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Abstract
Robots and other cyber-physical systems are held to high
standards of safety and reliability, and thus onemust be confi-
dent in the correctness of their software. Formal verification
can provide such confidence, but programming languages
that lend themselves well to verification often do not pro-
duce executable code, and languages that are executable
do not typically have precise enough formal semantics. We
present MARVeLus, a stream-based approach to combining
verification and execution in a synchronous programming
language that allows formal guarantees to be made about
implementation-level source code. We then demonstrate the
end-to-end process of developing a safe robotics applica-
tion, from modeling and verification to implementation and
execution.
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1 Introduction
Cyber-Physical Systems (CPS) are becoming increasingly
ubiquitous in modern life, and the rise of automation has led
to ever more exacting standards of reliability. From industrial
controls and avionics to robots working alongside people,
many CPS have the potential to cause significant harm or
injury if improperly designed. However, their complex inter-
actions with the environment make these some of the most
challenging systems to safely design, as testing is often not
thorough enough to cover all possible edge cases. For this
reason, formal verification is an attractive approach to ensur-
ing CPS safety, as it is able to provide rigorous guarantees
on safety given proper assumptions on the system. However,
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the thoroughness of formal verification often comes at the
cost of expressivity. Languages designed for formal verifica-
tion may be too abstract to accurately capture the behavior
of real systems [1, 41]. As a result, verification may involve
translation, which may abstract away potential bugs in the
original system or expand the trusted code base. [4, 11, 36].
On the other hand, tools that produce executable CPS often
do not have precise enough semantics for formal verification.
Thus, a single language that strives to enable CPS verifica-
tion and execution must strike a balance between precision
for the former and expressivity for the latter.

We present a new language MARVeLus (Method for Auto-
matedRefinement-type Verification of Lustre), an extension
of the synchronous programming language Zélus [8] de-
signed with this goal in mind, primarily targeting verified
robotics applications. MARVeLus combines the expressivity
of synchronous programming in a language like Lustre [16],
with the formal verification offered by a refinement type
system, such as that found in Liquid Haskell [45]. To our
knowledge, MARVeLus is unique in applying this to exe-
cution of programs on real hardware once they have been
verified, allowing for a unified specification, verification,
and implementation workflow under a single language. In
this paper, we present the extensions to Zélus that comprise
MARVeLus and demonstrate its functionality by modeling,
verifying, and implementing a software component on a
scale-model autonomous vehicle.

2 MARVeLus
2.1 Modeling with Synchronous Programming
MARVeLus is based on Zélus, which itself is inspired par-
tially by Lustre [16], a synchronous programming language.
Synchronous programming languages, such as Lustre [16],
Esterel [15], and Lucid [47], operate on the notion of syn-
chronizing program operations to the discrete steps of a
logical clock, which forms the basic timekeeping unit of the
program [9]. On each clock cycle, new values are computed
concurrently for all the program state variables, and are
made available for the next cycle [9]. Thus, it is convenient
to think of these variables as streams, along with computa-
tions that manipulate their behaviors and thus the values
they produce in subsequent cycles [16]. As a result, essen-
tially all Lustre constructs are streams, from literals that are
constant streams of their values, to streams of functions that
are applied point-wise to their argument streams at each
clock cycle [13, 16].
We make a distinction between streams and the values

they make available, or “emit", at any given moment, and in
the formal semantics of MARVeLus write 𝑒

𝑣
↩→ 𝑒′ to denote

the stream 𝑒 that evolves into 𝑒′ on the next clock cycle, while
simultaneously presenting the immediate value 𝑣 with which
to perform the next computation [16, 19]. Although Lustre
permits streams that may not emit values on every clock

cycle, we assume that all streams have compatible clocks,
an assumption that is statically enforced by Lustre’s clock
calculus [16].

Lustre programs, and by extension, MARVeLus programs,
enjoy some protection from common programmingmistakes,
both inherently and by static analysis. Streams may only be
defined in terms of an initial value and a finite, constant
number of previous states. As a result, random access, and
thus buffering of an unbounded number of stream values
is prohibited, preventing memory leaks. This is desirable
for computationally-limited embedded systems, as it makes
memory usage deterministic [13, 16]. Synchronous programs
also enforce causality, which prevents physically infeasible
circular dependencies [21]. This is statically checked by Lus-
tre and its derivatives at compile-time and can catch infinite
loops and uninitialized variables [9, 16].
Along with the benefits inherent to synchronous lan-

guages, the Zélus language provides us with a complete
compilation and simulation toolchain [7], which we extend
in MARVeLus with verification and robotics. Source code
written in Zélus is first translated into OCaml, which enables
our compiler extensions to leverage powerful features such
as direct compilation into executable binaries and inclusion
of external C functions. The compiler itself is open-source
and is also written in OCaml, which makes incorporating
new language features a more straightforward process. In
addition, its support for modeling hybrid systems, or those
that combine both continuous- and discrete-time program
evolution [14], gives us the opportunity to eventually expand
verification into the continuous space.

Synchronous programming has already demonstrated a
history of industry adoption in safety-critical applications.
SCADE [20], a tool developed from Lustre, has been used to
design avionics on commercial airplanes and high-reliability
industrial controls, while Esterel has been used to model
the behavior of digital logic for the design of integrated
circuits [9, 10]. Thus, the market demand for safer synchro-
nous languages is present and may continue to increase as
safety-critical programming becomes more accessible and
programs in other fields begin to be held to higher standards
of reliability [18].

2.2 Verification with Refinement Types
We enable verification by implementing a refinement type
system [42, 46], which allows the user to express desired
program properties as annotations on the existing types that
program data may already inhabit. Refinement types allow
the user to add additional constraints to the type-checking
problem already being solved at compile-time by conven-
tionally typed programming languages. These constraints
are expressed as boolean predicates that describe properties
of the terms inhabiting the type [42]. For instance, the type
refinement {v: int | v >= 0} describes the type that
can only be inhabited by non-negative integers, where v is
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a variable representing an arbitrary term of the type [32].
In other words, the aforementioned type is inhabited by all
integers v such that v >= 0. Refinement types are a subset of
the overarching dependent type theory, such as that imple-
mented in the F* language [43]. Although both allow type
specifications to depend upon program values, one flavor of
refinement types—known as liquid types [42, 46]—restrict
predicates within type annotations such that they can be
decidable using a Satisfiability Modulo Theory (SMT) solver,
such as Z3 [22]. This prohibits certain constructs within pred-
icates, such as interpreted functions or quantifiers, but gives
the programmer reassurance in the result the type-checker
produces [32, 42].

2.3 Execution on Robots
One of our novel additions is the robotics component of
MARVeLus, comprising modifications to the Zélus runtime
to allow it to share data with external processes managing
the real-time operation of robot peripherals. Communica-
tions is handled using the Lightweight Communications and
Marshalling (LCM) [34] protocol which allows MARVeLus
execution to occur wirelessly across the local network, or
locally onboard the robot. The former configuration allows
more flexibility in switching between physical hardware and
simulation, while the latter allows for less network latency.
Due to potential performance limitations on embedded plat-
forms, the verification component of MARVeLus is handled
on a separate computer. To simulate an autonomous vehi-
cle, we have modified a small wheeled robot with additional
software components that mimic realistic vehicle dynamics
at a small scale.

3 Motivating Example: Autonomous
Vehicle Braking

We examine the use of MARVeLus in verifying a component
of Adaptive Cruise Control. Adaptive Cruise Control (ACC)
is a driver-assist feature that functions like conventional
cruise control, but also monitors the lane ahead for traffic and
automatically maintains a safe following distance [38, 39].
ACC may also need to brake in response to stopped vehicles
or obstacles on the road in order to prevent a collision [38].
Above all, ACC must avoid collisions whenever possible,
and as a result, the absence of collision (expressed as the
follower vehicle always remaining behind the leader) is a
typical safety property to verify [35].
Formal verification of this safety-critical software com-

ponent has been explored before, for instance using differ-
ential dynamic logic and an automated proof assistant [35].
However, using MARVeLus, we demonstrate automated ver-
ification of implementation-level software that is executable
on real hardware. We introduce a simplified version of the
pre-collision braking component of ACC, modeled after an
existing local lane control model [35]. In this system, the

Figure 1. The autonomous braking system visualized. 𝑥𝑙
is the position of the obstacle, which our vehicle, at 𝑥 𝑓 ap-
proaches with velocity 𝑣 𝑓

software has control of the vehicle’s brakes, up to the ve-
hicle’s maximum capabilities, and has accurate knowledge
of the vehicle’s distance to the lead vehicle. Both the lead
and ACC vehicle are simplified to be infinitesimal points
along a one-dimensional line representing the lane. As with
the original model [35], we note that vehicle length can be
accounted for by shifting the points to align with the front
of the follower and the rear of the lead vehicle or obstacle
(Fig. 1).

We model the situation in which the lead vehicle is sta-
tionary, or the follower vehicle is approaching an obstacle.
Our model (Fig. 2) implements discretized dynamics evolving
with a small time step𝑑𝑡 and a basic braking algorithmwhere,
upon sensing an obstacle too close to the vehicle, applies
full braking force. 𝑥 𝑓 is the position of the follower vehicle,
with initial position 𝑥 𝑓

0 , 𝑣
𝑓 is its velocity with initial velocity

𝑣
𝑓

0 , 𝑎
𝑓 is the acceleration, which depends on the following

constants: braking acceleration 𝑏 and lead vehicle position
𝑥𝑙 . The quantity 𝑥 𝑓 + (𝑣𝑓 )2

2𝑏 + 𝑣 ·𝑑𝑡 denotes the position of the
follower’s vehicle at which braking must occur to avoid a
collision, taking into account braking distance and a reaction
time of𝑑𝑡 . This is similar to the constraint on follower vehicle
behaviors in the original local lane control model, which re-
stricts the acceleration choices of the follower vehicle when
it must brake to avoid a collision [35]. The additional term
𝑣 ·𝑑𝑡
2 , separated for emphasis, represents the over-estimation

of distance traveled due to the discretized dynamics of our
system, as opposed to the continuous dynamics in the origi-
nal model.
We adopt the convention that positive acceleration in-

dicates acceleration along the forward direction of vehicle
travel; consequently, 𝑎 becomes negative when the vehicle
is decelerating due to braking. The addition of the max(0, ·)
condition on velocity ensures that the vehicle’s brakes cannot
continue accelerating the vehicle in the negative direction
once stopped, which models the expected behavior of real
brakes. The last line denotes the safety condition, which is
that at all times, the follower vehicle’s position is behind that
of the leader.
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𝑥
𝑓

𝑛+1 = 𝑥
𝑓
𝑛 + 𝑣

𝑓
𝑛 · 𝑑𝑡

𝑣
𝑓

𝑛+1 = max(0, 𝑣 𝑓𝑛 + 𝑎
𝑓
𝑛 · 𝑑𝑡)

𝑎
𝑓

𝑛+1 =

{
−𝑏 if (𝑥 𝑓

𝑛 + (𝑣𝑓𝑛 )2
2𝑏 + 𝑣

𝑓
𝑛 · 𝑑𝑡 + 𝑣

𝑓
𝑛 ·𝑑𝑡
2 > 𝑥𝑙 )

0 otherwise

∀𝑛 . 𝑥
𝑓
𝑛 < 𝑥𝑙

Figure 2. Discretized autonomous braking system, with a
stationary obstacle and safety condition.

Throughout these examples, we make simplifying assump-
tions on the physical characteristics of the vehicle (such as
braking acceleration remaining constant), though we note
that these can be accounted for by either constructing these
simplifications to be an over-approximation of the original
system, or by implementing a higher-fidelity model, which
may require more effort.

4 Verification using MARVeLus
4.1 Refinement Types in a Synchronous Language
One of the challenges of developing a refinement type sys-
tem for a synchronous language is the ever-present balance
between having types that are specific enough to reason
meaningfully with terms, but also broad enough so that a
stream’s behavior can be fully described with a single time-
invariant type, which is necessary for safety proofs. Thus,
refinement types must capture the stream’s properties at not
only a specific moment, but for all time. Presently, our type
system is able to check properties that are globally true for
all time, noting that safety properties typically fall under this
category.
We designed a set of typing rules based on our charac-

terization of Lustre stream behaviors (Fig. 3), of which we
present a selection of those relevant to our examples (Fig.
4). Example stream behaviors include constant streams, ba-
sic operators and functions applied point-wise to streams,
branching streams that conditionally take values from two
other streams, and sequential compositions of streams. We
account for variables that can be assigned to streams, and
also admit streams that are recursively defined in terms of
variables, so long as they adhere to Lustre’s existing causality
rules [31].
Although all values in Lustre programs are treated as

streams, even literals, we denote stream terms with the
stream annotation solely in the typing rules for clarity. We
also note that the temporal operator □ is used similarly to
denote properties that must be true for all values of a given
stream. The distinction becomes apparent in the (T-APP) rule
which lifts non-stream functions into streams that can be
applied to stream arguments. Some MARVeLus constructs
already appear in other refinement-typed languages, and

some could even be ported directly with minimal modifica-
tion, such as (T-LETREC) [32]. However, some rules required
a more thorough consideration of behaviors unique to their
stream counterparts.
Combinatorial functions (which do not carry any state

information), such as arithmetic operators, are handled simi-
larly to Lustre, in that they are imported from the non-stream
base language and extended as a constant stream of func-
tions that operates point-wise on individual values within
streams, rather than as a single function that operates on
entire streams [16, 31]. This is shown in the (T-APP) rule
by the extension of a typical non-stream function of type
𝑥 : 𝛼 → 𝜏 to a stream of functions 𝑓 , which for each value
within the stream 𝑓 is applied to the value of the argument
stream 𝑒 from the corresponding time step.

Another useful feature of Lustre is the sequential compo-
sition of streams using the fby operator, which is typed
with the (T-FBY) rule. The stream 𝑒1 fby 𝑒2 represents a
stream consisting of the initial value of 𝑒1, and then the
entire stream 𝑒2 delayed by a single cycle. Together with
let rec (T-LETREC), one can define recursive streams, as the
single cycle delay prevents circular definitions [31]. Thus,
the stream let rec 𝑥 = 𝑥 + 1 in 𝑥 is disallowed, but can be
rewritten as let rec 𝑥 = 𝑥0 fby 𝑥 + 1 in 𝑥 , which properly
initializes the stream with a starting value 𝑥0 and delays the
recursive definition by one cycle.

We also allow product types, or 𝑛-tuples, which resemble
system state vectors and allow multiple values to be con-
solidated into a single stream. This is vital for specifying
properties that relate multiple system state variables and are
an extension of dependent pairs used in other dependently-
typed languages [32, 43]. Typing of pairs is handled by the
(T-PAIR) rule, which places all refinement typing obligations
on the last element of the pair. This can then be extended to
products with 𝑛 elements.
A notable departure from conventional refinement typ-

ing rules occurs with branching, such as if 𝑒𝑐 then 𝑒𝑡 else 𝑒𝑓 ,
where the stream may switch between the value of 𝑒𝑡 and 𝑒𝑓
depending on the value of 𝑒𝑐 in a given clock cycle. Programs
with branching in conventional languages, such as the ex-
pression if 𝑐 then 𝑡 else 𝑓 requires some path sensitivity to
verify [46]. This involves additional assumptions to account
for the fact that 𝑡 or 𝑓 are only reachable when 𝑐 is true
or false, respectively. This prevents the type checker from
being unnecessarily strict by ignoring potentially unsafe
behavior that occurs in an unreachable branch. For exam-
ple, if 𝑥 < 0 then − 𝑥 else 𝑥 computes the absolute value
of an integer 𝑥 . Proving that the expression only returns
non-negative numbers requires knowing that −𝑥 is only
reachable if 𝑥 < 0; it is impossible to prove the property on
−𝑥 alone [32]. Extending this method to streams involves
making similar assumptions, but must also account for the
fact that the conditional, 𝑒𝑐 , is a stream as well; thus the
resultant stream is an amalgamation of values from both
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𝑒 ::=
| 𝑐 Constants
| 𝑥 Variables
| let 𝑥 : 𝜏 = 𝑒1 in 𝑒2 Local Definitions
| let rec 𝑥 : 𝜏 = 𝑒1 in 𝑒2 Recursive Definitions
| 𝑒1 𝑒2 Application
| if 𝑒𝑐 then 𝑒𝑡 else 𝑒𝑓 Branching
| 𝑒1 fby 𝑒2 Stream Composition
| (𝑒1, 𝑒2, ... 𝑒𝑛) Products
| robot_str 𝑘 𝑒 | robot_get 𝑘 Robot I/O
| 𝑒1 models 𝑒2 Modeling

𝑏 ::= 𝑖𝑛𝑡 | 𝑓 𝑙𝑜𝑎𝑡 | 𝑏𝑜𝑜𝑙 Base Types
𝑟𝑣 ::= 𝑣 : 𝑏 Refinement Variables

| (𝑣1 : 𝑏1) × ... × (𝑣𝑛 : 𝑏𝑛)
𝜏 ::= 𝑏 | {𝑟𝑣 | 𝜙} | {𝑟𝑣 | □𝜙} Refinement Types

Figure 3. The Syntax of Streams, where 𝑒 is a stream expres-
sion, 𝑘 is a string constant used as an identifier, and 𝜙 are
predicates within the quantifier-free logic.

𝑒𝑡 and 𝑒𝑓 conditioned on the value of 𝑒𝑐 on each cycle. To
account for this, we insert assumptions about 𝑒𝑐 into the
refinement predicates for each of the branches in (T-IF) that
ensures the original predicates only need to hold if they are
reachable in a given moment based on the value of 𝑒𝑐 .

4.2 Type Checking
MARVeLus uses the Z3 SMT solver [22] to determine the
validity of verification conditions generated using the afore-
mentioned typing rules. Similarly to Liquid Haskell, each
type-checking obligation is considered using a subtyping
relation, in which a precise type is synthesized for the term
and then checked to be a subtype of the desired type [32].
As a result, type checking becomes a check of validity of the
implication statement 𝜙𝑠 ⇒ 𝜙𝑡 where 𝜙𝑠 is the predicate of
the synthesized type, and 𝜙𝑡 is the predicate of the type to
be checked. We also note that streams are constructed via
manipulations on streams as a whole (i.e., 𝑥 + 1 refers to the
stream where each values is 1 more than the corresponding
value of the stream 𝑥 ), properties such as □(𝑥 ≥ 0) are also
defined holistically in terms of the stream, and a verification
condition may resemble ∀𝑥 . 𝑥 ≥ 0. This can be verified
via SMT by checking the validity of 𝑥 ≥ 0, where 𝑥 is left
free. However, it is often useful to find concrete counterex-
amples, so we negate the verification condition and check
for its unsatisfiability. If the negated formula is found to be
unsatisfiable, the original formula is valid. If it is satisfied,
the solver is able to provide a model, which informs the user
of a variable assignment that leads to a counterexample.

To demonstrate the type-checking process, consider a
simple MARVeLus program which defines a pair of inte-
ger streams x and y (Fig. 5). The stream x increases with each
time step until it reaches 6, at which point it resets back to
0, resulting in a stream that cycles through the integers 0-6,
while the stream y is always double the value of x. These
streams are defined concurrently through initial values (Line
4) and recursive definitions (Line 5-6). The type specification
(Line 3) stipulates that neither stream goes negative, with
the safety property v >= 0 && w >= 0. It is clear that this
program would satisfy this property at all times. If we were
to modify the specification or program so that the property
no longer holds, we would encounter a typing error which
would halt the compilation process. In addition, we would be
presented a counterexample as a set of variable assignments
that violates the specification. This aids the developer in ei-
ther correcting a coding mistake or refining the specification
if the counterexample is spurious.

The recursive nature of stream definitions lends itself well
to proving invariance of the safety property via induction.
This is facilitated somewhat by the let rec and fby con-
structs. The (T-LETREC) rule allows the type checker to
assume that the stream variables satisfy the invariant in a
previous cycle (that is, we can assume 𝑥 ≥ 0 and 𝑦 ≥ 0),
providing an induction hypothesis to prove invariance on
the recursive definition (that is, it must then show that
(if (𝑥 > 5) then 0 else (𝑥 +1)) ≥ 0 and 2 ·𝑥 ≥ 0). Meanwhile,
(T-FBY) requires the property to be proven for both the left-
hand stream (the initial condition) and the right-hand stream
(the recursive definition), thus requiring proof of invariance
in both the base case and inductive step.
Verification condition generation proceeds in a syntax-

directed fashion based on the typing rules, using the afore-
mentioned subtyping relation as the main tactic for refine-
ment type checking. In our above example, the verification
condition to be checked for validity is

(((𝑥 ≥ 0) ∧ (𝑦 ≥ 0)) ⇒ ((0 ≥ 0) ∧ (0 ≥ 0)))
∧(((𝑥 ≥ 0) ∧ (𝑦 ≥ 0)) ⇒

((ite(𝑥 > 5, 0, 𝑥 + 1) ≥ 0) ∧ (2 · 𝑥 ≥ 0)))

where the right-hand side expressions of each implication
are the left- and right-hand side streams of the fby expression
substituting for v and w in the original refinement predicate
v >= 0 && w >= 0, and ite is the if-then-else operator in
the SMT logic. This is then negated and passed to the SMT
solver to check for unsatisfiability and search for possible
counterexamples.

5 MARVeLus Implementation of
Autonomous Braking

We model the autonomous braking system from Figure 2
in MARVeLus (Fig. 6). Being a deterministic executable lan-
guage, we must assign concrete values to the free variables
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(T-CONST)
Γ ⊢ 𝑐 : {𝑣 : 𝑏 stream|□(𝑣 = 𝑐)} Γ ⊢ 𝑒𝑐 : bool stream

Γ ⊢ 𝑒𝑡 : {𝑣 : 𝑏 stream | □(𝑒𝑐 ⇒ 𝜙)}
Γ ⊢ 𝑒𝑒 : {𝑣 : 𝑏 stream | □(¬𝑒𝑐 ⇒ 𝜙)}

(T-IF)
Γ ⊢ (if 𝑒𝑐 then 𝑒𝑡 else 𝑒𝑒 ) : {𝑣 : 𝑏 stream | □𝜙}

Γ ⊢ 𝑠1 : {𝑣 : 𝑏 stream | □𝜙} Γ ⊢ 𝑠2 : {𝑣 : 𝑏 stream | □𝜙}
(T-FBY)

Γ ⊢ 𝑠1 fby 𝑠2 : {𝑣 : 𝑏 stream | □𝜙}

Γ ⊢ 𝑓 : (𝑥 : {𝑣 : 𝑏1 | 𝜙1} → {𝑤 : 𝑏2 | 𝜙2}) stream Γ ⊢ 𝑒 : {𝑣 : 𝑏1 stream | □𝜙1} (T-APP)
Γ ⊢ 𝑓 𝑒 : {𝑤 : 𝑏2 stream | □[𝑒/𝑥]𝜙2}

Γ ⊢ 𝑒1 : 𝑏1 stream Γ ⊢ 𝑒2 : {𝑤 : 𝑏2 stream | □[𝑒1/𝑣]𝜙} (T-PAIR)
Γ ⊢ (𝑒1, 𝑒2) : {(𝑣 : 𝑏1 stream) × (𝑤 : 𝑏2 stream) | □𝜙}

Γ, 𝑥 : 𝜏1 ⊢ 𝑒1 : 𝜏1 Γ, 𝑥 : 𝜏1 ⊢ 𝑒2 : 𝜏2 (T-LETREC)
Γ ⊢ let rec 𝑥 : 𝜏1 = 𝑒1 in 𝑒2 : 𝜏2

Figure 4. Selected Stream Typing Rules

1 let node main () =

2 let rec ((x, y):

3 {(v:int )*(w:int) | v>=0 && w>=0}) =

4 ((0, 0) fby

5 ((if (x > 5) then 0 else (x + 1)),

6 2*x))

7 in (x,y)

Figure 5. A simple MARVeLus program.

in the system (Lines 1-2). To determine reasonable values,
we scaled figures from real automobiles down to our small
wheeled robot. For instance, we based our braking accel-
eration on the 90th percentile braking guidance given by
the American Association of Highway Transportation Offi-
cials, of −11.2 ft/s2 (−3.4m/s2) [26], which scaled down to
−0.136m/s2. The starting velocity of 45 miles per hour was
likewise scaled to 0.8m/s. We then determined the obstacle
distance such that the vehicle had ample distance to coast
for some time before braking, and would avoid a collision if
the controller functioned as intended.
Line 4 defines the synchronous node that simulates the

vehicle; it has no inputs because the model is self-contained.
Line 5 defines the recursive state vector streamwith variables
df, vf, and af representing the follower vehicle’s distance
from the obstacle, velocity, and acceleration. Line 3 begins
the type specification of the state vector. A small change
from our original model was performing the transformation
𝑑 = (𝑥𝑙 − 𝑥 𝑓 ), where 𝑑 represents the distance remaining
between the vehicle and obstacle. This models the distance
sensor used on the real robot.

Lines 6-10 define the type annotation on the state vector,
which forms the safety property to be checked at compile
time. The first portion of the specification (Line 6) is the main
safety property to verify, and requires that the remaining
distance must always be positive; a negative or zero distance
indicates a collision. However, this alone is insufficient for
proving safety, as it is not a property that can be inductively

proven—the vehicle may be placed an infinitesimal distance
away from the obstacle and still be expected to stop from
full speed. This is not a condition in which the system is
reasonably expected to be safe, so we add some additional
assumptions to the invariant. Other spurious counterexam-
ples may appear, such as the follower vehicle accelerating to
physically impossible speeds. Thus, several other invariants
are needed to constrain the problem.
The property on Line 7 (𝑑 𝑓 − (𝑣𝑓 )2

2𝑏 − (𝑣𝑓 ) ·𝑑𝑡
2 > 0) adds

the assumption that the vehicle always has time to stop if it
were to brake immediately; otherwise the controller would
not have been able to prevent a collision in the first place.
The specification becomes more precise and we avoid some
spurious counterexamples, but it still does not capture the
safe behavior of the controller. This is because the controller
has a time delay of 𝑑𝑡 , which means that at any given time
step, the braking acceleration was determined from the pre-
vious time step’s distance and velocity values. As a result,
the system must have knowledge of previous control actions,
and must be reassured that they did not place the vehicle into
an unsafe situation. Thus, we need an additional invariant,
seen on Lines 8-9:(

(𝑑 𝑓 − (𝑣 𝑓 )2
2𝑏

− 𝑣 𝑓 · 𝑑𝑡 − 𝑣 𝑓 · 𝑑𝑡
2

≤ 0) ∧ (𝑎𝑓 ≤ 𝑏)
)
∨(

(𝑑 𝑓 − (𝑣 𝑓 )2
2𝑏

− 𝑣 𝑓 · 𝑑𝑡 − 𝑣 𝑓 · 𝑑𝑡
2

> 0) ∧ (𝑎𝑓 ≤ 0)
)

This invariant requires that, if the follower vehicle is too
close to the leader, its braking acceleration must be at least as
strong as 𝑏, the minimum deceleration required to bring the
vehicle to a stop before crossing 𝑥𝑙 . Otherwise, the vehicle is
free to coast with zero acceleration, or brake at any rate. The
second part is also important in prohibiting large positive
accelerations that may place the vehicle into a situation in
which it cannot brake in time. It can be shown that this
invariant ensures that the controller could have only taken
safe actions in the previous time step.

Lines 10-19 comprise the bulk of the executable program,
and the portion of the program to be verified in this case.
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We add a safety factor of 0.5m in the controller (Line 17)
so that the vehicle stops well short of the obstacle. Due to
how the invariant is constructed, we must respect the causal
ordering of variable updates—the invariant on acceleration
(Lines 8-9) is defined in terms of distance and velocity values
at the current time step, which means they must be updated
before the acceleration is determined. Otherwise, the vari-
ables presented to the type refinement become “out of sync"
with one another and may not properly verify. This is a con-
sequence of the discretized dynamics and how the invariant
was constructed.

Lines 11-12 and again lines 13-14 demonstrate new syntax
meant to facilitate implementation. The construct x models
y denotes that these variables have two definitions: themodel
x which is used for verification and simulation, and the im-
plementation y, which is used only when compiling to robot
code. This allows real-world values, such as sensor values, to
be substituted for x during execution, but provides a concrete
model when y is not available, such as when verifying or
simulating. This brings with it the implicit assumption that x
does in fact model y, but ensuring the model is accurate is left
as a responsibility of the end user. Whether x or y appears
in the compiled program is determined by the presence of
the -robot compiler flag.
Several robot-specific keywords appear throughout the

program, such as robot_str on Line 19 and robot_get on
Lines 12 and 14. These allow the program to respectively
store and retrieve values from named variables shared with
external programs, such as sensor and actuator values. Al-
though robot_str has no effect in verification or simulation,
robot_get is prohibited from appearing in verified code ex-
cept on the right-hand side of an x models y structure. This
ensures that the variables remain deterministic during veri-
fication.

6 Hardware Implementation
Once the system is verified, there comes the task of executing
on actual hardware. The execution runtime of MARVeLus is
derived from that of Zélus, with some additional functional-
ity to enable programs to communicate with actual hardware.
Currently, we have tested MARVeLus execution on small
wheeled robots, which we have extended with additional
code simulating the dynamics of a scale-model automobile.

6.1 Hardware
The wheeled robot platform we chose for testing, an M-Bot
Mini, was originally designed as a teaching tool for a robotics
course, to be deployed en masse to students. As a result, it
is a well-documented, modular, and inexpensive platform
for testing robotics code outside the classroom. The M-Bot
Mini features two wheel motors with quadrature encoders
arranged in a differential-drive configuration, a rotating LI-
DAR sensor, and inertial sensors in the form of an internal

accelerometer and gyroscope. The main compute module is
a BeagleBone Blue, a single-board computer running Debian,
which interfaces with motors, rotary encoders, and intertial
sensors, and executes MARVeLus code.

6.2 Software
In a typical robotics application, the robot software would be
comprised of three components: the user’s compiled MAR-
VeLus code, the robot runtime, and the low-level drivers.
In our autonomous vehicle example, we further extend the
robot runtime with a kinematic model that simulates the
acceleration and braking performance of a realistic automo-
bile at the size scale of the robot. For simplicity, we assume
all code below the level of user code is safe and that sensor
data is reliable. Communications between the robot run-
time, kinematic model, and low-level drivers are handled
using replicated key-value stores at each communications
endpoint, updated via LCM [34] messages. In our example,
all software runs onboard the robot to minimize network
latency.

6.2.1 User MARVeLus Code. Due to the limited compu-
tational resources on the M-Bot Mini, the user’s MARVeLus
source code is first verified on a desktop computer. If verifi-
cation passes, the code is compiled into OCaml through the
Zélus compiler, which adds the necessary robot interfaces.
The resulting OCaml files are then transmitted to the robot,
where they are compiled into a native executable alongside
the robot runtime.

6.2.2 Robot Runtime. The robot runtime is comprised of
a C library that handles networking between the low-level
drivers and running MARVeLus program, and the Zélus run-
time that handles synchronous program execution and has
been modified with hooks to call the C library functions. The
C library code size is kept to a minimum, only being used to
directly translate OCaml data types into LCM messages and
vice versa, and to maintain the key-value store for variable
read and write operations.

6.2.3 Kinematic Model. The kinematic model is written
in (unverified) Zélus and simulates the discrete dynamics
of the vehicle. The model takes as input the commanded
acceleration value, which is the only parameter modifiable
by user code. This value is then incorporated into the kine-
matic simulation to obtain vehicle velocity, which is sent to
the low-level drivers to control motor speed. It is assumed
that, due to the low mass of the robot and high motor torque,
motor response time is negligible compared to the simu-
lated dynamics so it is able to reliably attain the velocities
requested by the model. The dynamics are implemented as
follows:

𝑣𝑛+1 = 𝑣𝑛 + 𝑏𝑛 · 𝑑𝑡 𝑣0 = 0.8

where 𝑏 is the braking acceleration input.
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1 let vfi:{v: float | v > 0.} = 0.8; let dt:{v: float | v > 0.} = 0.1;

2 let b:{v: float | v > 0.} = 0.136; let xl:{v: float | v > 0.} = 5.

3
4 let node exec () =

5 let rec ((df, vf, af):

6 {(d:float )*(v:float )*(a:float) | (d > 0.) &&

7 (d -. ((v*.v) /. (2.0*.b)) -. (v*.dt /. 2.) > 0) && (v >= 0.) &&

8 ((((d -. ((v*.v) /. (2.0*.b)) -. (v*.dt) -. (v*.dt /. 2.)) > 0) && (a <= 0.)) ||

9 (((d -. ((v*.v) /. (2.0*.b)) -. (v*.dt) -. (v*.dt /. 2.)) <= 0) && (a = -. b)))

10 }) = (xl, vfi , 0.) fby

11 (let v_next = ((if (vf +. (af *. dt) < 0.) then 0. else vf +. (af *. dt))

12 models (robot_get ("vel"))) in

13 (let d_next = ((df -. (v_next *. dt))

14 models (robot_get ("dist"))) in

15 (d_next , v_next ,

16 (if (d_next -. (( v_next *. v_next) /. (2.0*.b)) -.

17 (v_next *. dt) -. (v_next *. dt /. 2.)) <= 0.5

18 then (-.b) else 0.))))

19 in (robot_str ("brake", af)); (df, vf, af)

Figure 6. Autonomous Braking MARVeLus program

6.2.4 Low-Level Drivers. The low-level drivers directly
communicate with the sensors and actuators on the robot.
The drivers implement closed-loop motor speed control and
odometry, and obstacle sensing using the LIDAR sensor, all of
which are currently assumed to be trusted. Some components
of the drivers, such as speed control, are implemented at this
level purely for convenience, to simplify the MARVeLus
code. Other functions translate incoming variable writes
into motor commands, interfacing directly with hardware
control libraries on the controller board [6]. These functions
also generate their own write events based on sensor data,
which are propagated to the other software components. For
instance, incoming LIDAR data is used to simulate a forward-
looking distance sensor on an autonomous vehicle, which
produces a single value representing the robot’s distance to
the nearest obstacle present in the robot’s forward-facing
field of view. Future work will explore minimizing unverified
code in the low-level drivers, instead implementing more
features in the verified MARVeLus portion.

6.2.5 Experimental Results. We ran our Autonomous
Vehicle Braking code on the M-Bot Mini in a controlled
environment where the robot is placed 5.0m away from a
stationary obstacle. The data obtained from one such trial is
plotted in Figure 7, superimposed on data taken from a simu-
lated run of the same MARVeLus code. The behaviors shown
in position and velocity are largely similar, though the actual
robot stops approximately 0.2m ahead of what the simulation
predicted, likely due to a combination of slow LIDAR update
rates (approximately 5 Hz) and low temporal resolution due
to the large discretization period. We also note the slight

increase in velocity at the beginning of the trial due to over-
shoot in the robot’s low-level speed controller, which can
be mitigated by improved tuning. The model’s acceleration
exhibits a seemingly unusual “on-off" behavior, which can be
explained by the fact that the controller’s definition (Fig. 6)
essentially mimics the behavior of a bang-bang controller, as
it applies brakes only if the vehicle’s distance to the obstacle
drops below a given threshold, which varies with velocity.
As a result, the velocity sometimes drops enough that the
braking threshold jumps ahead of the vehicle’s current po-
sition, causing it to release the brakes momentarily until it
once again crosses it.

7 Related Work
7.1 Cyber-Physical Systems Verification
Hybrid automata [1] and differential dynamic logic [41]
have been well-studied for the modeling and verification
of cyber-physical systems, with approaches ranging from
model checking [2] to semi-automated proof assistants [27],
the latter of which was applied to verifying an adaptive
cruise control model [35]. Although the theory provides a
strong foundation for verification, nondeterminism makes
it challenging to produce executable code directly from the
model. As a result, translation may be needed [4] to generate
executables, which although verifiable [11], increases the
trusted code base or may present issues in scalability.
CoCoSim [12] is a Simulink toolbox that allows one to

place assume-guarantee contracts in a model to be auto-
matically verified by an external solver, such as Zustre [33].
Although the user-facing interface is Simulink, the back-end
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Figure 7. Comparison between simulated and actual values.

compiler first translates Simulink models into Lustre, where
verification takes place. As with other presently known Lus-
tre verification methods, this verification takes the form of
bounded model checking, which means it may not nessarily
produce an exhaustive search of the state space.
The KIND [30] and KIND 2 [17] model checkers provide

an SMT-based approach to verifying synchronous programs,
by way of 𝑘-induction. Invariants can be generated auto-
matically through iterative abstraction refinement, which
streamlines the verification process. As with other model-
checking approaches, verification may enumerate a large
number of, but not necessarily an exhaustive set of possible
system states.

There also exist tools for runtime monitoring of CPS, such
as RTLola [5] and VeriPhy [11], that allow formal specifica-
tions to be compiled into the executable, to be checked for
violations at runtime. We note that runtime monitoring and
compile-time verification occupy distinct spaces in safe CPS
development; while compile-time verifiers like MARVeLus
may give developers insight into potential problems before
execution, runtime monitors like RTLola may give systems
the opportunity to correct for unexpected faults after the fact.
Thus, there may be reason to combine both methods to en-
sure a fallback [11] is available if compile-time assumptions
are violated.

7.2 Verifiable and Executable CPS
There exist several projects in this space [3, 11, 23, 29] that
allow provably safe CPS code to execute on real systems.

This area aims to bridge the gap between abstract, verifiable
models and concrete, executable implementation-level code.
VeriPhy [11] is a similar project that provides verified,

executable programs for cyber-physical systems. In fact,
the VeriPhy executable framework was demonstrated on
a wheeled ground robot much like our own. Additionally,
VeriPhy provides end-to-end verification with verified com-
pilation to machine code. While the goals of VeriPhy and
MARVeLus are similar—verified, executable CPS—themethod
in which they accomplish this differ. While VeriPhy gener-
ates a verified sandbox controller and runtime monitors from
abstract specifications as a fallback for user-supplied soft-
ware, MARVeLus verifies the user-supplied software itself.
This way, MARVeLus avoids the need to carry both the user
implementation and the synthesized controller. Additionally,
it gives the user the opportunity to refine their initially “un-
trusted" code into a trusted controller with the flexibility
of defining verified, customized controller behaviors. Fur-
thermore, direct verification of source code may provide
improved traceability of counterexamples encountered.
Drona [23] models high-level behavior as discrete state

machines in the P language [24] and system or environment
assumptions in Signal Temporal Logic (STL) [37]. In contrast
to the types-based verification of MARVeLus, Drona enforces
safety of P code using a combination of model checking at
compile-time, and monitoring of safety properties in STL at
run-time. However, the authors point out that their use of
model checking might not provide a complete search of the
system’s state space, and that the STL specifications used for
monitoring are not sound.

CyPhyHouse [29], based on the Koord [28] language, is a
robotics stack aimed at verifying multi-agent, possibly het-
erogeneous, robotics systems. The high-level Koord language
allows specification of tasks and associated safety require-
ments. Additionally, the language features hybrid modeling,
with distinct stages of continuous environment and discrete
program evolution, in a similar fashion to Zélus. Similarly
to MARVeLus, CyPhyHouse uses an SMT-based approach
to verify inductive invariants and thus prove safety. The
runtime component contains middleware to allow the ex-
ecuting Koord program to interact with platform-specific
controllers, such as low-level motion control on a vehicle,
and ultimately robot hardware, via ROS. While both MAR-
VeLus and CyPhyHouse enable verification and execution on
robotics platforms, the software in each language operates
at different levels of the robotics stack, with CyPhyHouse
handling high-level planning and coordination tasks, and
the current iteration of MARVeLus handling the platform-
specific controller code that appears to be unverified in Cy-
PhyHouse.
ROSCoq [3] leverages Coq’s dependent type system to

specify and verify robotics programs and similarly leverages
dependent pairs to capture properties involving relationships
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between multiple state variables. In ROSCoq, robots are mod-
eled as distributed message-passing systems, with sensors
and actuators acting as nodes in a network, analogous to the
way in which real robot components may communicate in
the Robot Operating System (ROS) [40].

We also note the work of the Vélus project [13], a formally
verified compiler for Lustre, and draw the distinction be-
tween a verified compiler, such as Vélus, and a compiler that
verifies, like MARVeLus. The Vélus project is primarily fo-
cused on formalizing the process of compiling a synchronous
language into an executable imperative one, while our work
aims to formalize the semantics of the language in which
the user writes.

7.3 Verification through Type Checking
The Curry-Howard Correspondence allows one to essen-
tially turn a type checker into a theorem prover, by encoding
propositions as type refinements. Languages such as Liq-
uid Haskell [32] and F* [43] put this principle into practice
allowing programmers to include automatically-checkable
specifications in their code to be proven at compile-time.
As a result, dependently-typed languages have already been
applied towards the formal verification of safety-critical soft-
ware [3, 25, 36]. For instance, Π4 uses type refinements to for-
mally verify properties on executable programs for network
equipment [25]. Meanwhile, ROSCoq [3] and VeriDrone [36]
use the Coq proof assistant [44], and by extension dependent
types, to verify properties in robotics applications. To our
knowledge, MARVeLus is the first to combine verification
via types with a synchronous programming language.

8 Future Work
A particularly attractive route for improvement would be
the implementation of automata and hybrid model simu-
lation, which are hallmarks of the Zélus language [8] and
would open up the possibility for vastly more expressive ver-
ified programs. The former would allow one to implement
finite state machines in controllers, and even emulate certain
physical effects such as phase transitions or hysteresis. The
latter would make physical models more realistic by intro-
ducing continuous dynamics into models and leveraging the
methods Zélus uses for reconciling continuous and discrete
components in hybrid systems. As a result, the implemen-
tation of these components would bring MARVeLus closer
to the expressive power of systems already modeled using
hybrid automata [1] or differential dynamic logic [41], with
the added benefit of direct compilation into executables and
code modularity.
End-to-end safety requires not only verification of user

code, but also verification of the compiler [13] and run-
time monitoring [5]. Verified compilation ensures that the
code being verified is indeed the code being executed, while
runtime monitoring can detect violations in assumptions

made during verification, or can be used to switch between
a higher-performing but unverified controller and a verified
fallback [11], such as one that may be compiled using MAR-
VeLus. A possible future direction for MARVeLus develop-
ment may be incorporating these methods into MARVeLus,
enabling it to provide end-to-end assurances of safety.

In our present implementation, we still rely upon unveri-
fied C-based drivers in the robot firmware to handle speed
control, sensing and communications. Currently, MARVeLus
already has the capability to model and verify discrete con-
trollers including the robot’s speed controllers, though a
tighter level of integration with the hardware is nevertheless
desirable.
We envision MARVeLus as a robotics stack designed to

make formal verification more accessible in robotics appli-
cations. To facilitate the adoption of MARVeLus, we plan to
eventually add support for other robotics platforms and inter-
faces such as ROS [40], which has greater potential to bring
MARVeLus to a wider user base. Additionally, we intend to
open-source MARVeLus to invite community contribution
and for transparency.

9 Conclusion
We present MARVeLus as a tool for CPS designers to stream-
line the process of verification and implementation of real
systems. By combining the embedded systems modeling ca-
pability of synchronous programming with the compile-time
verification of refinement types and real-time communica-
tions extensions to the Zélus runtime, MARVeLus features
formal verification and execution on real CPS in a single
programming language. This is accomplished by adapting
a liquid types system, such as that of Liquid Haskell, to ac-
commodate the unique behavior of streams in synchronous
programs, and extending a synchronous programming lan-
guage built upon industry-proven principles with such a
type checker and additional drivers to communicate with
hardware sensors and actuators. As a result, MARVeLus
strives to bridge the gap that has often stood between tools
intended primarily for CPS verification and those intended
for CPS implementation and execution, providing a unified
development workflow upon which robotics applications
can be built, with formal verification at its core. We intend to
continually improve MARVeLus, allowing it to be usable in
an increasingly diverse array of programs and applications,
such that we may help to make designing safe CPS ever more
accessible.
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