
Synchronous Programming with
Refinement Types
Honors Capstone – Fall 2023

José Luiz Vargas de Mendonça

April 23rd, 2023

1

Nice to meet you!
• I’m José Vargas

• Hometown: Manaus, Brazil

• Major: Aerospace 🚀 and Computer Engineering 💻

• Hobbies: Learning languages (spoken and programming)

2

https://emojipedia.org/laptop/

Table of Contents

- Research

1. Background

2. Motivation

3. Zelus Compiler Architecture

4. Code Example

5. Future Steps

- Honors Experience

6. Starting the Project

7. Focus Area Courses

8. Alternative Paths

3

Research

4

1. Background

• Cyber-physical systems (CPSs) are composed of

software that interacts with the environment.

• Unit testing complex software might not cover all

scenarios.

• Formal verification provides rigorous tools to

prove software safety.

• Refinement types can add constraints to base

types on programming languages.

𝑙𝑒𝑡 (𝑥 ∶ {𝑣 ∶ 𝑖𝑛𝑡 | 𝑣 ≥ 0}) = 4

𝑙𝑒𝑡 (𝑥 ∶ 𝑖𝑛𝑡) = 4
vs

2. Motivation

6

- Synchronous languages are used to
program Cyber-Physical Systems
(CPSs)

- Refinement types are used for formal
verification

• Unit tests are not enough to show that software is safe!

• MARVeLus tells you what you need to know to check that a
critical software follows its specifications.

7

2. Motivation

3. Zelus Compiler Architecture

Source: Timothy Bourke and Marc Pouzet. Zélus: A synchronous language with ODEs. In 16th International

Conference on Hybrid Systems: Computation and Control (HSCC'13), pages 113–118, Philadelphia, USA, March
2013. 8

3.1 Introducing MARVeLus: a refinement type
verifier for Zelus

MARVeLus

9

10

3.2 MARVeLus workflow

4. Refinement variable declaration

𝑙𝑒𝑡 𝑣𝑎𝑟 ∶ 𝑣: 𝑡 | 𝜙 𝑣 = 𝑒

variable name base type

refinement type constraint

rhs expression

- Refinement type requires a base type and a type predicate
- Once the variable is declared, rhs expression is checked against predicate
- Predicate can depend on previously defined variables

11

variable reference

4.1 Refinement variable check

where

𝐸, is the program environment

𝜙𝑖, are constraints associated with previously defined variables

𝜙(𝑣𝑎𝑟), is the constraint we want to satisfy

Verification condition: ¬(⋀𝐸𝜙𝑖 → 𝜙(𝑣𝑎𝑟))

12

4.2 Refinement variable declaration example

let pi = 3.14159
let w = 2 .* pi
let y0 : {v : float | v >= pi} = 4.0

Verification condition:

¬ 𝑝𝑖 = 3.14159 ∧ 𝑤 = 2𝑝𝑖 ∧ 𝑦0 = 4.0 → (𝑦0 ≥ 𝑝𝑖)

- The constraints are added to the program environment as variables are declared
- Once verification condition is checked to be true, 𝜙(𝑣𝑎𝑟) is added to the environment

13

4.2 Refinement variable declaration example (continued)

let pi = 3.14159
let w = 2 .* pi
let y0 : {v : float | v >= pi} = -4.0

let pi = 3.14159
let w = 2 .* pi
let y0 : {v : float | v >= pi} = 4.0
let y1 : {v : float | v >= y0 * 2} = 10.0

Counter-example

If constraint is not satisfiable, display a warning
and provide counter-examples

If constraint is satisfiable, display passed
message

14

5. Current work and next steps

• Preliminary work published at FTSCS 2022
Jiawei Chen, José Luiz Vargas de Mendonça, Shayan Jalili, Bereket Ayele, Bereket Ngussie Bekele, Zhemin Qu, Pranjal Sharma, Tigist Shiferaw, Yicheng Zhang,
and Jean-Baptiste Jeannin. 2022. Synchronous Programming and Refinement Types in Robotics: From Verification to Implementation. In Proceedings of the 8th
ACM SIGPLAN International Workshop on Formal Techniques for Safety-Critical Systems (FTSCS 2022). Association for Computing Machinery, New York, NY,
USA, 68–79. https://doi.org/10.1145/3563822.3568015

• Include support for the continuous part of CPSs

• Refactor compiler code for maintainability

15

Honors Experience

16

6. Starting the Project

17

(Currently AERO 350)

7. Focus Area Courses

18

• EECS 483 – Compiler Construction (FA22, Prof. Max New)

• Learned how to convert a text file into assembly code
• Runtime definitions
• Data structures encoding

• EECS 590 – Advanced Programming Languages (FA22, Prof. Jean-Baptiste Jeannin)

• Formal introduction to PL theory
• Proofs by induction
• Operational semantics and typing rules

• AERO 490 – Directed study (FA21, Prof. Jean-Baptiste Jeannin)

• Develop the code base for the MARVeLus Compiler

8. Alternative Paths

19

• Explored CVC5 SMT Solver instead of Z3

• Start a new programming language from scratch

9. Acknowledgements

20

• My family for continuous support that allowed me to complete undergraduate
education in the US

• Professor Jean-Baptiste Jeannin for the continuous support and mentoring over the
past 2.5 years

• Jiawei Chen for mentoring and time dedicated to answer questions

• The MARVL research group for support with presentations, articles and class
scheduling

• Honors Program for academic support. Shoutout to Rachel Armstrong for helping
me with scholarship applications!

• The Aerospace and EECS Department for all the challenging classes and projects

• Dr. John Callewaert for academic support since freshman year

	Slide 1: Synchronous Programming with Refinement Types Honors Capstone – Fall 2023
	Slide 2: Nice to meet you!
	Slide 3: Table of Contents
	Slide 4: Research
	Slide 5: 1. Background
	Slide 6: 2. Motivation
	Slide 7: 2. Motivation
	Slide 8: 3. Zelus Compiler Architecture
	Slide 9: 3.1 Introducing MARVeLus: a refinement type verifier for Zelus
	Slide 10: 3.2 MARVeLus workflow
	Slide 11: 4. Refinement variable declaration
	Slide 12: 4.1 Refinement variable check
	Slide 13: 4.2 Refinement variable declaration example
	Slide 14: 4.2 Refinement variable declaration example (continued)
	Slide 15: 5. Current work and next steps
	Slide 16: Honors Experience
	Slide 17: 6. Starting the Project
	Slide 18: 7. Focus Area Courses
	Slide 19: 8. Alternative Paths
	Slide 20: 9. Acknowledgements

