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Nice to meet you!
• I’m José Vargas

• Hometown: Manaus, Brazil

• Major: Aerospace 🚀 and Computer Engineering 💻

• Hobbies: Learning languages (spoken and programming) 
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1. Background

• Cyber-physical systems (CPSs) are composed of 

software that interacts with the environment.

• Unit testing complex software might not cover all 

scenarios.

• Formal verification provides rigorous tools to 

prove software safety.

• Refinement types can add constraints to base 

types on programming languages.

𝑙𝑒𝑡 ( 𝑥 ∶ {𝑣 ∶ 𝑖𝑛𝑡 | 𝑣 ≥ 0}) = 4

𝑙𝑒𝑡 ( 𝑥 ∶ 𝑖𝑛𝑡 ) = 4
vs



2. Motivation
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- Synchronous languages are used to 
program Cyber-Physical Systems
(CPSs)

- Refinement types are used for formal 
verification



• Unit tests are not enough to show that software is safe!

• MARVeLus tells you what you need to know to check that a 
critical software follows its specifications.
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2. Motivation



3. Zelus Compiler Architecture

Source: Timothy Bourke and Marc Pouzet. Zélus: A synchronous language with ODEs. In 16th International 

Conference on Hybrid Systems: Computation and Control (HSCC'13), pages 113–118, Philadelphia, USA, March 
2013. 8



3.1 Introducing MARVeLus: a refinement type 
verifier for Zelus

MARVeLus
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3.2 MARVeLus workflow



4. Refinement variable declaration

𝑙𝑒𝑡 𝑣𝑎𝑟 ∶ 𝑣: 𝑡 | 𝜙 𝑣 = 𝑒

variable name base type

refinement type constraint

rhs expression

- Refinement type requires a base type and a type predicate
- Once the variable is declared, rhs expression is checked against predicate
- Predicate can depend on previously defined variables
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variable reference



4.1 Refinement variable check

where

𝐸, is the program environment                                                     

𝜙𝑖, are constraints associated with previously defined variables

𝜙(𝑣𝑎𝑟), is the constraint we want to satisfy

Verification condition: ¬(⋀𝐸𝜙𝑖 → 𝜙(𝑣𝑎𝑟))
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4.2 Refinement variable declaration example

let pi = 3.14159
let w = 2 .* pi 
let y0 : {v : float | v >= pi} = 4.0

Verification condition:

¬ 𝑝𝑖 = 3.14159 ∧ 𝑤 = 2𝑝𝑖 ∧ 𝑦0 = 4.0 → (𝑦0 ≥ 𝑝𝑖)

- The constraints are added to the program environment as variables are declared
- Once verification condition is checked to be true, 𝜙(𝑣𝑎𝑟) is added to the environment
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4.2 Refinement variable declaration example (continued)

let pi = 3.14159
let w = 2 .* pi 
let y0 : {v : float | v >= pi} = -4.0

let pi = 3.14159
let w = 2 .* pi 
let y0 : {v : float | v >= pi} = 4.0
let y1 : {v : float | v >= y0 * 2} = 10.0

Counter-example 

If constraint is not satisfiable, display a warning 
and provide counter-examples

If constraint is satisfiable, display passed 
message
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5. Current work and next steps

• Preliminary work published at FTSCS 2022 
Jiawei Chen, José Luiz Vargas de Mendonça, Shayan Jalili, Bereket Ayele, Bereket Ngussie Bekele, Zhemin Qu, Pranjal Sharma, Tigist Shiferaw, Yicheng Zhang, 
and Jean-Baptiste Jeannin. 2022. Synchronous Programming and Refinement Types in Robotics: From Verification to Implementation. In Proceedings of the 8th 
ACM SIGPLAN International Workshop on Formal Techniques for Safety-Critical Systems (FTSCS 2022). Association for Computing Machinery, New York, NY, 
USA, 68–79. https://doi.org/10.1145/3563822.3568015

• Include support for the continuous part of CPSs

• Refactor compiler code for maintainability
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Honors Experience
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6. Starting the Project
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(Currently AERO 350)



7. Focus Area Courses
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• EECS 483 – Compiler Construction (FA22, Prof. Max New)

• Learned how to convert a text file into assembly code
• Runtime definitions
• Data structures encoding

• EECS 590 – Advanced Programming Languages (FA22, Prof. Jean-Baptiste Jeannin)

• Formal introduction to PL theory
• Proofs by induction
• Operational semantics and typing rules

• AERO 490 – Directed study (FA21, Prof. Jean-Baptiste Jeannin)

• Develop the code base for the MARVeLus Compiler



8. Alternative Paths
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• Explored CVC5 SMT Solver instead of Z3

• Start a new programming language from scratch
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