



We can assess the fidelity of our model results by taking the results and

simulating the water balance using the given estimates. We can then compare the

results of the simulation with the true change in storage to get a sense of how close the

estimates were. This was done above across a 1, 6, and 12 month simulation window.

As we attempt to simulate the water balance for longer and longer periods of time, the

model’s results begin to deviate from the truth. Over the course of this project, one of

the main goals driving many of our decisions was to both shrink the uncertainty in the

model and improve the performance of long-term simulations based on the model’s

estimates.

4. Conclusion

We have demonstrated the adapted L2SWBM model for Lake Victoria developed during

this project can decently close the water balance of the lake with limited uncertainty. A

variety of datasets were collected for each of the components that significantly



expanded upon past implementations of the model. Moving forward, we’d like to

continue to find more data and improve the long-term simulations done on results. If

possible, collecting data onsite and following up with local authorities on data availability

would be very beneficial. We should also continue to tweak how uncertainty is applied

to the different components and work toward even better simulations. If we can achieve

a model that closes the water balance decades into the future, we can provide critical

hydrological insight to the region and help local governments better adapt to the

dynamic lake.
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